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Abstract

This paper introduces a series of novel hierarchical implicit derivative match-

ing methods to restore the accuracy of high-order finite difference time-domain

(FDTD) schemes of computational electromagnetics (CEM) with material

interfaces in one (1D) and two spatial dimensions (2D). By making use of

fictitious points, systematic approaches are proposed to locally enforce the

physical jump conditions at material interfaces in a preprocessing stage, to

arbitrarily high orders of accuracy in principle. While often limited by numer-

ical instability, orders up to 16 in 1D and 2D are achieved. Detailed stability

analyses are presented for the present approach to examine the up limit in

constructing embedded FDTD methods. As natural generalizations of the

high-order FDTD schemes, the proposed derivative matching methods auto-

matically reduce to the standard FDTD schemes when the material interfaces

are absent. An interesting feature of the present approach is that it encom-

passes a variety of schemes of different orders in a single code. Another feature

of the present approach is that it can be robustly implemented with other high

accuracy time-domain approaches, such as the multiresolution time-domain

(MRTD) method and the local spectral time-domain (LSTD) method, to cope
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with material interfaces. Numerical experiments on both 1D and 2D prob-

lems are carried out to test the convergence, examine the stability, access the

efficiency, and explore the limitation of the proposed methods. It is found

that operating at their best capacity, the proposed high order schemes are at

least a million times more efficient than their fourth order versions in both

1D and 2D. Therefore, it is believed that the proposed hierarchical derivative

matching methods are highly accurate, efficient, and robust for CEM.

Keywords: Maxwell’s equations, finite-difference time-domain methods, staggered grids,

material interfaces, high-order methods, stability analysis.

I. INTRODUCTION

Recently, scientific and technological advancements in nano/micro devices, optical de-

vices, microwave circuits, antennas, aircraft radar signature, and telecommunication chips,

call for innovative computational methods for solving Maxwell’s equations which govern

the propagation and scattering of electromagnetic waves. The finite-difference time-domain

(FDTD) method [1,2] has been a main workhorse of computational electromagnetics (CEM)

in the time domain over the past few decades, due to its simplicity, lack of dissipative error,

and having very low cost per grid node. However, the FDTD method suffers from relatively

large dispersive error [3], (first order) staircased representation for complex geometries and

boundaries, and reduction of accuracy to the first order at material interfaces [4]. Conse-

quently, the FDTD is efficient only for regular geometries of small or moderate size, without

dielectric interfaces. For broadband applications and problems including material interface,

wave scattering and penetration over large and complex domains, the grid size required by

using the FDTD method could become prohibitively expensive for modern computers. Much

progress has been made in the past two decades in improving the FDTD method, including

plentiful methods for removing the staircased approximation for boundaries and geometries,

[5–9] and numerous high-order FDTD methods [3,10–16]. Here, by high order we refer to
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orders being higher than three, which are essential for modern problems of moderately high

frequency (short) waves and/or large domain in nature. However, at present, there is still

a pressing need for a generalized FDTD method which is simple, robust and high order for

large scale computations involving complex geometries, boundary conditions, and material

interfaces. In particular, very few high order schemes are available for handling material

interfaces.

Apart from the FDTD-based high-order methods, several other time-domain methods

that are able to produce extremely small dispersive errors have also been proposed in the lit-

erature. Based on orthonormal wavelet expansions, a multiresolution time-domain (MRTD)

method has been introduced for numerical analysis of microwave structures [17,18]. By

using the perfectly matched layer (PML) [19] technique to bypass the limitation of the

Fourier pseudospectral method on periodic boundary conditions, a Fourier pseudospectral

time-domain (PSTD) method was successfully developed to solve wave propagation and ra-

diation problems [20,21]. Recently, a wavelet collocation scheme, based on the mathematical

framework of the discrete singular convolution (DSC) algorithm [22] for spatial derivative

approximation has been proposed for scattering and guided wave problems described by

Maxwell’s equations on uniform grids [23] and on staggered grids [24–27]. This wavelet col-

location scheme, entitled local spectral time-domain (LSTD) method, is capable of handling

many boundary conditions commonly occurred in CEM. To achieve a satisfied accuracy, the

required grid points per wavelength (PPW) of these three time-domain methods could be

very low. Especially, the PSTD and LSTD can deliver extremely high accuracy by using a

coarse grid of about 2 PPW, i.e., the Nyquist sampling rate limitation [20,24,25].

In general, the high-order FDTD schemes and the three other high accuracy time-domain

methods all retain much of the simplicity of the original Yee algorithm [1]. Similar to the

FDTD method, these time-domain approaches are also usually applied to a simple Cartesian

grid. However, it is well known that numerical schemes based on a single structured grid

would be restricted to be used only for geometrically simple domains. Depending on the

problems of interest, the FDTD methods can be directly extended to an orthogonal curvilin-
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ear grid by means of a body-conforming domain transformation to handle wave scattering

and propagation in moderately complex geometries. The use of the fundamental FDTD

scheme on nonorthogonal and unstructured grids has been extensively studied [2]. How-

ever, these efforts of constructing FDTD type of approaches based on complex grids might

not be as efficient as expected. To handle truly complex geometries of practical interest,

some sort of multidomain grid schemes, or unstructured grid schemes should be consid-

ered. Therefore, with the growing need for solving geometrically complex electromagnetic

problems, the development of flexible time-domain Maxwell equation solvers on advanced

grids has received considerable interest in the literature. Guided by the consideration of

numerical grids, numerous finite volume time-domain methods [28–30] and finite element

time-domain methods [31–34] have been put forward to systematically handle geometri-

cally complex problems in CEM, since the most flexible grid, the unstructured grid, is best

adapted to the finite volume and finite element approaches. Many vector elements, such

as Nedelec elements [31], Whitney forms [35,36], and curl/div conforming vector elements

[37] are constructed to provide a discrete analog to the continuous vector algebra and to en-

force only minimal continuity across element boundaries. Recently, a promising high-order

nodal method on fully unstructured grids has been developed by means of a discontinuous

Galerkin formulation and a penalty method for boundary conditions [38]. On the other

hand, guided by the consideration of numerical algorithms, various domain decomposition

approaches have been proposed. Since the spectral methods which can delivery strikingly

high accuracy are unfortunately quite inflexible to handle complex geometries, recently, the

development of the domain decomposition pseudospectral or spectral methods has attracted

much attentions [39–43]. A block pseudospectral (BPS) method was successfully developed

for one- (1D) and two-dimensional (2D) electromagnetic problems by using overlapping or

composite grids to achieve a highly accurate coupling of subdomains [39,40]. Remarkably,

innovative ways to appropriately enforce the physical jump conditions at material interfaces

are presented by using fictitious points (FPs) [39,40]. At present, multidomain methods

[41–43] are some of the best available approaches for handling complex geometries in CEM.
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The offset of a multidomain formulation is the requirement of correct connections between

subdomains, which could be constricting and sometimes may be difficult to fulfill. Interpo-

lation schemes are usually required. Also, properties such as conservation and monotonicity

may have to be ensured across blocks. Moreover, the use of multidomain framework and

unstructured grids inevitably introduces a need of automated grid generation and a severe

restriction on stability. Even though considerable progress has been made in grid generation,

the formation of a good quality block structured grid system or an unstructured grid system

in geometrically complex domain remains a nontrivial and time-consuming task.

Alternatively, some embedding FDTDmethods which make use of simple Cartesian grids,

have been introduced to defer the problem of complex geometries to be solely dealt with

by the discretizing schemes [4,44,45]. These methods are also termed embedded interface

methods [46]. To overcome the staircasing problems and to impose the physically correct

jump conditions, which are often encountered in the modeling of complex geometries, ap-

propriate local modifications of the differentiation scheme close to boundaries and interfaces

in a preprocessing stage are essential. While maintaining the simplicity and computational

efficiency of the Yee scheme [1,2], these modified FDTD methods fully restore second-order

accuracy, even in case of curved boundaries and interfaces, by using a simple Cartesian grid

[4,44,45]. However, the extension of embedding FDTD methods to higher-order accuracy

remains a significant challenge [4].

A few attempts have been made to accelerate the convergence speed of embedding FDTD

methods, giving rise to several fully fourth-order FDTD methods on a medium with material

discontinuities by using a simple structured grid [4,47–49], including the curvilinear grid

[50]. The single structured grid is logically equivalent to a Cartesian grid. The structured

grids used in these fourth-order FDTD methods [47–50] are, nevertheless, less general than

the Cartesian grids of the embedding methods [4,44,45]. In particular, these fourth-order

approaches typically require that the electric grid points coincide with the plane interface

in 2D configuration, so that the staircasing problem remains unsolved in these high-order

methods. However, it is well known that the suitable and high-order interface schemes are
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crucial to high-order time-domain methods using a simple grid [4]. The development of

such interface schemes can be considerably more complex than the derivation of the high-

order differential stencils. Moreover, without appropriate numerical interface schemes, the

conventional high-order time-domain methods would be easily degraded to produce low-

order accuracy [4]. Therefore, the significant accomplishment of these fourth-order schemes

[47–50] is that the physical jump conditions at material interfaces are correctly enforced up

to high-order, so that fourth-order convergence is uniformly assured over the entire domain.

Subtle interfaces techniques with one-sided difference approximations and extrapolations are

employed in these methods. Similar to the embedding methods [4,44,45], the modeling of

interfaces results in a local modification of the differential scheme in a preprocessing stage

[4,47–50].

The studies of fourth-order embedding FDTD schemes [4,47–50] open up the oppor-

tunity for developing other more general and robust high-order interface schemes, which

deserve further exploration. There are many important questions remaining unanswered.

One interesting instance as noted in [4] is that whether it is possible to extend the interface

schemes [4,47–50] beyond the fourth-order accuracy, which is of greatly significance for large

domain and high frequency wave computations. Since the local modifications of the dif-

ferential schemes in [4,47–50] are explicitly implemented, the generalization to higher-order

along this line may be theoretically admissible, however, would be quite empirical as well as

mathematically complicated [4].

It is therefore of great interest to develop a systematic approach to correctly enforce

the physical jump conditions at material interfaces to a variety of orders. To this end,

we present herein a series of novel hierarchical implicit derivative matching methods for

interface modeling, which can greatly exceed fourth-order accuracy. Our schemes make use

of FPs, a technique extensively used in our previous work [22–26,51–54], to locally modify the

differential stencils near the interfaces, an idea was first proposed by Driscoll and Fornberg

in their BPS methods [39,40]. However, only one single structured grid is assumed in the

present work, similar to other high-order embedding FDTD methods [4,47–50]. Moreover,
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local modifications of the differential stencils at beginning, the so called preprocessing stage,

rather than subdomain coupling at each time step, are carried out in the present study. The

stability issue of the proposed methods is examined. To enhance the stability and robustness

of interface schemes, a novel hierarchical derivative matching method is proposed. Extensive

numerical studies in both 1D and 2D are considered. We note that our best high order

schemes are often over millions of times more efficient than our fourth order schemes.

The rest of this paper is organized as follows. Section II is devoted to a brief description

of Maxwell’s equations. Model equations in both 1D and 2D are considered. Commonly used

boundary conditions in CEM are briefly introduced. Various issues associated with 1D mod-

eling are dealt with in Section III. The formalism of derivative matching (DM) is discussed

in detail. Two new schemes, an implicit derivative matching method (IDM) and a hierar-

chical derivative matching method (HDM), are proposed. Comprehensive stability analysis

is conducted. Numerical tests are carried out to validate the proposed methods. Section

IV presents the generalization of the proposed derivative matching methods to 2D electro-

magnetic problems. The difficulties of derivative matching approach in 2D are discussed.

Three new schemes, a quasi-fourth-order 2D scheme, a 2D hierarchical derivative matching

method, and a tensor product derivative matching method, are constructed. Stability is-

sues and numerical tests in 2D schemes are examined. Finally, conclusions are presented in

Section V.

II. GOVERNING EQUATIONS

By assuming the absence of charge density and current source, the time-dependent

Maxwell’s equations for electromagnetic fields in free space read

∂B

∂t
+∇× E = 0,

∂D

∂t
−∇×H = 0, (1)

∇ ·B = 0,
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∇ ·D = 0,

where D and B are, respectively, the electric and magnetic flux densities, while E and H

are, respectively, the electric and magnetic field intensities. In addition, the following linear

isotropic constitutive relations are satisfied:

D = εE, (2)

B = µH,

where the electric permittivity ε and the magnetic permeability µ of material are piecewise

constants. A nondimensional form of the equations is considered, i.e., ε = µ = 1 in free

space.

Both 1D and 2D electromagnetic problems are considered in the present study. In 2D,

Maxwell’s equations can be decomposed into two independent sets of equations, the trans-

verse magnetic (TM) modes and the transverse electric (TE) modes. Without loss of the

generality, this paper focuses mainly on the TM case for 2D studies

µ
∂Hx

∂t
= −∂Ez

∂y
,

µ
∂Hy

∂t
=

∂Ez

∂x
, (3)

ε
∂Ez

∂t
=
(∂Hy

∂x
− ∂Hx

∂y

)

.

The TM system (3) can be further simplified to 1D, resulting in an x-directed, z-polarized

transverse electromagnetic (TEM) mode

ε
∂Ez

∂t
=

∂Hy

∂x
, (4)

µ
∂Hy

∂t
=

∂Ez

∂x
.

As simple instances of Maxwell’s equations, the TM mode (3) and TEM mode (4) still

preserve the essential features of Maxwell’s equations, e.g., the two-way wave propagation

and the loss of smoothness across material interfaces. Thus, these two equations are ideally

suitable for benchmarking novel numerical approaches.
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In order to obtain a complete description of an electromagnetic problem, besides the vari-

ous forms of Maxwell’s equations, we also need certain boundary conditions, which relate the

field components on either side of a boundary or interface. At an interface between two me-

dia, say medium 1 and medium 2, the boundary conditions can be expressed mathematically

as

n̂×(E1 − E2) = 0, (5)

n̂·(D1 −D2) = 0, (6)

for electric fields, and similarly,

n̂×(H1 −H2) = 0, (7)

n̂·(B1 −B2) = 0, (8)

for magnetic fields, where n̂ is the unit vector normal to the interface, pointing from medium

2 into medium 1. A special case with one of the media, say medium 2, being a perfect electric

conductor (PEC), is practically important. Since a perfect conductor cannot sustain a field

inside, the PEC boundary conditions now reduce to

n̂×E = 0, n̂·B = 0. (9)

Another important type of boundary conditions for numerical simulation of Maxwell’s

equations is the absorbing boundary condition. Such conditions must be specified in prac-

tical computations at the outer boundary in order to obtain a unique solution for open or

unbounded electromagnetic problems. Since the high-order time-domain methods considered

in this paper are basically the extensions of the Yee algorithm, the widely used absorbing

conditions, such as the PML boundary condition [19] or Lorentz material model absorber

layers [55,56], could be used in these extended schemes for the simulation of radiation out

of a domain, if required.
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III. ONE-DIMENSIONAL STUDIES

We first consider in this section the method of implicit derivative matching in 1D cases.

Some stability issues are considered. A novel hierarchical implicit derivative matching is

discussed in detail. Several numerical experiments of both time-domain and frequency-

domain electromagnetic problems are carried out.

A. Method of derivative matching with fictitious points

For convenience, we consider the vector form of the 1D Maxwell’s equations (4) in present

study,

∂q

∂t
= A

∂q

∂x
, q =







Ez

Hy






, A =







0 1/ε

1/µ 0






. (10)

We suppose the domain under study consisting of two dielectric media, with the interface

at x = ξ. Consequently, the coefficient matrix A attains different values in media 1 and 2,

A =











A1, if x < ξ,

A2, if x > ξ.

For simplicity, we denote the one-sided derivatives at the interface by

q(p)(ξ−, t) =
∂pq(x, t)

∂xp
|x→ξ− , q(p)(ξ+, t) =

∂pq(x, t)

∂xp
|x→ξ+ .

It can be derived from interface conditions (5) - (8) that the electromagnetic fields q are

continuous across the material interface, i.e.,

q(0)(ξ−, t) = q(0)(ξ+, t). (11)

This condition is referred to as (zeroth-order) physical jump condition. Since the fields

are continuous, their time derivatives are also continuous. Thus, by using the Maxwell’s

equations (10), we also have that

A1q
(1)(ξ−, t) = A2q

(1)(ξ+, t). (12)
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In principle, one can repeat this as often as needed to generate jump condition of any order

Ap
1q
(p)(ξ−, t) = Ap

2q
(p)(ξ+, t), p = 0, 1, 2, . . . . (13)

These jump conditions are physically exact and relate the electromagnetic fields and their

derivatives as taken from the two sides of the interface.

By treating the material interface at x = ξ also as the boundary of subdomains in a

domain decomposition approach, the jump condition (13) clearly serves an excellent starting

point for block coupling. Such an idea has been well explored by Driscoll and Fornberg in the

development of the BPS method [39,40]. Overlapping subdomains with possibly different

grid spacing are employed in the BPS method with the overlapping parts containing FPs

only, see Fig. 1. It is noted that the interface at x = ξ does not have to coincide with a grid

point in such a modeling. In the BPS method, the grid points in the overlapping parts of

subdomains are fictitious because the function values are not directly known nor updated

on these additional nodes. Nevertheless, for the purpose of facilitating the approximation of

derivative values near the interface in the next time step, the fictitious values are estimated

at each time step according to the discrete forms of the jump conditions (13) [39,40]. The

introduction of such FPs significantly enhances the flexibility of numerical algorithms for

the purpose of imposing boundary or interface conditions. The similar technique has also

been studied in different occasions [57,58,51,52].

