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Abstract. We introduce a new definition of a δ-shock wave type solution for a
class of systems of conservation laws in the one-dimensional case. The weak asymp-
totics method developed by the authors is used to construct formulas describing
the propagation and interaction of δ-shock waves. The dynamics of merging two
δ-shocks is analytically described.

1. Introduction and the main results

1. Singular solutions to systems of conservation laws. In the pa-
pers [3], [4]– [9], [28], [29] (see also [2], [27]) the weak asymptotics method for
studying the dynamics of propagation and interaction of different singularities (in-
finitely narrow δ-solitons, shocks, δ-shocks) of nonlinear equations and hyperbolic
systems of conservation laws was developed. One of the main ideas of this method
is based on the ideas of V. P. Maslov’s approach that permits deriving the Rankine–
Hugoniot conditions directly from the differential equations considered in the weak
sense [21], [24], [2] (see also G. B. Whitham [33, 2.7.,5.6.]). Maslov’s algebras of
singularities [22], [23], [2] are essentially used in the our method.

In this paper we introduce a new definition of a δ-shock wave type solution
for a class of hyperbolic systems of conservation laws. Using this definition, in
the framework of the weak asymptotics method we describe the propagation and
interaction of δ-shock waves. The subject of this paper was presented at the IXth
International Conference on Hyperbolic Problems [6]. Here we give the full version
of this work.
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Consider the system of conservation laws

(1.1)
L1[u, v] = ut +

(
F (u, v)

)
x

= 0,

L2[u, v] = vt +
(
G(u, v)

)
x

= 0,

where F (u, v) and G(u, v) are smooth functions, such that F (u, v), G(u, v) are linear
with respect to v, u = u(x, t), v = v(x, t) ∈ R, and x ∈ R. As is well known, such
a system, even in the case of smooth (and, moreover, in the case of discontinuous)
initial data (u0(x), v0(x)), can have a discontinuous shock wave type solution. In this
case, it is said that the pair of functions (u(x, t), v(x, t)) ∈ L∞

(
R× (0,∞);R2

)
is a

generalized solution of the Cauchy problem (1.1) with the initial data (u0(x), v0(x))
if the integral identities

(1.2)

∫ ∞

0

∫ (
uϕt + F (u, v)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
vϕt + G(u, v)ϕx

)
dx dt +

∫
v0(x)ϕ(x, 0) dx = 0

hold for all compactly supported test functions ϕ(x, t) ∈ D(R × [0, ∞)), where∫ · dx denotes an improper integral
∫∞
−∞ · dx.

Let us consider the Cauchy problem for system (1.1) with the initial data

(1.3) u0(x) = u0 + u1H(−x), v0(x) = v0 + v1H(−x),

where u0, u1, v0, v1 are constants and H(ξ) is the Heaviside function. It is well
known [6]– [9], [10], [11], [13], [15], [16], [18], [28], [29], [31] that in order to
solve this problem for some “nonclassical cases”, it is necessary to introduce new
elementary singularities called δ-shock waves . These are generalized solutions of the
Cauchy problem of the form

(1.4)
u(x, t) = u0 + u1H(−x + ct),
v(x, t) = v0 + v1H(−x + ct) + e(t)δ(−x + ct),

where e(0) = 0 and δ(ξ) is the Dirac delta function.
We note that at present several approaches to constructing such solutions are

known. An apparent difficulty in defining such solutions arises due to the fact that
(as follows from (1.4)), to introduce a definition of the δ-shock wave type solution,
we need to define the product of the Heaviside fucntion and the δ-function. As we
see below, it is easy to overcome this difficulty (see also 1.3). Also we need to define
in which sense the distributional solution (1.4) satisfies a nonlinear system (1.1).

In what follows, we present a short review of well-known methods used to solve
problems close to those studied in this paper.

In [15], a δ-shock wave type solution of the system

ut + (u2/2)x = 0, vt + (uv)x = 0
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(here F (u, v) = u2/2, G(u, v) = vu) with the initial data (1.3), is defined as the
weak limit of the solution (u(x, t, ε), v(x, t, ε)) of the parabolic regularization

ut + (u2/2)x = εuxx, vt + (uv)x = εvxx

with the initial data (1.3), as ε → +0.
In [13], to obtain a δ-shock wave type solution of system

(1.5) L1[u, v] = ut +
(
f(u)

)
x

= 0, L2[u, v] = vt +
(
g(u)v

)
x

= 0,

(here F (u, v) = f(u), G(u, v) = vg(u)), this system is reduced to a system of
Hamilton–Jacobi equations, and then the Lax formula is used. In [18], to construct
a δ-shocks wave type solution for the case g(u) = f ′(u), the problem of multiplica-
tion of distributions is solved by using the definition of Volpert’s averaged super-
position [32]. In [25], using the ideas of A. Volpert the nonconservative product of
singular functions is introduced. This product is used in theory of nonconservative
hyperbolic systems.

In [16], the system

(1.6) ut + (u2 − v)x = 0, vt + (
1

3
u3 − u)x = 0,

with the initial data (1.3) is studied (here F (u, v) = u2−v, G(u, v) = u3−u). In order
to construct approximate δ-shock type solution the Colombeau theory approach, as
well as the Dafermos–DiPerna regularization, and the box approximations are used.
But the notion of a singular solution of system (1.6) has not been defined .

In [26] in the framework of the Colombeau theory approach, for particular cases
of system (1.1) approximate δ-shock type solutions were constructed.

In [31] for the system

(1.7) L01[u] = ut + (u2)x = 0, L02[u, v] = vt + (uv)x = 0,

in [1], [19] for the “zero-pressure gas dynamics system”

(1.8) vt +
(
vu

)
x

= 0, (vu)t +
(
vu2

)
x

= 0,

(here v ≥ 0 is the density, u is the velocity), and in [34] for the system

(1.9) vt +
(
vf(u)

)
x

= 0, (vu)t +
(
vuf(u)

)
x

= 0,

with the initial data (1.3), the δ-shock wave type solutions are defined as a measure-
valued solutions (see also [30]).

Let BM(R) be the space of bounded Borel measures. A pair (u, v), where
u(x, t) ∈ L∞

(
[0, ∞), L∞(R)

)
, v(x, t) ∈ C

(
[0,∞), BM(R)

)
, is said to be a measure-

valued solution of the Cauchy problem (1.9), (1.3) if the integral identities

(1.10)

∫ ∞

0

∫ (
ϕt + f(u)ϕx

)
v(dx, t) = 0,

∫ ∞

0

∫
u
(
ϕt + f(u)ϕx

)
v(dx, t) = 0,

hold for all ϕ(x, t) ∈ D(R× [0, ∞)).
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Within the framework of this definition in [31], [1], and [34] for systems (1.7),
(1.8), and (1.9), respectively, the following formulas for δ-shock waves were derived

(1.11) (u(x, t), v(x, t)) =





(
u−, v−

)
, x < φ(t),(

uδ, w(t)δ(x− φ(t))
)
, x = φ(t),(

u+, v+
)
, x > φ(t).

Here u−, u+ and uδ are the velocities before the discontinuity, after the discontinuity,
and at the point of discontinuity, respectively, and φ(t) = σδt is the equation for the
discontinuity line.

In [10], the global δ-shock wave type solution was obtained for system (1.8).
In [14], the interaction of (two )δ-shocks for system (1.9) is considered.
In the framework of the weak asymptotics method , in [8], the propagation of

δ-shock waves was described for systems (1.5), (1.8), (1.6). In [6], [7], [9] a short
review of our results on the propagation and interaction of δ-shock waves for system
(1.5) was presented. In [28], [29] in the framework of the weak asymptotics method
the δ-shock wave type solution of the system

ut +
(
f(u)− v

)
x

= 0, vt +
(
g(u)

)
x

= 0,

was constructed, where f(u) and g(u) are polynomials of degree n and n + 1, re-
spectively, n is even. System (1.6) is a particular case of the last system. In the
papers [7], [8] a new definition of a δ-shock wave type solution for systems (1.1),
(1.8) was introduced. This definition is close to the standard definition of the shock
type solutions (1.2) and relevant to the notion of δ-shocks.

The study of system (1.1), (1.9), which admit δ-shock wave type solutions is
very important in applications, because systems of this type often arise in modeling
physical processes in gas dynamics, magnetohydrodynamics, filtration theory, and
cosmogony [17], [12], [10], [35].

In the present paper we apply the weak asymptotics method for studying the
dynamics of propagation and interaction of δ-shock waves for system (1.5), i.e., we
solve the Cauchy problem (1.5) with the initial data of the form

(1.12)
u0(x) = u0

0(x) +
∑2

k=1 u0
k(x)H(−x + x0

k),

v0(x) = v0
0(x) +

∑2
k=1

(
v0

k(x)H(−x + x0
k) + e0

kδ(−x + x0
k)

)
,

where u0
0(x), u0

k(x), v0
0(x), and v0

k(x) are smooth functions, u0
k(x

0
k) > 0, e0

k are
constants, k = 1, 2, and x0

1 < x0
2. If we study only the dynamics of propagation of

δ-shock waves, then we set u0
2(x) = v0

2(x) = e0
2 = 0, e0

1 = e0, and x0
1 = 0 in (1.12)

and solve the Cauchy problem for system (1.5) with the initial data

(1.13)
u0(x) = u0

0(x) + u0
1(x)H(−x),

v0(x) = v0
0(x) + v0

1(x)H(−x) + e0δ(−x),

where u0
1(0) > 0. The initial data (1.12), (1.13) can contain δ-function. But, as a

rule, in the well-known papers on δ-shocks, the initial data without δ-function are
considered.
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2. δ-Shock wave type solutions. In what follows, we introduce a definition
of a generalized solution [7], [8] for systems (1.1).

Suppose that Γ = {γi : i ∈ I} is a connected graph in the upper half-plane
{(x, t) : x ∈ R, t ∈ [0,∞)} ∈ R2 containing smooth arcs γi, i ∈ I, and I is a finite
set. By I0 we denote a subset of I such that an arc γk for k ∈ I0 starting from the
points of the x-axis; Γ0 = {x0

k : k ∈ I0} is the set of initial points of arcs γk, k ∈ I0.
Consider the initial data (u0(x), v0(x)), where v0(x) has the following form

v0(x) = V 0(x) + E0δ(Γ0),

E0δ(Γ0) =
∑

k∈I0
e0

kδ(x− x0
k), u0, V 0 ∈ L∞

(
R;R

)
, e0

k are constants, k ∈ I0.

Definition 1.1. A pair of distributions (u(x, t), v(x, t)) and graph Γ, where
v(x, t) is represented in form of the sum

v(x, t) = V (x, t) + E(x, t)δ(Γ),

u, V ∈ L∞
(
R× (0, ∞);R

)
, E(x, t)δ(Γ) =

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈ C(Γ), i ∈ I,

is called a generalized δ-shock wave type solution of system (1.1) with the initial
data (u0(x), v0(x)) if the integral identities

(1.14)

∫ ∞

0

∫ (
uϕt + F (u, V )ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
V ϕt + G(u, V )ϕx

)
dx dt

+
∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R × [0, ∞)), where ∂ϕ(x,t)
∂l

is the tangential
derivative on the graph Γ,

∫
γi
· dl is a line integral over the arc γi.

For instance, the graph Γ containing only one arc {(x, t) : x = ct}, φ(0) = 0
corresponds to solution (1.4).

Remark 1.1. The system of integral identities (1.14) generalizes the usual sys-
tem of integral identities (1.2) which is the definition of a shock wave type solution.
The integral identities (1.14) for δ-shocks differ from integral identities (1.2) by an
additional term

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

in the second identity. This term reflects the fact that the Rankine–Hugoniot con-
ditions for δ-shocks are defined by the pair of equations (fifth and sixth equations
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of (2.10)):

φ̇(t) =
[f(u)]

[u]

∣∣∣
x=φ(t)

, ė(t) =
(
[vg(u)]− [v]

[f(u)]

[u]

)∣∣∣
x=φ(t)

,

where the first equation is the standard Rankine–Hugoniot condition, ˙ = d
dt

. More-
over, the second relation appears due to the so-called Rankine–Hugoniot deficit, i.e.,
the right-hand side of the second equation of the last system.

According to Definition 1.1 a generalized δ-shock wave type solution is a pair
of distributions (u(x, t), v(x, t)) unlike the Definition of measure-solutions given
in [1], [31], [34], where v(dx, t) is a measure and u(x, t) is understood as a measurable
function with respect to v(dx, t).

Now we introduce the notion of a weak asymptotic solution, which is one of the
most important in the weak asymptotics method .

We shall write f(x, t, ε) = OD′(εα), if f(x, t, ε) ∈ D′(R) is a distribution such
that for any test function ψ(x) ∈ D(Rx) we have

〈f(x, t, ε), ψ(x)〉 = O(εα),

where O(εα) denotes a function continuous in t that admits the usual estimate
|O(εα)| ≤ constεα uniform in t. Relations of the form oD′(1) are understood in the
same way.

