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Abstract. We construct δ-shock type solutions of the Cauchy
problem for the system of conservation laws

ut +
(
f(u)− v

)
x

= 0, vt +
(
g(u)

)
x

= 0,

where f(u) and g(u) are polynomials of degree n and n + 1, re-
spectively, n is even. A well known particular case of this system
was studied in [17], [16] by B. L. Keyfitz and H. C. Kranzer. In
this paper a techniques of the weak asymptotics method and the
definition of a δ-shock type solution introduced by V. G. Danilov
and V. M. Shelkovich [6]– [8], are used.

Geometric and physics sense of the Rankine–Hugoniot condi-
tions for δ-shocks is given for the above system, for the system

ut +
(
f(u)

)
x

= 0, vt +
(
g(u)v

)
x

= 0,

and for the well-known zero-pressure gas dynamics system. The
geometric aspect of δ-shock formation from sufficiently smooth
compactly supported initial data is considered. Namely, the con-
struction for the position of δ-shock in a breaking wave is given.

1. Introduction and basic results

1. Consider the system of equations

(1.1)
L1[u, v] = ut +

(
F (u, v)

)
x

= 0,

L2[u, v] = vt +
(
G(u, v)

)
x

= 0,
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where F (u, v) and G(u, v) are smooth functions, such that F (u, v),
G(u, v) are linear with respect to v, u = u(x, t), v = v(x, t) ∈ R, and
x ∈ R. As is well known, such a system, even in the case of smooth
(and, moreover, in the case of discontinuous) initial data (u0(x), v0(x)),
can have a discontinuous shock wave type solution. In this case, it is
said that the pair of functions (u(x, t), v(x, t)) ∈ L∞

(
R × (0,∞);R2

)
is a generalized solution of the Cauchy problem (1.1) with the initial
data (u0(x), v0(x)) if the integral identities

(1.2)

∫ ∞

0

∫ (
uϕt + F (u, v)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
vϕt + G(u, v)ϕx

)
dx dt +

∫
v0(x)ϕ(x, 0) dx = 0

hold for all compactly supported test functions ϕ(x, t) ∈ D(R×[0, ∞)),
where

∫ · dx denotes an improper integral
∫∞
−∞ · dx.

Let us consider the Cauchy problem for system (1.1) with the initial
data

(1.3) u0(x) = u0 + u1H(−x), v0(x) = v0 + v1H(−x),

where u0, u1, v0, v1 are constants and H(ξ) is the Heaviside function. It
is well known [1], [6]– [18], [29], that in order to solve this problem for
some “nonclassical cases”, it is necessary to introduce new elementary
singularities called δ-shock waves (singular shock waves). These are
generalized solutions of the Cauchy problem of the form

(1.4)
u(x, t) = u0 + u1H(−x + ct),
v(x, t) = v0 + v1H(−x + ct) + e(t)δ(−x + ct),

where e(0) = 0 and δ(ξ) is the Dirac delta function.
There is no standard definition of δ-shocks. This reflects the fact

that to define a δ-shock wave type solution, we need to define the
product of the Heaviside function and the delta function. We also need
to define in which sense the distributional solution (1.4) satisfies a
nonlinear system.

In what follows, we present a short review of well-known methods
used to solve problems close to those studied in this paper.

In order to construct a δ-shock wave type solution of the system

(1.5)
ut + (u2)x = 0,
vt + (uv)x = 0,

in [15] the parabolic regularization

ut + (u2)x = εuxx, vt + (uv)x = εvxx.

is used.
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In [13], in order to construct a δ-shock wave type solution of the
system

(1.6)
ut +

(
f(u)

)
x

= 0,
vt +

(
g(u)v

)
x

= 0,

this system is reduced to a system of Hamilton–Jacobi equations, and
then the Lax formula is used. In [18], for the case g(u) = f ′(u), to
construct a δ-shocks wave type solution the problem of multiplication
of distributions is solved by using the definition of Volpert’s averaged
superposition [30].

In [29] for system (1.5) and in [1] for the system of “zero-pressure
gas dynamics”

(1.7)
vt +

(
vu

)
x

= 0,
(vu)t +

(
vu2

)
x

= 0,

(here v ≥ 0 is the density, u is the velocity) with the initial data
(1.3), the δ-shock wave type solution is defined as a measure-valued
solution. In [10], the global δ-shock wave type solution was obtained
for system (1.7). In [14], the uniqueness of the weak solution is proved
for the case when the initial data is a Radon measure. System (1.7)
describes the motion of free particles which stick under collision. In
multidimensional case this system was used to describe the formation
of large-scale structures in the universe [32].

In [12] for system (1.7) and in [24] for some classes of systems,
approximate solutions of the Cauchy problem are constructed, by using
the Colombeau theory approach.

The system

(1.8)
L01[u, v] = ut + (u2 − v)x = 0,
L02[u, v] = vt + (1

3
u3 − u)x = 0

with the initial data (1.3) is studied in [16], [17]. In [17] in order to
construct approximate solutions the Colombeau theory approach, as
well as the Dafermos–DiPerna regularization, and the box approxima-
tions are used. But the notion of a singular solution of system (1.8)
has not been defined. Some problems for system (1.8) are considered
in [26].

In the papers of V. G. Danilov and V. M. Shelkovich [4]– [9], [28]
(see also [2], [27]) a new analytic method for studying the dynamics
of propagation and interaction of different singularities of nonlinear
equations and hyperbolic systems of conservation laws was developed
(infinitely narrow δ-solitons, shocks, δ-shocks). It is the so-called weak
asymptotics method . The summary of this method see in [3]. One of
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the main ideas of this method is based on V. P. Maslov’s approach
that permits deriving the Rankine–Hugoniot conditions directly from
the differential equations considered in the weak sense [20], [23] [2]
(see also [31, 2.7]). Maslov’s algebras of singularities [21], [22], [2] are
essentially used in the weak asymptotics method .

In the framework of the weak asymptotics method , in [8], for sys-
tems (1.6), (1.7), (1.8) the propagation of δ-shock waves was described.
In [6], [7], for system (1.6) formulas describing the propagation and in-
teraction of δ-shock waves are constructed. In these papers for some
classes of hyperbolic systems of conservation laws a new definition of a
δ-shock wave type solution was introduced. This definition is close to
the standard definition of a shock wave type solution (1.2) and relevant
to the notion of δ-shocks.

In [28], in the framework of the weak asymptotics method the
Cauchy problem to the system

(1.9)
L11[u, v] = ut +

(
f(u)− v

)
x

= 0,
L12[u, v] = vt +

(
g(u)

)
x

= 0,

with piecewise constant initial data was solved. Here

f(u) =
n∑

k=0

Aku
k, An 6= 0, g(u) =

n+1∑

k=0

Bku
k, Bn+1 6= 0,

are polynomials, n is an even number, u = u(x, t), v = v(x, t) ∈ R,
x ∈ R. System (1.8) is a well known particular case of system (1.9).

