COMPARISON OF VARIOUS AUSM TYPE SCHEMES FOR THE
TWO-FLUID MODEL

TORE FLATTENA AND STEINAR EVJEB

ABSTRACT. In this paper we make further investigations of the Mizture Fluz (MF) method for
two-phase flows originally developed in the framework of the AUSMD scheme [12]. Here we use
the method in conjunction with nonlinear state relations. We address stability and accuracy
issues related to the discretization of the pressure terms, and suggest a modification that allows
for a less strict stability criterion on the timestep. We further apply the framework to the
two-phase AUSM scheme of Paillere et al (2003, Comput. Fluids 32, 891-916), denoting the
resulting scheme as MF-AUSM*. Comparisons between the previously developed MF-AUSMD
[12] as well as the original AUSM* are made through numerical experiments. In particular,
we observe that the MF-AUSM™ offers significant improvements in robustness over the original
AusSMt.

subject classification. 76T10, 76N10, 66M12, 35L65
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1. INTRODUCTION

During the last years a class of upwind schemes for the Euler equations have emerged, not being
based on the characteristic field decomposition typical of approximate riemann solver schemes like
the methods of Godunov and Roe. This new class of schemes, denoted as Advection Upstream
Splitting Methods (AUSM) is instead based on simplified velocity and pressure splittings where
the sonic waves are taken into account in the upwinding. We refer to the works of Liou et
al [16, 15, 28, 7] where these methods are elaborated.

The adoptation of such schemes has been a recent and successful trend among multi-phase flow
researchers. Examples include the works of Edwards et al [6] and Niu [17]. Niu explored hybrid
flux-type flux splitting schemes for a multicomponent flow model, whereas Edwards et al studied a
homogeneous equilibrium two-phase model with phase transitions. Characteristic for these models
is that they are very similar to the Euler systems in structure and mathematical character.

Evje and Fjelde [8, 9] considered the mixture two-phase model (drift-flux model), which is a
simplified isothermal two-phase model consisting of separate mass conservation equations and a
mixture momentum equation. Accurate and non-oscillatory resolution of mass fronts was achieved,
comparable with the Roe scheme.

In this paper we will consider a more general two-fluid model where each phase is treated
separately in terms of two sets of conservation equations; one for each phase. The interaction
terms between the two phases appear in the basic equations as transfer terms across the interfaces
(source terms). More precisely, the basic form of the model can be written on the following vector

Date: September 25, 2003.

ADepartment of Energy and Process Engineering, Norwegian University of Science and Technology,
Kolbjgrn Hejes vei 1B, N-7491, Trondheim, Norway.

BRF-Rogaland Research, Thormghlensgt. 55, N-5008 Bergen, Norway.

Email: tore.flatten@maskin.ntnu.no, steinar.evje@Qrf.no.

BCorresponding author.



2 FLATTEN AND EVJE

form:
Pgg Pgglg 0 0
Juten| proqu; 0 0
0 + O, = + . 1
1 peagug Pg0gUs + 0P POyag + Ty Qg + Mg (1)
prajv praavf + aup pOz0q + 7 Q1 + M;

Here ay, is the volume fraction of phase k with oy 4+ o, = 1, pr and v denote the density and fluid
velocities of phase k, and p is the pressure common to both phases. Moreover, 7 represents the
interfacial forces which contain differential terms (hence, are relevant for the hyperbolicity of the
model) and satisfy 7; +n = 0. M} represents interfacial drag force with My + MP = 0 whereas
Q) represent source terms due to gravity, friction, etc.

Paillere et al [19] investigated an extension of the AUSM™ scheme of Liou [15] on the full
two-fluid model, including an energy conservation equation for each phase. They found that the
AUSM* scheme was able to handle a wide range of two-phase flow problems in a stable and
nondissipative manner. However, the AUSM™ scheme displayed a tendency towards introducing
spurious oscillations and overshoots around discontinuities.

Evje and Flatten [10] investigated a related hybrid flux-splitting approach denoted as AUSMD/V
on the isothermal two-fluid model. The advantage of this approach is that robust resolution of
sonic waves may be achieved without the inclusion of additional low Mach number pressure diffu-
sion terms [7, 8, 19].

However, the AUSMD/V approach suffers from the same problems as AUSM™* regarding ac-
curate and robust resolution of discontinuities associated with the volume fraction waves. As far
as the current two-fluid model is concerned, the wave phenomena depend strongly on properties
of the mixture and involve expressions where the phasic variables are tightly coupled [5, 10]. The
AUSM class of schemes solves each phasic set of equations independently and these couplings are
not fully taken into account.