To discretize Eq. (13), the one-sided derivatives involved in Eq. (13) are approximated in

the BPS method [39,40] by using all fictitious and original grid points in the same subdomain,

i.e.,

q(p)(ξ−, t) ≈
N+m
∑

j=0

w
(1)
p,jq(x

(1)
j , t), q(p)(ξ+, t) ≈

N+m
∑

j=0

w
(2)
p,jq(x

(2)
j , t), (14)

where m is the number of FPs in each subdomain (see Fig. 1), and w
(1)
p,j and w

(2)
p,j are global

finite difference (FD) weights for the pth-order derivative. The superscripts (1) and (2) in

these weights are followed from those of grid points xj, i.e., they represent subdomains 1 and

2, respectively. A fast algorithm is available for the purpose of determining the FD weights
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[59] and is extensively used in this work. In order to determine a total of 2m unknown

values at FPs, 2m constraints given by Eq. (13), are employed. By substituting Eq. (14)

into these jump conditions, a 2m×2m linear system, from which the function values on FPs

are determined, can be formed at each time step [39]. To prevent severe ill-conditioning and

to ensure stability, the weights w
(1)
p,j and w

(2)
p,j are suggested to be properly rescaled [39]. This

novel technique for coupling of subdomains is referred to as method of derivative matching

(DM) [39,40].

In the present study, it is of great interest to extend the idea of the DM to single

structured grid and to the framework of FDTD methods. In fact, it is clear that the present

numerical modeling near interfaces is much in the spirit of those in the embedding FDTD

methods and their extensions [4,44,45,47–50]. The embedding FDTD schemes are usually

constructed based on the zeroth-order jump conditions, while the BPS method repeatedly

utilizes these conditions. The distinct difference between the the BPS method [39,40] and

the embedding FDTD schemes [4,44,45,47–50] is that the jump conditions are enforced via

solving fictitious values at each time step in the former, while in the latter, this is achieved

by locally altering the FD weights in a preprocessing stage. It is noted that it might be more

efficient if the DM of the BPS method could be carried out once for all at the beginning of

the computation. Meanwhile, this is computationally admissible, since the algebraic systems

of at different time steps attain the identical organization, albeit have difference values.

In order to study such an implicit DM modeling, we first establish some notations.

Referring to Fig. 2, we denote the function values under consideration (either Ez or Hy) at

original and fictitious points as gi and fi (for i = 1, 2, . . . , 2m), respectively. The superscripts

are omitted in the present notation, since we consider a single structured grid. For simplicity,

a uniform grid is assumed in the present study. It is noted that the interface x = ξ also may

not need to be laid on the grid in the present modeling. In the BPS method [39,40], the

values of fi are solved based on the values of gi at each time step. However, in the present

paper, a preprocessing scheme is sought. To this end, we assume the following representation
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fi =
2m
∑

j=1

ri,jgj, for i = 1, 2, . . . , 2m, (15)

where ri,j are representation coefficients. With this representation, it is not necessary to

solve fi at each time step. One needs only to determine ri,j , i, j = 1, 2, . . . , 2m, once.

We consider the matrix form of representation (15)

F = RG, (16)

where

F =



















f1

f2
...

f2m



















, G =



















g1

g2
...

g2m



















, R =



















r1,1 r1,2 · · · r1,2m

r2,1 r2,2 · · · r2,2m
...

...
. . .

...

r2m,1 r2m,2 · · · r2m,2m



















.

We shall determine the unknown coefficient matrix R. For convenience, we consider the

rows of R as new variables, Rj = (rj,1, rj,2, . . . , rj,2m) for j = 1, 2, . . . , 2m. To determine

the coefficients/elements of R, it is equivalent to solve a vector R̂ from an algebraic system,

where

R̂ = (R1, R2, . . . . . . , R2m)
T ,

= (r1,1, r1,2, . . . , r1,2m, r2,1, r2,2, . . . , r2,2m, . . . . . . , r2m,1, r2m,2, . . . , r2m,2m)
T .

It is noted that the dimension of the matrix system for determining R̂ is 4m2×4m2. Similarly,

we define 2m vectors Ij as the rows of a 2m× 2m identity matrix I



















I1

I2
...

I2m



















= I =



















1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



















.

Symbolically, we have

fj = RjG and gj = IjG. (17)
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Similar to the BPS method [39,40], up to (2m − 1)th-order physical jump conditions

are employed for determining the representation weights of 2m FPs. Standard central FD

approximations are utilized to discretize these 2m jump conditions. The resulting discretized

equations then are evaluated at each grid point to form 2m × 2m algebraic equations. To

illustrate the idea, we consider one particular jump condition as an example

1

ε1
E(2)z (ξ−, t) =

1

ε2
E(2)z (ξ+, t). (18)

We consider the following FD approximation of Eq. (18)

1

ε1

[

m
∑

i=1

w2,igi +
2m
∑

i=m+1

w2,ifi

]

=
1

ε2

[

m
∑

i=1

w2,ifi +
2m
∑

i=m+1

w2,igi

]

, (19)

where w2,i, i = 1, 2, . . . , 2m, are the FD weights for the second-order derivative approxima-

tion. It is obvious from Eq. (19) that although a simple computational domain is assumed,

the domain decomposition point of view is still adopted in the present study. The approxi-

mation style of Eq. (19) is very close to that used in the BPS method, Eq. (14). It is also

noted that, since a uniform grid and the central scheme are used, the sets of FD weights of

the left and right hand sides of Eq. (19) are the same.

To form the desired algebraic equations, we rewrite Eq. (19) as

1

ε1

2m
∑

i=m+1

w2,ifi −
1

ε2

m
∑

i=1

w2,ifi =
1

ε2

2m
∑

i=m+1

w2,igi −
1

ε1

m
∑

i=1

w2,igi. (20)

The right hand side of Eq. (20) are known values. We then substitute two relations in Eq.

(17) into Eq. (20), to obtain

1

ε1

2m
∑

i=m+1

w2,iRiG−
1

ε2

m
∑

i=1

w2,iRiG =
1

ε2

2m
∑

i=m+1

w2,iIiG−
1

ε1

m
∑

i=1

w2,iIiG. (21)

By eliminating the common abstract variable G, we finally obtain 2m algebraic equations

from the jump condition (18)

1

ε1

2m
∑

i=m+1

w2,iR
T
i −

1

ε2

m
∑

i=1

w2,iR
T
i =

1

ε2

2m
∑

i=m+1

w2,iI
T
i −

1

ε1

m
∑

i=1

w2,iI
T
i . (22)
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These equations are independent of field values. Algebraic equations for other jump condi-

tions can be similarly derived.

Unlike the BPS method [39,40], the function values on FPs, i.e., {fi}2mi=1, are never

evaluated in the present study. In contrary, by means of representation coefficients ri,j,

we locally modify the differential stencil near the material interface at the beginning of

the computation, as in the embedding FDTD schemes [4,44,45,47–50]. Thus, the present

numerical modeling can be regarded as an implicit version of DM. One possible advantage

of the implicit derivative matching (IDM) is that it might be more efficient for numerical

simulation of long time wave propagation. It is noted that although the IDM is formulated on

a uniform grid, it actually works on more general grid settings. For example, either staggered

or nonstaggered grid systems can be employed together with a time-domain solver. As well,

the IDM can be easily adopted in a finite difference based domain decomposition method.

Moreover, a nonuniform grid could be applied near the interface to enhance adaptivity with

appropriate Lagrange coefficients of differentiation. Furthermore, this kind of representation

could also be utilized in an implicit time-stepping scheme or a resolution of boundary value

problems or eigenvalue problems, due to its implicit nature.

The major difference between the proposed scheme and the embedding FDTD schemes

[4,44,45,47–50] is that the present local modification of differential stencil is modeled in a

systematic way, such that it can be made up to arbitrarily high-order in principle, while the

previous schemes were manually constructed one by one. Thus, the IDM yields an excellent

way to generalize the embedding FDTD scheme to high orders. Furthermore, it could be

applied together with various different high-order time-domain methods, such as high-order

FDTD methods [3,10–16], the MRTD method [17,18], and the LSTD method [24–26]. In

these applications, the number of FPs (m) could be simply specified according to the length

of stencil involved in these time-domain methods, and significant improvement of accuracy is

expected. It is noted that, however, the IDM cannot be directly incorporated into a global

formulation, e.g., the PSTD method [20,21], especially when at least two interfaces are

present. One possible drawback of the proposed scheme is that the size of algebraic system
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to be solved for the interface is much larger than that in the BPS method [39]. This might

imply a substantial memory requirement and requires longer CPU time in computation.

B. Numerical tests of the IDM method

We consider two model problems in this subsection to investigate the numerical perfor-

mance of the IDM method. Both problems under consideration are for TEM waves, governed

by the 1D Maxwell’s equation (10), but with possibly different jump conditions. These two

model problems have the same electromagnetic structure as following. The electromagnetic

fields are defined on a standard interval x ∈ [−1, 1], with PEC walls located at both ends.

The interior of the resonator is assumed to be nonmagnetic with µ = 1 and filled with two

dielectric media with ε1 and ε2. The material interface is at ξ = 0.

In the present study, a uniform staggered grid system is used for Ez and Hy, with either

an E node or an H node on the boundaries x = ±1. The standard high-order central FDTD

approximations are employed for spatial discretization

E(1)z (xi, t) ≈
1

∆x

−1
∑

j=−M

wjHy(xi+1/2+j , t) +
1

∆x

M
∑

j=1

wjHy(xi−1/2+j , t), (23)

H(1)
y (xi+1/2, t) ≈

1

∆x

−1
∑

j=−M

wjEz(xi+1+j , t) +
1

∆x

M
∑

j=1

wjEz(xi+j, t), (24)

where ∆x is the grid spacing and M is the half computational bandwidth. Here wj, for

j = ±1, . . . ,±M , are the normalized FD weights. For example, when M = 1, we simply

have w−1 = −1 and w1 = 1 as in the Yee algorithm [1,2]. When M = 2, the weights for the

fourth-order accurate stencil are given as (w−2, w−1, w1, w2) =
1
24
(1,−27, 27,−1) [2,4,48–50].

The weights for higher-order stencils can be computed as discussed in [59].

Throughout the study, we always maintain the translation invariance property of the

differential stencil, i.e., only one basic approximation kernel (wj) is required for the entire

computational domain [−1, 1]. Obviously, this property has distinct computational effi-

ciency. To keep this property near boundary and/or interface, it is clearly necessary to
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create a fictitious domain outside the boundary or interface and correspondingly generate

fictitious values. At material interface, this is equivalent to carry out the IDM with m = M

to locally modify the basic differential stencil. An LU decomposition is utilized to solve the

algebraic system of the IDM modeling. At the PEC walls, it can be derived from Eq. (9)

that the fields satisfy extra conditions at two ends [39,44]

∂pEz

∂xp
|x=±1 = 0, p = 0, 2, 4, . . . , (25)

∂pHy

∂xp
|x=±1 = 0, p = 1, 3, 5, . . . . (26)

Since we have a grid node on the boundary, following the BPS method [39], the symmetric or

anti-symmetric properties of electric and magnetic fields are directly exploited in numerical

boundary modeling. This results in the so-called anti-symmetric and symmetric boundary

extensions, respectively, for Ez and Hy [24–26]. The similar boundary modeling is referred

to as the image principle in the MRTD method [17,18]. In case that there is no grid point

on the boundary as considered in [44], an IDM for imposing boundary conditions can be

similarly formulated, as suggested in [39].

After completing the spatial discretization, the resulting semidiscrete form of Maxwell’s

equation (10) at time t = tn can be expressed as

∂Qn

∂t
=

1

∆x
SQn, (27)

where Qn = (Ez(x1, tn), . . . , Ez(xN , tn), Hy(x1/2+1, tn), . . . , Hy(x1/2+N , tn))
T with N being

the total number of grid points for either Ez or Hy. Here the matrix S represents the

complete spatial approximation to the right-hand side of Eq. (10). In the present study,

the classical fourth-order Runge-Kutta (RK4) method is employed for temporal integration,

i.e.,

Qn+1 = Qn +
1

6
(K1 + 2K2 + 2K3 + K4), (28)

in which
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K1 =
∆t

∆x
SQn, K2 =

∆t

∆x
S(Qn +

1

2
K1),

K3 =
∆t

∆x
S(Qn +

1

2
K2), K4 =

∆t

∆x
S(Qn + K3).

We first consider a 1D model problem with the usual jump conditions discussed above.

The exact solution of this model problem can be given as [44]

Ez =











[

a1 exp(i
√
ε1ωx)− b1 exp(−i

√
ε1ωx)

]

exp(iωt), −1 ≤ x ≤ 0,
[

a2 exp(i
√
ε2ωx)− b2 exp(−i

√
ε2ωx)

]

exp(iωt), 0 ≤ x ≤ 1,
(29)

Hy =











√
ε1

[

a1 exp(i
√
ε1ωx) + b1 exp(−i

√
ε1ωx)

]

exp(iωt), −1 ≤ x ≤ 0,

√
ε2

[

a2 exp(i
√
ε2ωx) + b2 exp(−i

√
ε2ωx)

]

exp(iωt), 0 ≤ x ≤ 1,
(30)

where i =
√
−1 and

a1 =

√
ε2 cos(

√
ε2ω)√

ε1 cos(
√
ε1ω)

, a2 = exp
(

− iω(
√
ε1 +
√
ε2)
)

,

b1 = a1 exp(−i2
√
ε1ω), b2 = a2 exp(i2

√
ε2ω).

For homogeneous medium with ε = ε1 = ε2, the wavenumber ω simply takes the value of

ω = 2π/
√
ε, while when the waveguide is filled with two different media, the value of ω is

obtained as the solution to equation

−√ε2 tan(
√
ε1ω) =

√
ε1 tan(

√
ε2ω).

An example plot of fields in Eqs. (29) and (30) at t = 0 with ε1 = 1, ε2 = 2.25, and

ω ≈ 5.07218116182516 is given in Fig. 3. It is noted that the exact solution loses its

regularity at the material interface, although it is continuous.

The numerical results of this 1D problem with ω ≈ 5.07218116182516 by using the high-

order FDTD approximation with the IDM scheme for several different M values are listed in

Table I. For a comparison, results obtained by solely employing the standard FDTD method

are also given in Table I. It is clear from the table that the standard FDTD results are all

essentially first-order accurate, no matter how large M is. In other words, the full accuracy

of high-order FDTD approximations is deteriorated due to the discontinuous nature of the
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media. However, it is obvious from Table I that after the IDM is locally carried out at

the material interface, the full accuracy of the FDTD approximations is recovered. The

numerical results clearly display the theoretical rate of convergence, i.e., (2M)th-order for

the FDTD scheme with a given M , except when the precision limit is reached. See also Fig.

4. Consequently, extremely high accuracy can be achieved in our numerical simulations for

this 1D electromagnetic problem with inhomogeneous media. Finally, by using M = 8, we

have already attained the highest possible accuracy on the coarsest grid with N = 50, so

that the numerical result of M = 8 seems not converging any further when the grid is refined

in Fig. 4. In fact, the spatial discretization error herein should be restricted by either the

temporal discretization error or the machine limit.

In order to examine the full order of accuracy for M = 8, we consider the same problem

with a large ω ≈ 36.48810769772309. The numerical results of this short wave problem by

employing the high-order FDTD with the IDM method is given in Table II. It is obvious that

for this highly under-sampling case, all schemes produce large errors due to the numerical

dispersion. When the grid resolution is refined, the designed theoretical order of convergence

of each scheme can be reached. In particular, we achieve 16th order of accuracy by using

M = 8 for this high frequency problem with inhomogeneous media.

It is interesting to compare the performance of present method at different orders, which

are obtained by simply changing the parameter m (and M) in the present approach. As

shown in Table I, with about 4 times more CPU time, our 16th order scheme is about 108

times more accurate than our 4th order scheme, on the grid of N = 50. Therefore, it is

about 107 times more efficient to use the 16th order scheme. In the high frequency setting,

Table II, we see a very similar pattern, i.e., on the grid of N = 200, our 16th order scheme

is again about 107 times more efficient than our 4th order scheme. It is also important to

note that how sensitive a computational scheme is to the change in frequency parameter.

Had the frequency parameter ω been set at a 20 times higher in Table II, it could have been

only the highest order scheme that delivers anything meaningful at the present grid spacing.

These findings reveal the benefit of using a higher order scheme whenever it is possible.
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We then consider a quasi-1D model problem studied in [44] with ε1 = 1 and ε2 = 2.25.

This quasi-1D problem is degenerated from a 2D problem in which the material interface is

at some angle with respect to the Cartesian grid. The important feature of this quasi-1D

problem is that the individual electromagnetic field component may become discontinuous at

the material interface [44]. Such a phenomenon usually appears only in higher dimensional

cases. Following [44], we denote θ as the angle between the unit vector normal to the

interface, n̂, and the x-axis. Now, the Ez field is discontinuous across the interface, satisfying

the relation [44]

E(0)z (ξ−, t) =
ε2

1 + (ε2 − 1) cos2 θ
E(0)z (ξ+, t). (31)

In other words, the zeroth-order jump condition for the quasi-1D model problem changes to

Eq. (31). Consequently, the general pth-order jump condition becomes

Ap
1q
(p)(ξ−, t) = A′Ap

2q
(p)(ξ+, t), p = 0, 1, 2, . . . ,

where

A′ =







ε2

/(

1 + (ε2 − 1) cos2 θ
)

0

0 1






.

The exact solution of this model problem is also given by Eqs. (29) and (30) [44]. While ω

is found as the solution to equation

tan(ω) =
−√ε2 tan(

√
ε2ω)

1 + (ε2 − 1) cos2 θ
.

An example plot of the solution at t = 0 with ω ≈ 5.05589071456588 is shown in Fig. 5.

A small jump in the field Ez is clearly displayed in the figure, as suggested in Eq. (31).

It is well known that the approximation of discontinue variables is numerically challenging.