2. In this paper, generalizing results obtained in [28], in the frame-
work of the weak asymptotics method , we solve the Cauchy problem to
system (1.9) with the initial data of the form

(1.10)
u0(x) = u0

0(x) + u0
1(x)H(−x),

v0(x) = v0
0(x) + v0

1(x)H(−x) + e0δ(−x),

where u0
k(x), v0

k(x), k = 0, 1 are given smooth functions, e0 is a given
constant. This means that we study the problem of the propagation
of δ-shocks. We use the definition of a δ-shock wave type solution
introduced by V. G. Danilov and V. M. Shelkovich [7], [8]. The initial
data (1.10) can contain δ-function, but as a rule, in the well-known
papers on δ-shocks, the initial data without δ-function is considered.
This situation is related to the fact that the technical base of these
papers is connected with self-similar solutions.

Remark 1.1. The systems (1.9), (1.8) differ from above systems
(1.5), (1.6), (1.7) and have a specific property. Namely, in systems (1.9)
and (1.8) there is no balance of singularities. Let (u, v) be a δ-shock
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type solution of (1.8). Hence, u contains the Heaviside function H,
and v contains the Heaviside function H and δ-function. Thus, u2 − v
contains the distributions H, δ, and 1

3
u3 − u contains the distribution

H. It is easily seen that, the term (u2 − v)x contains the distributions
H, δ, δ′, but the term ut contains only the distributions H and δ.
Analogously, the term vt contains the distributions H, δ, δ′, but the
term (1

3
u3− u)x contains only the distributions H, δ. Nevertheless, we

prove that the last systems have exact δ-shock type solutions.

The eigenvalues of the characteristic matrix of system (1.9) are

λ±(u) =
1

2

(
f ′(u)±

√(
f ′(u)

)2 − 4g′(u)
)
,

(
f ′(u)

)2 ≥ 4g′(u).

As in [11], [17], [24], [29], we assume that the “overcompression” con-
dition is satisfied:

(1.11) λ−(u+) ≤ λ+(u+) ≤ σδ ≤ λ−(u−) ≤ λ+(u−),

where σδ is the speed of propagation of δ-shock waves, and u− and u+

are respective left- and right-hand values of u on the discontinuity
curve. Condition (1.11) serves as the admissibility condition for the
δ-shocks and means that all characteristics on both sides of the discon-
tinuity are in-coming.

In Section 2 we solve the Cauchy problem (1.9), (1.10) using a
Definition 1.2 of a δ-shock wave type solution given below.

Let us introduce a definition of a δ-shock type solution of system
(1.1). Suppose that Γ = {γi : i ∈ I} is a connected graph in the upper
half-plane {(x, t) : x ∈ R, t ∈ [0,∞)} ∈ R2 containing smooth arcs γi,
i ∈ I, and I is a finite set. By I0 we denote a subset of I such that an
arc γk for k ∈ I0 starts from the points of the x-axis; Γ0 = {x0

k : k ∈ I0}
is the set of initial points of arcs γk, k ∈ I0.

Consider the initial data of the form (u0(x), v0(x)), where

v0(x) = V 0(x) + e0δ(Γ0),

e0δ(Γ0) =
∑

k∈I0
e0

kδ(x − x0
k), u0, V 0 ∈ L∞

(
R;R

)
, e0

k are constants,
k ∈ I0.

Definition 1.2. ( [7], [8]) A pair of distributions (u(x, t), v(x, t))
and graph Γ, where v(x, t) is represented in the form of the sum

v(x, t) = V (x, t) + e(x, t)δ(Γ),
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u, V ∈ L∞
(
R× (0, ∞);R

)
, e(x, t)δ(Γ) =

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈

C1(Γ), i ∈ I, is called a generalized δ-shock wave type solution of sys-
tem (1.1) with the initial data (u0(x), v0(x)) if the integral identities

(1.12)

∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R× [0, ∞)), where ∂ϕ(x,t)
∂l

is the
tangential derivative on the graph Γ,

∫
γi
· dl is a line integral over the

arc γi.

Remark 1.3. The system of integral identities (1.12) generalizes
the usual system of integral identities (1.2) which is the definition of
a shock wave type solution. The integral identities (1.12) for δ-shocks
differ from integral identities (1.2) for shocks by an additional term

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

in the second identity. This term appears due to the so-called Rankine–
Hugoniot deficit and reflects the fact that for δ-shocks the Rankine–
Hugoniot conditions are defined by the fifth and sixth equations of
systems (2.4)

φ̇(t) = [f(u)]−[v]
[u]

,

ė(t) = [g(u)]− [v] [f(u)]−[v]
[u]

,

where the fifth equation is the standard Rankine–Hugoniot condition,
˙ = d

dt
.

According to Definition 1.2 a generalized δ-shock wave type solu-
tion is a pair of distributions (u(x, t), v(x, t)) unlike the Definition of
measure-solutions given in [1], [29], where v(dx, t) is a measure and
u(x, t) is understood as a measurable function which is defined v(dx, t)
a.e..

Next, we introduce a definition of a weak asymptotic solution, which
is one of the most important notions in the weak asymptotics method .

Denote by OD′(εα) a distribution f(x, t, ε) ∈ D′(Rx) such that

〈f(x, t, ε), ψ(x)〉 = O(εα),
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for any test function ψ(x) ∈ D(Rx). Moreover, 〈f(x, t, ε), ψ(x)〉 is a
continuous function in t, where the estimate O(εα) is understood in the
standard sense and is uniform with respect to t.

Definition 1.4. ( [7], [8]) A pair of functions (u(x, t, ε), v(x, t, ε))
smooth as ε > 0 is called a weak asymptotic solution of system (1.1)
with the initial data (u0(x), v0(x)) if∫

L1[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),
∫

L2[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),
∫ (

u(x, 0, ε)− u0(x)
)
ψ(x) dx = o(1),

∫ (
v(x, 0, ε)− v0(x)

)
ψ(x) dx = o(1), ε → +0,

for all ψ(x) ∈ D(R).

The last relations can be rewritten as

(1.13)

L1[u(x, t, ε), v(x, t, ε)] = oD′(1),
L2[u(x, t, ε), v(x, t, ε)] = oD′(1),

u(x, 0, ε) = u0(x) + oD′(1),
v(x, 0, ε) = v0(x) + oD′(1), ε → +0,

where the first two estimates are uniform in t.
Within the framework of the weak asymptotics method , we find the

generalized δ-shock wave type solution (u(x, t), v(x, t)) of the Cauchy
problem as the limit

(1.14)
u(x, t) = limε→+0 u(x, t, ε),
v(x, t) = limε→+0 v(x, t, ε),

of the weak asymptotic solution (u(x, t, ε), v(x, t, ε)) of this problem,
where limits are understood in the weak sense (in the sense of the space
of distributions D′(R × [0, ∞))). Constructing the weak asymptotic
solution and multiplying the first two relations (1.13) by a test function
ϕ(x, t) ∈ D(R× [0, ∞)), integrating these relations by parts and then
passing to the limit as ε → +0, we obtain that the pair of distributions
(1.14) satisfy integral identities (1.12). Thus, we will prove that the
left-hand sides of the following relations

lim
ε→+0

∫ ∞

0

∫
L1[u(x, t, ε), v(x, t, ε)]ϕ(x, t) dx dt = 0,

lim
ε→+0

∫ ∞

0

∫
L2[u(x, t, ε), v(x, t, ε)]ϕ(x, t) dx dt = 0,

coincide with the left-hand side of (1.12).
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In this paper we only consider the problem of propagation of δ-shock
waves and, consequently, the graph Γ contains only one arc. Suppose

this arc has the form Γ = {(x, t) : x = φ(t)}, and hence e(x, t)
∣∣∣
Γ

= e(t).

