INITTIAL BOUNDARY VALUE PROBLEMS FOR A
QUASILINEAR PARABOLIC SYSTEM
IN THREE-PHASE CAPILLARY FLOW IN POROUS MEDIA

HERMANO FRID & VLADIMIR SHELUKHIN

ABSTRACT. We study two types of initial boundary value problems for a quasi-
linear parabolic system motivated by three-phase flow in porous medium in the
presence of capillarity effects. The first type of problem prescribes a boundary
condition of mixed type involving a combination of the value of the solution
and its normal derivative at the boundary. The second type of problem pre-
scribes Dirichlet boundary conditions and its solution is obtained as a limit
case of the first type. The main assumption about the “viscosity” matrix of the
system is that it is triangular with strictly positive diagonal elements. Another
interesting feature is concerned specifically with the application to three-phase
capillary flow in porous medium. Namely, we derive an important practical
consequence of the assumption that the diffusion term in the equation of one
of the phases, say gas, depends only on the saturation of the corresponding
phase. We show that this mathematical assumption in turn provides an effi-
cient method for the definition of the capillary pressures in the interior of the
triangle of saturations through the solution of a well posed boundary value
problem for a linear hyperbolic system. As an example, we include the anal-
ysis of a very special model of three-phase capillary flow where the capillarity
matrix results to be degenerate, but we are still able to solve it, due to the
particular form of the flux functions.

1. INTRODUCTION

We consider initial boundary value problems for 2 x 2 quasilinear parabolic sys-
tems of the form

(1.1) ur + f(u)g = (Buug)y, 0<t<T, z€(-1,1)=Q,

motivated by one-dimensional three-phase capillary flows in a petroleum reservoir.

Here,
Ul fi Bi1 B
= = B =
=) r=(%) == (5 52):

and equality (1.1) is a short version of

6u,~ Bf,(u) o 0 6u]'

o T Tor %(Bij(u)%)-

Our main results concerning system (1.1) (see Theorems 1.1 and 1.2 below) assume
a nondegeneracy condition (see (1.14) below) besides some structural ones (see (1.3)
and (1.8) below). As a matter of fact, in the application to three-phase capillary
flow the matrix B is, in general, degenerate, being singular at the boundary of the
triangle of saturations. As an example, we also include the analysis of a special case

(1.2)
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(see Theorem 1.3 below) in which B is degenerate, but we are able to prove that the
solution never ”sees” the set of degeneracy, that is, the boundary of the saturations
triangle. Mathematically, passing to a regularized system with a non-degenerate
matrix B close to the physical one does not trivialize the subject at all. The reason
is that the theory of quasilinear parabolic systems is still quite incomplete and, in
particular, the case of a general non-degenerate matrix B, yielding a well established
parabolicity condition, remains an open problem as far as global in time existence
is concerned.

Relatively to progresses on the theory of parabolic quasilinear systems, it is
shown in the book of Ladyzhenskaya, Solonnikov and Ural’tseva [6] that the ma-
chinery developed for one quasilinear parabolic equation can be applied to system
(1.1) in the case where one has By; = Bss, Bjs = By = 0. We also recall the re-

sults of H.Amann [2] which, when restricted to 2 x 2 systems, require that 8—1’:2 =0,

duy
8By —
Tt = 0 and

(13) Bgl = 0,

but, for such systems, existence is conditioned by the assumption that some norms
of the solutions are finite. Here, we also impose (1.3) in our results, Theorems 1.1,
1.2 and 1.3, but, for the first two cases, both fs, Bss, also depend, in general, on
both variables, uz, us.

We consider two initial boundary value problems for system (1.1):

(1.4) dup+u=up at |z|=1, ul=o=uo(x),
and
(1.5) u=uy at |z|=1, ul=0 = uo(z),

where § = const > 0 and
Uplo=t+1 = FUglo=+1, Uslo=+1 = us(t).

Motivated by the application to capillary three-phase flow, where the functions w;
stand for fluid saturations, uy,us must verify the constraints

(1.6) 0<u; <1, wup+u<l.
We write the constraints (1.6) as
(1.7 ueEA={u:ueR, 0<u;<1, u +uy<1}.
Observe that the triangle A can be defined as an intersection
A =n3{Gi(u) <0}, Gi1=—u1, Ga2=—us, Gz=u+us—1.
The fulfilment of (1.7) will be a consequence of the following assumptions on the

matrices BT and (f)7, with (f')i; = 2

(1.8) (f)T{VuGi) = a;VWuGs, BT(VuGi) = wiVuGi,
VYu € 0A, s.t. Gij(u) =0, i =1,2,3.

for some scalar functions of u, a; and p; > 0, eigenvalues of (f')T and BT, respec-
tively, defined on A N {G;(u) = 0}, i = 1,2,3. Observe that conditions (1.8) are
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equivalent to

(1.9 filuy=0 = const,  fa|u,=0 = const, (fi + f2)|us+uys=1 = const,
(1.10)  Bizlus=0 =0, Bai|ys=0 =0, (B11 + Ba1 — Bi2 — B22)|us4us=1 =0,

due to the simple structure of the functions G;. The conditions (1.8) allow the
use of the theory of Chuey, Conley, and Smoller [11] on positively invariant regions
for nonlinear parabolic systems (see also [10]). We note that conditions (1.9) and
(1.10) are naturally verified in the application to three-phase capillary flow in porous
medium.