For this difficulty problem, it has been found in [44] that the Yee scheme exhibits local

divergence and losses of global convergence, due to its incapability of correctly modeling the

discontinuous field components.
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The numerical results of the quasi-1D model problem with ω ≈ 5.05589071456588 are

listed in Table III. It can be observed from Table III that the standard FDTD approximation

for this problem is globally nonconvergent, no matter how large M is. The FDTD errors

with different grid resolutions are all on the same accuracy level, as shown in Fig. 6. The

loss of global convergence is due to the lack of properly enforced jump conditions on the

field components [44]. On the other hand, it can be seen clearly from Table III and Fig. 6

that the numerical results of the FDTD approach with the IDM for the quasi-1D problem

are as good as those for the 1D model problem given in Table I and Fig. 4. Both expected

convergence rates and extremely high accuracy are restored after using the IDM method to

correctly model the discontinuous jump conditions.

Since, in Table III, the numerical accuracy of M = 8 is also limited by the machine

precision, we similarly consider a high frequency wave study for the present quasi-1D model

problem. By setting ω ≈ 36.47181725046381, the numerical results are listed in Table IV.

Similar findings as in Table II are obtained. Moreover, a comparison between different orders

indicates the same pattern: the 16th order scheme is about 107 times more efficient than

the 4th order scheme.

Although the IDM scheme performs very well together with the FDTD methods for

small M , it is found in our numerical experiments that the IDM scheme suffers from certain

problems when M becomes larger, see Table V. Quite large m = M values are considered in

Table V for the FDTD schemes together with the IDM. It can be observed from Table V that

the results of both 1D and quasi-1D problems are quite similar. In particular, when M = 16,

the L2 errors in Ez and Hy are still very low. However, when M = 32, the accuracy level

quickly goes down. This is actually due to the Lagrange weights used in the IDM increase

exponentially for high-order derivative approximations. It is well known that under such

an occasion, the resolution of representation coefficients in the IDM becomes an unstable

procedure as m goes to infinity. On the other hand, for a finite but quite large m, like 32, the

calculation of exponentially increased coefficients usually introduces huge round-off errors in

numerical computations, although the FD weights are properly scaled as suggested in [39]
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in our computation. By noted this point, it is recommended in [39] that the number of FPs

m should be quite small. However, for some special applications involving high frequency

waves, it might be desired to generate as many as hundreds of grid stencils in practice. The

extension of the IDM method to these applications is clearly questionable. Meanwhile, the

CPU time of the IDM with large m could be quite large, e.g., it could be a few hours for

m = 32 as shown in Table V.

C. Stability analysis

It is of great interest to explore the use of the IDM method together with other high-

order time-domain approaches, due to its excellent performance with the FDTD scheme.

Computationally, we just need to simply change the basic differential stencil used in the

approximations (23) and (24). However, it is found that for the simple 1D model problem,

when an MRTD kernel, which is constructed based on the Battle-Lemarie scaling function

[17,18], is used, the entire procedure could be unconditionally unstable, while the MRTD

method is free of this instability issue without adopting the IDM. This means that the use of

the IDM method may introduce certain instability problems. Therefore, the stability issue

of the IDM method demands careful studies. The lack of necessary analysis of stability for

the DM methods has also been noted by Hesthaven [4].

For simplicity, the stability issues are dealt with in this subsection primarily for the

1D model problems. The results can be similarly extended to other 1D problems. We first

consider the stability of the present discretization procedure without using the IDM method.

To this end, we rewrite Eq. (28) into the form

Qn+1 =
[

I +
∆t

∆x
S +

1

2

∆t2

∆x2
S2 +

1

6

∆t3

∆x3
S3 +

1

24

∆t4

∆x4
S4
]

Qn = S′Qn. (32)

This procedure is stable provided that all of the absolute values of the eigenvalues of S′, λS′

j

for j = 1, . . . , 2N , are not larger than unity, for all ∆x. This is equivalent to require the
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spectral radius of S′,

ρS′ = max
j=1,...,2N

|λS′

j |,

satisfying ρS′ ≤ 1 for all ∆x. It is possible to carry out a von Neumann stability analysis

starting from this. However, such an analysis would be quite tedious, due to the complicated

structure of S′.

Alternatively, we consider the general stability condition for solving Maxwell’s equations

of the form [4]

∆t ≤ C ′
√

min{εµ}∆x. (33)

The value of the constant C ′ is determined by both the spatial and temporal discretization

schemes being used. We can further separate these two sources, by considering a more

detailed condition [48]

∆t ≤
√

min{εµ} C
ρ∞

∆x, (34)

where the constant C is related to the time-stepping scheme, while ρ∞ is the limit value of

the spectral radius of the spatial discretization matrix (i.e., S in the present context). In

particular, as found in [48], when ∆x→ 0, ρS → ρ∞ from below. Note that information of

temporal discretization is contained in S′, rather than in S. Usually, ρ∞ is a product of a

factor with
√
d [48], where d = 1, 2, 3 is the dimension number.

For commonly used spatial and temporal discretization schemes, the values of C and

ρ∞ are known. For example, we have C = 2 for staggered Leapfrog time integration [48].

For the FDTD methods, we have ρ∞FDTD,M=1 = 2
√
d and ρ∞FDTD,M=2 = 7

3

√
d [48]. Here

two subscripts are added to ρ∞, in order to identify different spatial discretization schemes.

The constants containing in ρ∞ are clearly determined by the differential kernel being used.

Following the stability analysis considered in the MRTD method [18], it can be easily verified

that we actually have

ρ∞ =
√
d

M
∑

j=−M,j 6=0

|wj|. (35)
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The analyses of the FDTD methods in [48] are in consistent with Eq. (35), i.e.,
∑1

j=−1,j 6=0 |wj| = | − 1|+ |1| = 2 and
∑2

j=−2,j 6=0 |wj| = 1
24
(|1|+ | − 27|+ |27|+ | − 1|) = 7

3
.

By using the MRTD method,
∑M

j=−M,j 6=0 |wj| converges to a limit, which is reported to

be about 2/0.6371 = 3.1392, after M ≥ 16 [18]; see Fig. 7. The stability analysis of the DSC

spatial discretization can be similarly analyzed for the LSTD method [24–26]. In Fig. 7, we

also plot the stability factor of the LSTD method. It is clear that the factor of the LSTD

converges faster than that of the MRTD. The limit value of the LSTD is found to be π. In

fact, when M = 16, the difference between the stability factor of the LSTD and π is smaller

than 1.0× 10−14. It is well known that the Battle-Lemarie scaling function has closed form

expression only in the spectral domain. For time-domain computations, the MRTD kernel

is constructed via a truncation to an accuracy level of 0.1% [17,18]. We thus believe that if

a more accurate truncation is considered in the MRTD method, its stability factor should

be closer to π.

Following the above discussions, the stability constraint for the present discretization

procedure without using the IDM method, Eq. (32), can be established if the stability

factor C in Eq. (34) of the RK4 time integration is known. In order to estimate the value

of C, we first in turn numerically analyze the stability of the time advancing Eq. (32). The

procedure (32) is stable provided that ρS′ ≤ 1 for all ∆x. We consider the cases of both

homogeneous medium (ε1 = ε2 = 1) and inhomogeneous media (ε1 = 1 and ε2 = 2.25). The

standard second-order (M = 1) FDTD spatial discretization is employed based on a fine

grid resolution ∆x = 0.010025. A large number of ∆t values with the difference as small as

1.0 × 10−5 between any two are used to test the critical value of ρS′ , at which ρS′ > 1. In

both homogeneous and inhomogeneous cases, the critical ρS′ is estimated as about 1.4145

for ∆x = 0.010025. According to the relation

ρS′ =
C

ρS
→ C

ρ∞
, as ∆x → 0,

the value of C can then be estimated as

C ≈ ρS′ρ∞FDTD,M=1 = 1.4145 × 2 ≈ 2
√
2.
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The same estimate is obtained when we use a high-order FDTD method, or other time-

domain methods in Eq. (32). Therefore, when the IDM is not carried out, the discretization

procedure (32) is stable when

∆t ≤
√

min{εµ}2
√
2

ρ∞
∆x. (36)

We can further verify the stability condition (36) via some theoretical analyses. It was

found in [48] that the real parts of all eigenvalues of S, λS
j , are of O(10−16) for all ∆x. The

same finding is also attained in our studies. Thus, we assume that the eigenvalues of S are

all purely imaginary numbers, i.e., λS
j = |λS

j |i for j = 1, . . . , 2N . Moreover, since
√

min{εµ}

is always equal to 1 in both test cases, we neglect this term in the present investigation. We

note that there is a one-to-one correspondence between the eigenvalues of S′ and those of S

λS′

j = 1 +
∆t

∆x
λS
j +

1

2

∆t2

∆x2
(λS

j )
2 +

1

6

∆t3

∆x3
(λS

j )
3 +

1

24

∆t4

∆x4
(λS

j )
4, j = 1, . . . , 2N.

The procedure in Eq. (32) is stable if for all ∆x,

max
j=1,...,2N

|λS′

j | ≤ 1.

This is equivalent to require

∣

∣

∣
1 +

∆t

∆x
λS
j +

1

2

∆t2

∆x2
(λS

j )
2 +

1

6

∆t3

∆x3
(λS

j )
3 +

1

24

∆t4

∆x4
(λS

j )
4
∣

∣

∣
≤ 1, (37)

for any j = 1, . . . , 2N and all ∆x. According to the assumption, we obtain

∣

∣

∣
1 +

∆t

∆x
|λS

j |i+
1

2

∆t2

∆x2
(|λS

j |i)2 +
1

6

∆t3

∆x3
(|λS

j |i)3 +
1

24

∆t4

∆x4
(|λS

j |i)4
∣

∣

∣
≤ 1,

for any j = 1, . . . , 2N and all ∆x. This condition is satisfied if and only if

(

1− 1

2

∆t2

∆x2
|λS

j |2 +
1

24

∆t4

∆x4
|λS

j |4
)2

+
(∆t

∆x
|λS

j | −
1

6

∆t3

∆x3
|λS

j |3
)2

≤ 1,

for any j = 1, . . . , 2N and all ∆x. Consider a simplified notation γ = ∆t
∆x
|λS

j |, we should

require that

(

1− 1

2
γ2 +

1

24
γ4
)2

+
(

γ − 1

6
γ3
)2

≤ 1. (38)
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It can be simply proved that the condition (38) is satisfied if |γ| ≤ 2
√
2. Therefore, we

attain that

∆t

∆x
|λS

j | ≤ 2
√
2, for any j = 1, . . . , 2N and all ∆x,

or, equivalently,

∆tρS ≤ 2
√
2∆x, for all ∆x.

Therefore, the final stability condition is

∆tρ∞ ≤ 2
√
2∆x.

It is thus obviously that stability factor for the RK4 time stepping is C = 2
√
2 and the more

general stability condition (36) holds. In our numerical experiments, the stability constraint

(36) has been found to be in excellent agreement with numerical results.

Following the same procedure, we then consider the possible influence of the IDM method

to the stability of the entire discretization. For the FDTD approximations, the stability

conditions, after the IDM is carried out, are found to be almost the same as those without

the IDM modeling, as shown in Fig. 8. In particular, for all tested M values (1, 2, 4, 8,

12, and 16) and all tested ∆x, the real parts of the eigenvalues of the spatial discretization

matrix S are all smaller than 1.0 × 10−16. After applying the IDM method, the spectral

radius of S, i.e., ρS, is usually a little bit smaller than that of the standard FDTD; see Fig.

8. However, such differences are of extremely small magnitude so that they essentially do

not alter the numerical stability constraint. Moreover, when ∆x approaches to zero, such

differences quickly vanish, and both spectral radii converge to the same ρ∞. Therefore, the

stability condition (36) holds for the FDTD approximation with the IDM modeling, which

has also been verified numerically.

The situation is different for the MRTD method [17,18]. Without the IDM, the MRTD

method is conditionally stable with the stability constraint being Eq. (36). However, when

the IDM is conducted, the MRTD approximation is found to be unconditionally unstable
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by employing a commonly used half stencil length M , i.e., 8 ≤ M ≤ 16. By taking a more

detailed investigation, it is found that many eigenvalues of the spatial discretization matrix

S have non-zero real parts now. Furthermore, although the maximum value of imaginary

parts of λS
j is still very close to

∑M
j=−M,j 6=0 |wj|, the spectral radius of S, ρS, now is solely

fixed by the real parts of λS
j . In particular, the dominant eigenvalue of S takes the form

±ρS + 0i, with ρS À ∑M
j=−M,j 6=0 |wj|. It is clear from Fig. 9 that ρS becomes a very large

number after the IDM is carried out, and it also converges to certain limit as ∆x→ 0. It is

noted that the stability factor C = 2
√
2 for the RK4 temporal integration is derived under

the assumption that the real parts of λS
j are all zero. Thus, for the MRTD with the IDM,

the stability factor C is no longer 2
√
2. For the specific form of the dominant eigenvalue,

ρS + 0i, to satisfy the requirement (37) for all j = 1, . . . , 2N and all ∆x, it is equivalent to

force

(

1 +
∆t

∆x
ρS +

1

2

∆t2

∆x2
(ρS)2 +

1

6

∆t3

∆x3
(ρS)3 +

1

24

∆t4

∆x4
(ρS)4

)

≤ 1,

for all ∆x. Obviously, this is true only if ∆t
∆x

ρS = 0. For a concrete discretization, we have

∆x > 0 and ρS > 0. Then, the MRTD method with the IDM is stable if ∆t = 0, i.e., it is

unconditionally unstable.

We further analyze the stability of the LSTD method [24–26] with the IDM. In the DSC

spatial approximation of the LSTD method, apart from the different half computational

bandwidth M can be freely chosen, there is a parameter r in the DSC algorithm which

can be adjusted to deliver higher accuracy for the same M [22]. In practice, one can

select the desired DSC parameters M and r according to the nature of the problem under

consideration by means of the discrete Fourier analysis [24,53]. In the present study, it is

found that by using a quite small r, the stability constraint of the LSTD method could be

the same after the IDM is carried out. In Fig. 10, we consider the DSC approximation

with M = 16. When r = 2.1, similar to the FDTD method, the stability condition of the

LSTD method essentially remains unchanged after considering the IDM modeling. When

we consider a larger r = 2.2, the spectral radius ρS with the IDM attains a larger value than
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that without the IDM. Nevertheless, all eigenvalues of S still have only imaginary parts,

so that the stability condition (36) still holds with C = 2
√
2 for the LSTD method with

the IDM, except now the analytical value of ρ∞ is unknown. As can be seen from Chart

(b) of Fig. 10, ρ∞ becomes larger in the present case. Thus, the stability constraint of

the LSTD method becomes more severe after using the IDM. When an even larger r, e.g.,

r ≥ 2.3 for M = 16, is used, the LSTD method becomes unconditionally unstable. The

similar difficult of the MRTD method is observed again herein. In particular, the dominant

eigenvalue of S also takes the form ±ρS+0i, with ρS >
∑M

j=−M,j 6=0 |wj|, so that C 6= 2
√
2 but

C = 0. These stability analyses are in excellent agreement with our numerical experiments.

Although a small r could always be used in the LSTD method to avoid the stability problem

in electromagnetic applications, these r values are actually smaller than the usual optimal

r values of the DSC approximation for a fixed M [24,53]. Thus, the high accuracy and

applicability of the IDM method with LSTD are reduced.

In summary, the use of the IDM method may introduce additional problems on stability

for high-order time-domain Maxwell solvers. The exception of the FDTD method in the

present investigation may be due to the fact that the FD weights are harmoniously used

in both the IDM modeling and the FDTD approximation. Essentially the instability as-

sociated with other high-order time-domain schemes is believed to be linked with the fact

that the amplitudes of the Lagrange FD weights used in the IDM increase exponentially as

the differentiation order increases. However, the detailed insight of the mechanism of the

instability observed in the MRTD and LSTD approaches is still unavailable. The stability

issue of the IDM method calls for further studies.

It is noted that the stability analyses in the present study could be also useful to the

explicit DM considered in the BPS method [39,40]. The interface modeling in the BPS

method is carried out in a postprocessing manner, so that the stability of the explicit DM

could not be analyzed in a systematic way, as in the present study. Alternatively, by means

of the IDM modeling, the present results on stability can be easily extended to the BPS

method. In particular, it is expected that the stability constraint in the BPS method would
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be more severe, because the global discretizations in the BPS method [39,40] are essentially

one-sided approximations. Only global FD weights are employed in the BPS method [39,40].

Based on the present analysis, it is also supposed that the problems of instability may occur

if other popular basis functions, such as Chebyshev and Legendre polynomials, are utilized.

Moreover, the nonuniform grid in these spectral methods introduces additional stability

problems.

D. Hierarchical derivative matching

It is found in our stability analysis that the direct application of the IDM method might

introduce stability problems for the MRTD and LSTD approaches. Moreover, we have

shown that the IDM modeling with a large number of FPs suffers from the loss of precision,

and could be time-consuming. Furthermore, the difficult of handling mixed derivatives is

encountered when the present IDM scheme is generalized to higher dimensions, an issue

for which is fully accounted in Section IV. Thus, the IDM method is actually not robust

enough for general electromagnetic computations. Therefore, it is of great interest to seek

after alternative ways to extend the interface modeling techniques of the IDM to be used in

general time-domain Maxwell solvers, as well as in an efficient manner. For this purpose, a

hierarchical derivative matching (HDM) method is developed in the present study.