Now we will describe the scheme of the our technique.
a. According to the weak asymptotics method, we must seek a δ-

shock wave type solution in the form of the singular ansatz
(1.15)

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which corresponds to the structure of initial data (1.10). Here uk(x, t),
vk(x, t), k = 0, 1, e(t), φ(t) are the desired functions.

b. In the framework of our approach, we construct a weak asymp-
totic solution in the form of the smooth ansatz :

u(x, t, ε) = ũ(x, t, ε) + Ru(x, t, ε),
v(x, t, ε) = ṽ(x, t, ε) + Rv(x, t, ε),

where a pair of functions (ũ(x, t, ε), ṽ(x, t, ε)) is a regularization of the
singular ansatz (1.15) with respect to singularities H(−x+φ(t)), δ(−x+
φ(t)), and the so-called corrections Ru(x, t, ε), Rv(x, t, ε) are functions
which must admit the estimates:

(1.16) Rj(x, t, ε) = oD′(1),
∂Rj(x, t, ε)

∂t
= oD′(1), ε → +0.

j = u, v. Thus, we must seek a weak asymptotic solution in the follow-
ing form:

(1.17)

u(x, t, ε) = u0(x, t) + u1(x, t)Hu(−x + φ(t), ε)
+Ru(x, t, ε),

v(x, t, ε) = v0(x, t) + v1(x, t)Hv

(− x + φ(t), ε
)

+e(t)δv

(− x + φ(t), ε
)

+ Rv(x, t, ε),

where uk(x, t), vk(x, t), k = 0, 1, e(t), φ(t), Ru(x, t, ε), Rv(x, t, ε) are
the desired functions,

(1.18) δv(x, ε) = ε−1ωδ

(
x/ε

)

is a regularization of the δ-function,

(1.19) Hj(x, ε
)

= ω0j

(x

ε

)
=

∫ x/ε

−∞
ωj(η) dη, j = u, v,

are regularizations of the Heaviside function H(x). The mollifiers
ωu(η), ωv(η), ωδ(η) have the following properties: (a) ω(η) ∈ C∞(R),
(b) ω(η) has a compact support or decreases sufficiently rapidly as
|η| → ∞, (c)

∫
ω(η) dη = 1, (d) ω(η) ≥ 0, (e) ω(−η) = ω(η). It is
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clear that ω0j(η) ∈ C∞(R), limη→+∞ ω0j(η) = 1, limη→−∞ ω0j(η) = 0,
j = u, v.

In order to construct a regularization f(x, ε) of the distribution
f(x) ∈ D′(R) we use the representation

f(x, ε) = f(x) ∗ 1

ε
ω

(
x

ε

)
, ε > 0,

where ∗ is a convolution, and ω(η) is a mollifier.
Since the generalized δ-shock wave type solution (1.14) is defined as

a weak limit of (1.17), in view of the estimates (1.16), the corrections
do not make a contribution to the generalized solution of the problem.
Otherwise, setting corrections equal to zero, i.e., without introducing
these terms, we cannot solve the Cauchy problem with an arbitrary
initial data (see Remark 2.6 below). It is clear that we can construct the
weak asymptotic solution, using the correction of a different structure.
Note, that choosing the corrections is an essential part of the “right”
construction of the weak asymptotic solution.

A weak asymptotic solution of the Cauchy problem (1.9), (1.10)
is constructed in Theorem 2.1. If e0 = 0, and the initial data is
piecewise constant, our results about a weak asymptotic solution of
system (1.8) coincide with the main statements of [17] (see Corol-
lary 2.5 and Remark 2.6). In particular, the Rankine–Hugoniot deficit

ė(t) = [u3]
3
− [u] − [v] [u

2]−[v]
[u]

is positive. Note that in [17] a particular

case of the approximate solution (1.17), (2.1) of the Cauchy problem
(1.8), (1.10) with piecewise constant initial data was constructed.

c. Using the weak asymptotic solution, in Theorem 2.2 we construct
a generalized δ-shock wave type solution (1.15) of the Cauchy problem
(1.9), (1.10) as the weak limit of (1.17). The system (2.4) describes
the dynamics of singularity and defines the smooth functions uk(x, t),
vk(x, t), k = 0, 1, e(t), φ(t). Theorem 2.3 gives a generalized δ-shock
wave type solution (1.15) of the Cauchy problem (1.8), (1.10).

Remark 1.5. Using a weak asymptotic solution (1.17), constructed
in Theorem 2.1, and (2.12), (2.13), (2.5), we obtain the following rela-
tions

f
(
u(x, t, ε)

)− v(x, t, ε)

(1.20) = f(u0)− v0 +
[
f(u)− v

]
H(−x + φ(t)) + oD′(1),

g
(
u(x, t, ε)

)
= g(u0) +

[
g(u)

]
H(−x + φ(t))
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(1.21) +e(t)

[
f(u)

]

[u]
δ(−x + φ(t)) + oD′(1). ε → +0.

In the framework of the weak asymptotics method by (1.20), (1.21),
in fact, we define the superposition of the Heaviside function and the
delta function. In the background of formulas (1.20), (1.21) there is
the construction of multiplication of distributions. We can introduce
the “right” singular superpositions by the following definition:

f
(
u(x, t)

)− v(x, t)
def
= lim

ε→+0

(
f
(
u(x, t, ε)

)− v(x, t, ε)
)

= f(u0)− v0 +
[
f(u)− v

]
H(−x + φ(t)),

g
(
u(x, t)

) def
= lim

ε→+0

(
g
(
u(x, t, ε)

))

= g(u0) +
[
g(u)

]
H(−x + φ(t)) + e(t)

[
f(u)

]

[u]
δ(−x + φ(t)),

where distributions u(x, t), v(x, t) are defined in (1.15) and the limits
are understood in the weak sense. It is clear that, in general, the weak
limits of f

(
u(x, t, ε)

) − v(x, t, ε) and g
(
u(x, t, ε)

)
depend on the regu-

larization of the Heaviside function and delta function. But the above
unique “right” singular superpositions can be obtained only by the con-
struction of a weak asymptotic solution. In this paper we omit the al-
gebraic aspects of our technique which is given in detail in [2], [3], [27].

By substituting “right” singular superpositions of f
(
u(x, t)

)−v(x, t)

and g
(
u(x, t)

)
into system (1.9), Theorem 2.2 can be proved directly.