Definition 1.2. A pair of functions (u(x, t, ε), v(x, t, ε)) smooth as ε > 0 is
called a weak asymptotic solution of system (1.1) with the initial data (u0(x), v0(x))
if ∫

L1[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),
∫
L2[u(x, t, ε), v(x, t, ε)]ψ(x) dx = o(1),

∫ (
u(x, 0, ε)− u0(x)

)
ψ(x) dx = o(1),

∫ (
v(x, 0, ε)− v0(x)

)
ψ(x) dx = o(1), ε → +0,

for all ψ(x) ∈ D(R). The last relations can be rewritten as

(1.15)

L1[u(x, t, ε), v(x, t, ε)] = oD′(1),
L2[u(x, t, ε), v(x, t, ε)] = oD′(1),

u(x, 0, ε) = u0(x) + oD′(1),
v(x, 0, ε) = v0(x) + oD′(1),

where the first two estimates are uniform in t.

Within the framework of the weak asymptotics method , we find the generalized
solution (u(x, t), v(x, t)) of the Cauchy problem (1.5), (1.12) as the weak limit (in
the sense of the space of distributions D′(R2)) Within the framework of the weak
asymptotics method , we find the generalized solution (u(x, t), v(x, t)) of the Cauchy
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problem (1.5), (1.12) in the sense of Definition 1.1 as the weak limit (in the sense of
the space of distributions D′(R2))

(1.16) u(x, t) = lim
ε→+0

u(x, t, ε), v(x, t) = lim
ε→+0

v(x, t, ε),

of the weak asymptotic solution of this problem.
3. The scheme of the method. Now for the case of δ-shocks we will describe

the typical technique of our approach without paying attention to the algebraic
aspects given in detail in [2], [3], [27].

a. To study the propagation of a solitary δ-shock wave, related to the hyperbolic
system of conservation laws (for example, (1.5), we must solve the Cauchy problem
(1.5), (1.13). To study the interaction of (two) δ-shocks, we solve the the Cauchy
problem (1.5), (1.12).

According to our method, we will seek a δ-shock wave type solution of the Cauchy
problem (1.5), (1.13) in the form of the singular ansatz

(1.17)
u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where uk(x, t), vk(x, t), k = 0, 1, e(t), φ(t) are the desired functions.
We seek a δ-shock wave type solution of the Cauchy problem (1.5), (1.12) in the

form of the singular ansatz

(1.18)
u(x, t) = u0(x, t) +

∑2
k=1 uk(x, t)H(−x + φk(t)),

v(x, t) = v0 +
∑2

k=1

(
vk(x, t)H(−x + φk(t)) + ek(t)δ(−x + φk(t))

)
,

which corresponds to the structure of the initial data (1.12). Here u0(x, t), uk(x, t),
v0(x, t), vk(x, t), ek(t), φk(t) are the desired functions, k = 1, 2.

b. In the framework of our approach, we construct a weak asymptotic solution
in the form of the smooth ansatz :

u(x, t, ε) = ũ(x, t, ε) + Ru(x, t, ε),
v(x, t, ε) = ṽ(x, t, ε) + Rv(x, t, ε),

where a pair of functions
(
ũ(x, t, ε), ṽ(x, t, ε)

)
is a regularization of the singular

ansatz (1.17) or (1.18) with respect to singularities H(x), δ(x) and with respect to
phases amplitudes of δ-functions φk(t), e2(t), k = 1, 2. Here the so-called corrections
Ru(x, t, ε), Rv(x, t, ε) are desired functions which must admit the estimates:

(1.19) Rj(x, t, ε) = oD′(1),
∂Rj(x, t, ε)

∂t
= oD′(1), ε → +0.

j = u, v.
In order to construct a regularization f(x, ε) of the distribution f(x) ∈ D′(R)

we use the representation

(1.20) f(x, ε) = f(x) ∗ 1

ε
ω

(
x

ε

)
, ε > 0,



8 V. G. DANILOV AND V. M. SHELKOVICH

where ∗ is a convolution, and a mollifier ω(η) has the following properties: (a)
ω(η) ∈ C∞(R), (b) ω(η) has a compact support or decreases sufficiently rapidly, as
|η| → ∞, (c)

∫
ω(η) dη = 1, (d) ω(η) ≥ 0, (e) ω(−η) = ω(η). It is known that

lim
ε→+0

〈f(x, ε), ϕ(x)〉 = 〈f(x), ϕ(x)〉 for all ϕ(x) ∈ D(R).

Thus, we will seek a weak asymptotic solution of the Cauchy problem (1.5), (1.12)
in the following form:

(1.21)

u(x, t, ε) = u0(x, t) +
∑2

k=1 uk(x, t)Huk

(− x + φk(t, ε), ε
)

+ Ru(x, t, ε),

v(x, t, ε) = v0(x, t) +
∑2

k=1

(
vk(x, t)Hvk

(− x + φk(t, ε), ε
)

+ek(t, ε)δvk

(− x + φk(t, ε), ε
))

+ Rv(x, t, ε).

Here, according to the formula (1.20)

(1.22) δvk(ξ, ε) =
1

ε
ωδk

(ξ

ε

)

are regularizations of the δ-function, and

(1.23) Hjk(ξ, ε) = ω0jk

(ξ

ε

)
=

∫ x
ε

−∞
ωjk(η) dη

are regularizations of the Heaviside function H(ξ), where ω0jk(z) ∈ C∞(R), and
limz→+∞ ω0jk(z) = 1, limz→−∞ ω0jk(z) = 0, j = u, v, k = 1, 2; φk(t, ε), ek(t, ε) are
desired functions such that

φk(t) = lim
ε→+0

φk(t, ε), ek(t) = lim
ε→+0

ek(t, ε), k = 1, 2.

We construct a weak asymptotic solution of the Cauchy problem (1.5), (1.13) in
the form (1.21) and set u2(x, t) = v2(x, t) = e2(t, ε) = 0, φ1(t, ε) ≡ φ(t), e1(t, ε) ≡
e(t). Hence, we will seek a weak asymptotic solution of the Cauchy problem (1.5),
(1.12) in the form

(1.24)
u(x, t, ε) = u0(x, t) + u1(x, t)Hu1(−x + φ(t), ε) + Ru(x, t, ε),
v(x, t, ε) = v0(x, t) + v1(x, t)Hv1

(− x + φ(t), ε
)

+e(t)δv1

(− x + φ(t), ε
)

+ Rv(x, t, ε).

The next step is to substitute the smooth ansatz (1.24) or (1.21) into the quasi-
linear system L[u, v] = 0 and to calculate the weak asymptotics of the left-hand
side of L[u(x, t, ε), v(x, t, ε)] (in the sense of the space of distributions D′(Rx)) up
to oD′(1), as ε → +0. We stress that in the framework of the weak asymptotics
method, the discrepancy is assumed to be small in the sense of the space of func-
tionals D′

x over test functions depending only on the “space” variable x. As we shall
see below, this trivial trick allows us to reduce the problem of describing interaction
of nonlinear waves to solving some system of ordinary differential equations (instead
of solving partial differential equations).



PROPAGATION AND INTERACTION OF DELTA-SHOCKS 9

In the construction of the weak asymptotics from L[u(x, t, ε), v(x, t, ε)], the key
role is played by the construction of the weak asymptotics from superposition
f
(
u(x, t, ε), v(x, t, ε)

)
, where f(u, v) is a smooth function (for details, see Sec. 4).

The weak asymptotics of L[u(x, t, ε), v(x, t, ε)] can be represented as linear combina-
tions of the singularities H(−x+φk(t)), δ(−x+φk(t)), δ′(−x+φk(t)), k = 1, 2 with
smooth coefficients. That is why we can “separate” singularities and find a system
of equations (in particular, the Rankine–Hugoniot conditions), which describes the
dynamics of singularities and defines the desired functions u0(x, t), uk(x, t), v0(x, t),
vk(x, t), ek(t, ε), φk(t, ε), k = 1, 2, and Ru(x, t, ε), Rv(x, t, ε). Thus, a weak asymp-
totic solution is constructed.

Since the generalized δ-shock wave type solution (1.18) is defined as a weak limit
of (1.16), in view of the estimates (1.19), the corrections do not make a contribution
to the generalized solution of the problem. However, these terms make a contribution
to the weak asymptotics of the superposition f

(
u(x, t, ε), v(x, t, ε)

)
(see (2.7) and

(3.33) below) and hence plays an essential role in the construction of the generalized
solution of the problem. Without introducing these terms, we cannot solve the
Cauchy problem with arbitrary initial data (see Remark 2.2 below).

Note, that choosing the corrections is an essential part of the “right” construction
of the weak asymptotic solution.

c. To describe the dynamics of interaction, we shall seek the phases of nonlinear

waves φk(t, ε) = φ̂k(τ, t) as functions of the “fast” variable τ = ψ0(t)/ε and the
“slow” variable t, where φk0(t) is the distance between the (solitary) wave fronts

before the instant of interaction. Next, we obtain systems of equations for φ̂k(τ, t)
and the differential equation with the boundary condition:

(1.25)
dρ

dτ
= F(ρ, t),

ρ(τ, t)

τ

∣∣∣
τ→+∞

= 1,

where ρ = ψ(t, ε)/ε, ψ(t, ε) = φ2(t, ε)−φ1(t, ε). Here the boundary condition shows
that, before the interaction, the singularities propagate independently.

Finding the solution of the boundary value problem (1.25) and finding the limit

values ρ(τ)
∣∣
τ→−∞ and φk(t) = limτ→−∞ φ̂k(τ, t), we can describe the dynamics of

propagation and interaction of nonlinear waves and thus define the “result” of the
interaction.

d. Constructing the weak asymptotic solution of the Cauchy problem and mul-
tiplying the first two relations (1.15) by a test function ϕ(x, t) ∈ D(R × [0, ∞)),
integrating these relations by parts and then passing to the limit as ε → +0, we ob-
tain that the pair of distributions (1.16) satisfy integral identities (1.14). Thus, we
will prove that the limits of weak asymptotic solutions satisfy system (1.5), i.e. ‘the
pair of distributions (1.16) is a δ-shock wave type solution of the Cauchy problem
(1.5), (1.12).
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Remark 1.2. To study the interaction of (two) shock waves for the scalar conser-
vation law ut + (f(u))x = 0, we will seek a weak asymptotic solution of the problem
in the form of the first relation (1.21), where we set Ru(x, t, ε) = 0 [4], [5].

To study the interaction of (two) infinitely narrow δ-solitons for the Korteweg-de
Vries equation vt + (v2)x + ε2vxxx = 0, we will seek a weak asymptotic solution of
the problem in the form of the second relation (1.21), where we set Rv(x, t, ε) = 0
and replace Hvk(ξ, ε) by εHvk(ξ, ε), and δvk(ξ, ε) by εδvk(ξ, ε), k = 1, 2 [3].

4. Example. We illustrate our approach by way of example of the specific case
given by system (1.7). We solve the Cauchy problem (1.7), (1.3), i.e., we construct
a solitary δ-shock wave type solution.

A. We seek a weak asymptotic solution of the Cauchy problem (1.7), (1.3) in the
form

(1.26)
u(x, t, ε) = u0 + u1Hu1(−x + φ(t), ε) + QΩ

(−x+φ(t)
ε

)
,

v(x, t, ε) = v0 + v1Hv1

(− x + φ(t), ε
)

+ e(t)δv1

(− x + φ(t), ε
)
,

where uk, vk are constants, k = 0, 1. We choose corrections in the form Ru(x, t, ε) =

QΩ
(−x+φ(t)

ε

)
, Rv(x, t, ε) = 0, where ε−1Ω

(
ξ/ε

)
is regularization (1.22) of the δ-

function, Q is a constant. It is clear that∫
Ω

(x

ε

)
ψ(x) dx = εψ(0)

∫
Ω(ξ) dξ + O(ε2), ε → +0,

for all ψ(x) ∈ D(R), i.e., estimates (1.19) hold.
We note that in the pointwise limit we have

(1.27) lim
ε→+0

QΩ
(−x + φ(t)

ε

)
=

{
QΩ(0), x = φ(t),

0, x 6= φ(t).

Hence the correction Ru(x, t, ε) is a regularization of the characteristic function of
the point , and if QΩ(0) = uδ, then, in the pointwise limit, our regularization u(x, t, ε)
converges to the expression obtained in [31] for the component u(x, t) in solution
(1.11). For our purposes, this similarity is not necessary. Moreover, in what fol-
lows, we shall construct another weak asymptotic solution, which does not possess
this property, but satisfies the integral identities (1.14) in the limit. This weak as-
ymptotic solution turns out to be more preferable for describing the δ-shock wave
interaction studied in Section 3.