The essential motivation of the HDM method is to bypass the computation of a large size

algebraic system introduced in high-order jump conditions in the IDMmethod. Nevertheless,

the main philosophy of the IDM method is still inherited in the HDM method. In fact, an

IDM with a small number of FPs is carried out in the first stage of the HDM method. The

basic consideration of the HDM method is that we disassociate the matrix size involved in

the IDM method and the total number of FPs. The latter is usually determined by the

applications, such as the stencil length 2M being used in a specific time domain solver. To

achieve more general applicability, we always maintain the translation invariance property

of the basic differential stencil, so that the total number of FPs, 2m, is still be equal to

29



2M . In the HDM method, we introduce a new integer parameter l, which is usually small

and satisfies 1 ≤ l ≤ m, and require the dimensional size involved in the IDM method at

the first stage to be 2l, see Fig. 11. In other words, we first establish the representation

coefficients via solving an algebraic system of the IDM method for 2l nearest neighboring

FPs, i.e., fm−l+1, . . . , fm+l in Fig. 11. We then seek for a different procedure to generate the

representation coefficients for the rest 2m − 2l FPs, f1, . . . , fm−l and fm+l+1, . . . , f2m. It is

obviously crucial that the high accuracy of the IDM method should not be destroyed in the

present HDM modeling.

In the HDM method, the determination of representation coefficients for the rest 2m−2l

FPs is carried out in a recursive manner. In each recursive step, we determine only one FP

at each side of the material interface. For example, we first consider the determination for

fm−l and fm+l+1, then for fm−l−1 and fm+l+2, and so on. Totally m − l recursive steps are

taken in this dynamic procedure. At each recursive step, the FPs with known representation

coefficients are referred to as master FPs, while the two new FPs are called subordinate FPs.

A pseudo-procedure of the HDM modeling is given as follows:

A pseudo-procedure of the HDM method

Stage 1. Carry out the IDM modeling for the interior 2l FPs, fm−l+1, . . . , fm+l.

Stage 2. The recursion

DO k = l + 1,m

Known values: representation coefficients of 2(k−1) master FPs, fm−k+2, . . . , fm+k−1

Unknowns: representation coefficients of 2 subordinate FPs, fm−k+1 and fm+k

Use known values and low-order jump conditions to determine unknowns

END DO

The remaining issue of the HDM method is how to determine the representation co-

efficients of two subordinate FPs. Without loss of generality, we take a simple case with

m = l + 1 as example. Suppose that the coefficients ri,j for i, j = 2, . . . , 2m − 1 in Eq.
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(15) are known from the previous IDM or HDM modeling. We need to determine the rest

coefficients in matrix R = (ri,j), for i, j = 1, . . . , 2m. We first set ri,1 = ri,2m = 0, for

i = 2, . . . , 2m − 1. In other words, the 2l master FPs f2, . . . , f2m−1 are represented by the

interior 2l grid points g2, . . . , g2m−1 only. By doing this, the accuracy of the representation

coefficients for the master FPs remains the same and no additional complexity involves.

We then consider using all grid points g1, . . . , g2m to represent two subordinate FPs f1

and f2m. Since we have only two unknown FPs now, we can only consider two low-order

jump conditions, such as zero and first-order ones. Take Hy as an example, these two jump

conditions are given as

Hy(ξ
−) = Hy(ξ

+),
1

ε1
H(1)

y (ξ−) =
1

ε2
H(1)

y (ξ+). (39)

The FD approximations to Eqs. (39) on both fictitious and grid points are

m
∑

i=1

w0,igi +
2m
∑

i=m+1

w0,ifi =
m
∑

i=1

w0,ifi +
2m
∑

i=m+1

w0,igi (40)

1

ε1

[

m
∑

i=1

w1,igi +
2m
∑

i=m+1

w1,ifi

]

=
1

ε2

[

m
∑

i=1

w1,ifi +
2m
∑

i=m+1

w1,igi

]

. (41)

Similarly, we symbolically substitute fi = RiG and gi = IiG into Eqs. (40) and (41) to

attain

m
∑

i=1

w0,iI
T
i +

2m
∑

i=m+1

w0,iR
T
i =

m
∑

i=1

w0,iR
T
i +

2m
∑

i=m+1

w0,iI
T
i (42)

1

ε1

[

m
∑

i=1

w1,iI
T
i +

2m
∑

i=m+1

w1,iR
T
i

]

=
1

ε2

[

m
∑

i=1

w1,iR
T
i +

2m
∑

i=m+1

w1,iI
T
i

]

. (43)

Unlike the previous case, now Ri of 2l master FPs f2, . . . , f2m−1 are known. Thus, there are

only two unknowns in Eqs. (42) and (43): R1 and R2m. Therefore, without resorting to a

numerical algebraic solver, these two unknowns can be directly resolved

RT
1 =

1
ε2
w1,2mV1 − w0,2mV2

1
ε2
w1,2mw0,1 − 1

ε1
w1,1w0,2m

RT
2m =

w0,1R
T
1 − V1

w0,2m
,
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where

V1 =
m
∑

i=1

w0,iI
T
i +

2m−1
∑

i=m+1

w0,iR
T
i −

m
∑

i=2

w0,iR
T
i −

2m
∑

i=m+1

w0,iI
T
i

V2 =
1

ε1

[

m
∑

i=1

w1,iI
T
i +

2m−1
∑

i=m+1

w1,iR
T
i

]

− 1

ε2

[

m
∑

i=2

w1,iR
T
i +

2m
∑

i=m+1

w1,iI
T
i

]

.

For cases with m > l+1, we can generate coefficients Ri of two subordinate FPs each time,

and repeat this procedure as often as needed by means of an index replacement.

It is interesting to investigate the accuracy level of the HDM method. In the first stage of

the HDM method, the accuracy of the IDM modeling is clearly determined by the parameter

l, i.e., it is of (2l)th-order. In the following HDM recursion, at the first step, the accuracy

of the FD approximations considered in Eqs. (40) and (41) is of (2l + 2)th-order for the

two new subordinate FPs. Moreover, since the representation coefficients for the interior 2l

master FPs are unchangingly shifted. The representation accuracy of these 2l master FPs

is maintained as (2l)th-order, so that the final accuracy of entire HDM modeling remains as

(2l)th-order. The same conclusion can be drawn for the rest recursive steps. Therefore, the

numerical accuracy of the HDM method is solely determined by the parameter l. In other

words, the HDM method is capable of maintaining the high accuracy of the IDM method

when introducing more FPs.

Apart from the formal order of accuracy, the numerical computations are usually subject

to many other error sources, such as the round-off error due to the finite precision limit. It

has been found that when m is large, the IDM method may lose the precision, owing to the

round-off error. However, for the HDM method, the FD approximations to very high-order

derivatives are avoided so that the problem of round-off error accumulations is well under

controlled. Consequently, the HDM method is well suited for applying to problems requiring

a large m. Meanwhile, since the resolution of a big algebraic system is not required in the

HDM method, the HDM method usually is much faster than the IDM method to generate a

large number FPs. For example, a few hours are required for the IDM method when m = 32,

while for the HDM method by using m = 32 and l = 8, one or two minutes CPU time would
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be enough. Therefore, the HDM method is an efficient means for enforcing jump conditions

to high-order accuracy.

As the stability of IDM method was one of concerns for the motivation of the HDM

method, we examine the stability of the HDM and see whether there is any improvement in

the stability. Similar to the IDM method, the HDM method is found to be free of additional

stability problem when applying to the high-order FDTD methods. It is of great interest

to investigate the stability of the MRTD and LSTD approaches when the HDM modeling

is considered. It is found from our analysis that the MRTD method with the HDM could

be conditionally stable when l is small, see Fig. 12. In particular, after the HDM modeling,

the MRTD method can still have the same stability condition when l ≤ 3, for 8 ≤M ≤ 16.

However, when l ≥ 4, the scheme becomes unconditionally unstable again.

Similarly, the LSTD method becomes more stable with the HDM than with the IDM. In

Fig. 13, the spectral radius for the LSTD with M = 16 and different r values is shown. For

each parameter r, the maximum l of the HDM method which produces stable approximation

is considered. Recall that in Fig. 10, when a larger r is used for a fixed M , the chance of

the LSTD method with the IDM to be unstable could be larger. The similar finding is still

valid for the LSTD method with the HDM, if we consider r being increased with fixed M

and l. On the other hand, similar to the MRTD method with the HDM, it is found in our

studies that the possibility of the LSTD method with the HDM to be stable is increased if

a smaller l is used for given M and r. Therefore, for a fixed M , when r increases, in order

to maintain the stability of the entire approximation, a smaller l has to be employed, as can

be seen clearly from Fig. 13. It should be emphasized that for M = m = 16, the parameter

r could be even larger than 2.8, if a smaller l is used. In fact, the range 2.3 ≤ r ≤ 2.8 is

sufficiently large for the purpose of selecting optimal r values of the DSC algorithm with

M = 16 for scientific computing [24,53]. Similar findings also hold for different M values.

It is also noted that the situation in which the approximation is still conditionally stable,

but with a more severe constraint, does not appear in the LSTD method with the HDM. In

general, one can draw the conclusion that the time-domain solvers of Maxwell’s equations
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with the HDM method are usually more stable than those with the IDM method.

The studies on the accuracy and stability of the HDMmethod also reveal rules of selecting

the parameter l in the HDM modeling. The general guideline is that, when a higher accuracy

is expected, a larger l should be chosen, while when a more stable scheme is required, a

smaller l could be a better choice. In real world applications, one should properly choose l

in the HDM modeling according to the nature of the problem under consideration, and the

time-domain solver being employed.

In comparing with the IDM, the HDM method is more efficient and stable, thus more

robust for applications in CEM. Nevertheless, due to a small l is typically employed, the

order of accuracy of the HDM method is usually lower than that of the IDM method. A

recursive procedure is introduced in the HDM method to increase the applicability of the

IDM method. Alternatively, we note that using different iteration schemes characterized by

the matrix sizes is another possible way to resolve function values at subordinate FPs. As

well, an iteration procedure might even improve the accuracy of the HDM method. However,

this has not been tested yet.

In summary, both the IDM and HDM modelings have their own merits and limitations.

Fortunately, the IDM method can be regarded as a special case of the HDM method with

m = l. In fact, by selecting the parameter l, one can freely choose between two modelings

without any need to change one’s computer code, while the selection of accuracy and stability

should be guided by the nature of the problem under study. Thus, without loss of the

generality, we could refer to both HDM and IDM modelings as the HDM method.

E. Further numerical tests

We explore the numerical performance of the HDM method for CEM in this subsection.

At first, two model problems studied in Section III B are investigated by using the HDM

method with a large number of FPs. The results of the HDM method for cases with large

m = M are given in Table V. It is clear from table that the HDM method performs very
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well for cases with a large number of FPs, in terms of both efficiency and accuracy, for both

the 1D and quasi-1D model problems, as expected.

Our stability analyses demonstrate that the MRTD with the IDM is always an unstable

procedure, while the MRTD with the HDM could be a stable scheme. Thus, by using the

HDM modeling, the MRTD method could be applicable to inhomogeneous electromagnetic

computations to achieve high accuracy. We thus consider two model problems by using both

the MRTD and LSTD methods together with the HDM, see Table VI. For the 1D model

problem, it can be seen from the table that after using the HDM method, the MRTD results

generally become more accurate. Significant improvement in accuracy is also observed for

the LSTD method. Furthermore, for both cases with and without the HDM method, the

LSTD results are much more accurate than those of the MRTD. This finding is consistent

with outcomes presented in [26].

For the quasi-1D model problem, however, it is found that the stability condition of

both time-domain approaches is generally more severe than that for the 1D model problem.

This is probably owing to the discontinuous nature of the solution. By using the MRTD

method with the HDM, the entire approximation is stable only when l = 1. Consequently,

the accuracy of the MRTD method with the HDM is quite low. Hence, a fine grid resolution

with N = 200 is employed in the MRTD method for the quasi-1D model problem in Table

VI. It can be seen from Table VI that by using M = 16, the MRTD results become much

better when the HDM modeling is carried out. However, the MRTD results with M = 8 are

all quite inaccurate no matter whether the HDM is applied or not. For the same quasi-1D

model problem, by using the LSTD method with the HDM, extremely accurate results can

be obtained again with N = 100. In fact, the results of the LSTD method with the HDM

for the quasi-1D model problem are quite close to those for the 1D model problem, albeit

now the scheme has a slightly more severe stability constraint. In general, the numerical

studies considered in Table VI well demonstrate the robustness of the HDM method for

electromagnetic applications.

Finally, we consider a simple 1D eigenvalue problem. Compared to the explicit DM
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modeling considered in the BPS method [39,40], the remarkable characteristic of the HDM

method is its implicit nature. Thus, the HDM method could be applied to CEM in the

frequency domain, e.g., eigenvalue problems or boundary value problems governed by the

Helmholtz equation for electromagnetic applications. As an example to demonstrate this

capability, we consider a simple 1D eigenvalue problem in inhomogeneous media. This

frequency-domain problem is simply a counterpart of the 1D model problem. From Eq.

(10), it can be easily derived that Ez satisfies the wave equation

∂2Ez

∂t2
− 1

ε

∂2Ez

∂x2
= 0, (44)

for µ = 1. Following the time-harmonic convention Ez(x, t) = E(x) exp(iωt), and eliminat-

ing the common terms, we have the 1D Helmholtz equation [24,53]

1

ε

∂2E(x)

∂x2
+ ω2E(x) = 0. (45)

We also assume that the PEC boundary conditions hold at the two ends of the domain,

E(−1) = E(1) = 0, and the rest problem setting is the same as that of the 1D model

problem. The solution ω of this eigenvalue problem can be simply obtained via the resolution

of the equation [44]

−√ε2 tan(
√
ε1ω) =

√
ε1 tan(

√
ε2ω).

The physical jump conditions of this eigenvalue problem are the same as those of the

1D model problem, so that the HDM method can be similarly applied. The same boundary

extension schemes are also employed. For simplicity, only the high-order FD approximations

are considered for this problem. By using a standard eigenvalue solver, numerical errors in

the first 40 eigenvalues are reported in Table VII for various different l and m. Note that for

the 40th eigenvalue, the grid density is as small as about 4 PPW. It can be seen from Table

VII that for a small l, such as l = 4, 8, and 12, the overall accuracy is greatly improved

when a slightly bigger m is used. Our previous accuracy analysis indicates that the order

of accuracy of the HDM method is determined by the parameter l. It is well known that
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apart from the formal order, the final accuracy of an approximation also crucially depends

on the magnitude factor. For the present under sampling problem, a FD approximation

with a larger M = m introduces less dispersive error, so that the magnitude factor can

be much smaller. Therefore, for a fixed l, when m increases from m = l, more accurate

approximations can be achieved. On the other hand, it is also observed from Table VII that

for l = 4, 8, and 12, when m > l + 8, the accuracy does not increase any more. This means

that the limit of reduction in the magnitude factor is reached. Such final levels of accuracy

are solely determined by l. By comparing with results of l = 4, 8, and 12, it is clearly that

a larger l also yields better approximation.

The situation becomes different when l ≥ 16. When l = 16, the accuracy still improves

when m is slightly larger than l. When m = l + 8 = 24, we attain the highest accuracy

in Table VII. However, when m is further larger, the accuracy goes down. Finally when

m = 32, the accuracy is even worse than that of l = m = 16. This is because, besides the

magnitude factor, now the round-off errors in the IDM modeling also play a role in the final

level of accuracy. In the first stage of the HDM method, an IDM modeling with l = 16

introduces quite large round-off errors. Such round-off errors are rapidly accumulated in the

HDM modeling when m is large, so that the final accuracy is ruined. When a larger l = 20

is considered. the accumulation of round-off errors is more severe so that the improvement

by using a minor larger m is not observed. Finally, when l = 24, the accuracy becomes

even worse as m > l. Obviously, for a large l, the large condition number of the eigenvalue

matrix induced by the large magnitude of approximating high order derivatives degrades the

numerical solution. Therefore, in general, one should use a small l ≤ 16 for real applications.

Furthermore, by using such an l value, better results could be achieved when m is slightly

larger than l. This also suggests that the HDM method could be more accurate than

the pure IDM modeling. Application of the present HDM method to frequency domain

electromagnetic problems will be studied in detail and presented elsewhere.

Before considering the extension of higher dimensions, it is commented that there is a

family of DM schemes that can be developed to generalize the FDTD for handling material
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interfaces. Essentially, this family of schemes makes use of different numbers of FPs to

achieve a given order of accuracy, and for a given number of FPs, complements by appropri-

ate one-sided FD approximation of derivatives near the interface. Therefore, the first scheme

of the family uses only the zeroth order DM condition, fully one-sided approximations and

no FP, whereas the last scheme is the present HDM method which uses the largest number

of FPs as well as largest number of DM conditions and no one-sided approximation. It is

expected that the numerical stability and robustness of this family of schemes vary from

scheme to scheme. The flexibility of being implemented in 3D modeling is another criterion

for accessing these schemes. Obviously, it is both interesting and important to systematically

investigate this family of methods in the future.

IV. BEYOND ONE-DIMENSION

We explore the use of the HDM modeling for 2D electromagnetic applications in this

section. First, the complexity and difficulty of DM modeling in 2D are analyzed in detail.

The use of central FD approximations for 2D DM is explored and a simple quasi-fourth-

order scheme is then introduced. A general 2D HDM method is presented. Finally, a direct

generalization that is linked to the 1D HDM method is considered. For simplicity, the basic

time-domain solver is fixed to be the standard FDTD method in this section, although the

proposed DM methods may also be applied to other high accuracy time-domain approaches.

The idea underlying the present 2D studies in this section could be similarly extended to a

general 3D scenario.

A. 2D considerations

In this section, we consider the 2D TM equation (3) for (Hx, Hy, Ez) in the vector form

∂q

∂t
= A

∂q

∂x
+B

∂q

∂y
, (46)
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q =













Hx

Hy

Ez













, A =













0 0 0

0 0 1/µ

0 1/ε 0













, B =













0 0 −1/µ

0 0 0

−1/ε 0 0













. (47)

It is supposed that the media are non-magnetic with µ = 1 and are homogeneous in the y

direction. Similar to the 1D cases, the electric permittivity ε is a piecewise constant with

two values ε1 and ε2 in the x direction. Again, we assume that the interface is at x = ξ.