We are interested in classical solutions of the initial boundary value problem
(1.1),(1.4),(1.6). So, we assume that

0fi 0By OBy
du;’  Oup’  OusOuy

where HP(A) is the space of Hélder continuous functions on A with 3 € (0,1).
The initial and boundary data are assumed to be also in Holder spaces:

(1.12) ug € H**P(Q), wux(t) € H*P([0,T)).

(1.11) fi, HA(A),

We can now state our result concerning the problem (1.1),(1.4),(1.6).

Theorem 1.1. Assume that the data B(u), f(u), uo(z), and uy(t) satisfy the
conditions (1.3),(1.8),(1.11), and (1.12), and

(1.13) uo(z), wux(t)€ A foreach ze€A and tel0,T).
Let v be a positive number and assume that
(1.14) Bi; >v i=1,2, for each u € A.
Suppose that the compatibility conditions
+ug(+1) + uo(£1) = ux(0)

are satisfied. Then problem (1.1),(1.4),(1.6) has a unique solution u(t,x) such that
= H2+B,1+ﬁ/2@)_

The heart of the proof is the Leray-Schauder fixed-point argument and strong a
priori estimates in Holder spaces. This was also the approach applied in [4], where
we considered the less difficult case of periodic boundary conditions.

As for the Dirichlet boundary-value problem our result does not includes unique-
ness and, in this sense, it is weaker. The obstacle, which is yet to be overcome,
is the a priori estimate for |u,| at 0. In the case of the boundary conditions
(1.4) such an estimate is a simple consequence of (1.7). We now state our result
concerning problem (1.1),(1.5),(1.6).

Theorem 1.2. Let B(u) and f(u) be as in Theorem 1.1. Let the functions ug(x)
and u (t) satisfy (1.13) and up € L*(Q), u+ € WHY(0,T). Then problem (1.1),(1.5),
(1.6) has a solution u(t,z) in the sense that u is a classical solution of (1.1) in
Q :=(0,T) x (—1,1), and u satisfies (1.5) in the sense of L*(0,T), for the bound-
ary condition, and L?(—1,1), for the initial condition. Moreover, if ui(t) = 0,
t € [0,T), and uo € H**P(Q), with uo(£1) = 0, then u(t,z) is a classical solution
of (1.1) in Q, u € HPP/2(Q) and the initial and boundary conditions are assumed
in the usual sense for continuous functions.
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The proof involves the passage to the limit when § | 0 in a sequence of solu-
tions to the problem (1.1),(1.4),(1.6). We prove Theorem 1.1, in sections 2 and 3.
Theorem 1.2 is proved in section 4.

In section 5 we recall the basic facts about capillary multiphase flow in a porous
medium. To motivate considerations, we discuss the mobility laws and capillary
pressure laws which lead to the hypothesis

Bi1 Bis 0Bs»
1.15 B = — =0.
(1.15) ( 0 By )’ Ouy
Ofa __

and to the condition z;2 = 0. The capillary-pressure laws are given by the equations
Di — Py :Pij(u)a with laJ € {17253}'

Here, p; is the pressure in the i-th phase. The capillary pressure functions P;; are
assumed as defined somehow on A, but this knowledge is very poor both experi-
mentally and theoretically [3, 12].

The main feature of section 5 is a remarkable outcome of the mathematical
assumptions (1.15) on the capillarity matrix, in the application to three-phase cap-
illary flow. It is related with the problem of defining the capillary pressures in the
interior of the triangle of saturations. Experimentally, capillary pressures are only
known, as functions of the saturations, in two-phase fluid flows [9, 5]. This allows
us to take the functions

(116) Pi'(u)|uk:07 k#% k#]a

as given by the two-phase flow experiments. The hypothesis (1.15) amounts to a
linear hyperbolic system of partial differential equations for the functions P; = Pj3
(see (5.7) below). When the mobilities are linear functions (see formulas (5.8)), we
prove that the two-phase capillary pressures

p13(u1) = Pi3(u)|us=0, p23(u2) = Pa3(u)|u;—0

give rise to functions P; obeying system (5.7) and such that

(1.17) Piluy=0 =13, Palu=0 = pas.

We call the process yielding resulting formulas (see (5.11) below) the method of
physical interpolation for capillary pressures, since these formulas define the capil-
lary pressures in the interior of the saturations triangle from the two-phase capillary
pressures given in (1.17). In other words, system (5.7) and conditions (1.17) com-
prise a boundary-value problem for P; with the two-phase capillary pressures pi3
and po3 as boundary data.