So we show how the weak asymptotic solution is constructed in our example.
We can show that (see [3], [5], [6] and Section 4), with accuracy OD′(ε) as

ε → +0, we have

(1.28)
(
u(x, t, ε)

)2
= u2

0 +
(
u2

1 + 2u0u1

)
H(−x + φ(t)) + OD′(ε), ε → +0,

u(x, t, ε)v(x, t, ε) = u0v0 +
(
u0v1 + u1v0 + u1v1

)
H(−x + φ(t))

(1.29) +
(
u0 + au1 + bQ

)
e(t)δ(−x + φ(t)) + OD′(ε), ε → +0,
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where a =
∫

ω0u1(ξ)ωδ1(ξ) dξ and b =
∫

Ω(ξ)ωδ1(ξ) dξ.
Substituting regularization (1.26) and relations (1.28), (1.29) into the left-hand

side of system (1.7), we see that

(1.30) L01[u(x, t, ε)] = OD′(ε), L02[u(x, t, ε), v(x, t, ε)] = OD′(ε)

if and only if

(
u1φ̇(t)− (2u0u1 + u2

1)
)
δ(−x + φ(t)) = 0,(

v1φ̇(t) + ė(t)− (u0v1 + u1v0 + u1v1)
)
δ(−x + φ(t))

+
(
φ̇(t)− (u0 + au1 + bQ)

)
e(t)δ′(−x + φ(t)) = 0.

where ˙= d
dt

. Hence we find the functions

(1.31)
φ(t) = [u2]

[u]
t = (2u0 + u1)t,

e(t) =
(
[uv]− [u2]

[u]
[v]

)
t =

(
u1v0 − u0v1

)
t,

and the relation

(1.32) Q =
u0 + (1− a)u1

b
,

which determines the constant Q, where [·] are jumps of the corresponding functions
on the discontinuity curve x = φ(t). Thus, the weak asymptotic solution of the
Cauchy problem (1.7), (1.3) is constructed.

Defining the generalized solution of our problem (1.7), (1.3) as the weak limit of

regularizations (1.16), we obtain (1.4), where c = φ̇(t), φ(t) and e(t) are determined
by system (1.31).

Relations (1.31) are the same as in [31].
We show that the weak limit (1.4) of the weak asymptotic solution (1.26) satisfies

the integral identities (1.14). The integral identities (1.14) are derived in the same
way as it is proved in [5] that the weak limit of the weak asymptotic solution satisfies
the integral identity. Since u(x, t, ε) and v(x, t, ε) are smooth functions as ε > 0,
applying the left- and right-hand sides of relations (1.30) to ϕ(x, t) ∈ D(R× [0, ∞))
and integrating by parts the expression obtained in the left-hand side, we obtain
relations (2.11), (2.12), where f(u(x, t, ε)) = u2(x, t, ε), g(u(x, t, ε)) = u(x, t, ε),
T = ∞. Next, passing to the limit in the last relations, as ε → +0, and taking into
account relations (1.26), (1.28), (1.29), and (2.13), (2.14), we obtain the following
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integral identities (1.14):

(1.33)

∫ ∞

0

∫ ∞

−∞

(
u(x, t)ϕt + u2(x, t)ϕx

)
dx dt +

∫ ∞

−∞
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ ∞

−∞

(
V (x, t)ϕt + u(x, t)V (x, t)ϕx

)
dx dt

+

∫ ∞

0

e(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt

+

∫ ∞

−∞
V 0(x)ϕ(x, 0) dx + e0ϕ(0, 0) = 0,

for all test functions ϕ(x, t) ∈ D(R× [0, ∞)). Here, according to our notation,

v(x, t) = V (x, t) + e(t)δ(−x + φ(t)), V (x, t) = v0 + v1H(−x + φ(t)).

We also use the Rankine–Hugoniot condition (1.31) to derive (1.33).
B. Now we will construct the solution of the Cauchy problem (1.7), (1.3), using

the weak asymptotic solution of a different structure. Namely, we will seek the weak
asymptotic solution in the form

(1.34)

u(x, t, ε) = u0 + u1Hu1(−x + φ(t), ε),
v(x, t, ε) = v0 + v1Hv1

(− x + φ(t), ε
)

+e(t)δv1

(− x + φ(t), ε
)

+ R(t)1
ε
Ω′′

(
−x+φ(t)

ε

)
.

We choose corrections in the form Ru(x, t, ε) = 0, Rv(x, t, ε) = R(t)1
ε
Ω′′

(
−x+φ(t)

ε

)
,

where ε−3Ω′′
(
ξ/ε

)
is a regularization of the distribution δ′′(ξ). Since, for all ψ(x) ∈

D(R), we have
∫

1

ε
Ω′′

(x

ε

)
ϕ(x) dx = ε2ϕ′′(0)

∫
Ω(ξ) dξ + O(ε3), ε → +0,

it is clear that estimates (1.19) hold. We note that here, in the pointwise limit, as
ε → +0, the component u(x, t) does not contain the characteristic function of the
curve x = φ(t)

As above, substituting (1.34) into the left-hand side of system (1.7), we see that
(1.30) holds if and only if

(
u1φ̇(t)− (2u0u1 + u2

1)
)
δ(−x + φ(t)) = 0,(

v1φ̇(t) + ė(t)− (u0v1 + u1v0 + u1v1)
)
δ(−x + φ(t))

+
(
e(t)

(
φ̇(t)− (u0 + au1)

)− cR(t))
)
δ′(−x + φ(t)) = 0,

where the constant a =
∫

ω0u1(ξ)ωδ1(ξ) dξ is the same as in (1.29), and the constant
c =

∫
ω0u1(ξ)Ω

′′(ξ) dξ. This allows us to find the functions φ(t) and e(t), which, as
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before, are determined by relations (1.31), and to find the relation

(1.35) R(t) =
e(t)

c

(
u0 + (1− a)u1

)
,

which determines the function R(t). Obviously, the weak limit of the weak asymp-
totic solution (1.34) is the same, i.e., it is (1.4). As in the preceding case, it is easy
to show that the weak limit (1.4) satisfies the integral identities (1.14).

In this paper we shall use the correction of the second kind (see (2.1) and (3.1)),
because, from the analytic viewpoint, this simplifies describing the interaction of
δ-shocks.

5. Main results. The eigenvalues of the characteristic matrix of system (1.5)
are λ1(u) = f ′(u), λ2(u) = g(u). We assume that

(1.36) f ′′(u) > 0, g′(u) > 0, f ′(u) ≤ g(u),

and that the “overcompression” conditions are satisfied

(1.37) λ1(u+) ≤ λ2(u+) ≤ φ̇(t) ≤ λ1(u−) ≤ λ2(u−),

where φ̇(t) is the speed of propagation of δ-shocks, and u− and u+ are respective
left- and right-hand values of u on the discontinuity curve. Condition (1.37) serves
as the admissibility condition for the δ-shocks and means that all characteristics on
both sides of the discontinuity are in-coming.

In Subsection 1.2 we have defined a generalized solution of the δ-shock wave
type for the Cauchy problem. In Subsection 1.3 we present the technique of the
weak asymptotics method in the case of δ-shock waves, i.e., we construct the sin-
gular ansatz and the smooth ansatz, which are used to solve the Cauchy problems
(1.5), (1.13) and (1.5), (1.12). In Subsection 4.1, we prove the main lemmas about
the asymptotic expansions, which can be used for constructing the weak asymp-
totic solution. In Subsection 4.2, we prove a lemma from the theory of ordinary
autonomous differential equations, which will be used for analyzing the process of
interaction of δ-shock waves.

In Section 2, Theorem 2.1, we construct a weak asymptotic solution of the
Cauchy problem (1.5), (1.13) in the form of a solitary δ-shock wave. Theorem 2.2
gives a generalized solution of our problem. We show that our solution satisfying the
integral identity (1.14) coincides with the similar expression [31, (3.5)] (see [34])
treated as an element of the space D′(R2) (see also above). Corollary 2.1 gives the
same results in the case of piesewise constant initial data.

In Section 3, in Theorem 3.1, we construct a weak asymptotic solution of the
Cauchy problem (1.5), (1.12) with pointwise constant initial values. Next, in Corol-
lary 3.1 and Theorem 3.2 we construct a generalized solution of this Cauchy problem,
which describes the dynamics of propagation and interaction of two δ-shock waves.
The formulas (3.43) describing the propagation and interaction of two δ-shock waves

are constructed. Here the velocities φ̇k(t) and the Rankine–Hugoniot deficit ėk(t)
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of δ-shocks have the jumps (3.45). Systems (3.24)–(3.26) with the boundary condi-
tions (3.9), (3.10)), obtained in the proof of Theorem 3.1, up to OD′(ε), describe the
process of merging two δ-shock waves into one.

Remark 1.3. In the framework of the weak asymptotics method by relations
(4.1), (2.7) and (4.2), (3.33), in fact, we define the singular superposition of the
Heaviside function and the delta function. In the background of these relations
there is the construction of multiplication of distributions. We can introduce the
“right” singular superpositions by the following definition:

1) If
(
u(x, t), v(x, t)

)
are given by (2.8), using (4.1), (2.7), we obtain

f
(
u(x, t)

) def
= lim

ε→+0
f
(
u(x, t, ε)

)
= f(u0) +

[
f(u)

]∣∣∣
x=φ(t)

H(−x + φ(t)),

v(x, t)g
(
u(x, t)

) def
= lim

ε→+0
v(x, t, ε)g

(
u(x, t, ε)

)
= v0g(u0)

+
[
vg(u)

]∣∣∣
x=φ(t)

H(−x + φ(t)) + e(t)
[f(u)]

[u]

∣∣∣
x=φ(t)

δ(−x + φ(t)).

2) If
(
u(x, t), v(x, t)

)
are given by (3.42), using (4.2), (3.33), and the limit prop-

erties of interaction switches Bk((−1)k−1ρ), B̃2((−1)k−1ρ), k = 1, 2 given by (4.4),
(4.10), we obtain

f
(
u(x, t)

) def
= lim

ε→+0
f
(
u(x, t, ε)

)

= f(u0) +
[
f(u)

]
1
H(−x + φ1(t)) +

[
f(u)

]
2
H(−x + φ2(t)),

v(x, t)g
(
u(x, t)

) def
= lim

ε→+0
v(x, t, ε)g

(
u(x, t, ε)

)
= g(u0)v0

+
[
vg(u)

]
1
H(−x + φ1(t)) +

[
vg(u)

]
2
H(−x + φ2(t))

+e1(t)
[f(u)]1

[u]1
δ(−x + φ1(t)) + e2(t)

[f(u)]2
[u]2

δ(−x + φ2(t)),

where φk(t) and ek(t) are given by (3.43). The jumps [h(u, v)]1, [h(u, v)]2 in function
h(u, v) are defined in Subsection 3.1. Here the limits are understood in the weak
sense.

It is clear that, in general, the weak limits of f
(
u(x, t, ε)

)
and v(x, t, ε)g

(
u(x, t, ε)

)
depend on the regularization of the Heaviside function and delta function. But the
above unique “right” singular superpositions can be obtained only by the construc-
tion of a weak asymptotic solution. In this paper we omit the algebraic aspects of
our technique which is given in detail in [2], [3], [27].

By substituting “right” singular superpositions of f
(
u(x, t)

)
and v(x, t)g

(
u(x, t)

)
into system (1.5), Theorems 2.2, 3.2 can be proved directly .
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2. Propagation of delta shocks

1. Let us consider the propagation of a solitary δ-shock wave of the system (1.5),
i.e. we consider the Cauchy problem (1.5), (1.13).

In order to construct the weak asymptotic solution (1.24) of the problem we
choose corrections in the form

(2.1)
Ru(x, t, ε) = 0,

Rv(x, t, ε) = R(t)1
ε
Ω′′

(
−x+φ(t)

ε

)
,

where R(t) is a continuous function, ε−3Ω′′(x/ε
)

is a regularization of the distribu-
tion δ′′(x), Ω(η) has the properties (a)–(c) (see Sec. 1). Since for any test function
ψ(x) ∈ D(Rx) we have

(2.2)

∫
1

ε
Ω′′

(x

ε

)
ψ(x) dx = ε2ψ′′(0)

∫
Ω(ξ) dξ + O(ε3),

∫
∂

∂x

(
1

ε
Ω′′

(x

ε

))
ψ(x) dx = −ε2ψ′′′(0)

∫
Ω(ξ) dξ + O(ε3),

relations (1.19) hold.

Theorem 2.1. Let conditions (1.36) be satisfied. Then there exists T > 0 such
that, for t ∈ [0, T ), the Cauchy problem (1.5), (1.13) has a weak asymptotic solution
(1.24), (2.1) if and only if

(2.3)

L1[u0] = 0, x > φ(t),
L1[u0 + u1] = 0, x < φ(t),

L2[u0, v0] = 0, x > φ(t),
L2[u0 + u1, v0 + v1] = 0, x < φ(t),

φ̇(t) = [f(u)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[vg(u)]− [v] [f(u)]

[u]

)∣∣∣
x=φ(t)

,

R(t) = e(t)
c(t)

(
[f(u)]

[u]

∣∣∣
x=φ(t)

− a(t)

)
,

where
[
h(u(x, t), v(x, t))

]∣∣∣
x=φ(t)

=
(
h(u0(x, t) + u1(x, t), v0(x, t) + v1(x, t))− h(u0(x, t), v0(x, t))

)∣∣∣
x=φ(t)

is a jump in function h(u(x, t), v(x, t)) across the discontinuity curve x = φ(t),

(2.4)
a(t) =

∫
g
(
u0(φ(t), t) + u1(φ(t), t)ω0u1(η)

)
ωδ1(η) dη,

c(t) =
∫

g
(
u0(φ(t), t) + u1(φ(t), t)ω0u1(η)

)
Ω′′(η) dη 6= 0.
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The initial data for system (2.3) are defined from (1.13), and

φ(0) = 0, R(0) =
e0

c(0)

(
[f(u0)]

[u0]

∣∣∣
x=0

− a(0)

)
.