The case that there are multiple interfaces can be similarly treated. The notations for A1,

A2, B1 and B2 can be similarly defined. Following the convention of CEM, a 2D staggered

grid is used for the fields Ez, Hx and Hy [24–26].

We first establish physical jump conditions at x = ξ. It is worthwhile to note that we

have three conditions for three field components in each order of jump conditions. Among

them, only two conditions are employed in the DM modeling, because such a modeling is

carried out for Ez and Hy only. For the field component Hx, since derivative of Hx with

respect to x is not required to be evaluated in the resolution of the TM equation (3), it is

not necessary to conduct a DM modeling for Hx.

The zeroth-order jump condition states that the fields are continuous across the interface

q(ξ−, t) = q(ξ+, t). (48)

Similar to the 1D case, the first-order time derivative of q is also continuous across the

interface. Thus, we have the first-order jump condition

(

A1
∂

∂x
+B1

∂

∂y

)

q(ξ−, t) =
(

A2
∂

∂x
+B2

∂

∂y

)

q(ξ+, t). (49)

More insights can be gained if we rewrite condition (49) into its complete form

∂

∂y
Ez(ξ

−, t) =
∂

∂y
Ez(ξ

+, t), (50)

∂

∂x
Ez(ξ

−, t) =
∂

∂x
Ez(ξ

+, t), (51)

1

ε1

( ∂

∂x
Hy(ξ

−, t)− ∂

∂y
Hx(ξ

−, t)
)

=
1

ε2

( ∂

∂x
Hy(ξ

+, t)− ∂

∂y
Hx(ξ

+, t)
)

. (52)
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Since the media are homogeneous in the y direction, the derivatives of fields with respect

to y are continuous throughout the domain. Therefore, condition (50) is trivially valid.

The condition (51) is also trivial, since it is the same as its counterpart in the 1D case.

However, the third condition (52) is genuinely nontrivial, because of the term ∂
∂y
Hx. This

condition is identical to the corresponding 1D jump condition only when ∂
∂y
Hx = 0, which,

however, is not true for general 2D applications. Therefore, one has to consider the derivative

approximation in the y direction along the interface x = ξ in the 2D DM modeling. This

is dramatically different from the 1D studies and introduces considerable difficulties, even

though ∂
∂y
Hx is continuous along x direction at x = ξ.

Similarly, the second-order and the third-order jump conditions can be given as

(

A1
∂

∂x
+B1

∂

∂y

)2

q(ξ−, t) =
(

A2
∂

∂x
+B2

∂

∂y

)2

q(ξ+, t), (53)

and

(

A1
∂

∂x
+B1

∂

∂y

)3

q(ξ−, t) =
(

A2
∂

∂x
+B2

∂

∂y

)3

q(ξ+, t). (54)

In the explicit form, we have

1

ε1

∂2

∂y2
Hx(ξ

−, t)− 1

ε1

∂2

∂x∂y
Hy(ξ

−, t) =
1

ε2

∂2

∂y2
Hx(ξ

+, t)− 1

ε2

∂2

∂x∂y
Hy(ξ

+, t), (55)

1

ε1

∂2

∂x2
Hy(ξ

−, t)− 1

ε1

∂2

∂x∂y
Hx(ξ

−, t) =
1

ε2

∂2

∂x2
Hy(ξ

+, t)− 1

ε2

∂2

∂x∂y
Hx(ξ

+, t), (56)

1

ε1

( ∂2

∂x2
+

∂2

∂y2

)

Ez(ξ
−, t) =

1

ε2

( ∂2

∂x2
+

∂2

∂y2

)

Ez(ξ
+, t), (57)

and

1

ε1

( ∂3

∂x2∂y
+

∂3

∂y3

)

Ez(ξ
−, t) =

1

ε2

( ∂3

∂x2∂y
+

∂3

∂y3

)

Ez(ξ
+, t), (58)

1

ε1

( ∂3

∂x3
+

∂3

∂x∂y2

)

Ez(ξ
−, t) =

1

ε2

( ∂3

∂x3
+

∂3

∂x∂y2

)

Ez(ξ
+, t), (59)

1

ε21

( ∂3

∂x3
+

∂3

∂x∂y2

)

Hy(ξ
−, t) − 1

ε21

( ∂3

∂y3
+

∂3

∂x2∂y

)

Hx(ξ
−, t)

=
1

ε22

( ∂3

∂x3
+

∂3

∂x∂y2

)

Hy(ξ
+, t) − 1

ε22

( ∂3

∂y3
+

∂3

∂x2∂y

)

Hx(ξ
+, t). (60)
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It is noted that in order to numerically deal with these conditions, cross derivatives, such as

∂2

∂x∂y
Hy, are required to be discretized. To approximate a cross derivative by using x and y

differential kernels with length being respectively 2Mx and 2My, a total number of 4MxMy

grid points is involved. Obviously, the computational cost is then extremely expensive,

especially whenMx andMy are quite large. In viewing this, in the 2D BPS method [40], only

one FP at each side of the interface was considered for each field component. Consequently,

only the zeroth and first-order jump conditions were used so that the approximation of cross

derivatives involved in second or higher-order jump conditions is simply avoided. In the

present study, we tentatively explore the discretization of the cross derivatives in low-order

jump conditions in the next subsection, before a different consideration is taken.

The purpose of the DM is to fully recover the accuracy of a high-order derivative approx-

imation near the material interface. It might appear to be quite unnatural that in order to

improve the accuracy in the x derivative approximation, information from the y direction is

required. This might not agree with our intuition, since a simple Cartesian grid is used and

the domain under consideration is regular. However, as the operator of mixed derivative

is non local in both x- and y-coordinate representations, it necessarily entangles x and y

directions. We further explore this point in the following discussions.

B. A quasi-fourth-order scheme

In the embedded FDTD methods [4,44,45,47–50], one-sided approximations and extrap-

olations are typically employed to uniformly achieve up to fourth-order of accuracy. It is well

known that compared to one-sided derivative approximations, the central approximations

are usually more accurate as well as more stable. In the 1D case, we have demonstrated

that by using central approximations in the HDM/IDM modeling, one can easily generate

embedding FDTD methods systematically to high-order accuracy. It is thus of great interest

to explore if we can achieve higher-order accuracy by considering only central approxima-

tions for the 2D DM modeling in this subsection. In particular, we consider the use of up
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to third-order jump conditions to construct a fourth-order DM scheme in 2D.

We first consider the DM modeling for Ez. Similar to the 1D case, we do not require

that the interface be laid on the grid nodes. For a fourth-order scheme, two FPs at each side

of the interface are needed. The x derivatives involved in up to third-order jump conditions

can be similarly dealt with. However, two terms involving y derivatives are also presented in

these jump conditions, i.e., ∂2Ez/∂y
2 and ∂3Ez/∂x∂y

2, which demand additional attention.

It can be derived that these two derivatives are continuous across the interface x = ξ. For

simplicity, we consider the discretization of ∂2Ez/∂y
2 here. The modeling of ∂3Ez/∂x∂y

2

can be similarly carried out.

At the interface x = ξ, we have,

∂2

∂y2
Ez(ξ

−, t) =
∂2

∂y2
Ez(ξ

+, t).

Thus, Eq. (57) can be rewritten as

1

ε1

∂2

∂x2
Ez(ξ

−, t) =
1

ε2

∂2

∂x2
Ez(ξ

+, t) + (
1

ε2
− 1

ε1
)
∂2

∂y2
Ez(ξ, t). (61)

Since the second term on the right hand side of Eq. (61) is not defined by one-sided limita-

tion, the simplest way to discretize this term is to consider it in numerical approximation of

the TM equations, rather than in the DM modeling. In other words, in the DM modeling

we regard the whole term ∂2

∂y2Ez(ξ, t) as one independent variable. The representation of fi

by gi is then modified by adding a new term in the summation

fi =
4
∑

j=1

ri,jgj + ri,5
∂2

∂y2
Ez(ξ, t), for i = 1, 2, 3, 4,

where ri,j are representation coefficients. The extra coefficients ri,5 can be similarly deter-

mined as ri,j in the DM modeling. It is noted that this DM procedure is computationally

efficient, since it is equivalent to increase one more grid point and maintain the same number

of FPs in comparing with the 1D DM modeling. Furthermore, this procedure is numerically

attainable. However, this procedure calls for the need of evaluation of ∂2Ez(ξ, t)/∂y
2 at

each time step in the time-domain computation. In general cases that the interface x = ξ
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is not on the Ez nodes, an interpolation along the x direction across the interface has to be

resorted to estimate ∂2Ez/∂y
2. Unfortunately, such an approximation is at most second-

order accurate for the given set of stencils, just like the direct discretization of Maxwell’s

equations. Therefore, in order to achieve higher-order accuracy by using a Cartesian grid,

this simple procedure is not applicable. Alternatively, we consider the discretization of the

y derivatives, ∂2Ez/∂y
2 and ∂3Ez/∂x∂y

2, in the DM modeling.

To discretize two derivatives, ∂2Ez/∂y
2 and ∂3Ez/∂x∂y

2, by using central FD approxi-

mations up to the fourth-order of accuracy, at least 20 grid points are required for computing

Ez, see Fig. 14. In our 1D DM method, each FP is assumed to be on the same position as

one corresponding grid node. However, it is impossible to do so in the 2D DM modeling.

The calculation of 20 FPs is obviously quite expensive. Furthermore, there are only four

jump conditions, so that the algebraic equations for the rest 16 unknowns are absent unless

one-sided approximations are used, which is explored in the next subsection. Note that mak-

ing use of higher-order DM condition places a requirement for an even larger computational

support, i.e., more FPs, in order to maintain the accuracy. Hence, there is always an incon-

sistency between the order of accuracy and the number of FPs in 2D central approximations.

Therefore, in the present 2D study, we make use of only four FPs, together with 20 grid

points, see Fig. 14. As a consequence, we have to choose Eq. (61) rather than Eq. (57) to be

discretized. In Eq. (61), the y derivative ∂2Ez/∂y
2 is not defined by one-sided limitation, so

that it is natural to discretize this term by the original grid points only. On the other hand,

if we consider Eq. (57), we must use both FPs and the original grid points to approximate

∂2/∂y2Ez(ξ
−, t) and ∂2/∂y2Ez(ξ

+, t). For the same reason, since the differentiation over y

in ∂3Ez/∂x∂y
2 is continuous across the interface, we also rewrite the jump condition for it

in the form of Eq. (61), and discretize the new condition. In summary, only four FPs are

utilized to approximate all terms that involve purely x derivatives in the jump conditions,

as in the 1D DM modeling, while 20 original grid points are used for approximations of the

rest terms involving y derivatives. As a result, an 80 × 80 algebraic system is constructed,

whose solutions are desired representation coefficients.
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The DM modeling for Hy can be similarly carried out. The number of FPs is still 4,

however, at least 36 grid points are required now since we also need to discretize derivatives

of Hx on staggered nodes. Similarly, four FPs are employed in the approximation of x

derivatives in the jump conditions. Jump conditions involving y derivatives and derivatives

for Hx are rewritten in the form of Eq. (61). We then discretize these derivatives by using

the original grid nodes only. The size of the resulting algebraic system is 144×144. However,

it is noted that now some derivatives, such as ∂3Hx/∂x
2∂y, are actually discontinuous at

the interface, so that certain reductions of accuracy are encountered in the approximation

of these terms by using the original grid points. We numerically investigate this issue

later. Surely, as an academic exercise on data structure and coding, the treatment of mixed

derivatives can still be improved in many different ways. However, as complicated as it is,

it is somewhat impractical to further pursue these alternatives.

By combining the DM modelings for both Ez and Hy, and by considering a stan-

dard fourth-order FDTD scheme, a new high-order central FDTD scheme is obtained for

Maxwell’s equation (3). Although the development of this scheme is aimed to fourth-order of

accuracy, certain reductions in accuracy are introduced in the DM modeling for Hy. There-

fore, this scheme is referred to as a quasi-fourth-order DM (Q4DM) method. Compared

to the fourth-order embedding schemes [4,47–50], the proposed Q4DM scheme might be

technically more complicated and numerically less accurate. However, the proposed method

has promising to be applied to more complex geometries, since it is designed on a simple

Cartesian grid and does not require the interface to be on the grid.

The present study provide us a deep appreciation of difficulties and remaining problems

in the 2D DM modeling. In addition, the 2D DM modeling is also found to be quite complex

from the viewpoint of programming. In the 1D case, the high-order jump conditions can

be easily generated. Moreover, these conditions only involve derivatives with respect to

x. Thus, it is quite easy to write a code to construct these jump conditions. However, in

the 2D case, various different cross derivatives appear each time when we consider a new

jump condition. Computationally, these cross derivatives are better to be represented via a
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symbolic language, such as MAPLE. If the construction of these jump conditions are handled

by a FORTRAN code, well-designed data structure is indispensable, which is quite difficult

for programming and would be extremely time-consuming. This difficulty restricts the use

of high-order jump conditions in the 2D DM modeling.

Similar to 1D studies, it is also interesting to examine if the present Q4DM scheme can be

extended to high-order systematically. However, besides the associated complexity, such a

generalization by considering high-order jump conditions might not be able to achieve high-

order of convergence eventually, simply because the more and more cross derivatives being

discretized on the original grid are actually discontinuous. Therefore, we do not consider

the generalization of this Q4DM scheme to higher order along this line. Alternatively, in

order to achieve high-order of accuracy, one-sided approximation is considered in the 2D DM

modeling in the next subsection, similar to the embedding FDTD schemes [4,44,45,47–50]

and the 2D BPS method [40].

C. 2D HDM method

A 2D HDM method based on the use of one-sided FD approximations is investigated in

this subsection. Due to the complexity of using high-order jump conditions, only low-order

jump conditions are considered for simplicity. The resulting HDM method could be very

similar to the counterpart of the explicit DM method consider in [40], i.e., only two FPs and

two jump conditions are considered for each field component. However, in order to maintain

the general applicability of adopting the scheme in various time-domain methods and the

simplicity of using structured grid, a uniform staggered grid system is still employed in the

present 2D DM method. Obviously, certain instability issues would correspondingly arise.

We also explore this issue later.

We first select low-order jump conditions. For Hy, the zeroth and first-order jump

conditions, Eqs. (48) and (52), are considered. For Ez, to avoid trivial conditions, we choose

first and second-order jump conditions, Eqs. (51) and (57). These four jump conditions are
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employed throughout the 2D HDM modeling. Two y direction derivatives involve in these

four conditions, i.e., ∂
∂y
Hx(ξ) and ∂2

∂y2Ez(ξ). Note that these two terms are continuous at

the interface x = ξ. Thus, we rewrite the jump conditions (52) and (57) in the form

1

ε1

∂

∂x
Hy(ξ

−, t) =
1

ε2

∂

∂x
Hy(ξ

+, t) + (
1

ε1
− 1

ε2
)
∂

∂y
Hx(ξ, t), (62)

1

ε1

∂2

∂x2
Ez(ξ

−, t) =
1

ε2

∂2

∂x2
Ez(ξ

+, t) + (
1

ε2
− 1

ε1
)
∂2

∂y2
Ez(ξ, t). (63)

For simplicity, in approximating the two y derivatives in the present 2D HDM method, we

assume the interface x = ξ laid on some Ez nodes. It is noted that, in a 2D staggered

grid system [24–26], if the interface x = ξ is on some Ez nodes, it is also on some Hx

nodes. Therefore, by using a body-conformed structured grid with some Ez (Hx) nodes on

the interface, the evaluation of two y derivatives ∂
∂y
Hx(ξ) and ∂2

∂y2Ez(ξ) at each time step

could be quite straightforward and extremely accurate. However, we also note that the

present HDM scheme is then not suitable for general Cartesian grids, but is just applicable

to body-conformed structured grids, similar to the fourth-order embedding FDTD schemes

[47–50].

In numerical computation, we regard two derivatives ∂
∂y
Hx(ξ) and

∂2

∂y2Ez(ξ) as indepen-

dent variables, and simply calculate their representation coefficients in the DM modeling.

For instance, we consider the IDM modeling for Ez here. Apart from two FPs, we need 2l

grid points to form the one-sided approximation, see Fig. 15. We denote the y derivative

term ∂2

∂y2Ez(ξ) as ge. Visually, ge can be just thought as an extra grid point, as shown in

Fig. 15. Then, the jump conditions Eqs. (51) and (63) are approximated as

l
∑

i=1

w
(1)
1,i gi + w

(1)
1,l+1f2 = w

(2)
1,1f1 +

l+1
∑

i=2

w
(2)
1,i gl+i−1, (64)

1

ε1

(

l
∑

i=1

w
(1)
2,i gi + w

(1)
2,l+1f2

)

=
1

ε2

(

w
(2)
2,1f1 +

l+1
∑

i=2

w
(2)
2,i gl+i−1

)

+ (
1

ε2
− 1

ε1
)ge, (65)

where one-sided FD weights w
(k)
j,i for i = 1, . . . , l+1, j = 1, 2, and k = 1, 2 can be generated

by using the fast algorithm presented in [59]. Here the subscript j represents the first or

second order derivative approximation, and i is for grid index. The superscripts (1) and (2)
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are followed from the permittivities ε1 and ε2. The representation coefficients for two FPs

can be simply solved from Eqs. (64) and (65). The similar IDM modeling can also be carried

out for Hy. The IDM modeling of Ez and Hy constitutes the first stage of the proposed 2D

HDM method, see also Fig. 15.