Finally, in section 6, the techniques developed in sections 2 to 4 are applied to
the study of a particular degenerate reservoir fluid flow problem. This problem
reduces to the Dirichlet initial boundary value problem for a degenerate system of
the form (1.1), with constraints given in (1.6), where (1.15) as well as g—ﬁ = 0 hold.
In this case the second equation in (1.2) reads

8u2 8f2 (UQ) 0 6“2

T 9 %(322@2)%);
but, due to (1.6), equations (1.2) are not completely decoupled. Here, f and B in
(1.1) have the form

019 1=t (s )» 2= (079 SR,
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where a, 3, k, and ki (> 0) are constants and & = u;(1 — uz) L.

The matrix B is degenerate at 0. This is the main difficulty. The introduction
of the variable &, so called relative saturation, saves the situation. The variable &
appears naturally when one is looking for invariant solutions of the homogeneous
system corresponding to (5.7). With the change of variables (up,u2) — (£, u2),
system (1.1) writes

&  &ou22(Bui + Ba2)
§t fp 1 (Bubds 1— uy ’
Ous | Ofa(uz) _ O Ouz
at ar oz )0

It enables us to apply the maximum principle and guarantee that
(1.19) 0<do<uy<1-4§, §<€EL1-4,

provided that these estimates are valid at t = 0 and |z| = 1. In this way one avoids
degeneracy. We then obtain the following result proved in section 6.

Theorem 1.3. Assume
ug € L®(A), uy € WH(0,T), 0<d<ups(t)<1-0, §<&u(t) <134,
d<uzo(z) <1-6, 0<é&(z) <1-4,
for some § € (0,1), where

€0 = U1,0 £ = Uy,+
0=T— = -
1—usp0 1—us+

Then, with f and B given by (1.18), problem (1.1),(1.5),(1.6) has a weak solution
u(t,x) such that

u€L®(Q), us€L*Q), w €L*0,T;W*(Q)),
and the estimates (1.19) hold.

2. A MIXED TYPE INITIAL BOUNDARY VALUE PROBLEM
In this section, for given €, > 0, we consider the initial boundary value problem
(2.1)  w+ fu)e = (B(uw)ug)e +€h, (t,2) €Q=(0,T)xQ, Q= (-1,1),
(2.2) duptu=uge at |z|=1, ul=o = uo().
Here
Unlp=t1 = LUz, Us|p=t1 = U+ (t), Uir,e = (1—5)(%‘%&)7 Uj0,e = (1—5)(%+Ui0),

i =1,2. In the following lemmas, the constants ¢ do not depend on ¢, and we omit
the subscript € when referring to the functions ug ¢ (z), us (2).

Lemma 2.1. The solution u takes values in int(A) whenever ug and ux take values
in A.

Proof. We follow the method of positively invariant regions [11] (see also [10]).
Denoting z; = G;(u), we prove that z; < 0 for each i. Clearly,

max z;(0,z) <0, i€{1,2,3}.

z€Q
Suppose, there is a first moment ¢; > 0 such that

r;lggzi(tl,x) = zi(t1,20) =0
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for some i. There are two possibilities: |zg| < 1 and |zg| = 1. The case zo = 1 is
impossible. Indeed, it follows from the equality

(2.3) 6z + 2t = —ul,
that 2¢(t;,1) < 0, which gives a contradiction since z(t;,z) < 0, z € [—1,1]. The
case £g = —1 can be treated similarly.

Let us consider the case |z9| < 1. Multiplying (2.1) by V,G; and using (1.8),
one arrives at the equality

(2.4) z,f + aiz; = (uizi)w +eh-V,G; at (t1,z0)-
By the assumption, ' _
2'(t1,zo) = max 2*(1,y),
where the max is taken over
0<7<t, Jy<L
Hence, we must have
(2.5) 2i(t1,m0) =0, 2%, (t1,20) <0, 2zi(t1,z0) > 0.
Due to the choice of h, we have
h-V.Gi <0 at (t1,z0).
Now, it follows from (2.4) that 2}(t1, o) < 0, contradicting to (2.5). a

Lemma 2.2. The estimate
T
(2.6 luslloig) + 65 [ fuat 1)t <
+
0

holds with a constant ¢ depending on v and the norms ||u+||L10,7) and ||hl|L1(q)-
In particular, by (2.1), it follows that

(2.7) luellz2o,m3w-1200)) < ¢

uniformly in € and §.

1700’. DeIlO(e
w = wU/7+ xu+, vV=Uu w.

Then we have from equation (2.1); that

1d
/’Ugd!lf =+ /Bgz|7}2$|2d$ = UQ(BQQ(UQ;,E + ’U)Qa;) - f2)|f{
Q Q

2dt

+/U2w(f2 — Baswag) — wagvz + chava da.
Q
Since
Ulz:il = :F(S(Ua: + wm)lz::tl
and Bas > v, estimate (2.6) for us follows by the Cauchy inequality.
From equation (2.1)1, we have

1d
>d /vfdm + /Bn|vlz|2d$ = v (B11(viz + wiz) + Biaus, — f1)T1
Q Q
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—/Um (Biiwig + Biaugs — f1) — wigvr + ehyvy de.