Proof. Let us substitute (1.24), (2.1), and asymptotics g(u(x, t, ε))v(x, t, ε)
and f(u(x, t, ε)) given by formula (4.6) from Lemma 4.3 and formula (4.1) from
Lemma 4.1, respectively, into system (1.5). Obviously, we obtain up to OD′(ε) the
following relations

L1[u(x, t, ε)] = L1[u0]

+
{∂u1

∂t
+

∂

∂x

(
f(u0 + u1)− f(u0)

)}
H(−x + φ(t))

(2.5) +
{

u1φ̇(t)−
(
f(u0 + u1)− f(u0)

)}
δ(−x + φ(t)) + OD′(ε),

L2[u(x, t, ε), v(x, t, ε)] = L2[u0, v0]

+
{∂v1

∂t
+

∂

∂x

((
v0 + v1

)
g(u0 + u1)− v0g(u0)

)}
H(−x + φ(t))

+
{

v1φ̇(t) + ė(t)−
((

v0 + v1

)
g(u0 + u1)− v0g(u0)

)}
δ(−x + φ(t))

(2.6) +
{

e(t)φ̇(t)− e(t)a(t)− c(t)R(t)
}

δ′(−x + φ(t)) + OD′(ε),

where a(t), c(t) 6= 0 are defined by formula (2.4) which follows from (4.7). Here we
take into account the estimates (2.2), (1.19).

Setting the right-hand side of (2.5), (2.6) equal to zero, we obtain the necessary
and sufficient conditions for the equalities

L1[u(x, t, ε)] = OD′(ε), L2[u(x, t, ε), v(x, t, ε)] = OD′(ε),

i.e. system (2.3).
Now we consider the Cauchy problem

L11[u] = ut +
(
f(u)

)
x

= 0, u(x, 0) = u0(x).

Since, according to (1.36), f(u) is convex and u0
1(0) > 0, according to the results [20,

Ch.4.2.], we extend u0
+(x) = u0

0(x) (u0
−(x) = u0

0(x) + u0
1(x)) to x ≤ 0 (x ≥ 0) in a

bounded C1 fashion and continue to denote the extended functions by u0
±(x). By

u±(x, t) we denote the C1 solutions of the problems

L11[u] = ut +
(
f(u)

)
x

= 0, u±(x, 0) = u0
±(x)

which exist for small enough time interval [0, T1] and are determined by integration
along characteristics. The functions u±(x, t) determine a two-sheeted covering of
the plane (x, t). Next, we define the function x = φ(t) as a solution of the problem

φ̇(t) =
f
(
u+(x, t)

)− f
(
u−(x, t)

)

u+(x, t)− u−(x, t)

∣∣∣
x=φ(t)

, φ(0) = 0.
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It is clear that there exists a unique function φ(t) for sufficiently short times [0, T2].
To this end, for T = min(T1, T2) we define the shock solution by

u(x, t) =

{
u+(x, t), x > φ(t),
u−(x, t), x < φ(t).

Thus the first, second and fifth equations of system (2.3) define a unique solution of
the Cauchy problem L11[u] = ut +

(
f(u)

)
x

= 0, u(x, 0) = u0(x) for t ∈ [0, T ).
Solving this problem, we obtain u(x, t), φ(t). Then substituting these functions

into system (2.3), we obtain V (x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)), e(t), and
v(x, t) = V (x, t) + e(t)δ(−x + φ(t)).

It is clear that mollifiers ω0u1(ξ), Ω(ξ) can be chosen such that
∫

ωu1(η)Ω′(η) dη >
0. Consequently, taking into account that g′(u) > 0, u0

1(x) > 0 and integrating by
parts, we obtain

c(t) = −
∫

g′
(
u0 + u1ω0u1(η)

)
u1

∣∣∣
x=φ(t)

ωu1(η)Ω′(η) dη 6= 0.

So for any functions u0(x, t), u1(x, t), e(t), φ(t), t ∈ [0, T ), there exists a function
R(t), which is defined by the last relation of (2.3). ¤

Remark 2.1. By substituting the last relation (2.3), which determines R(t),
into the formula (4.6), we obtain

v(x, t, ε)g
(
u(x, t, ε)

)
= v0g(u0) +

[
vg(u)

]∣∣∣
x=φ(t)

H(−x + φ(t))

(2.7) +e(t)
[f(u)]

[u]

∣∣∣
x=φ(t)

δ(−x + φ(t)) + OD′(ε), ε → +0,

2. We obtain a generalized solution of the Cauchy problem (1.5), (1.13) as a
weak limit (1.16) of a weak asymptotic solution constructed by Theorem 2.1.

Theorem 2.2. Assume that conditions (1.36) are satisfied. Then, for t ∈ [0, T ),
where T > 0 is given by Theorem 2.1, the Cauchy problem (1.5), (1.13), has a unique
generalized solution

(2.8)
u(x, t) = u0(x, t) + u1(x, t)H(−x + φ(t)),
v(x, t) = v0(x, t) + v1(x, t)H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities cf. (1.14):

(2.9)

∫ T

0

∫ (
uϕt + f(u)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ T

0

∫ (
ϕt + g(u)ϕx

)
V dx dt +

∫
V 0(x)ϕ(x, 0) dx

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl + e0ϕ(0, 0) = 0,
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for all ϕ(x, t) ∈ D(R× [0, T )), where Γ = {(x, t) : x = φ(t), t ∈ [0, T )},
∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ T

0

e(t)
(
ϕt(φ(t), t) + φ̇(t)ϕx(φ(t), t)

)
dt,

V (x, t) = v0 + v1H(−x+φ(t)). Here functions uk(x, t), vk(x, t), k = 0, 1, φ(t), e(t)
are defined by the system

(2.10)

L1[u0] = 0, x > φ(t),
L1[u0 + u1] = 0, x < φ(t),

L2[u0, v0] = 0, x > φ(t),
L2[u0 + u1, v0 + v1] = 0, x < φ(t),

φ̇(t) = [f(u)]
[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[vg(u)]− [v] [f(u)]

[u]

)∣∣∣
x=φ(t)

.

with the initial data defined from (1.13), φ(0) = 0.

Proof. By Theorem 2.1 we have the following estimates:

L1[u(x, t, ε)] = OD′(ε), L2[u(x, t, ε), v(x, t, ε)] = OD′(ε).

Let us apply the left-hand and right-hand sides of these relations to an arbitrary
test function ϕ(x, t) ∈ D(R× [0, T )). Then integrating by parts, we obtain

∫ T

0

∫ (
u(x, t, ε)ϕt(x, t) + f(u(x, t, ε)ϕx(x, t)

)
dxdt

(2.11) +

∫
u(x, 0, ε)ϕ(x, 0) dx = O(ε),

∫ T

0

∫ (
v(x, t, ε)ϕt(x, t) + v(x, t, ε)g(u(x, t, ε))ϕx(x, t)

)
dxdt

(2.12) +

∫
v(x, 0, ε)ϕ(x, 0) dx = O(ε), ε → +0.

Now let us substitute u(x, t, ε), v(x, t, ε), and the asymptotics g(u(x, t, ε))v(x, t, ε)
and f(u(x, t, ε)) given by (2.7) and (4.1), respectively, into the last relations. Now
by passing to the limit as ε → +0 in each of the integrals (2.11), (2.12), and taking
into account that

(2.13) lim
ε→+0

∫ T

0

∫
e(t)δv1

(− x + φ(t), ε
)
ϕ(x, t) dxdt =

∫ T

0

e(t)ϕ(φ(t), t) dt,

(2.14) lim
ε→+0

∫
e(0)δv1

(− x, ε
)
ϕ(x, 0) dx = e(0)ϕ(0, 0),

we obtain the integral identities (2.9).
In view of the above remark in Theorem 2.1, the Cauchy problem has a unique

generalized solution. ¤
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Let us consider the piecewise constant case of initial data (1.13), where u0
0 = u0,

u0
1 = u1 > 0, v0

0 = v0, v0
1 = v1 are constants.

Corollary 2.1. Assume that conditions (1.36) are satisfied. Then, for t ∈
[0, ∞), the Cauchy problem (1.5) with the piecewise constant initial data (1.13) has
a unique generalized solution

u(x, t) = u0 + u1H(−x + φ(t)),
v(x, t) = v0 + v1H(−x + φ(t)) + e(t)δ(−x + φ(t)),

where

φ(t) =
[f(u)]

[u]
t =

f(u0 + u1)− f(u0)

u1

t, e(t) = e0 +
(
[g(u)v]− [f(u)]

[u]
[v]

)
t.

Remark 2.2. To find a generalized solution of the Cauchy problem (1.5), (1.13),
we construct a weak asymptotic solution of the problem (1.24), (2.1), where the
functions uk(x, t), vk(x, t), e(t), φ(t), k = 0, 1 are determined by system (2.10)
and the functions ω0u1(η), ωδ1(η), Ω′′(η) and the correction R(t) are determined
by the last relation of system (2.3) and system (2.4). In view of estimate (1.19),
the generalized solution of the Cauchy problem does not depend on the functions
ω0u1(η), ωδ1(η), Ω′′(η) and the correction R(t). But without introducing correction
(2.1), i.e. setting R(t) = 0, we derive from the last relation (2.3) and (2.4) the
relation

(2.15)

[
f(u(x, t))

]
[
u(x, t)

]
∣∣∣
x=φ(t)

=

∫
g
(
u0(φ(t), t) + u1(φ(t), t)ω0u1(η)

)
ωδ1(η) dη,

which shows that we cannot solve the Cauchy problem with an arbitrary jump.

3. Interaction of delta shocks

1. Construction of a weak asymptotic solution. We describe the dynamics
of propagation and interaction of two δ-shock waves for the system (1.5) with the
piecewise constant initial data (1.12), where u0

0 = u0, u0
k = uk > 0, v0

0 = v0, v0
k = vk

are constants, k = 1, 2.
In order to construct a weak asymptotic solution (1.21) of the problem we choose

corrections in the form

(3.1)
Ru(x, t, ε) = 0,

Rv(x, t, ε) =
∑2

k=1 Rk(t, ε)
1
ε
Ω′′

k

(
−x+φk(t,ε)

ε

)
,

where Rk(t, ε) are the desired functions, ε−3Ω′′
k

(
x/ε

)
are regularizations of the dis-

tribution δ′′(x), Ωk(η) has the properties (a)–(c) (see Sec. 1), k = 1, 2. Relations
(2.2) imply (1.19).
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Thus, according to our approach, for problem (1.5), (1.12) we present a two-δ-
shocks weak asymptotic solution in the form (1.21):

(3.2)

u(x, t, ε) = u0 +
∑2

k=1 ukHuk

(− x + φk(t, ε), ε
)
,

v(x, t, ε) = v0 +
∑2

k=1

(
vkHvk

(− x + φk(t, ε), ε
)

+ek(t, ε)δvk

(− x + φk(t, ε), ε
)

+ Rk(t, ε)
1
ε
Ω′′

k

(
−x+φk(t,ε)

ε

))
.

Let t = t∗ > 0 be the time instant of interaction. In the interval t ∈ [0, t∗)
we have two δ-shock waves propagating without interaction. By Corollary 2.1, their
phase functions φk0(t) and the amplitudes of δ-functions ek0(t) are defined by the
system of equations

(3.3) φk0(t) = φk0(0) +
[f(u)]k

[u]k
t, ek0(t) = e0

k +
(
[g(u)v]k − [v]k

[f(u)]k
[u]k

)
t,

where by

[h(u, v)]1 = h(u0 + u1 + u2, v0 + v1 + v2)− h(u0 + u2, v0 + v2),
[h(u, v)]2 = h(u0 + u2, v0 + v2)− h(u0, v0)

we denote jumps in function h(u, v) across the discontinuity curves x = φ10(t),
x = φ20(t), respectively, φk0(0) = x0

k are initial positions of singularities, ek0(0) = e0
k

are initial amplitudes of δ-functions, k = 1, 2.
By (3.3), before interaction, two δ-shock waves propagate across the lines xk =

φk0(t) which intersect at the point with the coordinates:

(3.4)

t∗ = u1u2
x0
2−x0

1

u2f(u0+u1+u2)−(u1+u2)f(u0+u2)+u1f(u0)
,

x∗ =

(
f(u0+u1+u2)−f(u0+u2)

)
u2x0

2−
(

f(u0+u2)−f(u0)

)
u1x0

1

u2f(u0+u1+u2)−(u1+u2)f(u0+u2)+u1f(u0)
.