Similar to the 1D HDM method, in stage two, the representation coefficients of total

2m FPs are calculated via a hierarchical procedure, and usually we have m = Mx. The

procedure is recursive, with only two new representation coefficients being sought at each

step. The one-sided FD approximations used in each step can be similarly formulated as in

Eqs. (64) and (65). Again, these FD approximations are of higher order accuracy than those

in stage one. It is noted that during the hierarchical procedure, the number of grid points

is kept the same as in stage one, i.e., 2l, see Fig. 15. Thus, l > m is admissible in the 2D

HDM method. This is different from the 1D HDM method. The 2D HDM modeling stops

if l ≥ m. If Mx = m > l, one additional stage, the stage 3 of the HDM method, is invoked,

in which both numbers of FPs and grid points are increased and central FD approximations

are employed, see Fig. 15. In such a case, we have l = m as in the 1D HDM method. It is

obvious that the computation in the present HDM is in much spirit of that in the 1D HDM

method. Thus, it is also quite simple as well as efficient.

However, it is well known that one-sided approximation becomes unstable very soon

when l is large. It is thus interesting to carry out a stability analysis of the present 2D

HDM modeling. We first consider the stability issue of the FDTD methods without the

HDM method. Similar to 1D studies, we represent the complete spatial approximation to

the right-hand side of Eq. (46) by a matrix S, then the semidiscrete form of Maxwell’s

equations (46) can be given as

∂Qn

∂t
=

1

∆
SQn, (66)

where we assume ∆ = ∆x = ∆y for simplicity. The vector Q contains all unknowns in

Ez, Hx, and Hy, and its size is determined by the size of computational domain Nx × Ny.

Similarly, the full discretization form combining both the RK4 temporal integration and the
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spatial approximation in Eq. (66) can be rewritten as

Qn+1 =
[

I +
∆t

∆
S +

1

2

∆t2

∆2
S2 +

1

6

∆t3

∆3
S3 +

1

24

∆t4

∆4
S4
]

Qn = S′Qn (67)

The time-domain computation is stable if the spectral radius of S′ satisfying ρS′ ≤ 1 for all

∆. As in 1D studies, we calculate the spectral radius of S to see if ρS → ρ∞, where

ρ∞ =
√
2

Mx
∑

j=−Mx,j 6=0

|wj|.

The plots of ρS for different resolutions are given in Fig. 16. These results demonstrate that

the stability condition for the 2D FDTD method without the HDM is still that for 1D, i.e.,

Eq. (36). This has also been numerically verified.

We then consider the stability condition of the FDTD method with the 2D HDM mod-

eling. The plots of ρS with m = l = 2 and m = l = 4 are also shown in Fig. 16. It can be

observed that when l = 2, ρS also converges to ρ∞ as ∆→ 0. But when l = 4, it converges

to a value which is slightly larger than ρ∞. In fact, when l is increased further, the ρS can

be much larger than ρ∞, see Fig. 17. A fixed grid resolution with ∆ = 0.025 is used for all

cases in Fig. 17. It is found in our analysis that when l ≤ 8, the FDTD approximations can

be conditionally stable. For these stable schemes, the stability constraint usually becomes

more severe when l is increased, and we have roughly,

∆t <∼
√

min{εµ}2
√
2

ρS
∆x. (68)

In other words, the stability condition by using the 2D HDM with l ≤ 8 can be simply

estimated by calculating corresponding ρS. This finding holds not only for Mx = 1, 2, and

4 but also for a larger Mx.

However, when l > 8, the FDTD approximation with the 2D HDM could be uncondi-

tionally unstable, even though no abrupt changes appear in ρS curves in Fig. 17. Instead,

there are some significant changes in eigenvalues of S, i.e., λS
j . By considering a resolution

with ∆ = 0.05, we have examined the real parts of λS
j for different l. When l ≤ 8, except at

most a few λS
j , most of eigenvalues have zero real parts. Moreover, the real parts of those
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exceptional λS
j are of small magnitudes. However, when l > 8, the real parts of at least half

eigenvalues are not zero, but of magnitude ranging from O(10−13) to O(10−15). Furthermore,

quite a few eigenvalues even have real parts which are significantly larger (or smaller) than

zero. Consequently, the corresponding spectral radius of S′, ρS′ , is always larger than unit

no matter how small ∆t is. Thus, the numerical approximation becomes unconditionally

unstable, as confirmed in our numerical experiments. The same results are also valid for a

larger Mx. Therefore, l = 8 might be the highest value which still produces a stable dis-

cretization for the 2D HDM method. We thus choose up to l = 8 in our following numerical

studies for achieving the best accuracy. It is believed that the present stability analysis

has significantly enhanced our understanding of the potential and limitation in constructing

high order embedded FDTD methods.

The advantages of the HDM method, compared to the Q4DM scheme, are its simplicity

in programming and capability to achieve high-order accuracy. However, the requirement of

a body fitting structured grid system may weaken its applicability to general electromagnetic

problems. Furthermore, since the one-sided approximation becomes unstable as l is quite

large, it is impossible to systematically generate arbitrarily high-order schemes within the

framework of the proposed HDM method, at least in principle. Finally, it is noted that in

1D cases, the HDM method can be regarded as a supplement to the IDM method in some

sense. However, in 2D cases, the hierarchical method plays a fundamental role for generating

high-order embedding methods in the DM modeling. For 3D real applications, the use of

HDM method is expected to be more promising.

D. Generalization via tensor product

It is commented in the 1D BPS method [39] that it is straightforward to extend the

explicit DM method into tensor-product domains in higher dimensions. However, an alter-

native DM modeling is conducted in the 2D BPS studies [40]. This might be due to great

difficulties associated with the 2D DM modeling involving mixed derivatives, as discussed
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in detail in this paper. In this subsection, we further explore the extension of the 1D DM

method to higher dimensions by using the principle of tensor products.

We start by a careful investigation to the general form of the analytical solution of 2D

Maxwell’s equations (46). For simplicity, we only consider Ez component in the present

discussion. Suppose the electric field density E = (Ex, Ey, Ez) is time harmonic, and can be

represented as a plane wave form

Ez(x, y, t) = A exp(iωxx+ iωyy + iωt), (69)

where ωx and ωy are the x- and y-components of physical wavenumber, and ω is the wave

angular frequency. For TM modes, one general form of analytical solutions of (46) can be

given as

Ez(x, y, t) = A sin(ωxx) sin(ωyy) cos(ωt), (70)

which is just one component of the plane wave Eq. (69), and with appropriate scaling, it is

easily for Ez in Eq. (70) to satisfy the PEC conditions at boundaries.

On the other hand, it can be derived from Maxwell’s equations (46) that Ez satisfies the

2D wave equation

ε
∂2Ez

∂t2
=

∂2Ez

∂x2
+

∂2Ez

∂y2
. (71)

By substituting Eq. (70) into Eq. (71), it can be derived that

εω2 = ω2x + ω2y .

In general, ω is a scalar. For the present domain setting, we know that ε is invariant along

y direction, so that ωy is a constant everywhere. Along x direction, the electric permittivity

ε is a piecewise constant with two values: ε1 and ε2. Therefore, there are two corresponding

ωx values and they satisfy

ε1ω
2 = ω2x,1 + ω2y ,

ε2ω
2 = ω2x,2 + ω2y .
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Correspondingly, the field Ez can be rewritten as

Ez(x, y, t) =











A1 sin(ωx,1x) sin(ωyy) cos(ωt) for x < ξ,

A2 sin(ωx,2x) sin(ωyy) cos(ωt) for x > ξ.
(72)

Based on the solution form Eq. (72), we investigate the physical jump conditions of Ez.

As discussed above, at the interface x = ξ, we usually have Ez and its first derivative with

respect to x are continuous.

Ez(ξ
−, t) = Ez(ξ

+, t),

∂

∂x
Ez(ξ

−, t) =
∂

∂x
Ez(ξ

+, t).

These two conditions are sufficient to determine the values of magnitudes A1 and A2 if ωx,1

and ωx,2 are known.

It is of great interest to consider the second-order jump condition, which originally in-

volves y derivative as in Eq. (57). In the present context, it can be verified from (72) that the

second derivative of Ez with respect to x is discontinuous at the interface, and furthermore,

we have the relation

1

ω2x,1

∂2

∂x2
Ez(ξ

−, t) =
1

ω2x,2

∂2

∂x2
Ez(ξ

+, t) (73)

It is interesting to note that condition (73) is almost identical to the second-order jump

condition for Ez in the 1D case, i.e., Eq. (18), except that ε1 and ε2 are replaced with ω2x,1

and ω2x,2, respectively. In fact, it can be derived that the field Ez given by the Eq. (72)

satisfies any order jump condition for Ez as in the 1D case after replacing ε1 and ε2 with ω2x,1

and ω2x,2, respectively. This set of jump conditions can then be used to determine as many

FPs along the x direction as one wants, in principle. This suggests that it is possible to

extend the 1D DM method directly to 2D tensor product geometries by simply considering

parameters ω2x,1 and ω2x,2, but not permittivities ε1 and ε2. For example, we can rewrite

condition (73) as

∂2

∂x2
Ez(ξ

−, t) =
ω2x,1
ω2x,2

∂2

∂x2
Ez(ξ

+, t) (74)
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It is clear from Eq. (74) that the factor R = ω2x,1/ω
2
x,2 determines the relationship. In the

1D case, we have ωy = 0. Thus,

R =
ω2x,1
ω2x,2

=
ε1ω

2 − ω2y
ε2ω2 − ω2y

=
ε1ω

2

ε2ω2
=

ε1
ε2
. (75)

In other words, the factor R solely depends on the material permittivities in the 1D cases.

This actually justifies the soundness of the present 2D considerations. On the other hand,

by itself, Eq. (75) also provides clear evidence about why the 1D DM method is difficult to

be directly generalized to 2D studies, or why the 1D DM method is much easier than that

of 2D. What simply relates x derivatives of Ez component is the factor in terms of wave

numbers: R = ω2x,1/ω
2
x,2, which, however, is generally unknown. As a consequence, the jump

conditions containing ε1 and ε2 inevitably involve y derivatives and cross derivatives, so that

the 2D DM modeling is extremely complicated. In contrast, the factor R happens to be

equal to the known factor of material property ε1/ε2 in 1D cases, so that 1D DM modeling

can be easily carried out.

This investigation motivates us to design a new tensor product derivative matching

(TPDM) method for simple 2D cases. The basic consideration is to numerically estimate

the factor R for 2D problems. We denote such an estimate as R̄. With R̄, the well-

developed 1D HDM method can be directly employed for 2D applications. In order to

estimate R, we must assume that the initial solutions of the time-domain problem under

consideration are analytically available. In each homogeneous region, we consider a highly

accurate approximation of ∂2Ez/∂x
2 at one grid node. By dividing such an approximation

with the corresponding initial value of Ez at that node, we attain an estimate to −ω2x,1 or

−ω2x,2. The estimate to R can thus be easily generated.

It is noted that because an accurate estimate R̄ is generally impossible for many electro-

magnetic problems, such as frequency-domain problems and time-domain wave scattering

problems, the proposed TPDM method cannot be applied to these situations. Moreover, the

relation becomes more complicated in 3D. In other words, it is not a generally applicable

approach for CEM. However, the TPDM method dose provide accurate approximations for
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initial guided wave problems. In practice, it is also found the accuracy of the TPDM method

crucially depends on the accuracy in the estimation of R̄. Even though the TPDM method

can only be applied to a limited class of electromagnetic applications, once it is applicable, it

could be much better than the Q4DM and HDM methods, in terms of accuracy, simplicity,

and efficiency.

E. Numerical studies

We numerically investigate the performance of proposed three schemes for 2D electromag-

netic applications in this subsection. The standard high-order FDTD methods are employed

for basic spatial discretization, although other highly accurate time-domain approaches, like

the MRTD and LSTD methods, may also be employed. The time stepping method is still

the RK4 scheme. Similar to 1D studies, boundary extensions are used to impose the PEC

conditions.

The first problem being considered has a PEC-bounded domain Ω = {(x, y)|0 ≤ x ≤

5/4, 0 ≤ y ≤ 1}. The permittivity is defined by

ε =











ε2, if 0 ≤ x ≤ 1
2
, 0 ≤ y ≤ 1,

ε1, if 1
2
≤ x ≤ 5

4
, 0 ≤ y ≤ 1.

The exact solution for time-varying electromagnetic fields is [48]

Ez =











sin(a1x) sin(by) sin(ωt), 0 ≤ x ≤ 1
2

0 ≤ y ≤ 1,

cos(a2x) sin(by) sin(ωt),
1
2
≤ x ≤ 5

4
0 ≤ y ≤ 1.

Hy =











−a1

ω
cos(a1x) sin(by) cos(ωt), 0 ≤ x ≤ 1

2
0 ≤ y ≤ 1,

a2

ω
sin(a2x) sin(by) cos(ωt),

1
2
≤ x ≤ 5

4
0 ≤ y ≤ 1.

Hx =











b
ω
sin(a1x) cos(by) cos(ωt), 0 ≤ x ≤ 1

2
0 ≤ y ≤ 1,

b
ω
cos(a2x) cos(by) cos(ωt),

1
2
≤ x ≤ 5

4
0 ≤ y ≤ 1,

where a21 + b2 = ε2ω
2, a22 + b2 = ε1ω

2, sin(a1

2
) = cos(a2

2
), cos(5a2

4
) = 0. As in [48], the first

set of parameters to be tested is chosen as ε1 = 1, ε2 = 2, a1 = 3π, a2 = 2π, b = π, and
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ω =
√
5π.

We first examine the convergence rates of two x derivative approximations in the Q4DM

method. The errors of spatial discretizations of ∂Ez/∂x and ∂Hy/∂x are computed by using

the proposed Q4DM scheme with exact field values of Ez and Hy at a fixed time, say t = 0.1.

The numerically tested convergence rates in the approximation of ∂Ez/∂x and ∂Hy/∂x are

listed in Table VIII. Here, a quite long differential stencil in y direction with My = 8 is

used such that the spatial discretization errors are introduced mainly by the approximation

of x derivatives. It is clear from Table VIII that the approximation of ∂Ez

∂x
is around fourth-

order. However, the order of accuracy is only around 2.5 for the approximations to ∂Hy

∂x
.

This confirms our previous discussions that the approximation of cross derivatives which are

discontinuous at the interface x = ξ by using solely the original grid nodes introduce certain

reductions in accuracy. Fortunately, such reductions are not too grave, so that the overall

convergence rates of the interested field components Ez, Hx and Hy are still quite close to

fourth-order, see Table IX. Thus, numerical results in Table IX justify the quasi-fourth-order

of accuracy of the Q4DM method. Meanwhile, it is noted that the Q4DM method performs

well for both cases where the interface is either on some Ez nodes (i.e., cases whose Nx take

odd integers) or not (i.e., cases whose Nx take even integers).

We next study the same 2D problem by considering the 2D HDM method. Following

the above discussions, a maximum value of parameter l is chosen, i.e., l = 8. The numerical

results for different Mx = m are given in Table X. It is clear that for Mx = 1, 2, and 4,

the numerically tested convergence rates are almost identical to the theoretical ones, see

also Fig. 18. For Mx = 6 and Mx = 8, it is found that both numerical accuracy and

numerically tested rates for these two cases are exactly identical, except when the limit of

double precision is reached. This suggests that the accuracy of both schemes is limited

by that of the 2D HDM with l = 8. The theoretical order of accuracy of Mx = 6 and

Mx = 8 should be, respectively, 12 and 16, which, however, are higher than the numerical

convergence rate of the HDM method. Therefore, the numerically tested order of accuracy
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for both schemes is about from 10.2 to 10.8 for the present problem. Since a maximum l = 8

is employed in the 2D HDM, the order of 10.8 might be the highest that the present HDM

scheme can possibly achieve for this problem.

Similar to the 1D case, we note that a gain factor up to 106 in efficiency can be achieved

by using the 12th order HDM instead of the 4th order one. This finding again confirms the

benefit of the present high order methods.

A comparison of the performance between the Q4DM and the 4th order 2D HDM is in

order, as the accuracy of the former is questionable due to its approximation nature. This

can be done by comparing Tables IX and X. It turns out that in fact, the accuracy of the

Q4DM is very close to that of the 2D HDM at the corresponding approximation order. This

might be due to the central schemes used in Q4DM which are in general more accurate than

one-sided approximations. Therefore, we believe that Q4DM is also a successful scheme

whose accuracy is compatible with other 4th order schemes in the literature [4,47–50].

It is interesting to consider a high frequency wave study for the present problem to

further explore the numerical performance of the 2D HDM method. The parameters of the

problem are chosen as ε1 = 1, ε2 = 261
136

, a1 = 15π, a2 = 10π, b = 6π, and ω = 2
√
34π.

The numerical results are given in Table XI. For the short wave problem, we also find that

the 2D HDM method with Mx = 6 and Mx = 8 has an identical convergent rate, which is

around 9.7.

We then consider the TPDM method. For the first set of problem parameters, we have

R = ω2x,1/ω
2
x,2 = a21/a

2
2 = 9/4. By using the standard FD approximations to the second-order

derivative with Mx = 16 in each homogeneous region, a highly accurate estimate to R can be

made. The numerical error in the estimation is found to be as small as |R−R̄| = 2.22×10−14

by using a coarse grid with ∆x = 0.025. With such an accurate estimation, satisfactory

results are obtained by using the TPDM method, see Table XII and Fig. 18. It is clear from

Table XII that theoretical order of accuracy is numerically detected for Mx = 1, 2, 4, and 6,

until the machine limit is reached. For Mx = 8, its convergence rate is obviously restricted

by the double precision. Therefore, when it is applicable, the TPDM method can achieve
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higher order of accuracy than the 2D HDM method, as shown in Fig. 18. Furthermore, it

is noted that the TPDM method also performs very well if one’s computational nodes are

not on the interface x = ξ. Equally good results can be obtained although they are not

reported.

The high frequency problem with the second set of parameters is also studied by using

the TPDM method, see Table XIII. Note for this case, we also have R = a21/a
2
2 = 9/4.

Numerical rate close to 16 is observed in this case.