Q
By the same argument, one can derive the claim of the lemma for the function u;,
using estimate (2.6) for ua. O

The following estimates depend, in general, on 4.
Lemma 2.3. There are constants ¢ and o € (0,1) such that
(2.8) Juzlts” = [l groerz ) < e
Moreover, if ux = 0, the estimate (2.8) holds uniformly in 0.

Proof. Let ((t,z) be a test function with values between 0 and 1 and that is different
from zero only for z € K, the ball of radius p centered at z° € Q. Denote

Q,=0nK,=[",2%], 2% =min{l,z0+p}, 2° =max{-1,z¢— p}.
Given ¢' > 0, we multiply equation (2.1); by
Cz max{ug —k, 0} C2uék)a k> _615

and integrate over 1,. We have

ZO
Zdt/C [u? da?+/C Bylull) |? dw = ¢* Baoyusau | ¢ foull)| iy
QP
_/zcch”“?w“gk) — Gl ? — f2(20Cus) + Cult)) - eho¢Pul da.
QP

Observe that Bss > v,
5uz|m*i1 = i(ui - u)lm*:tla

C2B22u2zu2 )| C2322Ug Uap lo=1 + = C2Bz2u( )U27|z=71 ;
(2.9) ol <1 [ ol + 20600 do
Q

for small p. Thus,
(2.10) th/@ (k)|2d;v+u/C2|u P ds < g/c2|u§?|2dm
QP

ber [ IIPAGP +1¢61+ ) + a0
QF
where Ay ,(t) is the intersection of the support of ugk) with K,, and 14 is the
characteristic function of the set A. Proceeding in an analogous way, we prove that
(2.9) also hods with us replaced by —us, for k < 1+ §'. These inequalities imply
that uz belongs to a class B2(Q, M,~,r, 8, k) [6] (Chapter II, §7), with M = 1,
r =6, k = 2, and, hence, uy € H*/?(Q) for some a € (0,1).
As for the last statement, indeed, in this case,

1
CZB22U2:EU2 )| E —CzBQQUQUék) <0,
=41 Y
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and the constant ¢; in (2.10) does not depend on §. O
Lemma 2.4. There is a constant c such that
2 2 2 4 2
(2.11) Oréltag(T{/ us, dz + 6( Z uz,) } + /u2m + us, +us dedt < c .
T Q0 r==41 Q
Moreover, if ux =0, the constant ¢ in (2.11) does not depend on 6.

Proof. Let ((x) be the test function like above. We multiply equation (2.1)y by
(C*uaz), and integrate over K,. Using the equality

Oy + U =105 at == =+1,
the Young inequality, and inequality (2.9), we obtain that
5 dt{/ CPu3, dx + 6( Z Cud,)} + V/C2U§m de < J,

r= Zi Qp

. v
J = llaslloqoy x D, 1¢u2] + 3 /CZUQM
z=z9 Q,
2 2 2 2 2
—l—C*/Cqud.’l}'-i-C/C u2z+u1z)+u2z(C +C)+C dz.

Q, Q,

Observe [6] that

(2.12) /szidx < 160sc*{v, K, } / 2¢%02, + (202 da.
K K

By Lemma 2.3,

osc®{us, K,} < cp®', a1 <o
Now, the assertion of the lemma follows if we take p such that 32¢.p® < v/4, where
« is the constant from Lemma 2.3. d

Lemma 2.5. There are constants ¢ and o € (0,1) such that |u1|g‘) < ¢. Moreover,
if ux =0, the constant ¢ in Lemma 2.5 does not depend on §.

Proof Let ((t, z) be a function like in Lemma 2.3. Then, given ¢’ > 0, for k > —¢',

Z'O
5 /cz\u B2 de + /C2B11|u Pde=Ji+Jy, J=CBuueu®|ls,

of

/CCtU - QCCanulwu( )+ U§k)C2[(Bl2U2z)z ~ o +ehi]dx.

We have

Ji < 5 S @B sul? / “Cu? el ? + a4, de,
r==+1

k
T2 < [ WP+ + e [ CLay0) ([ L@+ s + o))
P Q, Q,
As in Lemma 2.3, we can prove analogously that the above inequality also holds
with u; replaced by —u; and k < 1+ §'. Hence, (see [6] Ch. II, §7) the function u
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belongs to a class B2(Q, M,~,r,8', k), with M =1, r = 6, kK = 2, and the lemma is
proved. O

Lemma 2.6. There is a constant ¢ such that

onax {/ulzdm-i-& Zil|u1$| }+/ulm+u1z+u1tdxdt<c
T
Q

Moreover, if ux = 0, the constant ¢ in the above lemma does not depend on §.

Proof. Let {(z) be a test function like in Lemma 2.5. Then it follows from equation
(21)1 that

2 dt{/c2u1z dz + 6 Z CQulz)} + V/C2u%zw dz S CJ;
Q,

wwi

= ”uB”C([O T]) Z |C ull‘l +3 / ulz‘z dz + / C2 u2z + ulz + u2zz + u2z) dz

T= zi Q, Q,

+ / CP(ul, + Uz, + U3, + U3y, +ul, + 1+ u5,C +u3, ()
2,

Applying inequality (2.12), one arrives at the conclusion of the lemma. O
Lemma 2.7. There is a constant ¢ such that
(2.13) / |uiz|® do dt < c, / [wiztine|* dz dt < c, / |Uizs|® dox dt < c.