Thus, we define the time instant of interaction t = t∗ > 0 as the time of intersection
of the curves x = φ10(t), x = φ20(t), i.e. a root of the equation ψ0(t

∗) = 0, where

ψ0(t) = φ20(t)− φ10(t)

is the distance between the fronts of non-interacting δ-shock waves.
We write the weak asymptotic solution (3.2) in the form that potentially describes

different scenarios of the processes that occur in the confluence of two free δ-shocks .
Therefore, summarizing the above remarks, in order to describe the interaction
dynamics, we will seek phases of δ-shocks and amplitudes of δ-functions as functions

of the “fast” variable (“fast” time) τ = ψ0(t)
ε
∈ R and the “slow” variable t ≥ 0:

(3.5)
φk(t, ε)

def
= φ̂k(τ, t) = φk0(t) + ψ0(t)φk1(τ)

∣∣∣
τ=

ψ0(t)
ε

,

ek(t, ε)
def
= êk(τ, t) = ek0(t) + ψ0(t)ek1(τ)

∣∣∣
τ=

ψ0(t)
ε

,
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where the functions φk0(t), ek0(t) are defined by equations (3.3) for t ∈ [0, t∗);
for t ∈ [t∗, +∞) these functions are defined by the same equations continuously
extended for t ≥ t∗. The desired functions φk1(τ), ek1(τ) are corrections to the phases
and the amplitudes, respectively, rapidly varying during the time of interaction. We
assume φk1(τ), ek1(τ) to be differentiable with respect to τ , k = 1, 2.

Analogously to (3.5), we will seek the corrections Rk(t, ε) as functions of the fast
variable τ and the slow variable t:

(3.6) Rk(t, ε)
def
= R̂k(τ, t) = Rk0(t) + Rk1(τ, t)

∣∣∣
τ=

ψ0(t)
ε

,

where, according to Theorem 2.1, the terms Rk0(t) are determined by the relations

(3.7) Rk0(t) =
ek0(t)

ck

( [f(u)]k
[u]k

− ak

)
,

and Rk1(τ, t) are desired functions, k = 1, 2. Here by (2.4), we have

(3.8)

a1 =
∫

g(u0 + u1ω0u1(η) + u2)ωδ1(η) dη,
c1 =

∫
g(u0 + u1ω0u1(η) + u2

)
Ω′′

1(η) dη 6= 0,
a2 =

∫
g(u0 + u2ω0u2(η)

)
ωδ2(η) dη,

c2 =
∫

g(u0 + u2ω0u2(η)
)
Ω′′

2(η) dη 6= 0.

Before interaction, as t < t∗, we have φ10(t) < φ20(t) and τ = ψ0(t)
ε

> 0, after

interaction, as t > t∗, we have φ10(t) > φ20(t) and τ = ψ0(t)
ε

< 0. We set the
following boundary conditions for the corrections to the phases and the amplitudes:

(3.9)
φk1(τ)

∣∣∣
τ→+∞

= 0, ek1(τ)
∣∣∣
τ→+∞

= 0,

dφk1(τ)

dτ

∣∣∣
τ→−∞

= o(τ−1), dek1(τ)
dτ

∣∣∣
τ→−∞

= o(τ−1).

This means that the derivatives of the phases and amplitudes with respect to the
fast variable τ tend to zero as |τ | → ∞, while the phases tend to zero as τ →∞, i.e.
before interaction. We assume that, analogously to (3.9), the following boundary
conditions hold:

(3.10) Rk1(τ, t)
∣∣∣
τ→+∞

= 0, Rk1(τ, t)
∣∣∣
τ→−∞

= Rk1,−(t),

and Rk1(τ, t),
∂Rk1(τ,t)

∂τ
are bounded functions for all t ≥ 0, k = 1, 2.

Finding the limit values of the corrections to the phases and the amplitudes, as
τ → −∞ (for t > t∗)

φk1(τ)
∣∣∣
τ→−∞

= φk1,−, ek1(τ)
∣∣∣
τ→−∞

= ek1,−,

we find the limit values of the phases φk(t, ε) and amplitudes ek(t, ε):

(3.11)
φ̂k,−(t) = φ̂k(τ, t)

∣∣∣
τ→−∞

= φk0(t) + ψ0(t)φk1,−,

êk,−(t) = êk(τ, t)
∣∣∣
τ→−∞

= ek0(t) + ψ0(t)ek1,−.
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Thus, in fact, we determine “the result” of the interaction of δ-shocks as t > t∗.

Theorem 3.1. Assume that conditions (1.36) are satisfied. Then for t ∈ [0, ∞),
the Cauchy problem (1.5) with the piecewise constant initial data (1.12), has a weak
asymptotic solution (3.2), (3.5), (3.6), where functions φk0(t), ek0(t), Rk0(t) are
determined by the system of equations (3.3), (3.7), and desired corrections are defined
by the system:

(3.12) φk1(τ) =
(−1)k

uk

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

)
τ

τ∫

0

B2(−ρ(τ ′)) dτ ′,

(3.13) ek1(τ) =
(−1)k

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

)
τ

τ∫

0

B̃2(−ρ(τ ′)) dτ ′ − vkφk1(τ),

Rk1(τ, t) =
êk(τ, t)

CRk

(
(−1)k−1ρ

)
(

f(u0 + uk)− f(u0) + Bk

(
(−1)k−1ρ

)

uk

(3.14) −Ak

(
(−1)k−1ρ

))−Rk0(t),

where B2(−ρ) and B̃k

(
(−1)k−1ρ

)
, Ak

(
(−1)k−1ρ

)
, CRk

(
(−1)k−1ρ

)
are so-called inter-

action switch functions whose explicit form are given by (4.3) and (4.9), respectively,
k = 1, 2. Here ρ = ρ(τ) is a solution of the differential equation with the boundary
condition:

(3.15)
dρ

dτ
= F (ρ),

ρ

τ

∣∣∣
τ→+∞

= 1,

where

(3.16) F (ρ) = 1 +

(
1
u1

+ 1
u2

)
B2(−ρ)

[f(u)]2
[u]2

− [f(u)]1
[u]1

.

Proof. 1. Ansatz substitution. Let us substitute the smooth ansatz (3.2) and
the weak asymptotics f

(
u(x, t, ε)

)
, g

(
u(x, t, ε))v(x, t, ε

)
, which are given by (4.2),

(4.8), respectively, into the system (1.5). Obviously, we obtain up to OD′(ε) the
following relations

L1[u(x, t, ε)] =
2∑

k=1

{
ukφ̇k(t, ε)

(3.17) −
(
f(u0 + uk)− f(u0)

)
−Bk

(
(−1)k−1ρ

)}
δ(−x + φk(t, ε)) + OD′(ε),
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L2[u(x, t, ε), v(x, t, ε)] =
2∑

k=1

{(
vkφ̇k(t, ε) + ėk(t, ε)

−
(
g(u0 + uk)

(
v0 + vk

)− g(u0)v0 + B̃k

(
(−1)k−1ρ

)))
δ(−x + φk(t, ε))

+

(
ek(t, ε)φ̇k(t, ε)−

(
ek(t, ε)Ak

(
(−1)k−1ρ

)

(3.18) +Rk(t, ε)CRk

(
(−1)k−1ρ

)))
δ′(−x + φk(t, ε))

}
+ OD′(ε),

where ρ = ψ(t,ε)
ε

, ψ(t, ε) = φ2(t, ε)− φ1(t, ε) is the distance between regularizations
of the δ-shocks fronts φ2(t, ε) and φ1(t, ε). Here the estimate OD′(ε) is uniform with
respect to ψ(t, ε).

By equating the coefficients of δ, δ′ with zero in the right-hand side of (3.17),
(3.18), we obtain the necessary and sufficient conditions for the relations

L1[u(x, t, ε)] = OD′(ε), L2[u(x, t, ε), v(x, t, ε)] = OD′(ε),

i.e. the generalized Rankine–Hugoniot type conditions

(3.19) ukφ̇k(t, ε) =
(
f(u0 + uk)− f(u0)

)
+ Bk

(
(−1)k−1ρ

)
,

and the system

(3.20)
vkφ̇k(t, ε) + ėk(t, ε) = g(u0 + uk)

(
v0 + vk

)− g(u0)v0 + B̃k

(
(−1)k−1ρ

)
,

ek(t, ε)φ̇k(t, ε) = ek(t, ε)Ak

(
(−1)k−1ρ

)
+ Rk(t, ε)CRk

(
(−1)k−1ρ

)
.

k = 1, 2. Systems (3.19) (3.20) describe functions φk(t, ε), ek(t, ε), Rk(t, ε), which
determine the weak asymtotics solution (3.2).

According to our assumption, we will seek functions φk(t, ε), ek(t, ε), Rk(t, ε),
in the form (3.5), (3.6) by introducing the dependence on ε into them, k = 1, 2.
The form (3.5), (3.6) also reflects the structure of argument of interaction switch

functions ρ = ψ(t,ε)
ε

and the structure of equations (3.19), (3.20). Let ψ1(τ) =

φ21(τ)− φ11(τ), then the full phase difference is ψ(t, ε) = ψ0(t)
(
1 + ψ1(τ)

)
, and

(3.21) ρ(τ) =
ψ(t, ε)

ε
= τ

(
1 + ψ1(τ)

)
.

The derivatives of the phases and amplitudes with respect to time are given by
the following equalities:

(3.22)

dφk(t, ε)

dt

def
=

dφ̂k(τ, t)

dt
= φ̇k0(t) + ψ̇0(t)

d
dτ

[τφk1(τ)],

dek(t, ε)

dt

def
=

dêk(τ, t)

dt
= ėk0(t) + ψ̇0(t)

d
dτ

[τek1(τ)].
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Taking into account the boundary conditions (3.9), we find the limit values of
the phases and their derivatives with respect to time as τ → −∞ (for t > t∗):

(3.23)
(dφ̂k(τ, t)

dt

)
−

=
dφ̂k,−(t)

dt
,

(dêk(τ, t)

dt

)
−

=
dêk,−(t)

dt
,

where φ̂k,−(t), êk,−(t) are defined by (3.11).
2. By substituting (3.5), (3.22), (3.6) into (3.19) and (3.20), we obtain for all

t ≥ 0 and τ ∈ R the generalized Rankine–Hugoniot type conditions :

(3.24)
φ̇10(t) + ψ̇0(t)

d

dτ

(
τφ11(τ)

)
= f(u0+u1)−f(u0)+B1(ρ)

u1
,

φ̇20(t) + ψ̇0(t)
d

dτ

(
τφ21(τ)

)
= f(u0+u2)−f(u0)+B2(−ρ)

u2
,

and the following systems of equations:

(3.25)

ė10(t) + ψ̇0(t)
d

dτ

(
τe11(τ)

)
=

(
v0 + v1

)
g(u0 + u1)− v0g(u0)

+B̃1(ρ)− v1

(
f(u0+u1)−f(u0)+B1(ρ)

u1

)
,

ė20(t) + ψ̇0(t)
d

dτ

(
τe21(τ)

)
=

(
v0 + v2

)
g(u0 + u2)− v0g(u0)

+B̃2(−ρ)− v2

(
f(u0+u2)−f(u0)+B2(−ρ)

u2

)
,

(3.26)

(
R10(t) + R11(τ, t)

)
CR1(ρ) = ê1(τ, t)

(
f(u0+u1)−f(u0)+B1(ρ)

u1

−A1(ρ)

)
,

(
R20(t) + R21(τ, t)

)
CR2(−ρ) = ê2(τ, t)

(
f(u0+u2)−f(u0)+B2(−ρ)

u2

−A2(−ρ)

)
,

with the boundary conditions (3.9), (3.10). Here φk0(t), ek0(t), Rk0(t) for all t ≥ 0
are defined by systems (3.3), (3.7).

Subtracting the one Rankine–Hugoniot type condition (3.24) from the other, we
reduce system (3.24) to the differential equation with the boundary condition (3.15):

dρ

dτ
= F (ρ),

ρ

τ

∣∣∣
τ→+∞

= 1,

where

F (ρ) =
1

ψ̇0(t)

(
f(u0 + u2)− f(u0) + B2(−ρ)

u2

− f(u0 + u1)− f(u0) + B1(ρ)

u1

)
,

and according to (3.3)

(3.27) ψ̇0(t) =
f(u0 + u2)− f(u0)

u2

− f(u0 + u1 + u2)− f(u0 + u2)

u1

.
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Taking into account relation (4.5), the right-hand side F (ρ) can be written in the
equivalent forms

F (ρ) =

f(u0+u1+u2)−f(u0+u1)
u2

− f(u0+u1)−f(u0)
u1

−
(

1
u1

+ 1
u2

)
B1(ρ)

[f(u)]2
[u]2

− [f(u)]1
[u]1

or (3.16). Here the boundary condition (3.15) follows from the boundary conditions
(3.9). This autonomous ordinary differential equation is typical for our approach.

Using the limit values (4.4) of the functions B1(±∞), B2(±∞), we obtain that

(3.28)

F (+∞) = lim
ρ→+∞

F (ρ) = 1,

F (−∞) = lim
ρ→−∞

F (ρ) = −
f(u0+u1+u2)−f(u0+u1)

u2
− f(u0+u1)−f(u0)

u1
f(u0+u1+u2)−f(u0+u2)

u1
− f(u0+u2)−f(u0)

u2

for any choice of mollifiers ωu1(ξ), ωu2(ξ). By using the inequality

f(x2)− f(x)

x2 − x
− f(x)− f(x1)

x− x1

> 0, x ∈ (x1, x2),

valid for any convex function f(u) and u1, u2 > 0, we see that F (−∞) < 0 for any
choice of u1, u2 > 0.