At last, we explore the influence of the accuracy in estimating R̄ to the final numerical

results of the TPDM method. For this purpose, we artificially enlarge the estimation error

|R− R̄| for the first set of problem parameters. Four different R̄ values with different errors

are tested, see Table XIV. It is found from Table XIV that the accuracy of entire scheme

proportionately deteriorates, as the estimation error increases. In other words, if an accurate

estimate R̄ is unavailable, the performance of the TPDM method is quite poor. Therefore,

the TPDM method is not robust enough for general electromagnetic computations.

We further examine the numerical performance of three proposed schemes by considering

another 2D electromagnetic problem. In this problem, a lossless dielectric with a relative

permittivity of ε2 is enclosed by air in x direction, and the media are nonmagnetic and

homogeneous along y direction. The computational domain Ω = {(x, y)||x| ≤ 1, |y| ≤ 1} is

enveloped by PEC walls. The permittivity is given as

ε =











ε2, if 1
2
≤ |x| ≤ 1, |y| ≤ 1,

ε1, if |x| ≤ 1
2
, |y| ≤ 1,

where ε1 = 1 and ε1 = 2.25. An exact solution for time-varying electromagnetic fields can

be given as

Ez =























sin(ω2

2
) sin(ω1(x+ 1)) sin(ωyy) cos(ωt), −1 ≤ x < − 1

2
|y| ≤ 1

− sin(ω1

2
) sin(ω2x) sin(ωyy) cos(ωt), − 1

2
≤ x ≤ 1

2
|y| ≤ 1

sin(ω2

2
) sin(ω1(x− 1)) sin(ωyy) cos(ωt),

1
2
< x ≤ 1 |y| ≤ 1
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Hx =























−ωy

ω
sin(ω2

2
) sin(ω1(x+ 1)) cos(ωyy) sin(ωt), −1 ≤ x < − 1

2
|y| ≤ 1

ωy

ω
sin(ω1

2
) sin(ω2x) cos(ωyy) sin(ωt), − 1

2
≤ x ≤ 1

2
|y| ≤ 1

−ωy

ω
sin(ω2

2
) sin(ω1(x− 1)) cos(ωyy) sin(ωt),

1
2
< x ≤ 1 |y| ≤ 1

Hy =























ω1

ω
sin(ω2

2
) cos(ω1(x+ 1)) sin(ωyy) sin(ωt), −1 ≤ x < − 1

2
|y| ≤ 1

−ω2

ω
sin(ω1

2
) cos(ω2x) sin(ωyy) sin(ωt), − 1

2
≤ x ≤ 1

2
|y| ≤ 1

ω1

ω
sin(ω2

2
) cos(ω1(x− 1)) sin(ωyy) sin(ωt),

1
2
< x ≤ 1 |y| ≤ 1

where ω21 + ω2y = ε1ω
2 and ω22 + ω2y = ε2ω

2. The value of ω can be determined according to

the relation

√

ε2ω2 − ω2y tan(

√

ε1ω2 − ω2y
2

) =
√

ε1ω2 − ω2y tan(−
√

ε2ω2 − ω2y
2

).

In the first test case, we choose ωy = 2π to satisfy the PEC conditions on y = ±1. Corre-

spondingly, ω ≈ 9.07716175885174. An example plot of analytical solutions is shown in Fig.

19.

Numerical results of three proposed schemes for this case are listed in Table XV. Again,

the HDM schemes with both Mx = 6 and Mx = 8 yield almost the same accuracy and

convergence rate. It is also noted that now the HDM method with l = 8 produces a higher

order accuracy than in the previous example, i.e., about 12th-order. For the TPDM method,

theoretical order is displayed numerically for Mx = 6, while the numerical rate of Mx = 8

is affected by the limit of double precision. In Table XV, the TPDM method is clearly the

most accuracy scheme among three tested methods.

We then study three proposed schemes for a high frequency setting. By using ωy = 5π,

we have ω ≈ 16.81412105455500. It is noted that for this case, R = ω21/ω
2
2 ≈ 10.8234. The

numerical results are given in Table XVI. The results of both Q4DM and HDM are similar

to those in Table XV. However, for the present case, the TPDM becomes unstable if one

chooses l = Mx as before. This is because the rate R is as high as 10.8234 now. For the

TPDM method, this is equivalent to carry out the 1D HDM modeling for two media with

permittivities being ε1 = 10.8234 and ε2 = 1. With such a high contrast in ε, the round-off
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errors accumulated in the numerical computation would be very large due to the invoking

of high order DM conditions, which induce the instability. Therefore, in our experiments,

the 1D HDM method is used with l < Mx to ensure the stability. In Table XVI, the largest

possible value of l, i.e., l = 2, is used for both Mx = 6 and Mx = 8. Consequently, the order

of accuracy of the TPDM becomes 4, which is solely implied by l = 2. It is also found that,

when a high frequency problem with a larger R is studied, one has to use an even smaller l

in order to stabilize the scheme. Recall that the possibility of the HDM scheme to be stable

is enlarged if a smaller l is used. Therefore, the instability of the TPDM method herein is

mainly due to a large value of R.

CPU time of three methods is also given in Table XV and Table XVI. The CPU time of

the Q4DM method is smaller than other two methods. However, if the same accuracy level

is required to be achieved for three schemes, the 2D HDM is the most cost-efficient method

in all cases. On the other hand, it is noted that, although the Q4DM method is slightly

less accurate than other two schemes, it possesses the best applicability for general 2D

electromagnetic structures. This suggests that there exists a tradeoff between the robustness

and accuracy (thus cost-efficiency) for selecting these 2D time-domain approaches. The 2D

HDM method can be applied to quite general electromagnetic problems, and it can always

achieve very high accuracy, as shown in Tables XV and XVI. Therefore, the HDM method

well balances the tradeoff between robustness and accuracy, so that it is the best time domain

approach in terms of both properties.

V. CONCLUSION

In the present work, the well known difficulty [4] of constructing Maxwell’s equation

solvers that are of higher order than previous fourth-order embedding finite difference time-

domain (FDTD) methods [4,47–50] at material interfaces has been overcome. A systematic

procedure via a series of novel hierarchical derivative matching (HDM) is proposed to con-

struct numerical schemes that greatly exceed the convergence rate of the previous fourth-
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order methods. Our studies start from one-dimensional (1D) electromagnetic applications.

The fundamentals of the derivative matching (DM) are discussed in detail. An implicit

derivative matching (IDM) method is proposed as a general high accuracy time-domain

approach, based on a simple structured or Cartesian grid. To address the potential stabil-

ity problems arising in numerical studies, comprehensive stability analyses are considered

for time-domain computations and the IDM modeling. A novel HDM is then proposed to

achieve better stability and robustness. Numerical tests are carried out to validate new

formulations and schemes. Extensions of the DM to two-dimensional (2D) electromagnetic

problems are studied in detail. Three new schemes, a quasi-fourth-order derivative matching

(Q4DM) scheme, a 2D HDM method, and a tensor product derivative matching (TPDM)

method, are presented. The rationale, stability, merits, and disadvantages of each method

are analyzed in detail. Such analysis has significantly extended our understanding of avail-

ability and limitation of high order embedded FDTD methods. Similar to the previous

fourth-order embedding FDTD methods, a single staggered, structured grid is typically em-

ployed for the present 2D HDM method. However, since the central finite difference scheme

is utilized in the whole domain, the proposed schemes reduce to the standard high-order

FDTD methods without material interfaces. Several inhomogeneous interface problems are

considered to demonstrate the numerical performances of the three 2D schemes.

It is well known that the direct time-domain electromagnetic computation in inhomoge-

neous media exhibits only first order of accuracy, even though a high-order spatial discretiza-

tion scheme is used [4]. To restore the high accuracy of a high-order spatial approximation

scheme, subtle numerical modelings near material interfaces are indispensable for addressing

the loss of regularity of field components across the interfaces [4]. In computational elec-

tromagnetics (CEM), several interesting interface schemes have been manually constructed

[4,39,40,44,45,47–50]. However, the extension of these promising schemes to arbitrarily high

order would be quite empirical and mathematically complicated [4] if is not impossible. Mo-

tivated by a novel explicit DM method presented in [39,40], an IDM method is introduced

in the present study. By correctly enforcing the physical jump condition at material in-
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terfaces, the IDM method can be applied to general time-domain approaches, such as the

multiresolution time-domain method and the local spectral time domain method to restore

high-order accuracy. The modeling of the IDM results in local modifications of the differ-

ential stencils near the interfaces, similar to the embedding FDTD schemes [4,44,45,47–50].

Therefore, the IDM method yields an excellent way to systematically generalize the embed-

ding FDTD scheme to higher orders. Compared with the explicit DM method in [39,40], the

IDM method could be more efficient for long time wave simulations, and can be applied to

more general electromagnetic applications, e.g., it can be used in an implicit time-stepping

scheme or numerical solution of frequency-domain CEM problems. Furthermore, the anal-

ysis of stability issues of the IDM method can be easier than that of the explicit DM, due

to the implicit nature of the IDM. A comprehensive stability analysis of the IDM method

is carried out in the present work. However, a direct IDM modeling is found to be quite

difficult in 2D studies, due to the presence of mixed derivatives. As a result, only a Q4DM

scheme is constructed in 2D by using the IDM approach.

A novel HDM method is also introduced in the present paper. In 1D cases, the HDM

method can be viewed as a good supplement to the IDMmethod in some sense. In particular,

the HDM method is computationally more efficient and robust than the IDM method for

problems requiring a large number of fictitious points. Thus, it is well suited for large

scale electromagnetic problems. The HDM method is also found to be more stable than

the IDM method so that it can be easily applied to various high accuracy time-domain

Maxwell solvers. The importance of the HDM method becomes more significant in 2D

simulations. The 2D HDM is constructed by using high order one-sided approximations and

the first two sets of DM conditions. In 2D cases, the hierarchical modeling is found to be the

best approach for the purpose of designing ultra high order DM schemes for general time-

domain Maxwell’s solver. By employing one-sided approximations, the proposed 2D HDM

method can achieve up to 12th order of accuracy in numerical computations and is based

on a simple structured grid. In terms of accuracy, cost-efficiency, stability and applicability,

the HDM method is the best DM method for generating ultra high order 2D embedding
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FDTD methods. For 3D real applications, the use of HDM method is expected to be more

promising.

The main purpose of this paper is to introduce the hierarchical DM methods for the

purpose of achieving high-order accuracy in numerical solution of time-domain Maxwell’s

equations with material interfaces in the framework of FDTD. Many important issues have

not been touched, although possible extensions of the present work are briefly discussed

all over the text. A number of promising generalizations of the present work, including

3D solvers, frequency domain solvers, complex-domain solvers, and curved boundary and

interface solvers, are under our consideration.
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TABLES

TABLE I. The L2 errors in Ez and Hy at t = π by using N grid points for each field intensity

for the 1D model problem with ω ≈ 5.07218116182516. The number of FPs in the IDM is always

set to m = M , and sufficiently small time increment is used in all cases (∆t = π × 10−4). Here

1.56(−1) denotes 1.56× 10−1.

FDTD FDTD with IDM (m = M)

Ez Hy Ez Hy

M N Error Rate Error Rate Error Rate Error Rate

1

50 1.56(−1) 1.99(−1) 7.85(−2) 9.81(−2)

100 5.98(−2) 1.379 7.63(−2) 1.386 1.94(−2) 2.014 2.41(−2) 2.025

200 2.56(−2) 1.226 3.26(−2) 1.226 4.83(−3) 2.008 5.97(−3) 2.013

2

50 8.45(−2) 1.10(−1) 7.90(−4) 9.74(−4)

100 4.23(−2) 0.998 5.45(−2) 1.011 4.83(−5) 4.032 5.92(−5) 4.040

200 2.12(−2) 0.999 2.72(−2) 1.004 2.98(−6) 4.018 3.65(−6) 4.022

3

50 8.39(−2) 1.09(−1) 1.08(−5) 1.33(−5)

100 4.22(−2) 0.992 5.44(−2) 1.004 1.64(−7) 6.045 2.00(−7) 6.052

200 2.11(−2) 0.996 2.72(−2) 1.001 2.52(−9) 6.023 3.06(−9) 6.027

4

50 8.40(−2) 1.09(−1) 1.70(−7) 2.09(−7)

100 4.22(−2) 0.993 5.44(−2) 1.005 6.45(−10) 8.044 7.86(−10) 8.051

200 2.11(−2) 0.995 2.72(−2) 1.000 6.72(−12) 6.585 8.36(−12) 6.555

8

50 8.39(−2) 1.09(−1) 4.34(−12) 5.52(−12)

100 4.22(−2) 0.993 5.44(−2) 1.003 4.36(−12) −0.005 5.50(−12) 0.004

200 2.11(−2) 0.996 2.72(−2) 1.001 4.32(−12) 0.012 5.44(−12) 0.018
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TABLE II. The L2 errors in Ez and Hy at t = π/2 for the 1D model problem with high

frequency parameter setting (ω ≈ 36.48810769772309). The FDTD method with the IDMmodeling

(m = M) is used, and ∆t = π/5× 10−4.

Ez Hy

M N Error Rate Error Rate

1

50 2.00(+0) 2.55(+0)

100 2.51(+0) −0.327 3.32(+0) −0.381

200 8.26(−1) 1.605 1.09(+0) 1.600

2

50 2.27(+0) 2.81(+0)

100 4.01(−1) 2.499 5.40(−1) 2.376

200 2.61(−2) 3.939 3.50(−2) 3.949

3

50 2.27(+0) 3.08(+0)

100 6.56(−2) 5.116 8.87(−2) 5.121

200 1.12(−3) 5.872 1.51(−3) 5.879

4

50 1.57(+0) 2.15(+0)

100 1.23(−2) 6.999 1.66(−2) 7.015

200 5.56(−5) 7.787 7.49(−5) 7.794

8

50 3.07(−1) 4.22(−1)

100 2.64(−5) 13.505 3.59(−5) 13.522

200 6.06(−10) 15.412 8.19(−10) 15.419
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TABLE III. The L2 errors in Ez and Hy at t = π for the quasi-1D model problem with

ω ≈ 5.05589071456588 by using ∆t = π × 10−4.

FDTD FDTD with IDM (m = M)

Ez Hy Ez Hy

M N Error Rate Error Rate Error Rate Error Rate

1

50 2.32(−1) 2.67(−1) 8.23(−2) 9.97(−2)

100 1.99(−1) 0.220 2.29(−1) 0.222 2.04(−2) 2.013 2.45(−2) 2.024

200 1.98(−1) 0.010 2.31(−1) −0.014 5.07(−3) 2.007 6.08(−3) 2.012

2

50 2.04(−1) 2.36(−1) 8.15(−4) 9.74(−4)

100 1.97(−1) 0.048 2.30(−1) 0.038 4.99(−5) 4.030 5.93(−5) 4.038

200 1.99(−1) −0.013 2.32(−1) −0.015 3.08(−6) 4.017 3.65(−6) 4.021

3

50 2.03(−1) 2.36(−1) 1.10(−5) 1.31(−5)

100 1.97(−1) 0.040 2.30(−1) 0.038 1.67(−7) 6.043 1.98(−7) 6.050

200 1.99(−1) −0.011 2.32(−1) −0.015 2.58(−9) 6.022 3.04(−9) 6.026

4

50 2.03(−1) 2.36(−1) 1.73(−7) 2.05(−7)

100 1.98(−1) 0.036 2.30(−1) 0.038 6.55(−10) 8.041 7.73(−10) 8.048

200 1.99(−1) −0.010 2.32(−1) −0.015 7.07(−12) 6.535 8.52(−12) 6.504

8

50 2.03(−1) 2.36(−1) 4.65(−12) 5.73(−12)

100 1.98(−1) 0.036 2.30(−1) 0.038 4.67(−12) −0.006 5.72(−12) 0.003

200 1.99(−1) −0.010 2.32(−1) −0.015 4.63(−12) 0.013 5.65(−12) 0.017
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TABLE IV. The L2 errors in Ez and Hy at t = π for the quasi-1D model problem with high

frequency parameter setting (ω ≈ 36.47181725046381). The FDTD method with the IDMmodeling

(m = M) is used, and ∆t = π/5× 10−4.

Ez Hy

M N Error Rate Error Rate

1

50 2.12(+0) 2.65(+0)

100 2.66(+0) −0.325 3.42(+0) −0.369

200 8.63(−1) 1.619 1.12(+0) 1.612

2

50 2.46(+0) 2.98(+0)

100 4.13(−1) 2.572 5.47(−1) 2.446

200 2.70(−2) 3.939 3.54(−2) 3.949

3

50 2.35(+0) 3.13E(+0)

100 6.72(−2) 5.130 8.93(−2) 5.133

200 1.15(−3) 5.871 1.52(−3) 5.879

4

50 1.61(+0) 2.17(+0)

100 1.25(−2) 7.004 1.67(−2) 7.020

200 5.68(−5) 7.787 7.53(−5) 7.794

8

50 3.12(−1) 4.22(−1)

100 2.68(−5) 13.505 3.59(−5) 13.522

200 6.16(−10) 15.411 8.19(−10) 15.419
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TABLE V. The L2 errors at t = π for two model problems when the number of FPs m is

large. Here, ω ≈ 5.07218116182516 and ω ≈ 5.05589071456588 for the 1D and quasi-1D model

problem, respectively. The FDTD methods are employed in both the IDM and HDM withN = 100,

∆t = π × 10−4, and m = M . CPU time in hours is reported.