Q Q Q

Proof. We start with the simple inequality

T
/|um|6 dedt < /max)(|u,~gﬂ|4/|um|2 dz dt.
€N

Q 0 Q

Observe that for any x and v,
y
2 20\ _
Ua:(x) - Uz(y) = 2/Uzmuzdz ,

T

SO
1
lfilli?i” §||U$||L2(Q) + 8||”M||L2(Q ||”z||L2(Q)
Hence,
||“m||L6(Q) ||Uzz||L°o 0,T; L2(Q))(1 + ||Uzzz||L2 Q))

and the first estimate of the lemma is proved.
Let us write equation (2.1)s as

{UQt = Boysugg, + F,

_ 9B 2_ (8 o5
F = 52 |ua,| (8,];? U1y + aug Uzg) + G2 ULz U, + €Dy

(2.14)
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By Lemmas 2.4 and 2.6, ||F||5s(g) < c¢. Now, the theory of linear parabolic equa-
tions (see [6], Ch. IV,§9) can be applied to derive the estimate

(2.15) / [ugzz|® dz dt < c.
Q
The second estimate in (2.13) for us follows because of the inequality
(2.16) /|uv|2 do dt < (/ lul® da dt)1/3(/ (ol da dt)?/?.
Q Q Q
Equation (2.1); writes
(2.17) u1t = Biiuiz, + F,
OB OB OB OB
F= ulz(wlllulz + Wl;uzz) + u2z(wll2ulz + WISUQ;E) + Biauzzz
of of
—\a T a Wz h )
(6u1ul + 6u2u2 ) +ehy

with [|F[|z3() < ¢. Hence, the estimate (2.15) is also valid for ui;,. Now, the
second estimate in (2.13) for u; follows due to inequality (2.16).
O

Lemma 2.8. There are constants ¢ and o € (0,1) such that |u2w|g‘) <ec.

Proof. Let us differentiate equation (2.1), with respect to z. The function uy, = v
solves the linear equation

v = (B2avg)e + F + o,

0’B 0B 0B
F= 67322('”293)3 +2 611,222 U2 U2z + 67212(ulmzu2m + ulzu2mz)
82322 62B22
+ a—u{“ﬂ“% + 2mu1mu§$,
O f2 0fa
=2, =92 ha.
g E Ulg Dy Ug + EN2

By the above lemmas,
1Pliro = ([ ([ Frroants <, N lana <e,
Q

when g = 2, r = 2. Clearly, the constants ¢ and r satisfy the conditions

11 1 00 2
1- 5 1 1-2x
+ K, 0<K<g, q€[lod], ré€[g—: 75",

with & = 1/4. Moreover, it follows from the boundary conditions (3.2) and Lemma
3.3, that

r 2

lv(t, £V garz o,z < -
Thus, by the theory of linear parabolic equations [LSU, Ch.III,§10]

) < e

7
for some a < a. O
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Lemma 2.9. There are constants ¢ and o € (0,1) such that |u1w|g’) <ec.

Proof. Denoting u;, = v and differentiating equation (2.1); with respect to z, we
have

(2.18) vg = (B11(u1,u2)vz)e + F1 + 914,
0B 0B 0B 0’B 8%’B
= ulzw( 611,111 Uiz + 6‘u121 u2z) + ulz{ 111 Ulgy + Ulw(aT%Hulw Walu:u%c)
0B11 8B 8B
+— Dus U2zy + u2z(6u16u2 Uiz + 6U% u2:c)};

OB 0B 0 0
g1 = u2z(W112u1z + 8u12 U2z) + Biauazs — (a—qﬁulz + a—iuzz) +ehy.

By Lemma 2.7, [|Fi[|z2(q) < c¢. With the estimate of Lemma 2.8 for uz, at hand,
the function F' in equation (2.14) meets the estimate ||F||z+(g) < c. It implies that

||u2zz||L4(Q) S (& ||gl||L4(Q) S c.

Now, one may treat equation (2.18) as a linear parabolic one for v, with

171, gill22.0 < ¢ Mot £1) || arzory) < ¢
By the same argument like in Lemma 2.8, we conclude that

||u1£l5||Ha a /Q(Q) <c

17
for some a < a. O

Lemma 2.10. Let

wo € H*YP(Q), wx € H'P/2([0,T]), 0<pB<1,
and the compatibility conditions
(2.19) +8ug(£1) + up(£1) = ug (0)

be satisfied. Then there is a constant ¢ such that solutions to problem (2.1),(2.2) sat-
isfy the estimate |u|(2+/3) < c. The constant c does not depend on ¢ but depends on
T, lluo| H*+* ()], IIUill’f“rﬂ”([0 T]l, and the L>~norms of f(u), Vuf, Bij(u),