In Section 3.1,2. the geometric and physics sense of the Rankine–
Hugoniot conditions for δ-shocks for systems (1.9), (1.6) and (1.7) is
considered. Suppose that the flux functions of (1.1) are normalized
so that F (0, 0) = 0, G(0, 0) = 0. It is well known that if a pair of
compactly supported functions (u(x, t), v(x, t)) ∈ L∞

(
R × (0,∞);R2

)
with respect to x is a generalized solution of system (1.1) then integrals
of the solution on the whole space

(1.22)

∫ +∞

−∞
u(x, t) dx =

∫ +∞
−∞ u0(x) dx,

∫ +∞

−∞
v(x, t) dx =

∫ +∞
−∞ v0(x) dx, t ≥ 0,

(that is, the total area, mass, momentum, energy, etc.) are independent
of time, where (u0(x), v0(x)) is initial data.

For δ-shock wave type solution this fact does not hold. However,
there is a “generalized” analog of conservation laws (1.22). According
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to Theorems 3.1, 3.5, if a pair of distributions (u, v) is compactly sup-
ported generalized δ-shock wave type solution of systems (1.9) or (1.6)
then the integral ∫ +∞

−∞
u(x, t) dx =

∫ +∞

−∞
u0(x) dx,

and the sum∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

(1.23) =

∫ 0

−∞
v0(x) dx +

∫ +∞

0

v0(x) dx + e0

are independent of time, where Γ = {(x, t) : x = φ(t)} is the disconti-
nuity line. Here

S1(t) =
∫ +∞
−∞ u(x, t) dx,

S2(t) =
∫ φ(t)

−∞ v(x, t) dx +
∫ +∞

φ(t)
v(x, t) dx

are the areas under the graphs y = u(x, t), y = v(x, t), respectively.
From formula (1.23), we can see that the sense of amplitude e(t) of δ
function is the “area” of the discontinuity line. Moreover, the “total
area” S2(t) + e(t) is independent of time. Thus, for the Rankine–
Hugoniot deficit we have

ė(t) = −Ṡ2(t).

According to Theorem 3.6, if (u, v) is compactly supported general-
ized δ-shock wave type solution of system “zero-pressure gas dynamics”
(1.7), we have

(1.24)
m(t) + e(t) = const,

p(t) + e(t)φ̇(t) = const.

Since v is the density, u is the velocity,

m(t) =

∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx

is the mass and

p(t) =

∫ φ(t)

−∞
u(x, t)v(x, t) dx +

∫ +∞

φ(t)

u(x, t)v(x, t) dx

is the momentum. From formula (1.24), we can see that the sense of
amplitude e(t) of δ function is the “mass” of discontinuity line and

the sense of the term e(t)φ̇(t) is the “momentum” of discontinuity line.
Moreover, the “total mass” m(t) + e(t) and the “total momentum”
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p(t)+ e(t)φ̇(t) are independent of time. Thus, for the left-hand sides of
the Rankine–Hugoniot conditions for δ-shocks, i.e., the fifth and sixth
equations of system (3.9), we have

ė(t) = −ṁ(t),

d
(
e(t)φ̇(t)

)

dt
= −ṗ(t).

According to (3.14), for a special form of the initial data, the dis-
continuity line x = φ(t) moves at the velocity

φ̇(t) =
p(t)

m(t)

i.e., in such a way as if the total mass were concentrated at the point
x = φ(t). Thus the point x = φ(t) can be in a sense considered as the
system barycenter.

The model of “zero-pressure gas dynamics” cab be described at a
discrete level by a finite collection of particles. In view of (3.8) and (3.9)
the Rankine–Hugoniot deficit ė(t) is located between [u]v+ and [u]v−,
where [u] = u−−u+ is a jump in function u(x, t) across the discontinuity
curve x = φ(t). That is, ė(t) > 0. It means that the particles stick
more and more as the time increases, i.e., there is a concentration
process on the discontinuity curve x = φ(t). Thus, at collision the
colliding particles get stuck together and form a new massive particle
at the point of the system barycenter x = φ(t).

In Section 3.3 the geometric aspect of the process of δ-shock for-
mation from sufficiently smooth compactly supported initial data is
considered. Namely, the construction for the position of a δ-shock in a
breaking wave is given.

2. Construction of δ-shock wave type solutions

1. Let us consider the propagation of a single δ-shock wave of
system (1.9), i.e., consider the Cauchy problem (1.9), (1.10). The first
step is to find a weak asymptotic solution of the problem.

Here we choose the corrections in the special form

(2.1)

Ru(x, t, ε) = P (t) 1
ε1/n ΩP

(
−x+φ(t)

ε

)

+Q(t) 1
ε1/(n+1) ΩQ

(
−x+φ(t)

ε

)
,

Rv(x, t, ε) = 0,

where P (t), Q(t) are continuously differentiable functions for all t > 0,
1
ε
Ωn

P

(
x/ε

)
, 1

ε
Ωn+1

Q

(
x/ε

)
are regularizations (1.18) of the delta function,

mollifiers ΩP (η), ΩQ(η) have properties (a)–(c).
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It is clear that estimates (1.16) hold.
Moreover, we can choose mollifiers ΩP (η), ΩQ(η) such that

(2.2)

∫
Ωk

P (η)Ωn+1−k
Q (η) dη = 0, k = 1, 2, . . . n + 1,

∫
Ωn+1

Q (η) dη 6= 0,
∫

Ωn
P (η) dη 6= 0.

If f(u) = u2, g(u) = 1
3
u3 − u relation (2.2) has the form

∫
Ω3

P (η) dη = 0,

∫
Ω2

P (η)ΩQ(η) dη = 0,

∫
ΩP (η)Ω2

Q(η) dη = 0.

In this case, for example, we can choose ΩP (η) = ηe−η2
, ΩQ(η) =(

1− 2η2
)
e−η2

.

Theorem 2.1. Let

(2.3) λ+(u0
0(0)) ≤ [f(u0)]− [v0]

[u0]

∣∣∣∣
x=0

≤ λ−(u0
0(0) + u0

1(0)),

then there exists T > 0 such that, for t ∈ [0, T ), the Cauchy problem
(1.9), (1.10) has a weak asymptotic solution (1.17), (2.1), (2.2) if and
only if

(2.4)

L11[u+, v+] = 0, x > φ(t),
L11[u−, v−] = 0, x < φ(t),
L12[u+, v+] = 0, x > φ(t),
L12[u−, v−] = 0, x < φ(t),

φ̇(t) = [f(u)]−[v]
[u]

,

ė(t) = [g(u)]− [v] [f(u)]−[v]
[u]

,

(2.5)

P (t) =
(

e(t)
aAn

)1/n

,

Q(t) =

{
e(t)

cBn+1

(
[f(u)]−[v]

[u]
− 1

An

(
Bn+

(n + 1)Bn+1

(
u0 + b

a
u1

)∣∣∣
x=φ(t)

))}1/(n+1)

,

where u+ = u0, v+ = v0, u− = u0 + u1, v− = v0 + v1,[
h(u(x, t), v(x, t))

]

=
(
h
(
u−(x, t), v−(x, t)

)− h
(
u+(x, t), v+(x, t)

))∣∣∣
x=φ(t)
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is a jump in function h(u(x, t), v(x, t)) across the discontinuity curve
x = φ(t),

(2.6)
a =

∫
Ωn

P (η) dη > 0,
b =

∫
ω0u(η)Ωn

P (η) dη,
c =

∫
Ωn+1

Q (η) dη 6= 0.