Thus, as ρ → ±∞, the limit values of the right-hand side of the differential
equation (3.15), (3.16) have opposite signs: F (−∞) < 0, F (+∞) = 1 > 0 for any
u1, u2 > 0. According to (4.3), and (3.16), B1(ρ), B2(−ρ) and F (ρ) are smooth
functions. Therefore, the equation F (ρ) = 0 has a root ρ0 for any mollifiers ωuk(ξ)
and uk > 0, k = 1, 2. Since f ′′(u) > 0 and u1, u2 > 0, according to (4.3), we have

B′
1(ρ) = u1u2

∫
f ′′

(
u0 + u1ω0u1(−η) + u2ω0u2(−η + ρ)

)
ωu1(−η)ωu2(−η + ρ) dη > 0.

It follows from this inequality and (3.16) that

F ′(ρ) =
(u1 + u2)B

′
1(ρ)

f(u0 + u1 + u2)u2 − f(u0 + u2)(u1 + u2) + f(u0)u1

> 0,

i.e. F (ρ) is an increasing function. Therefore, ρ0 is the maximal (simple) root of
the right-hand side of the differential equation (3.15): F (ρ) = 0.

In view of the above facts, according to Proposition 4.1, we have the limit relation

ρ(τ) = τ
(
1 + ψ1(τ)

) → ρ0, τ → −∞.

Thus, ρ(τ) is a function with values in the interval [ρ0, +∞] for τ ∈ [−∞, +∞].
Moreover, according to (3.16), (4.4), (4.5),

lim
τ→−∞

Bk

(
(−1)k−1ρ

)
= Bk

(
(−1)k−1ρ0

)

(3.29) =

(
f(u0 + u1 + u2)− f(u0 + uk)

)
uk −

(
f(u0 + uk)− f(u0)

)
u3−k

u1 + u2

,

k = 1, 2. Taking into account relation (3.27), we have B2(−ρ0) = − u1u2

u1+u2
ψ̇0(t).
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3. Construction of corrections. We obtain the function ρ = ρ(τ) by integrating
the autonomous differential equation (3.15), (3.16). Substituting the phases φk0(t)
from (3.3) into (3.24) and using (4.5), (3.27), we obtain the following equations:

(3.30)
d

dτ

(
τφk1(τ)

)
=

(−1)kB2(−ρ)

uk

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

) .

Substituting ek0(t) from (3.3) into (3.25), and using (4.11), (3.27), we obtain

d

dτ

(
τek1(τ)

)
= (−1)k ukB̃2(−ρ)− vkB2(−ρ)

uk

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

) .

We find the phase corrections (3.12) and the amplitude corrections (3.13) by inte-
grating these equations.

Integrating the right-hand side of the last two relations (4.9) by parts, we obtain

(3.31)

CR1(ρ) = − ∫
g′

(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)
×(

u1ωu1(η) + u2ωu2(η + ρ)
)
Ω′

1(η) dη,
CR2(−ρ) = − ∫

g′
(
u0 + u1ω0u1(η − ρ) + u2ω0u2(η)

)
×(

u1ωu1(η − ρ) + u2ωu2(η)
)
Ω′

2(η) dη,

where, as already mentioned, ρ ∈ [ρ0, +∞]. Since ωu1(η), ωu2(η) ≥ 0, we can choose
mollifiers Ω1(η), Ω2(η) such that

ωu1(η)Ω′
1(η) ≥ 0, ωu2(η + ρ)Ω′

1(η) ≥ 0,
ωu1(η − ρ)Ω′

2(η) ≥ 0, ωu2(η)Ω′
2(η) ≥ 0,

for all ρ ∈ [ρ0, +∞]. Since, according to (1.36), g′(u) > 0 and u1, u2 > 0 then from
(3.31) we have CRk

(
(−1)k−1ρ

) 6= 0, k = 1, 2 for all ρ ∈ [ρ0, +∞]. Thus, from (3.26)
one can obtain formulas (3.14), which describe corrections Rk1(τ, t), k = 1, 2.

Thus, corrections φk1(τ), ek1(τ), Rk1(τ, t), k = 1, 2 are constructed.
4. Checking the a priori assumptions. Let us check that the corrections φk1(τ),

ek1(τ), Rk1(τ, t) found in (3.12)–(3.14) satisfy the a priori assumptions (3.9), (3.10).
Let τ → +∞. According to (3.15), this means that ρ(τ) → +∞. As was

said in Remark 4.1, B2(−ρ) = O(|ρ|−N), B̃2(−ρ) = O(|ρ|−N), as ρ → +∞ for all
N = 1, 2, . . . . Hence, from (3.12), (3.13) we obtain

φk1(τ) = O(τ−1), τ dφk1(τ)
dτ

= O(τ−1),

ek1(τ) = O(τ−1), τ dek1(τ)
dτ

= O(τ−1), τ → +∞.

It follows from the last estimates and (3.14), (4.10), (3.7), (3.8) that

lim
τ→+∞

Rk1(τ, t) = 0.

As mentioned above, ρ0 is a simple root of the right-hand side of the differential
equation (3.15). Consequently, according to Proposition 4.1,

ρ(τ) = τ
(
1 + ψ1(τ)

)− ρ0 = O(|τ |−N), τ → −∞.
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Using Taylor’s formula, we obtain

Bk

(
(−1)k−1ρ

)
= Bk

(
(−1)k−1ρ0

)
+ O(|τ |−N), τ → −∞,

B̃k

(
(−1)k−1ρ

)
= B̃k

(
(−1)k−1ρ0

)
+ O(|τ |−N), τ → −∞,

for all N = 1, 2, . . . , where Bk

(
(−1)k−1ρ0

)
are defined by (3.29). Therefore, from

(3.12), (3.13), (3.29) we have

(3.32)

φk1(τ) = (−1)k−1 u3−k

u1+u2
+ O(τ−1),

ψ1(τ) = −1 + O(τ−1),

ek1(τ) = (−1)k
(

B̃2(−ρ0)
[f(u)]2

[u]2
− [f(u)]1

[u]1

+ vku3−k

u1+u2

)
+ O(τ−1), τ → −∞.

To this end, we calculate the limit τ dφk1(τ)
dτ

as τ → −∞. One can rewrite relation
(3.30) as

τ
dφk1(τ)

dτ
=

(−1)k

uk

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

)
(

B2

(
ρ(τ)

)−
∫ τ

0
B2

(
ρ(τ ′)

)
dτ ′

τ

)
.

Calculating the limit of the second term in the brackets by using the L’Hospital

rule, we find limτ→−∞ τ dφk1(τ)
dτ

= 0. It can be shown in an analogous way that

limτ→−∞ τ dek1(τ)
dτ

= 0.
From (3.14), (3.32), (4.9) one can see that there exists the limit

Rk1(τ, t)
∣∣∣
τ→−∞

=
êk,−(t)

CRk

(
(−1)k−1ρ0

)
(

f(u0 + uk)− f(u0) + Bk

(
(−1)k−1ρ0

)

uk

−Ak

(
(−1)k−1ρ0

))−Rk0(t).

Taking into account the properties of the interaction switches , we see Rk1(τ, t),
d
dτ

Rk1(τ) are bounded functions.
Thus, the corrections φk1(τ), ek1(τ), Rk1(τ, t) defined in (3.12)–(3.14) satisfy our

a priori assumptions of smoothness and estimates (3.9), (3.10). ¤
Remark 3.1. By substituting the expression for Rk(t, ε) given by (3.26) into

(4.8), the last relation takes the form

v(x, t, ε)g
(
u(x, t, ε)

)
= g(u0)v0

+

(
g(u0 + u1)

(
v0 + v1

)− g(u0)v0 + B̃1(ρ)

)
H(−x + φ1)

+

(
g(u0 + u2)

(
v0 + v2

)− g(u0)v0 + B̃2(−ρ)

)
H(−x + φ2)

+ê1(τ, t)
f(u0 + u1)− f(u0) + B1(ρ)

u1

δ(−x + φ1)
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(3.33) +ê2(τ, t)
f(u0 + u2)− f(u0) + B2(−ρ)

u2

δ(−x + φ2) + OD′(ε), ε → +0.

Corollary 3.1. The weak asymptotic solution
(
u(x, t, ε), v(x, t, ε)

)
constructed

in Theorem 3.1 is independent of the choice of regularization Hjk(x, ε), δvk(x, ε),
j = u, v, k = 1, 2 and has the following properties:

1) for t ∈ (0, t∗)

(3.34)
φk(t) = limε→+0 φk(t, ε) = φk0(t) = φk0(0) + [f(u)]k

[u]k
t,

ek(t) = limε→+0 ek(t, ε) = ek0(t) = ek0(0) +
(
[vg(u)]k − [v]k

[f(u)]k
[u]k

)
t

uniformly in t, k = 1, 2, and the weak limit of the weak asymptotic solution is given
by the relation
(3.35)

lim
ε→+0

u(x, t, ε) = u0 +
∑2

k=1 ukH(−x + φk0(t)),

lim
ε→+0

v(x, t, ε) = v0 +
∑2

k=1

(
vkH(−x + φk0(t)) + ek0(t)δ(−x + φk0(t))

)
;

2) for t ∈ (t∗, +∞)

(3.36)

φ̂−(t)
def
= φk(t) = limε→+0 φk(t, ε) = x∗ + [f(u)]−

[u]−
(t− t∗), k = 1, 2,

ê−(t)
def
= limε→+0

(
e1(t, ε) + e2(t, ε)

)

= ê−(t∗) +
(
[vg(u)]− − [v]−

[f(u)]−
[u]−

)
(t− t∗)

uniformly in t, and the weak limit of the weak asymptotic solution is given by the
relation
(3.37)

lim
ε→+0

u(x, t, ε) = u0 + (u1 + u2)H
(− x + φ̂−(t)

)
,

lim
ε→+0

v(x, t, ε) = v0 + (v1 + v2)H
(− x + φ̂−(t)

)
+ e−(t)δ

(− x + φ̂−(t)
)
.

Here ê−(t∗) = e10(t
∗) + e20(t

∗), [h(u, v)]− = h(u0 + u1 + u2, v0 + v1 + v2)− h(u0, v0)

is a jump in function h(u, v) across the discontinuity curve x = φ̂−(t), (x∗, t∗) is
the point of intersection of the δ-shock waves trajectories defined by (3.4).

Proof. We remind that ψ0(t) > 0 for t < t∗, i.e., τ > 0 and ψ0(t) < 0 for t > t∗,
i.e., τ < 0.

Let τ → +∞ (for t ∈ [0, t∗)). In view of the boundary conditions (3.9), (3.10),
it follows from (3.21) that ρ → +∞. Therefore, taking into account (3.23) and the

limit properties of interaction switches Bk((−1)k−1ρ), B̃2((−1)k−1ρ), k = 1, 2 given
by Lemmas 4.2, 4.4, for all t ∈ (0, t∗), as τ → +∞, from systems (3.24), (3.25) with
the boundary conditions (3.9), (3.10) we derive the limit system of equations (3.34).

Pass to the limit in system (3.24) (for t > t∗), as τ → −∞. Since dφk1(τ)
dτ

→ 0 by

(3.9), and φk1(τ) → φk1,− = (−1)k−1 u3−k

u1+u2
by (3.32), taking into account (3.23) we
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derive the limit system of equations for phases:

(3.38)
˙̂
φ1,−(t) = φ̇10(t) + ψ̇0(t)φ11,− = f(u0+u1+u2)−f(u0)

u1
,

˙̂
φ2,−(t) = φ̇20(t) + ψ̇0(t)φ21,− = f(u0+u1+u2)−f(u0)

u1
,

where φ̂k,−(t∗) = φk0(t
∗) = x∗ and φk0(t) are defined by (3.3) for all t ≥ 0.

It can be seen from (3.38) that the phase limit values (3.11) of φ̂k(τ, t) coincide:

(3.39) φ̂2,−(t) = φ̂1,−(t)
def
= φ̂−(t), t ≥ t∗,

i.e., we obtain the first relation (3.36).
Analogously, passing to the limit, as τ → −∞, in system (3.25), taking into

account (3.23), (3.9), (3.38), and limiting relations (see (3.32))

ek1,− = lim
τ→−∞

ek1(τ) = (−1)k
( B̃2(−ρ0)

[f(u)]2
[u]2

− [f(u)]1
[u]1

+
vku3−k

u1 + u2

)
,

we obtain the limit system of equations for amplitudes of δ-functions:

(3.40)

˙̂e1,−(t) = ė10(t) + ψ̇0(t)e11,−
=

(
v0 + v1 + v2

)
g(u0 + u1 + u2)−

(
v0 + v2

)
g(u0 + u2)

−B̃2(−ρ0)− v1
f(u0+u1+u2)−f(u0)

u1+u2
,

˙̂e2,−(t) = ė20(t) + ψ̇0(t)e21,−
=

(
v0 + v2

)
g(u0 + u2)− v0g(u0)

+B̃2(−ρ0)− v2
f(u0+u1+u2)−f(u0)

u1+u2
, t ≥ t∗.