KR:T
VuBij, and g5~

Proof. First, we observe that the data ug. and ug. also satisfy the compatibility
conditions (2.19). We know from the above lemmas that there are constants ¢ and

a € (0,1) such that |u,~,um|g‘) < c¢. If v = min{a, B}, it follows from the linear
equation (2.14) that |u2|(Q2+7) < ¢ [LSU, Ch.IV, §5]. By the same argument, we
conclude from equation (3.17) that |u1|(2+7) < ¢. To increase «y up to 3, one should
return to problem (2.14), which now ensures that |u2|(2+ﬁ < c¢. Next, one should

pass to equation (2.17) to make sure that |u1|8+3) <ec O
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3. EXISTENCE AND UNIQUENESS

To prove the solvability of problem (2.1),(2.2), we apply a fixed point argument
in the form of the Leray-Schauder principle as in [6]. Let B be a Banach space of
vector-functions u(t,z) € R?, having the bounded norm

lulls = [u]$) + [u,]$.

Given a = (a1,a2) € B and X € [0,1], we define u = (u,v) as a solution to the
linear problem

vt + A[an( a) — (B (a)vy)s — eha(@)] = (1 — A)vge,
ug + )\[81;1—3(:1) — (Bi1(a)ug)z — (Bia(a)vg)e —ehi(a)] = (1 — N)ugy,
du, +u=1ups, ul— =uy = (1—5)(%4‘“01;%4‘“02)-

The first equation does not involve the function u. So, by the theory of linear
parabolic equations, the operator a — u = Ay(a) is well-defined, and his fixed
points are solutions to problem (2.1),(2.2) when A = 1. By repeating the arguments
of the lemmas in Section 2, one arrives at the a priori estimates for the fixed points
u, of the operator Aj:

2
uy) € A; |u/\;u/\z|(QB) S M; |11/\|((Q+ﬂ) S Mla
where the constants M, M; are independent of \. We restrict Ay to the set
U={ueB:ue A |u>\,u)\$|g) < M', ul=o =ugc(z), du,+u=us},

where int(A’) D A and M’ > M. Clearly, U is a bounded convex set in B, and all
the fixed-points uy of Ay are strictly inside of U.

As in [6], one can prove that the other conditions of the Leray-Schauder theorem
are also verified. Namely,

(i) The set Ax(U) is compact in B for each X € [0, 1];
(ii) the mapping a — A, (a) is continuous on U uniformly in (a, A) € U x [0, 1];
(iii) the mapping A — A, (a) is continuous in (a, ) € U x [0, 1];
(iv) the operator A¢ has a unique fixed point inside of U, and the mapping
a+— a— Ap(a) has an inverse near this fixed point.

Hence, problem (2.1),(2.2) has at least one solution in the Holder space H2+8:1+5/2(()).
Uniqueness can be established in the same manner as in [6]. Thus, we have proved
the following.

Theorem 3.1. Let the functions f(u), V. f, Bij(u), VuBij, au 8u , and the func-

tion h(u) be Holder continuous with the Hélder exponent 8 € (0, 1) Let the condi-
tions of Lemma 2.10 be satisfied. Then problem (2.1),(2.2) has a unique solution
u(t,z) € H>B:14B8/2(Q) such that u(t,x) € A for each (t,z) € Q.

Proof of Theorem 1.1. Since the estimate of Lemma 2.10 does not depend on €
there is a sequence gy, | 0, such that the corresponding sequence uy, of solutions of
problem (2.1),(2.2) converges to a function u € H**#1+8/2(Q)) in the norm |- |8+7)
for any v < 8. Clearly, u solves the problem (1.1),(1.4),(1.6). Thus, Theorem 1.1
is proved. a
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4. DIRICHLET BOUNDARY CONDITIONS
In this section we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us consider the Dirichlet problem (1.1),(1.5),(1.6). The
estimates (2.6) and (2.7) are uniform with respect to § | 0. By the Aubin-Lions
compactness theorem [7], they imply that there are a sequence uy, o | 0, of
solutions to problem (1.1),(1.4),(1.6) and a function u such that

(4.1) weL®(Q), uy€L*Q), wuy e L*0,T;W 1(Q)),

up, = u in L*Q), u(t,z) € A foreach (t,z)€ Q.

Clearlﬁ the function u solves equation (1.1) weakly. Now, given any open set Q'
with Q' C @, we have that uy is uniformly bounded in H 2+B8.14+8/2(QQ7), so that
u € H?>B:14B/2(Q"). In particular, u is a classical solution of (1.1) in Q. Due
to estimate (2.6), the boundary condition u|,—+1 = u4 holds in L%(0,7). The
inclusions (4.1) imply that u € C(0,T; L?(f2)), so the function u satisfies the initial
condition u|;—p = ug weakly in L?(2). This proves the first part of Theorem 1.2.
The last part is a consequence of the fact that the estimates of Lemmas 2.2-2.5

are uniform in §. Therefore, we have u € HP8/2(Q), and, so, the last assertion
follows. U

5. BASIC EQUATIONS OF THREE-PHASE FLOW

For the reader’s convenience we recall the underlying laws of multiphase flows in
a porous medium [1]. We consider one-dimensional horizontal flows of three incom-
pressible immiscible fluids formed in phases. The balance of masses is governed by
the mass conservation equations
(5.1) %(mumi) + %(sz’) =0,
where m denotes porosity of the porous medium, u;, p;, and v; are the saturation,
density, and seepage velocity of the i-th phase. The functions u; satisfy the volume-
balance equation

(52) UL + ug + uz = 1.