The initial data for system (2.4), (2.5) are defined from (1.10), and

e(0) = e0,

P (0) =
(

e0

aAn

)1/n

,

Q(0) =

{
e0

cBn+1

(
[f(u)]−[v]

[u]
− 1

An

(
Bn

+(n + 1)
(
u0 + b

a
u1

)
Bn+1

))}1/(n+1)∣∣∣∣
x=0

.

Proof. In order to find a weak asymptotic solution of the Cauchy
problem (1.9), (1.10) we need to construct the weak asymptotics of
some products of regularizations of distributions.

Obviously,

(2.7)
(
H(x, ε)

)r
= H(x) + OD′(ε), ε → +0, r = 1, 2, . . . .

Let δk(x, ε) = 1
ε
ωk

(
x
ε

)
, k = 1, 2 be regularizations (1.18) of the

delta function. Since ω1(η)ωr
2(η) decreases sufficiently rapidly as |η| →

∞, making the change of variables x = εη, we obtain

J(ε) =
〈1

ε
ω1

(x

ε

)(
ω2

(x

ε

))r

, ψ(x)
〉

=

∫
ω1(η)ωr

2(η)ψ(εη) dη = Arψ(0) + O(ε), ε → +0,

for all ψ(x) ∈ D(R), i.e.,

(2.8) δ1(x, ε)
(
ω2

(x

ε

))r

= Arδ(x) + OD′(ε), ε → +0,

where Ar =
∫

ω1(η)ωr
2(η) dη, r = 1, 2, . . . .

Let H(x, ε
)

= ω0

(
x
ε

)
=

∫ x
ε

−∞ ω̃(η) dη be regularization (1.19) of the

Heaviside function H(x) and δ(x, ε) = 1
ε
ω
(

x
ε

)
be regularization (1.18)

of the delta function. Making the change of variables x = εη, we obtain

J(ε) =
〈1

ε
ω
(x

ε

)(
ω0

(x

ε

))r

, ψ(x)
〉

=

∫
ωr

0(η)ω(η)ψ(εη) dη = Brψ(0) + O(ε), ε → +0,
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for all ψ(x) ∈ D(R), i.e.,

(2.9) δ(x, ε)
(
H(x, ε)

)r

= Brδ(x) + OD′(ε), ε → +0,

where Br =
∫

ωr
0(η)ω(η) dη, r = 1, 2, . . . .

Using (2.2), (2.6), (2.8), (2.9), we find the weak asymptotics

(2.10)

Rk(x, t, ε) = oD′(1), k ≤ n− 1,
Rn(x, t, ε) = aP n(t)δ(−x + φ(t))

+oD′(1),
Rn+1(x, t, ε) = cQn+1(t)δ(−x + φ(t))

+oD′(1),
H(−x + φ(t), ε)Rn(x, t, ε) = bP n(t)δ(−x + φ(t))

+oD′(1),

where a, b, c are defined by (2.6).
Using (2.7)–(2.9), one can calculate

(2.11)

(
u(x, t, ε)

)k
= uk

0 +
(
(u0 + u1)

k − uk
0

)
H(−x + φ(t))

+oD′(1), k ≤ n− 1,(
u(x, t, ε)

)n
= un

0 +
(
(u0 + u1)

n − un
0

)
H(−x + φ(t))

+Rn(x, t, ε) + oD′(1),(
u(x, t, ε)

)n+1
= un+1

0

+
(
(u0 + u1)

n+1 − un+1
0

)
H(−x + φ(t))

+(n + 1)
(
u0 + u1H(−x + φ(t), ε)

)
×Rn(x, t, ε) + Rn+1(x, t, ε) + oD′(1).

In particular, we have
(
u(x, t, ε)

)2
= u2

0 +
(
(u0 + u1)

2 − u2
0

)
H(−x + φ(t))

+aP 2(t)δ(−x + φ(t)) + oD′(1),(
u(x, t, ε)

)3
= u3

0 +
(
(u0 + u1)

3 − u3
0

)
H(−x + φ(t))

+
(
(3au0 + 3bu1)P

2(t) + cQ3(t)
)
δ(−x + φ(t))

+oD′(1), ε → +0.

Taking into account relations (2.10), (2.11), we obtain the following
weak asymptotics

f
(
u(x, t, ε)

)
= f(u0) +

(
f(u0 + u1)− f(u0)

)
H(−x + φ(t))

(2.12) +aAnP
n(t)δ(−x + φ(t)) + oD′(1),

g
(
u(x, t, ε)

)
= g(u0) +

(
g(u0 + u1)− g(u0)

)
H(−x + φ(t))

+
{

aBnP
n(t) + (n + 1)

(
au0 + bu1

)
Bn+1P

n(t)
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(2.13) +cBn+1Q
n+1(t)

}
δ(−x + φ(t)) + oD′(1), ε → +0.

Substituting the smooth ansatz (1.17) and (2.12), (2.13) into the
left-hand side of system (1.9), we obtain, up to oD′(1), the following
relations

L11[u(x, t, ε), v(x, t, ε)] = L11[u0, v0]

+
{∂u1

∂t
+

∂

∂x

[
f(u)− v

]}
H(−x + φ(t))

+
{

[u]φ̇(t)− [
f(u)− v

]}
δ(−x + φ(t))

(2.14) +
{

e(t)− aAnP
n(t)

}
δ′(−x + φ(t)) + oD′(1),

L12[u(x, t, ε), v(x, t, ε)] = L22[u0, v0]

+
{∂v1

∂t
+

∂

∂x

[
g(u)

]}
H(−x + φ(t))

=
{

[v]φ̇(t) + ė(t)−
[
g(u)

]}
δ(−x + φ(t))

+
{

e(t)φ̇(t)− aBnP
n(t)− (n + 1)

(
au0 + bu1

)
Bn+1P

n(t)

(2.15) −cBn+1Q
n+1(t)

}
δ′(−x + φ(t)) + oD′(1), ε → +0.

Here we take into account estimates (1.16).
Setting the left-hand side of (2.14), (2.15) equal to zero, we obtain

the necessary and sufficient conditions for the first two equalities (1.13),
i.e., systems (2.4), (2.5).

Consider the Cauchy problem

(2.16)
L11[u, V ] = 0, u(x, 0) = u0(x),
L12[u, V ] = 0, V (x, 0) = V 0(x) = v0

0(x) + v0
1(x)H(−x),

assuming that condition (2.3) holds. The last condition means that
(u0(x), V 0(x)) is entropy initial data.