Adding the first and the second equations (3.40), we obtain for t ≥ t∗

˙̂e−(t) = ˙̂e1,−(t) + ˙̂e2,−(t) =
(
v0 + v1 + v2

)
g(u0 + u1 + u2)− v0g(u0)

(3.41) −(
v1 + v2

)f(u0 + u1 + u2)− f(u0)

u1 + u2

,

where, according to (3.39), ê−(t∗) = e10(t
∗) + e20(t

∗). By solving (3.41), we obtain

ê−(t) = ê1,−(t) + ê2,−(t) = e10(t) + e20(t) +
(
e11,− + e21,−

)
ψ0(t),

i.e., the second relation (3.36).
Taking into account that

lim
ε→+0

〈Huk

(− x + φk(t, ε), ε
)
, ϕ(x, t)〉 = 〈H(− x + φk(t)

)
, ϕ(x, t)〉,

lim
ε→+0

〈δvk

(− x + φk(t, ε), ε
)
, ϕ(x, t)〉 = 〈δ(− x + φk(t)

)
, ϕ(x, t)〉,

for all ϕ(x, t) ∈ D(R× [0, ∞)), j = u, v, k = 1, 2, we have (3.35), (3.37). ¤
2. Generalized solution of the problem. Theorem 3.1 and Corollary 3.1

imply the following theorem.
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Theorem 3.2. Assume that conditions (1.36) are satisfied. Then, for t ∈ [0, ∞),
the Cauchy problem (1.5) with the piecewise constant initial data (1.12) has a unique
generalized solution

(3.42)
u(x, t) = u0 +

∑2
k=1 ukH

(− x + φk(t),

v(x, t) = v0 +
∑2

k=1

(
vkH

(− x + φk(t)
)

+ ek(t)δ
(− x + φk(t)

))
,

where

(3.43)

φk(t) = x0
k + [f(u)]k

[u]k
t

+ (−1)k−1u3−k

u1+u2

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

)
· (t− t∗)H(t− t∗),

ek(t) = e0
k +

(
[vg(u)]k − [v]k

[f(u)]k
[u]k

)
t + (−1)k

(
B̃2(−ρ0)

+ vku3−k

(u1+u2)uk

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

))
· (t− t∗)H(t− t∗),

φ(0) = x0
k, k = 1, 2. Here φk(t) = φk0(t), ek(t) = ek0(t), for all t ∈ (0, t∗), and

φ1(t) = φ2(t) = φ̂−(t) = x∗ + [f(u)]−
[u]−

(t− t∗), k = 1, 2,

ê−(t) = e1(t) + e2(t) = ê−(t∗) +
(
[vg(u)]− − [v]−

[f(u)]−
[u]−

)
(t− t∗),

for all t > t∗.
This generalized solution satisfies the integral identities cf. (1.14):

(3.44)

∫ ∞

0

∫ (
uϕt + f(u)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
ϕt + g(u)ϕx

)
V dx dt

+
2∑

k=1

∫

γk

e(x, t)
∂ϕ(x, t)

∂l
dl +

∫

γ−
e(x, t)

∂ϕ(x, t)

∂l
dl

+

∫
V 0(x)ϕ(x, 0) dx +

2∑

k=1

e0
kϕ(x0

k, 0) = 0,

for all ϕ(x, t) ∈ D(R×[0, ∞)), where Γ = γ1∪γ1∪γ−, γk = {(x, t) : x = φk0(t), t ∈
(0, t∗]}, γ− = {(x, t) : x = φ̂−(t), t ≥ t∗}, V (x, t) = v0 +

∑2
k=1 vkH(−x+φk(t)),

and∫

γk

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ t∗

0

ek0(t)
(
ϕt(φk0(t), t) + φ̇k0(t)ϕx(φk0(t), t)

)
dt, k = 1, 2,

∫

γ−
e(x, t)

∂ϕ(x, t)

∂l
dl =

∫ ∞

t∗
ê−(t)

(
ϕt(φ̂−(t), t) +

˙̂
φ−(t)ϕx(φ̂−(t), t)

)
dt.

Thus, for t ∈ (0, t∗) we have two delta-shock waves which propagate indepen-
dently till the time instant t∗ and after interaction (at the time instant t = t∗) merge
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constituting one new delta-shock wave for t > t∗, where t = t∗ is defined by (3.4).
In addition, the phases φk(t) and amplitudes ek(t) are continuous functions with
respect to t; at the point t = t∗ the velocities and the Rankine–Hugoniot deficit have
the jumps

(3.45)

˙̂
φk,−(t)− φ̇k0(t) = (−1)k−1u3−k

u1+u2

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

)
,

˙̂ek,−(t)− ėk0(t) = (−1)k

(
B̃2(−ρ0) + vku3−k

u1+u2

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

))
,

˙̂e−(t)− ėk0(t) = ė3−k0(t) + u1v2−u2v1

u1+u2

(
[f(u)]2

[u]2
− [f(u)]1

[u]1

)
, k = 1, 2.

Proof. By Theorem 3.1 we have

L1[u(x, t, ε)] = OD′(ε), L2[u(x, t, ε), v(x, t, ε)] = OD′(ε)

uniformly with respect to t ∈ (0, +∞). Let us apply the left-hand and right-hand
sides of these relations to an arbitrary test function ϕ(x, t) ∈ D(R× [0, ∞)). Then
integrating by parts, we obtain

( ∫ t∗

0

+

∫ ∞

t∗

) ∫ (
u(x, t, ε)ϕt(x, t) + f(u(x, t, ε)ϕx(x, t)

)
dxdt

+

∫
u(x, 0, ε)ϕ(x, 0) dx = O(ε),

( ∫ t∗

0

+

∫ ∞

t∗

) ∫ (
v(x, t, ε)ϕt(x, t) + v(x, t, ε)g(u(x, t, ε))ϕx(x, t)

)
dxdt

+

∫
v(x, 0, ε)ϕ(x, 0) dx = O(ε), ε → +0.

Let us substitute the ansatz u(x, t, ε), v(x, t, ε) and the asymptotics f(u(x, t, ε)),
g(u(x, t, ε))v(x, t, ε) which are given by (3.2) and (4.2), (3.33), respectively, into
the last relations. Next, passing to the limit, as ε → +0, and taking into account
Corollary 3.1 and (2.13), (2.14), by easy calculations, we obtain the integral identities
(3.44).

According to Corollary 3.1, before the interaction for t ∈ (0, t∗) we have the
system of equations (3.34) describing two propagating δ-shock waves . After the
interaction for t > t∗ we have the system of equations (3.36) describing a single
solitary δ-shock wave which appears as the result of the interaction of two δ-shocks.

For thus constructed generalized solution the stability conditions u1 > 0, u2 > 0
hold, hence by the Oleinik uniqueness theorem, this solution is unique.

Formulas for φ̂−(t), ê−(t) follow from (3.36). Formulas (3.45) follow from (3.34),
(3.36), (3.40). ¤

3. Example. Consider the simplest case of system (1.5):

ut + (u2)x = 0, vt + 2(uv)x = 0.

Using Theorem 3.2, we obtain the following results.



32 V. G. DANILOV AND V. M. SHELKOVICH

A. Suppose e0
2 = 0 and v2 = −2v0. Then for t ∈ (0, t∗) we have one delta-shock

φ10(t) = x0
1 + (2u0 + u1 + 2u2)t, e10(t) = e0

1 + u1(v1 + v2)t,

and one shock
φ20(t) = x0

2 + (2u0 + u2)t, (e20(t) = 0),

which propagate independently. After interaction for t > t∗ we have one new delta-
shock

φ̂−(t) = x∗ + (2u0 + u1 + u2)(t− t∗),
ê−(t) = e10(t

∗) + v1(u1 + u2)(t− t∗).

B. Suppose e0
1 = e0

2 = 0 and v1 = 2v0, v2 = −2v0. Then for t ∈ (0, t∗) we have
two shocks

φ10(t) = x0
1 + (2u0 + u1 + 2u2)t, (e10(t) = 0),

φ20(t) = x0
2 + (2u0 + u2)t, (e20(t) = 0).

After interaction for t > t∗ we have one new delta-shock

φ̂−(t) = x∗ + (2u0 + u1 + u2)(t− t∗),
ê−(t) = 2v0(u1 + u2)(t− t∗).

C. Suppose v1 = −2v0 − v2. Then for t ∈ (0, t∗) we have two delta-shocks

φ10(t) = x0
1 + (2u0 + u1 + 2u2)t, e10(t) = e0

1 + u1v2t,
φ20(t) = x0

2 + (2u0 + u2)t, e20(t) = e0
2 − u2v1t.

After interaction for t > t∗ we have one new shock and delta-function at the point
(x∗, t∗)

φ̂−(t) = x∗ + (2u0 + u1 + u2)(t− t∗),
ê−(t) = e10(t

∗) + e20(t
∗).

4. Some auxiliary results

1. In this subsection we present formulas for weak asymptotic expansions of some
expressions. These formulas are used to construct solutions describing propagation
and interaction of δ-shock waves.

Lemma 4.1. ( [5, Corollary 1.1.], [3, 1.3.]) Let f(u) be a smooth function, let
u0(x, t), u1(x, t) be bounded functions. If u(x, t, ε) is defined by (1.24), (2.1) then

f
(
u(x, t, ε)

)
= f(u0)

(4.1) +
(
f(u0(x, t) + u1(x, t))− f(u0(x, t))

)
H(−x + φ) + OD′(ε), ε → +0,

Lemma 4.2. ( [5, Lemma 1.1.], [3, Lemma 1.1.]) Let f(u) be a smooth function,
let uk(x, t), k = 0, 1, 2 be bounded functions. If u(x, t, ε) is defined by (1.21), (3.1)
then

f
(
u(x, t, ε)

)
= f(u0(x, t))

+
(
f(u0(x, t) + u1(x, t))− f(u0(x, t))

)
H(−x + φ1)



PROPAGATION AND INTERACTION OF DELTA-SHOCKS 33

+
(
f(u0(x, t) + u2(x, t))− f(u0(x, t))

)
H(−x + φ2)

(4.2) +B1

(
x, t,

∆φ

ε

)
H(−x+φ1)+B2

(
x, t,−∆φ

ε

)
H(−x+φ2)+OD′(ε), ε → +0,

where ∆φ = φ2 − φ1 and the estimate OD′(ε) is uniform with respect to ∆φ.
The functions Bk(x, t, ρ), k = 1, 2 called “interaction switch functions” have the

following form:

(4.3)

B1(x, t, ρ) =
∫ {

f ′
(
u0(x, t) + u1(x, t)ω0u1(−η) + u2(x, t)ω0u2(−η + ρ)

)

−f ′
(
u0(x, t) + u1(x, t)ω0u1(−η)

)}
u1(x, t)ωu1(−η) dη,

B2(x, t,−ρ) =
∫ {

f ′
(
u0(x, t) + u1(x, t)ω0u1(−η − ρ) + u2(x, t)ω0u2(−η)

)

−f ′
(
u0(x, t) + u2(x, t)ω0u2(−η)

)}
u2(x, t)ωu2(−η) dη.

In addition, the “interaction switch functions” satisfy the relations

(4.4)
lim

ρ→+∞
Bk(x, t, ρ) = f(u0 + u1 + u2)− f(u0 + u1)− f(u0 + u2) + f(u0),

lim
ρ→−∞

Bk(x, t, ρ) = 0, k = 1, 2,

and for any ρ ∈ R
B1(x, t, ρ) + B2(x, t,−ρ) = f(u0(x, t) + u1(x, t) + u2(x, t))

(4.5) −f(u0(x, t) + u1(x, t))− f(u0(x, t)) + u2(x, t)) + f(u0(x, t)).

Lemma 4.3. Let g(u) be a smooth function, let uk(x, t), vk(x, t), k = 0, 1, e(t)
be bounded functions. If u(x, t, ε), v(x, t, ε) are defined by (1.24), (2.1) then

v(x, t, ε)g
(
u(x, t, ε)

)
= g

(
u0(x, t)

)
v0(x, t)

+
(
g
(
u0(x, t) + u1(x, t)

)(
v0(x, t) + v1(x, t)

)− g
(
u0(x, t)

)
v0(x, t)

)
H(−x + φ)

(4.6) +
(
e(t)a(t) + R(t)c(t)

)
δ(−x + φ) + OD′(ε), ε → +0,

where

(4.7)
a(t) =

∫
g
(
u0(0, t) + u1(0, t)ω0u1(η)

)
ωδ1(η) dη,

c(t) =
∫

g
(
u0(0, t) + u1(0, t)ω0u1(η)

)
Ω′′(η) dη.

Proof. Using Lemma 4.1, it is easy to obtain the weak asymptotics
(
v0(x, t) + v1(x, t)Hv1(−x, ε)

)
g
(
u(x, t, ε)

)
= g

(
u0(x, t)

)
v0(x, t)

+
(
g
(
u0(x, t) + u1(x, t)

)(
v0(x, t) + v1(x, t)

)− g
(
u0(x, t)

)
v0(x, t)

)
H(−x)

+OD′(ε), ε → +0.
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Next, after the change of variables x = −εη, we have

J(ε) =
〈(

e(t)δv1(−x, ε) + R(t)
1

ε
Ω′′

(−x

ε

))
g
(
u(x, t, ε)

)
, ψ(x)

〉

= ψ(0)
(
e(t)a(t) + R(t)c(t)

)
+ O(ε), ε → +0, ∀ψ(x) ∈ D(R).