The theory of multiphase flows in porous media is based on the following form of
Darcy’s law

(53) V; = _k)\ipia:a )\z = Ai(ula'u@)a

where k stands for the absolute permeability, A; is the mobility of the i-th phase,
and p; is the pressure of the i-th phase.

The capillary pressures are defined as the pressure differences (cf.,e.g.,[9, 1]), and
we assume here that they are functions of the saturations w1, us, that is,

(5.4) Pi(u1,u2) = p1 —p3, Pa(ui,uz) = ps —ps.

Denote
3 A\,
A:EI:,\i, f,-:X’, i=1,2,3.
For

3
UZE Vi,
1
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we find from (5.1) and (5.2) that v, = 0, so v depends on ¢ only. We assume for
simplicity that v =1 and k = m =1 as well.
Eliminating the pressure derivative ps,, we have from (2.3)

v = f1(1 + Ao Py, — ()\2 =+ )\3)le), Vg = f2(]. + MP, — ()\1 + )\3)P2w)

When we substitute these velocities into the first two equations in (5.1) we obtain
the system (1.1), where the 2 x 2-matrix B is given by

By = A ()\2 + )\3) oP; B A OP, By = _)\1/\2 P, n )\1(/\2 + /\3) 0P,
= A 6“1 A 8u1’ 2= A 6U2 A 8’LL2,

Bor — Ao ()\1 + )\3) oP, A2 OP; . A2 OP; )\2()\1 + )\3) 0P,
21 = o T 22 = — —

A dur A Ouw’ A Ous A Ouy

Since u is a saturation vector, we should impose the restriction u € A.

The mobilities A; are subject to natural restrictions [1]
(5.5) Ai>0, Ailu—o=0, ie{1,23}.
Let us formulate hypotheses on the capillary pressure laws (5.4).

Whatever the function P;(ui,us) are, they manifest itself in equations (1.1) only
through the matrix B. We assume that
(56) Bgl = 0, 322 = 322 ('U,Q) Z 0, Bll Z 0 in A.

The capillarity-diffusion hypothesis (5.6) means that the first and the third phases
are not responsible for the amount of diffusion in the equation for the second phase.
The first two conditions in (5.6) read

0P, 9P OB, _ 0P ADm
8u1 - 8114, 3U2 - 6U2 )\2()\1 +)\3), - )\1 +)\3'

We study these equations for P;(u1,u2) in the case when the mobilities \; are linear
functions:

(58) /\z = k,-ui, k’z = const.

(57) A

A symmetry group analysis (see [8]), performed for system (5.7), suggests to look
for solutions of the form
U1 (5%

(5.9) P =qi(§) + Qiuz), & =

1—wy ~ u+us

It follows from (5.7) that the functions ¢; and @; solve the system

2(€) = g, (6)A 4= k 0. koB
qs (g) q (5) (6) ’ m , 1 (u2) — %S:Z)’
: - ks —k
(5.10) Qo (us2) B22(u2)(k3(11 UQ) + k;ug)7 ko = 3’€1k3 L

Assume that the capillary pressure
p1 —p3 = Pi(u)
is a given function at the two-phase boundary us = 0 of the triangle A:
Pr|yy=0 = p13(u1).
Assume also that the capillary pressure

p2 —p3 = Pa(u)
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is a given function at the two-phase boundary u; = 0 of the triangle A:
Py|yy=0 = paz(u2)-
It follows from (5.9) that
pis(w) = @ (u1) + Q1(0), p2s(uz) = ¢2(0) + Qa2 (u2).
It is naturally to set

a1(§) = p13(€),  Q2(u2) = pas(u2).
Then the other functions Q1 (u2) and ¢2(§) are defined from (5.10) as follows:
_ kaksua(1 — u)pyg(un)

£
w(© = [AOP(©d Bl = el )
0

Qy(uz) = —1I_C—OUQB22(U2)-

Thus, we arrive at the formulas for the capillary pressures:

kokakzuapos (usz)

Py (u1,u2) = p13(€) — Fatis + g (L — u2) duy + const,
€
(5.11) Py(u1,uz) = /A(f)plw(g) d€ + pas(u2) + const.
0

We call the process yielding formulas (5.11) the method of physical interpolation
since these formulas define the pressure differences p; — p; in A starting from the
values of

pr—ps at {uz=0}NA and p,—p3 at {u; =0}NA.
Due to the definition (5), we have

koksua(1 — u2)p123(u2)
kous + kg(l — UQ)