According to [19, Ch.4.2.], we extend a pair of functions (u0
+(x) =

u0
0(x), V 0

+(x) = v0
0(x)) ((u0

−(x) = u0
0(x)+u0

1(x), V 0
−(x) = v0

0(x)+v0
1(x)))

to x ≤ 0 (x ≥ 0) in a bounded C1 fashion and continue to denote the
extended functions by (u0

±(x), V 0
±(x)). By (u±(x, t), V±(x, t)) we denote

the C1 solutions of the problems

L11[u, V ] = 0, u±(x, 0) = u0
±(x),

L12[u, V ] = 0, V±(x, 0) = V 0
±(x),
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which, according to [19, Ch.2.1.], [25, Ch.I,§8.], exist for small enough
time interval [0, T1]. The pair (u±(x, t), V±(x, t)) determine a two-
sheeted covering of the plane (x, t). Next, we define the function x =
φ(t) as a solution of the problem

φ̇(t) =
f(u−(x, t))− f(u+(x, t))− V−(x, t)) + V+(x, t)

u−(x, t)− u+(x, t)

∣∣∣
x=φ(t)

,

φ(0) = 0. It is clear that there exists a unique function φ(t) for suffi-
ciently short times [0, T2]. To this end, for T = min(T1, T2) we define
the shock solution by

(u(x, t), V (x, t)) =

{
(u+(x, t), V+(x, t)), x > φ(t),
(u−(x, t), V−(x, t)), x < φ(t).

Thus the first five equations of system (2.4) define a unique solution
of the Cauchy problem (2.16) for t ∈ [0, T ). Solving this problem, we
obtain u(x, t), V (x, t), φ(t).

Then, substituting these functions into (2.4), (2.5), we obtain e(t),
v(x, t) = V (x, t) + e(t)δ(−x + φ(t)), and P (t), Q(t). It is clear that
mollifiers ΩP (η), ΩQ(η) can be chosen such that relations (2.2) hold.

¤
2. Using the weak asymptotic solution constructed by Theorem 2.1

we obtain a generalized solution of the Cauchy problem (1.9), (1.10).

Theorem 2.2. There exists T > 0 given by Theorem 2.1 such that
the Cauchy problem (1.9), (1.10), (2.3) for t ∈ [0, T ) has a unique
generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (1.12):

(2.17)

∫ T

0

∫ (
uϕt +

(
f(u)− V

)
ϕx

)
dx dt

+

∫
u0(x)ϕ(x, 0) dx = 0,

∫ T

0

∫ (
V ϕt + g(u)ϕx

)
dx dt +

∫
V 0(x)ϕ(x, 0) dx

+

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl + e0ϕ(0, 0) = 0,

where Γ = {(x, t) : x = φ(t), t ∈ [0, T )}, and
∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

e(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt,
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V (x, t) = v0(x, t)+v1(x, t)H(−x+φ(t)) and functions uk(x, t), vk(x, t),
φ(t), e(t) are defined by system (2.4).

Proof. By Theorem 2.1 we have the following estimates:

L11[u(x, t, ε)] = oD′(ε), L12[u(x, t, ε), v(x, t, ε)] = oD′(ε).

Let us apply the left-hand and right-hand sides of these relations to
an arbitrary test function ϕ(x, t) ∈ D(R × [0, T )). Since for ε > 0
the functions u(x, t, ε), v(x, t, ε) are smooth, integrating by parts, we
obtain

∫ T

0

∫ (
u(x, t, ε)ϕt(x, t) +

(
f(u(x, t, ε))− v(x, t, ε)

)
ϕx(x, t)

)
dxdt

+

∫
u(x, 0, ε)ϕ(x, 0) dx = o(1),

∫ T

0

∫ (
v(x, t, ε)ϕt(x, t) + g(u(x, t, ε))ϕx(x, t)

)
dxdt

+

∫
v(x, 0, ε)ϕ(x, 0) dx = o(1), ε → +0.

Passing to the limit as ε → +0 and taking into account (1.17),
(1.16), (1.20), (1.21), and the fact that

lim
ε→+0

∫ T

0

∫ ∞

−∞
e(t)δv

(− x + φ(t), ε
)
ϕ(x, t) dxdt

=

∫ T

0

e(t)ϕ(φ(t), t) dt,

lim
ε→+0

∫ ∞

−∞
e(0)δv

(− x, ε
)
ϕ(x, 0) dx = e(0)ϕ(0, 0),

we obtain the integral identities (2.17).
In view of the above remark system (2.4) has a unique solution. ¤

The fifth and sixth equations of systems (2.4) are the Rankine–
Hugoniot conditions of δ-shocks. Here the right-hand side of the fifth
equation is the so-called Rankine–Hugoniot deficit:

ė(t) = [g(u)]− [v]
[f(u)]− [v]

[u]
.

If An > 0, e0 ≥ 0, according to (2.5), the amplitude e(t) of δ-
function is positive.

In particular, for system (1.8) we have the following result.
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Theorem 2.3. There exists T > 0 given by Theorem 2.1 such that
the Cauchy problem (1.8), (1.10),

(2.18) u0
0(0) + 1 ≤ [(u0)2]− [v0]

[u0]

∣∣∣∣
x=0

≤ u0
0(0) + u0

1(0)− 1,

for t ∈ [0, T ) has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (2.17), where f(u) = u2, g(u) =
1
3
u3−u, and functions uk(x, t), vk(x, t), φ(t), e(t) are defined by system

(2.4).

Let the initial data (1.10) be piecewise constant, i.e u0
0 = u0, u0

1 =
u1, v0

0 = v0, v0
1 = v1. Then from Theorems 2.2, 2.3 we have the

following corollaries.

Corollary 2.4. For t ∈ [0, ∞), the Cauchy problem (1.9), (1.10),
(2.3), with piecewise constant initial data has a unique generalized so-
lution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
φ(t) = [f(u)]−[v]

[u]
t,

e(t) = e0 +
(
[g(u)]− [u]− [v] [u

2]−[v]
[u]

)
t.

Corollary 2.5. For t ∈ [0, ∞), the Cauchy problem (1.8), (1.10),
(2.18), with piecewise constants initial data has a unique generalized
solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where
φ(t) = [u2]−[v]

[u]
t,

e(t) = e0 +
(

[u3]
3
− [u]− [v] [u

2]−[v]
[u]

)
t.

Moreover, if e0 = 0, the Rankine–Hugoniot deficit is positive:

ė(t) =
[u3]

3
− [u]− [v]

[u2]− [v]

[u]
> 0

(as in [17]).

Here ė(t) > 0 according to the seventh equation (2.5).
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Remark 2.6. To find a generalized solution of the Cauchy problem
(1.9), (1.10) we construct a weak asymptotic solution of problem (1.17),
where the functions φ(t), e(t), uk, vk, k = 0, 1 are determined by
Theorem 2.2 and the functions ω0u(η), ΩP (η), ΩQ(η), P (t), Q(t) are
determined by relations (2.2), (2.5), (2.6). In view of estimate (1.16)
(see also (1.20), (1.21)), the generalized solution (1.15) of the Cauchy
problem does not depend on relations (2.2), (2.5).