Scheme Problem M l Ez Hy CPU time

IDM

1D
16 — 4.24(−12) 5.35(−12) 0.0240

32 — 2.16(−5) 2.77(−5) 2.8867

quasi-1D
16 — 4.61(−12) 5.65(−12) 0.0245

32 — 4.72(−6) 6.52(−6) 2.9822

HDM

1D
16 8 3.93(−12) 4.91(−12) 0.0029

32 8 7.12(−11) 7.85(−11) 0.0166

quasi-1D
16 8 5.37(−12) 6.59(−12) 0.0028

32 8 3.45(−12) 3.52(−12) 0.0167
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TABLE VI. The L2 errors at t = π by using both the MRTD and LSTD approaches together

with the HDM method. Here, ω ≈ 5.07218116182516 and ω ≈ 5.05589071456588 for the 1D

and quasi-1D model problem, respectively. For the LSTD method, conventionally used parameter

values of r are employed. Here ∆t = π× 10−4 and m = M . A fine resolution N = 200 is employed

in the MRTD method for the quasi-1D model problem. In other cases, a normal resolution N = 100

is used.

without HDM with HDM

Scheme Problem M r Ez Hy l Ez Hy

MRTD

1D
8 — 2.84(−1) 3.62(−1) 3 2.43(−1) 3.08(−1)

16 — 4.50(−2) 5.80(−2) 3 2.87(−3) 3.74(−3)

quasi-1D
8 — 3.17(−1) 3.79(−1) 1 3.65(−1) 4.41(−1)

16 — 1.97(−1) 2.29(−1) 1 7.67(−2) 9.12(−2)

LSTD

1D
8 1.7 4.21(−2) 5.43(−2) 3 2.87(−5) 3.48(−5)

16 2.4 4.22(−2) 5.44(−2) 6 4.97(−10) 6.57(−10)

quasi-1D
8 1.7 1.97(−1) 2.30(−1) 3 2.91(−5) 3.41(−5)

16 2.4 1.98(−1) 2.30(−1) 6 5.90(−10) 7.54(−10)
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TABLE VII. Numerical errors in the first 40 eigenvalues of the 1D eigenvalue problem. The

FDTD method with the HDM is employed with N = 100 and m = M .

l m L2 L∞ l m L2 L∞ l m L2 L∞

4 4 2.24(−2) 7.83(−2) 8 8 3.81(−4) 1.56(−3) 12 12 1.00(−5) 4.64(−5)

4 8 5.95(−4) 2.19(−3) 8 12 1.25(−5) 5.60(−5) 12 16 3.25(−7) 1.63(−6)

4 12 2.89(−4) 1.25(−3) 8 16 2.99(−6) 1.36(−5) 12 20 1.55(−8) 7.60(−8)

4 16 2.82(−4) 1.31(−3) 8 20 2.66(−6) 1.28(−5) 12 24 1.20(−8) 5.84(−8)

4 32 2.80(−4) 1.30(−3) 8 32 2.56(−6) 1.24(−5) 12 32 1.79(−8) 7.48(−8)

16 16 3.17(−7) 1.59(−6) 20 20 1.12(−8) 5.98(−8) 24 24 1.30(−8) 7.56(−8)

16 20 1.10(−8) 5.86(−8) 20 24 1.66(−8) 5.63(−8) 24 28 3.65(−6) 2.13(−5)

16 24 5.56(−9) 3.11(−8) 20 28 2.26(−6) 1.32(−5)

16 28 4.71(−8) 2.73(−7) 20 32 1.75(−5) 1.01(−4)

16 32 1.46(−6) 8.07(−6)
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TABLE VIII. The L2 errors in x derivative approximations of the FDTD methods with the

Q4DM. Here Mx = 2, and a longer differential kernel is used in y direction with My = 8. Two

types of grid resolutions, i.e., Ez nodes being coincided with the interface x = ξ (Nx take odd

integers) or not (Nx take even integers), are considered.

∂Ez/∂x ∂Hy/∂x

(Nx, Ny) Error Rate Error Rate

(50, 41) 7.69(−5) 9.92(−5)

(100, 81) 6.37(−6) 3.541 1.72(−5) 2.490

(200, 161) 5.44(−7) 3.524 3.03(−6) 2.489

(51, 41) 2.88(−5) 7.12(−5)

(101, 81) 1.88(−6) 3.936 1.15(−5) 2.635

(201, 161) 1.26(−7) 3.901 1.99(−6) 2.525
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TABLE IX. The L2 errors of the FDTD methods with the Q4DM at time t = 1 with

∆t = 5.0× 10−4. The rest parameter setting is the same as that in Table VIII.

Ez Hx Hy

(Nx, Ny) Error Rate Error Rate Error Rate

(50, 41) 2.76(−5) 1.07(−5) 3.21(−5)

(100, 81) 1.93(−6) 3.780 7.44(−7) 3.791 2.16(−6) 3.841

(200, 161) 1.50(−7) 3.656 5.80(−8) 3.653 1.59(−7) 3.732

(51, 41) 2.93(−5) 1.12(−5) 3.10(−5)

(101, 81) 2.30(−6) 3.671 8.80(−7) 3.670 2.34(−6) 3.728

(201, 161) 2.03(−7) 3.499 7.89(−8) 3.479 1.98(−7) 3.558
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TABLE X. The L2 errors of the FDTD methods with the 2D HDM at time t = 1 with

∆t = 2.5× 10−4. Here My = 8 is used and the maximal l = 8 is employed for all Mx values.

Ez Hx Hy

Mx (Nx, Ny) Error Rate Error Rate Error Rate

1

(51, 41) 3.97(−3) 1.53(−3) 4.23(−3)

(101, 81) 1.00(−3) 1.990 3.84(−4) 1.990 1.07(−3) 1.986

(201, 161) 2.51(−4) 1.994 9.63(−5) 1.996 2.68(−4) 1.995

2

(51, 41) 2.25(−5) 8.67(−6) 2.48(−5)

(101, 81) 1.42(−6) 3.985 5.44(−7) 3.993 1.56(−6) 3.990

(201, 161) 8.93(−8) 3.993 3.41(−8) 3.998 9.79(−8) 3.996

4

(51, 41) 2.42(−9) 9.64(−10) 2.60(−9)

(101, 81) 7.05(−12) 8.484 2.67(−12) 8.499 7.73(−12) 8.394

(201, 161) 2.90(−14) 7.924 8.22(−15) 8.341 2.35(−14) 8.303

6

(26, 21) 1.29(−6) 5.60(−7) 1.20(−6)

(51, 41) 1.09(−9) 10.214 4.59(−10) 10.214 1.00(−9) 10.224

(101, 81) 6.00(−13) 10.821 2.52(−13) 10.833 5.57(−13) 10.817

(201, 161) 1.33(−14) 5.499 5.06(−15) 5.636 1.29(−14) 5.430

8

(26, 21) 1.29(−6) 5.62(−7) 1.21(−6)

(51, 41) 1.09(−9) 10.208 4.61(−10) 10.251 1.01(−9) 10.224

(101, 81) 6.00(−13) 10.821 2.52(−13) 10.838 5.56(−13) 10.825

(201, 161) 1.95(−14) 4.940 5.80(−15) 5.441 1.56(−14) 5.159
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TABLE XI. The L2 errors of the FDTD methods with the 2D HDM at time t = 0.5 with

∆t = 1.0× 10−4. High frequency parameter setting is used. Here My = 8 is used and the maximal

l = 8 is employed for all Mx values.

Ez Hx Hy

Mx (Nx, Ny) Error Rate Error Rate Error Rate

1

(51, 41) 1.88(−1) 1.29(−1) 2.79(−1)

(101, 81) 6.44(−2) 1.550 2.56(−2) 2.333 5.58(−2) 2.320

(201, 161) 1.70(−2) 1.922 5.83(−3) 2.132 1.27(−2) 2.136

2

(51, 41) 3.63(−2) 1.39(−2) 3.02(−2)

(101, 81) 2.37(−3) 3.935 8.35(−4) 4.058 1.83(−3) 4.046

(201, 161) 1.52(−4) 3.967 5.29(−5) 3.980 1.16(−4) 3.981

4

(51, 41) 4.45(−3) 2.71(−3) 5.32(−3)

(101, 81) 1.09(−5) 8.675 4.55(−6) 9.217 8.99(−6) 9.210

(201, 161) 3.18(−8) 8.420 1.20(−8) 8.571 2.48(−8) 8.502

6

(51, 41) 4.91(−3) 2.66(−3) 5.15(−3)

(101, 81) 6.12(−6) 9.647 3.30(−6) 9.650 6.48(−6) 9.632

(201, 161) 7.19(−9) 9.732 3.85(−9) 9.745 7.65(−9) 9.727

8

(51, 41) 4.97(−3) 2.67(−3) 5.17(−3)

(101, 81) 6.13(−6) 9.664 3.31(−6) 9.658 6.49(−6) 9.638

(201, 161) 7.22(−9) 9.729 3.86(−9) 9.742 7.67(−9) 9.726
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TABLE XII. The L2 errors of the FDTD methods with the TPDM at time t = 1 with

∆t = 2.5× 10−4. Here My = 8 is used.

Ez Hx Hy

Mx (Nx, Ny) Error Rate Error Rate Error Rate

1

(26, 21) 1.57(−2) 5.96(−3) 1.64(−2)

(51, 41) 3.93(−3) 1.983 1.52(−3) 1.967 4.22(−3) 1.956

(101, 81) 9.99(−4) 1.993 9.63(−5) 1.996 2.67(−4) 1.994

2

(26, 21) 3.53(−4) 1.38(−4) 3.97(−4)

(51, 41) 2.25(−5) 3.970 8.70(−6) 3.985 2.52(−5) 3.978

(101, 81) 1.42(−6) 3.995 5.45(−7) 3.996 1.58(−6) 3.993

4

(26, 21) 4.10(−7) 1.61(−7) 4.80(−7)

(51, 41) 1.66(−9) 7.949 6.46(−10) 7.964 1.94(−9) 7.953

(101, 81) 6.56(−12) 7.984 2.54(−12) 7.992 7.63(−12) 7.988

6

(26, 21) 6.84(−10) 2.71(−10) 8.20(−10)

(51, 41) 1.73(−13) 11.948 6.76(−14) 11.969 2.07(−13) 11.949

(101, 81) 1.33(−14) 3.705 5.68(−15) 3.573 1.11(−14) 4.219

8

(26, 21) 1.32(−12) 5.28(−13) 1.62(−12)

(51, 41) 9.17(−15) 7.169 4.16(−15) 6.990 9.29(−15) 7.447

(101, 81) 1.44(−14) −0.650 5.19(−15) −0.320 1.05(−14) −0.182
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TABLE XIII. The L2 errors of the FDTD methods with the TPDM at time t = 0.5 with

∆t = 1.0× 10−4. High frequency parameter setting is used. Here My = 8 is used.

Ez Hx Hy

Mx (Nx, Ny) Error Rate Error Rate Error Rate

1

(26, 21) 3.69(−1) 4.26(−1) 7.33(−1)

(51, 41) 1.90(−1) 0.953 1.30(−1) 1.709 2.81(−1) 1.379

(101, 81) 6.42(−2) 1.569 2.54(−2) 2.355 5.57(−2) 2.339

2

(26, 21) 1.98(−1) 2.53(−1) 5.35(−1)

(51, 41) 3.46(−2) 2.517 1.34(−2) 4.234 2.94(−2) 4.181

(101, 81) 2.38(−3) 3.861 8.36(−4) 4.006 1.82(−3) 4.014

4

(26, 21) 1.34(−1) 8.21(−2) 1.80(−1)

(51, 41) 1.40(−3) 6.583 5.15(−4) 7.317 1.11(−3) 7.340

(101, 81) 6.68(−6) 7.710 2.43(−6) 7.728 5.25(−6) 7.723

6

(26, 21) 7.41(−2) 3.62(−2) 7.83(−2)

(51, 41) 7.75(−5) 9.900 2.85(−5) 10.307 6.14(−5) 10.315

(101, 81) 2.70(−8) 11.482 9.88(−9) 11.497 2.13(−8) 11.492

8

(26, 21) 4.19(−2) 1.87(−2) 4.01(−2)

(51, 41) 4.95(−6) 13.047 1.81(−6) 13.333 3.92(−6) 13.318

(101, 81) 1.36(−10) 15.147 4.87(−11) 15.185 1.05(−10) 15.176
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TABLE XIV. The L2 errors of the FDTD method with the TPDM at time t = 1 with

∆t = 2.5× 10−4. Here Mx = My = 8 and (Nx, Ny) = (51, 41).

|R− R̄| Ez Hx Hy

1.00(−14) 8.80(−15) 4.01(−15) 8.92(−15)

1.00(−10) 1.11(−12) 4.66(−13) 1.02(−12)

1.00(−6) 1.11(−8) 4.63(−9) 1.01(−8)

1.00(−2) 1.10(−4) 4.62(−5) 1.01(−4)
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TABLE XV. The L2 errors of the FDTD method at time t = 1 with ∆t = 2.0 × 10−4. For

all three DM schemes, My = 8 and Mx = m. CPU time in seconds is reported. Note that the

definition of l in the TPDM method is followed from the 1D HDM method, thus it is different from

that of the 2D HDM method.

Ez Hx Hy

Scheme Mx l (Nx, Ny) Error Rate Error Rate Error Rate CPU

Q4DM 2 –
(21, 21) 1.15(−4) 1.12(−4) 1.86(−4) 6.86

(41, 41) 7.53(−6) 3.932 7.34(−6) 3.937 1.18(−5) 3.973 23.16

HDM

6 8
(21, 21) 1.83(−6) 9.92(−7) 1.50(−6) 11.28

(41, 41) 5.50(−10) 11.697 2.48(−10) 11.967 4.00(−10) 11.868 34.73

8 8
(21, 21) 1.84(−6) 9.98(−7) 1.51(−6) 15.05

(41, 41) 5.50(−10) 11.706 2.48(−10) 11.976 4.00(−10) 11.880 41.56

TPDM

6 6
(21, 21) 1.70(−9) 1.47(−9) 2.49(−9) 9.90

(41, 41) 4.73(−13) 11.812 4.15(−13) 11.794 6.99(−13) 11.798 30.77

8 8
(21, 21) 1.43(−11) 2.36(−11) 3.41(−11) 14.32

(41, 41) 6.90(−15) 11.0130 6.99(−15) 11.7197 9.67(−15) 11.7848 39.84
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TABLE XVI. The L2 errors of the FDTD method at time t = 1 with ∆t = 2.0 × 10−4. High

frequency parameter setting is used. For all three DM schemes, My = 12 and Mx = m. CPU time

in seconds is reported.

Ez Hx Hy

Scheme Mx l (Nx, Ny) Error Rate Error Rate Error Rate CPU

Q4DM 2 –
(21, 41) 2.25(−3) 8.55(−4) 7.56(−4) 15.62

(41, 81) 1.66(−4) 3.759 6.11(−5) 3.808 4.67(−5) 4.017 56.50

HDM

6 8
(21, 41) 2.10(−4) 2.25(−4) 1.97(−4) 24.18

(41, 81) 5.16(−8) 11.991 4.97(−8) 12.146 4.41(−8) 12.123 75.29

8 8
(21, 41) 2.11(−4) 2.26(−4) 1.97(−4) 31.74

(41, 81) 5.11(−8) 12.015 4.96(−8) 12.157 4.40(−8) 12.129 91.61

TPDM

6 2
(21, 41) 1.88(−4) 1.70(−4) 1.54(−4) 21.30

(41, 81) 1.02(−5) 4.197 9.45(−6) 4.167 8.64(−6) 4.163 69.63

8 2
(21, 41) 1.81(−4) 1.67(−4) 1.53(−4) 29.86

(41, 81) 9.99(−6) 4.183 9.34(−6) 4.158 8.48(−6) 4.170 87.29
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2, respectively.
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FIG. 3. Solution of the 1D model problem at t = 0 with ω ≈ 5.07218116182516. (a) Real part;

(b) imaginary part.
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FIG. 5. Solution of the quasi-1D model problem at t = 0. (a) Real part; (b) imaginary part.
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FIG. 8. The spectral radius ρS as a function of mesh size for the FDTD schemes. (a) M = 1;

(b) M = 2; (c) M = 4; (d) M = 8; (e) M = 12; (f) M = 16. For M = 1, 2, 4, 8, 12, and 16, we

have ρ∞ = 2, 2.3333, 2.5726, 2.7408, 2.8148, and 2.8588, respectively.
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(a) without the IDM (ρ∞ = 3.1335 =
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j=−8,j 6=0 |wj |); (b) with the IDM (ρ∞ ≈ 147.1205).
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FIG. 10. The spectral radius ρS as a function of mesh size for the LSTD scheme with M = 16.

(a) r = 2.1; (b) r = 2.2; (c) r = 2.3 without the IDM; (d) r = 2.3 with the IDM. Without the IDM,

the spectral radius converges to ρ∞ = π for all r values. With the IDM, ρ∞ may attain different

values. Here ρ∞ = 3.9979 and 9.2350, for r = 2.2 and r = 2.3, respectively.
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braces are involved in the first step of the HDM method, i.e., the ordinary IDM modeling.
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∑16
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FIG. 13. The spectral radius ρS as a function of mesh size for the LSTD scheme with M = 16.

(a) r = 2.3 and l = 10; (b) r = 2.4 and l = 9; (c) r = 2.5 and l = 7; (d) r = 2.6 and l = 7; (e)

r = 2.7 and l = 6; (f) r = 2.8 and l = 5. In all cases, we have ρ∞ = π.
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FIG. 14. Illustration of fictitious and original grid points used in the quasi-fourth-order DM

scheme for Ez. Along the solid line, the DM is modeled. The FPs are shown as open circles, while

the original grid points are shown as filled circles. The FPs are located at the same position as

some grid points.
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∂yHx(ξ). The stage 3 is invoked only when m > l.
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FIG. 16. The spectral radius ρS as a function of mesh size for the FDTD method with the 2D

HDM. (a) M = m = l = 2 (ρ∞ = 7
√
2/3 = 3.29983); (b) M = m = l = 4 (ρ∞ = 3.63823).
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FIG. 19. Plots of electromagnetic fields along the line y = 1/3 at time t = 0.75.
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