7

Bii = k(1 - A(€))p15(6), B =

(5.12) By1 =0, Bia =¢(Bi1 — B)
When

P13(§) >0, poz(u2) >0,
system (1.1) is parabolic and degenerate at JA. An important property of the
matrix B given by (5.12) is that the vector V,G; is an eigenvector of B' at
{Gi(u) =0} N A:
(5.13) B (VWGi) = piVuGi, i > 0.
This property is easily verified if one observes that equalities (5.13) are equivalent
to

B2 =0, B =0, Bi1—Bia—Ba=0,
at the sets G1 = 0, G2 = 0, and G3 = 0 respectively.
We observe also that V,G;(u) is an eigenvector of the matrix (f')T for any u

such that G;(u) = 0:

() (VuGi) = aiVuGi.
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We verify this property only for the function G3 since the other cases require less
calculations. The fact that V,G’3 is an eigen-vector of (/)T writes
0fi [ 0fs _0fi  Ofr .
(9’U,1 + 6’LL1 61@ + 6u2 ! ur + Uz
When A3 = 0 this equality is equivalent to
Ols O3
208 208 =1
8“1 6u2 ! U + U2
It really holds since, by the hypothesis (5.5),

)\3(U1,U2):0 if ug+us=1.

6. A DEGENERATE PROBLEM

Here, we study a particular system arising in petroleum reservoir fluid flows. We
assume that mobilities are linear functions

A= kiui, 1€ {1,273}; ky = k37

and the capillary pressures are given by the formulas

a., p 1 1 B8 Uy
P = P = — 2 — 2 _—— — _— = .
1 a€7 2 2§ + 2u2(k1 k2)+k2u2 I E 1_u2
In this case, the flow is governed by the degenerate parabolic system
(6.1) ure + fi(ur, u2)z = (Bui(ur, u2)uig)s + (Bia(ur, u2)uag)s,
ugg + fo(uz)s = (B2 (u2)u2s)a,
with .
U1 U2 2
fl k'LLQ—}-l’ f2 ( +k)k’LL2+1’ k k1 ’

Bi1 = aki£(1 —€), Bos = fBus(l —ua), Bi2 =&(Bi1 —B22), B2 =0.
Equations (6.1); and (6.1)2 are coupled through the condition u(t,z) € A, which
can be written as

(6.2) 0 <ui(t,z) <1, wa(t,z) <1—ui(t, ).
We consider the Dirichlet initial-boundary value problem
(6.3) Ulpea1 = us(t), ult—o = uo(z).
Proof of Theorem 1.3. Consider the approximate non-degenerate problem
6.4 {ut + f()e = (BY (u)ua)s,
vun, +u=u4 at |z|=1, uli=o =uf(x),
with
By =v+xu(u2)Bu, B3, =v+xu(u2)Ba2, Bfy = xv(u2)é(Bi; — B3,),
uy € H*P(Q), wuf(z) € A, w4 € HFP2([0,T)), wuf(t) € A,
Hrug(£1) + ug(£1) = v’L(0),
luf —ut|lwrio,ry = 0, |lug —uollz2@@) =0, as v ]O0.

Here, x, (u2) is a smooth function such that

Xv(u2) =1 if 0<us<1-v, x,(uz)=0, if 1-%SU2S1-
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Clearly, the matrix B” satisfies the hypotheses of Theorem 1.1, and so we have the
unique solvability of problem (6.4). We also observe that, under the conditions of
Theorem 1.3 on the data u§ and v, any smooth solution of problem (6.4) satisfies
the a priori estimate

(6.5) 0 <wus(t,z) <1-—0.
With this estimate at hand, the matrix BY, for small v, reads
(6.6) BYy =v+Bu, Bj,=v+ By, B,=¢B—B).

We then have BY,(u”) > 62 uniformly in v | 0. Thus, the constant ¢ in Lemma 2.2
does not depend on v, and

(6.7) luszllez@) < ¢ llugillLzo,mw-120)) < ¢,

uniformly in ».
Taking into account the last equality in (6.6) for the entry BY,, one can calculate
from equations (6.4) that the function & = u} /(1 — u¥) solves the problem

v BV + Bl/ )
T _ (B . §auz, (Bl 22
£t+ ku5+1 ( 11€x)m 1_u5 )

M&n +£ = §:|: at = :f:]., §|t=0 = &](CL‘)
—u4

By the maximum principle,

(6.8) 6 <E&(tx)<1-94,

uniformly in v. Now, it is a consequence of (6.5) and (6.8) that
8 <wu¥(t,x) < (1-96)%, BY >4

By the same argument as in Lemma 2.2, we have

(6.9) lutellz@) < ¢ llutillezomw-1200) <6

uniformly in v.

Estimates (6.7) and (6.9) imply by the Aubin-Lions compactness theorem that
there are a sequence u™ = u”~ and a function u such as described in Theorem 1.3
and such that

u™(t,r) - u(t,r) ae.in Q, u®—u, weaklyin L*(Q).

Clearly, u is a weak solution of problem (6.1)-(6.3). Theorem 1.3 is proved. O
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