Without introducing the terms

P (t)ε−1/nΩP

(−x + φ(t)

ε

)
, Q(t)ε−1/(n+1)ΩQ

(−x + φ(t)

ε

)
,

according to (2.5), we cannot solve the Cauchy problem, which admits
δ-shocks. If we introduce only the first term, we cannot solve the
Cauchy problem with an arbitrary initial value (1.10), but only for
initial values determined by the relation

(2.19)
[f(u)]− [v]

[u]
=

1

An

(
Bn + (n + 1)

(
u0 +

b

a
u1

)
Bn+1

)
,

where the constants a, b are defined by (2.6).
In [17], in the framework of the Colombeau theory, in order to

construct an approximate δ-shock solution for system (1.8) only a term
of the type

P (t)ε−1/2ΩP

(−x + φ(t)

ε

)

is introduced. In this case relation (2.19) has the following form

u0 + u1 − v1

u1

u1

=
b

a
,

where a =
∫

Ω2
P (η) dη, b =

∫
ω0u(η)Ω2

P (η) dη. This relation can be
rewritten as

(2.20)
u0 − v1

u1

u1

=
φ̇(t)− u−

u1

=
b− a

a
,

where u− = u0 + u1. In [17] the parameter a =
∫

Ω2
P (η) dη was set to

be 1. Hence (see (1.19))

b− a

a
=

∫ (
ω0u(η)− 1

)
Ω2

P (η) dη < 1.

Here relation (2.20) coincides with the second relation [17, Proposi-
tion 2] and the last inequality coincides with the statement of [17,
Lemma 1]. However in this case relation (2.20) still leaves one degree
of freedom, to connect u− = u0 + u1 and u+ = u0 (see [17, Proposi-
tion 2]).
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3. Geometric and physics sense of the Rankine–Hugoniot
conditions

1. Suppose that the flux functions of system (1.8) are normalized
so that

(3.1) f(0) = 0, g(0) = 0.

Let a pair of distributions (u(x, t), v(x, t)) be the generalized δ-shock
wave type solution of system (1.8), where v(x, t) = V (x, t) + e(t)δ(Γ),
Γ = {(x, t) : x = φ(t)} is the discontinuity line, u(x, t), V (x, t) are
compactly supported functions with respect to x. Denote by

S1(t) =
∫ φ(t)

−∞ u(x, t) dx +
∫ +∞

φ(t)
u(x, t) dx,

S2(t) =
∫ φ(t)

−∞ v(x, t) dx +
∫ +∞

φ(t)
v(x, t) dx,

S3(t) =
∫ φ(t)

−∞ u(x, t)v(x, t) dx +
∫ +∞

φ(t)
u(x, t)v(x, t) dx,

S1(0) =
∫ 0

−∞ u0(x) dx +
∫ +∞
0

u0(x) dx,

S2(0) =
∫ 0

−∞ V 0(x) dx +
∫ +∞
0

V 0(x) dx,

S3(0) =
∫ 0

−∞ u0(x)V 0(x) dx +
∫ +∞

0
u0(x)V 0(x) dx,

the areas under the graphs y = u(x, t), y = v(x, t), y = u(x, t)v(x, t),
and y = u0(x), y = v0(x), y = u0(x)v0(x), respectively.

Theorem 3.1. Let the pair of distributions (u(x, t), v(x, t)) be a
generalized δ-shock wave type solution of the Cauchy problem (1.9),
(1.10), where u(x, t), V (x, t) are compactly supported functions with
respect to x. Assume that condition (3.1) is satisfied. Then

(3.2)
Ṡ1(t) = 0,

Ṡ2(t) = −ė(t),

where ė(t) = [g(u)] − [v] [f(u)]−[v]
[u]

is the Rankine–Hugoniot deficit, t ∈
[0, T ). Thus,

(3.3)

∫ φ(t)

−∞
u(x, t) dx +

∫ +∞

φ(t)

u(x, t) dx

=

∫ 0

−∞
u0(x) dx +

∫ +∞

0

u0(x) dx,
∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

=

∫ 0

−∞
V 0(x) dx +

∫ +∞

0

V 0(x) dx + e0.
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Proof. Let us prove the second relation (3.2). We denote v± =
limx→φ(t)±0 v(x, t). Using the second equation of system (1.9), we obtain

Ṡ2(t) = v−φ̇(t)− v+φ̇(t) +

∫ φ(t)

−∞
vt(x, t) dx +

∫ +∞

φ(t)

vt(x, t) dx

= [v]φ̇(t)−
∫ φ(t)

−∞

(
g(u(x, t))

)
x
dx−

∫ +∞

φ(t)

(
g(u(x, t))

)
x
dx

= [v]φ̇(t) + g(u(−∞, t))− g(u(+∞, t))− [g(u)].

Taking into account that g(u(−∞, t)) = g(u(+∞, t)) = g(0) = 0

and using the expression for φ̇(t), we have

Ṡ2(t) = [v]
[f(u)]− [v]

[u]
− [g(u)].

The first relation (3.2) is the well-known relation for scalar conser-
vation law. The proof of this relation is carried out in the same way.
Integrating expressions (3.2), we obtain (3.3). ¤

2. In the paper [8] of V. G. Danilov and V. M. Shelkovich, in
the framework of Definition 1.2 a δ-shock wave type solution of the
Cauchy problem (1.6), (1.10) was constructed. The eigenvalues of the
characteristic matrix of system (1.6) are λ1(u) = f ′(u), λ2(u) = g(u).
We assume that

(3.4) f ′′(u) > 0, g′(u) > 0, f ′(u) ≤ g(u)

and the “overcompression” conditions

λ1(u+) ≤ λ2(u+) ≤ φ̇(t) ≤ λ1(u−) ≤ λ2(u−).

are satisfied.
In [7], [8] the following theorem was proved.

Theorem 3.2. ( [7], [8]) Suppose that u0
1(0) > 0 and conditions

(3.4) hold. Then there exists T > 0 such that, for t ∈ [0, T ), the
Cauchy problem (1.6), (1.10), has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (1.12), where F (u, v) = f(u),
G(u, v) = vg(u), and functions u0 = u+, v0 = v+, u0 + u1 = u−,
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v0 + v1 = v−, φ(t), e(t) are defined by the system:

(3.5)

L11[u+] = 0, x > φ(t),
L11[u−] = 0, x < φ(t),

L12[u+, v+] = 0, x > φ(t),
L12[u−, v−] = 0, x < φ(t),

φ̇(t) = [f(u)]
[u]

,

ė(t) = [vg(u)]− [v] [f(u)]
[u]

.

The initial data for system (3.5) are defined from (1.10).

In [8] the Cauchy problem for the system of zero-pressure gas dy-
namics (1.7) was also solved. The initial data for system (1.7) is the
following (see [8, Remark 1.1.])

(3.6)

u0(x) = u0
0(x) + u0

1(x)H(−x),
v0(x) = v0

0(x) + v0
1(x)H(−x) + e0δ(−x).