¤

Lemma 4.4. Let g(u) be a smooth function, let u0, uk, v0, vk be constants, ek(t)
be bounded functions. If u(x, t, ε), v(x, t, ε) are defined by (3.2) then

v(x, t, ε)g
(
u(x, t, ε)

)
= g(u0)v0

+
(
g(u0 + u1)

(
v0 + v1

)− g(u0)v0

)
H(−x + φ1) + B̃1

(∆φ

ε

)
H(−x + φ1)

+
(
g(u0 + u2)

(
v0 + v2

)− g(u0)v0

)
H(−x + φ2) + B̃2

(
− ∆φ

ε

)
H(−x + φ2)

+

(
e1(t)A1

(∆φ

ε

)
+ R1(t, ε)CR1

(∆φ

ε

))
δ(−x + φ1)

(4.8) +

(
e2(t)A2

(
− ∆φ

ε

)
+ R2(t, ε)CR2

(
− ∆φ

ε

))
δ(−x + φ2) + OD′(ε), ε → +0,

where ∆φ = φ2 − φ1 and the estimate OD′(ε) is uniform with respect to ∆φ.
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Here “interaction switch functions” have the following form:

(4.9)

B̃1(ρ) =
∫ {[

g′
(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)

×
(
v0 + v1ω0v1(η) + v2ω0v2(η + ρ)

)

−g′
(
u0 + u1ω0u1(η)

)(
v0 + v1ω0v1(η)

)]
u1ωu1(η)

+
[
g
(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)

−g
(
u0 + u1ω0u1(η)

)]
v1ωv1(η)

}
dη,

B̃2(−ρ) =
∫ {[

g′
(
u0 + u1ω0u1(η − ρ) + u2ω0u2(η)

)

×
(
v0 + v1ω0v1(η − ρ) + v2ω0v2(η)

)

−g′
(
u0 + u2ω0u2(η)

)(
v0 + v2ω0v2(η)

)]
u2ωu2(η)

+
[
g
(
u0 + u1ω0u1(η − ρ) + u2ω0u2(η)

)

−g
(
u0 + u2ω0u2(η)

)]
v2ωv2(η)

}
dη,

A1(ρ) =
∫

g
(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)
ωδ1(η) dη,

A2(−ρ) =
∫

g
(
u0 + u1ω0u1(η − ρ) + u2ω0u2(η)

)
ωδ2(η) dη,

CR1(ρ) =
∫

g
(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)
Ω′′

1(η) dη,
CR2(−ρ) =

∫
g
(
u0 + u1ω0u1(η − ρ) + u2ω0u2(η)

)
Ω′′

2(η) dη.

In addition, the “interaction switch functions” satisfy the relations

(4.10)

lim
ρ→+∞

B̃k(ρ) =
(
v0 + v1 + v2

)
g(u0 + u1 + u2)

−(
v0 + v1

)
g(u0 + u1)

−(
v0 + v2

)
g(u0 + u2) + v0g(u0),

lim
ρ→−∞

B̃k(ρ) = 0,

lim
ρ→+∞

Ak

(
(−1)k−1ρ

)
= ak,

lim
ρ→+∞

CRk

(
(−1)k−1ρ

)
= ck, k = 1, 2,

where ak, ck are constants defined by (3.8). Moreover, for any ρ ∈ R
B̃1(ρ) + B̃2(−ρ) =

(
v0 + v1 + v2

)
g(u0 + u1 + u2)

(4.11) −(
v0 + v1

)
g(u0 + u1)−

(
v0 + v2

)
g(u0 + u2) + v0g(u0).

Proof. First, we construct the weak asymptotics of the following expression

J(a, ε) =
〈
g
(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)

×
(
v0 + v1Hv1(−x, ε) + v2Hv2(−x + a, ε)

)
, ψ(x)

〉
, ∀ψ(x) ∈ D(R).
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Since

J(a, ε) =
〈
g
(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)×
(
v0 + v1Hv1(−x, ε) + v2Hv2(−x + a, ε)

)
,

d

dx
ψ(−1)(x)

〉
, ψ(−1)(x) =

∫ x

−∞
ψ(ξ) dξ,

integrating by parts and taking into account that ψ(−1)(−∞) = 0, ψ(−1)(+∞) =
〈1, ψ(x)〉, and

g
(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)(
v0 + v1Hv1(−x, ε)

+v2Hv2(−x + a, ε)
)
ψ(−1)(x)

∣∣∣∣
∞

−∞
= 〈v0g

(
u0

)
, ψ(x)〉,

we obtain J(a, ε) = 〈v0g
(
u0

)
, ψ(x)〉+ J1(a, ε) + J2(a, ε), where

J1(a, ε) =

∫ {
g′

(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)

×
(
v0 + v1Hv1(−x, ε) + v2Hv2(−x + a, ε)

)
u1

1

ε
ωu1

(−x

ε

)

+g
(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)
v1

1

ε
ωv1

(−x

ε

)}
ψ(−1)(x) dx,

J2(a, ε) =

∫ {
g′

(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)

×
(
v0 + v1Hv1(−x, ε) + v2Hv2(−x + a, ε)

)
u2

1

ε
ωu2

(−x + a

ε

)

+g
(
u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)

)
v2

1

ε
ωv2

(−x + a

ε

)}
ψ(−1)(x) dx.

After the change of variables x = −εη, we transform J1(a, ε) to the form

J1(a, ε) =

∫ {
g′

(
u0 + u1ω0u1(−η) + u2ω0u2

(
− η +

a

ε

))

×
(
v0 + v1ω0v1(−η) + v2ω0v2

(
− η +

a

ε

))
u1ωu1(−η)

+g
(
u0 + u1ω0u1(−η) + u2ω0u2

(
− η +

a

ε

))
v1ωv1(−η)

}( ∫ εη

−∞
ψ(ξ) dξ

)
dη

= B̂1

(a

ε

)
〈H(−x), ψ(x)〉+ O(ε),

where the estimate O(ε) is uniform with respect to a, 〈H(−x), ψ(x)〉 =
∫ 0

−∞ ψ(ξ) dξ,
and

B̂1(ρ) =

∫ {
g′(u0 + u1ω0u1(−η) + u2ω0u2(−η + ρ))

×(
v0 + v1ω0v1(−η) + v2ω0v2(−η + ρ)

)
u1ωu1(−η)
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(4.12) +g(u0 + u1ω0u1(−η) + u2ω0u2(−η + ρ))v1ωv1(−η)
}

dη.

Analogously, making the change of variables x = εη + a we obtain

J2(a, ε) = B̂2

(
− a

ε

)
〈H(−x + a), ψ(x)〉+ O(ε),

where the estimate O(ε) is uniform in a, 〈H(−x + a), ψ(x)〉 =
∫ a

−∞ ψ(ξ) dξ, and

B̂2(−ρ) =

∫ {
g′(u0 + u1ω0u1(−η − ρ) + u2ω0u2(−η))

×(
v0 + v1ω0v1(−η − ρ) + v2ω0v2(−η)

)
u2ωu2(−η)

(4.13) +g(u0 + u1ω0u1(−η − ρ) + u2ω0u2(−η))v2ω0v2(−η)
}

dη.

Adding derivatives of the terms g
(
u0 + u1ω0u1(η)

)(
v0 + v1ω0v1(η)

)
and −g

(
u0 +

u2ω0u2(η)
)(

v0 + v2ω0v2(η)
)

to the integrands (4.12) and (4.13), respectively, we

obtain

(4.14)
B̂1(ρ) =

(
g(u0 + u1)

(
v0 + v1

)− g(u0)v0

)
+ B̃1(ρ),

B̂2(−ρ) =
(
g(u0 + u2)

(
v0 + v2

)− g(u0)v0

)
+ B̃2(−ρ),

where “interaction switch functions” B̃k((−1)k−1ρ), k = 1, 2 are defined by (4.9).
Next, we construct the weak asymptotics of the expression J0(a, ε) = J0

1 (a, ε) +
J0

2 (a, ε), where

J0
1 (a, ε) = 〈g(

u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)
)

×
(

e1(t)δv1(−x, ε) + R1(t, ε)
1

ε
Ω′′

1

(−x

ε

))
, ψ(x)〉,

J0
2 (a, ε) = 〈g(

u0 + u1Hu1(−x, ε) + u2Hu2(−x + a, ε)
)

×
(

e2(t)δv2(−x + a, ε) + R2(t, ε)
1

ε
Ω′′

2

(−x + a

ε

))
, ψ(x)〉.

Making the change of variables x = εη we transform J0
1 (a, ε) to the following

form
J0

1 (a, ε) = e1(t)ψ(0)A1

(a

ε

)
+ R1(t, ε)ψ(0)CR1

(a

ε

)
+ O(ε);

making the change of variables x = εη + a, we obtain from J0
2 (a, ε) the following

expression

J0
2 (a, ε) = e2(t)ψ(a)A2

(
− a

ε

)
+ R2(t, ε)ψ(a)CR2

(
− a

ε

)
+ O(ε),

where the estimates O(ε) is uniform with respect to a and “interaction switch func-
tions” Ak((−1)k−1ρ), CRk((−1)k−1ρ), k = 1, 2 are defined by (4.9).

Adding J(a, ε) = 〈v0g
(
u0

)
, ψ(x)〉 + J1(a, ε) + J2(a, ε) and J0(a, ε) = J0

1 (a, ε) +
J0

2 (a, ε), we obtain the weak asymptotics (4.8).
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Passing to the limit as ρ → ±∞ in (4.9) by integrating the limit expressions,
we obtain the first and the second relations (4.10). The other relations (4.10) are
obtained from (4.9), (3.8).

Next, after the change of variables η − ρ → −η, we obtain from (4.9)

B̃2(−ρ) =

∫ {
g′

(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)(
v0 + v1ω0v1(η)

+v2ω0v2(η + ρ)
)
u2ωu2(η + ρ) + g

(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)
v2ωv2(η + ρ)

−g′
(
u0 + u2ω0u2(η)

)(
v0 + v2ω0v2(η)

)
u2ωu2(η)− g

(
u0 + u2ω0u2(η)

)
v2ωv2(η)

}
dη.

Adding B̃2(−ρ) and B̂1(ρ), we have

B̃1(ρ) + B̃2(−ρ)

=

∫ (
g
(
u0 + u1ω0u1(η) + u2ω0u2(η + ρ)

)(
v0 + v1ω0v1(η) + v2ω0v2(η + ρ)

))′
dη

−
∫ (

g
(
u0 + u1ω0u1(η)

)(
v0 + v1ω0v1(η)

)
+ g

(
u0 + u2ω0u2(η)

)(
v0 + v2ω0v2(η)

))′
dη.

Formula (4.11) is obtained by integrating the last relation. ¤
Remark 4.1. (see [5, Remark 1.1.]) Mollifiers ωuk(τ), k = 1, 2 have compact

supports or decrease sufficiently fast as |z| → ∞. Therefore, we have

ω0uk(z) =
∫ z

−∞ ωuk(η) dη = 1 + O(z−N), z → +∞,
ω0uk(z) = O(|z|−N), z → −∞.

Consequently, using the Lagrange theorem, we obtain the estimate(
f ′

(
u0 + u1ω0u1(−η) + u2ω0u2(−η + ρ)

)− f ′
(
u0 + u1ω0u1(−η)

))
u1ωu1(−η)

= f ′′
(
u0 + u1ω0u1(−η) + Θu2ω0u2(−η + ρ)

)
u1u2ωu1(−η)ω0u2(−η + ρ),

where 0 < Θ < 1.
It follows from this estimate and (4.3), (4.4), (4.9), (4.10) that

B1(x, t, ρ) = f(u0(x, t) + u1(x, t) + u2(x, t))− f(u0(x, t) + u1(x, t))
−f(u0(x, t) + u2(x, t)) + f(u0(x, t)) + O(ρ−N), ρ → +∞,

B1(x, t, ρ) = O(|ρ|−N), ρ → −∞,

B̃k(ρ) =
(
v0 + v1 + v2

)
g(u0 + u1 + u2)−

(
v0 + v1

)
g(u0 + u1)

−(
v0 + v2

)
g(u0 + u2) + v0g(u0) + O(ρ−N), ρ → +∞,

B̃1(ρ) = O(|ρ|−N), ρ → −∞, N = 1, 2, . . . .

2. To analyse the dynamics of interaction of δ-shocks we need a result concerned
to autonomous ordinary differential equations. This differential equation is typical
for our approach (see (3.15), (3.16)).
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Proposition 4.1. ( [5, Proposition 4.1.]) For the autonomous differential equa-
tion

dρ

dτ
= F (ρ), F (ρ) ∈ C1(R)

to have a solution such that

ρ(τ)

τ

∣∣∣
τ→+∞

= 1, ρ(τ)
∣∣∣
τ→−∞

= ρ0,

where ρ0 is a constant, it is necessary and sufficient that the following conditions
hold:

F (ρ)
∣∣∣
ρ→+∞

= 1,

F (ρ0) = 0,
F (ρ) > 0 for ρ > ρ0,

where ρ0 is the maximal root of the equation F (ρ) = 0.
In addition, if ρ0 is an ordinary (nonmultiple) root of the equation F (ρ) = 0

then for any N = 1, 2, . . . we have ρ(τ)− ρ0 = O(|τ |−N), τ → −∞.
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