φ̇(t)
∣∣
t=0

= φ1,

where φ1 is given constant and u0
1(0) > 0. Thus, in addition to the

initial data (1.10) we add the initial velocity φ̇(0) to the initial data for
system (1.7).

Now we introduce the definition of a δ-shock wave type solution for
systems (1.7) from [8]. Suppose that arcs of the graph Γ = {γi : i ∈ I}
have the form γi = {(x, t) : x = φi(t)}, i ∈ I.

Definition 3.3. ( [8]) A pair of distributions (u(x, t), v(x, t)) and
graph Γ from Definition 1.2 is called a generalized δ-shock wave type
solution of system (1.7) with the initial data (u0(x), v0(x); φ̇i(0), i ∈ I0)
if the integral identities

(3.7)

∫ ∞

0

∫ (
V ϕt + uV ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

∫ ∞

0

∫ (
uV ϕt + u2V ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)φ̇i(t)
∂ϕ(x, t)

∂l
dl

+

∫
u0(x)V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kφ̇k(0)ϕ(x0

k, 0) = 0,

hold for all ϕ(x, t) ∈ D(R× [0, ∞)).
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System (1.7) has a double eigenvalue λ1(u) = λ2(u) = u. In this
case the entropy condition is

(3.8) u+ ≤ φ̇(t) ≤ u−.

In [8] the following theorem was proved.

Theorem 3.4. ( [8]) There exists T > 0 such that the Cauchy
problem (1.7), (3.6) for t ∈ [0, T ) has a unique generalized solution

u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (3.7), where functions u0 = u+,
v0 = v+, u0 + u1 = u−, v0 + v1 = v−, φ(t), e(t) are defined by the
system

(3.9)

L31[u+, v+] = 0, x > φ(t),
L31[u−, v−] = 0, x < φ(t),
L32[u+, v+] = 0, x > φ(t),
L32[u−, v−] = 0, x < φ(t),

ė(t) = [uv]− [v]φ̇(t),

d
(
e(t)φ̇(t)

)

dt
= [u2v]− [uv]φ̇(t),

and initial data are defined from (3.6).

The fifth and sixth equations of system (3.5), (3.9) are the Rankine–
Hugoniot conditions of δ-shocks.

Using Theorems 3.2, 3.4 from [8], we prove the following analogs of
Theorem 3.1.

Theorem 3.5. Let the pair of distributions (u(x, t), v(x, t)) be a
generalized δ-shock wave type solution of the Cauchy problem (1.6),
(1.10), where u(x, t), V (x, t) are compactly supported functions with
respect to x. Assume that condition (3.1) is satisfied. Then

(3.10)
Ṡ1(t) = 0,

Ṡ2(t) = −ė(t),
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where ė(t) = [vg(u)] − [v] [f(u)]
[u]

is the Rankine–Hugoniot deficit, t ∈
[0, T ). Thus,

(3.11)

∫ φ(t)

−∞
u(x, t) dx +

∫ +∞

φ(t)

u(x, t) dx

=

∫ 0

−∞
u0(x) dx +

∫ +∞

0

u0(x) dx,
∫ φ(t)

−∞
v(x, t) dx +

∫ +∞

φ(t)

v(x, t) dx + e(t)

=

∫ 0

−∞
V 0(x) dx +

∫ +∞

0

V 0(x) dx + e0.

In order to prove this theorem, we use system (3.5) and the same
calculations as those carried out above. We omit them here.

We remind that for the system of “zero-pressure gas dynamics”
v(x, t) is density and u(x, t) is velocity. Hence, the area S2(t) = m(t)
is mass and the area S3(t) = p(t) is momentum.

Theorem 3.6. Let the pair of distributions (u(x, t), v(x, t)) be a
generalized δ-shock wave type solution of the Cauchy problem (1.7),
(3.6), u(x, t), V (x, t) are compactly supported functions with respect
to x. Then

(3.12)
ṁ(t) = −ė(t),

ṗ(t) = −d
(

e(t)φ̇(t)
)

dt
,

where

ė(t) = [uv]− [v]φ̇(t),

d
(
e(t)φ̇(t)

)

dt
= [u2v]− [uv]φ̇(t),

φ̇(t) is the phase velocity, t ∈ [0, T ). Thus,

(3.13)
m(t) + e(t) = m(0) + e0,

p(t) + e(t)φ̇(t) = p(0) + e0φ1,

where m(0) = S2(0), p(0) = S3(0) are initial mass and momentum
respectively. Moreover, if we choose the initial data such that

m0 = −e0, p0 = −e0φ1,

we have

(3.14) φ̇(t) =
p(t)

m(t)
.
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Proof. The proof of the first relation (3.12) is based on the same
calculations as the proof of the second relation (3.2). Let us prove the
second relation (3.12).

Using the second equation of system (1.7), we obtain

ṗ(t) =
[
uv

]
φ̇(t) +

∫ φ(t)

−∞
(uv)t dx +

∫ +∞

φ(t)

(uv)t dx

= [uv]φ̇(t)−
∫ φ(t)

−∞

(
vu2

)
x
dx−

∫ +∞

φ(t)

(
vu2

)
x
dx

= [v]φ̇(t)− [vu2] +
(
vu2

)
(−∞, t)−

(
vu2

)
(+∞, t).

In view of the sixth equation of (3.9), we have

ṗ(t) = −d
(
e(t)φ̇(t)

)

dt
.

Integrating (3.12), we obtain (3.13) and (3.14). ¤

3. Consider the geometric aspect of δ-shock formation from suf-
ficiently smooth compactly supported initial data (u0(x), v0(x)) (here
u0

1(x) = v0
1(x) = e0 = 0) for systems (1.9) and (1.6). In a similar way,

the geometric aspect of δ-shock wave formation for system (1.7) can be
considered.

It is well known that the solution u and v must become multivalued
at finite time. Any multivalued part of the wave profile must be re-
placed by an appropriate discontinuity. Construction for the position
of δ-shock in a breaking wave will be given below.

Let t = t∗ be the time of δ-shock formation. Then, according
to (1.22), (1.23), (for t = t∗) the correct initial positions for δ-shock
discontinuities in u and v are such that these discontinuities must cut
off lobes of equal area, as on Fig. 1..

If t > t∗, the correct initial positions for δ-shock discontinuities in
u and v are such that the discontinuity in u must cut off lobes of equal
area Bu(t) = Au(t) (see Fig. 1.), while the discontinuity in v must cut
off lobes whose areas satisfy the following relation Bv(t) = Av(t)+ e(t)
(see Fig. 2.), where Au(t), Av(t) are the areas of the lobes to the left
of discontinuity, Bu(t), Bv(t) are the areas of the lobes to the right of
discontinuity. Note, that at the time t = t∗ of δ-shock wave formation
the area, mass, momentum are continuous functions with respect to t
but their derivatives have the jumps.
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Fig. 2. Nonequal area construction for the position of the delta−shock in a breaking wave v(x,t).
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