The AUSMD scheme was later refined [12] by enforcing a stronger coupling between the phasic
variables in the numerical resolution algorithm, leading to the concept of Mizture Fluz (MF)
methods. Using this approach numerical oscillations were removed, and the resulting MF-AUSMD
scheme was demonstrated to possess accuracy and robustness properties on level with the Roe
scheme.

The starting point of the present work is two basic AUSMT type schemes similar to those
studied by Pailleére et al [19]. A main objective of this work is to understand more precisely where
the MF class of schemes stand when they are compared to these two basic AUSM™ schemes.

The MF methods are first presented in a semidiscrete setting, similar to the one introduced
in [11]. Particularly, the MF methods are constructed so that they satisfy the following ”good”
properties: (i) The numerical mass fluxes reduce to upwind type of fluxes for a linear contact
discontinuity similar to those produced by an exact Riemann solver; (ii) Abgrall’s principle is
satisfied; that is, a flow uniform in velocity and pressure, must remain uniform during its temporal
evolution.

A special feature of the MF approach is that one systematically makes use of the following
pressure evolution equation

Op 0 0
P+ (g (e0500) + sy (o)) =0, @)

where
1

9p1 Opg ’
ap MPg t Gy Cgpl

K= 3)
for the construction of a suitable numerical flux associated with the pressure.

The original MF approach, as described in [12], employed a straightforward Lax-Friedrichs-like
discretization of the pressure evolution equation (2). In [12] the resulting MF-AUSMD scheme was
compared with a Roe scheme and we observed that the resolution of the sonic waves was slightly
more diffusive for the MF-AUSMD scheme. One of the purposes of this work is to eliminate this
drawback. More precisely, the main contributions of this work can be summarized as follows:
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(1) We provide more insight into mechanisms which are important for accurate and robust
resolution of the various waves by comparing two basic AUSM™ schemes, similar to those
studied by Paillere et al [19], to corresponding Mixture Flux (MF) type AUSM schemes
derived within the framework of [12].

(2) We demonstrate that the MF approach does not depend strongly on the particular form
of the basis flux used for the discretization of the convective fluxes. Particularly, we
construct an AUSM™ based mixture flux scheme, denoted as MF-AUSM™. We perform
numerical experiments indicating that the mixture flux method acts upon AUSM™ by
reducing numerical oscillations while maintaining the desirable nondissipative properties
around discontinuities. Hence the picture observed for the MF-AUSMD [12] is maintained,
demonstrating the general applicability of the MF class of schemes.

(3) We show that the MF approach presented in [12] leads to a stability criterion for the
timestep which is more strict than the standard CFL criterion

25 A @
where A\max is the fastest characteristic velocity for the system.

By way of an argument based on simplified assumptions, a modification of the MF
approach is suggested where we rescale the numerical diffusion coefficients to act more as
an “upwind” type of numerical viscosity. We demonstrate that this “upwind” rescaling
fixes the above problem, i.e. the resulting MF-schemes are stable under the CFL condition
(4). Within this framework, denoted as Rescaled Mixture Flux (RMF), the poorer stability
properties of AUSM* on sonic waves resurface. We observe that the accuracy in the
resolution of sonic waves for RMF-AUSMD is very similar to a Roe scheme whereas RMF-
AUSMT tends to produce small overshoots, demonstrating that the AUSMD seems to be
the most promising candidate for the convective flux splitting.

The paper is organized as follows: In Section 2 we state the two-fluid model we will be working
with. In Section 3 we restate two basic AUSM™ schemes for the isothermal two-fluid model similar
to those presented in [19] for the full non-isothermal two-fluid model. In Section 4 we give a general
presentation of the class of Mixture Flux (MF) schemes in a semi-discrete setting. In Section 5 we
construct three fully discrete MF schemes denoted as MF-AUSMD, MF-AUSM*, and MF-CVS.
The only difference between these schemes lies in the choice of the numerical convective fluxes
associated with the apv and apv? terms. In Section 6 we introduce a viscosity rescaling refinement
to the MF framework, improving the accuracy and efficiency on sonic waves. In particular, this
brings forth rescaled versions of the MF schemes, denoted as RMF type schemes. In Section 7
we perform numerical simulations comparing the performance of the various schemes. Finally the
basic results and conclusions of the paper are summarized.

2. THE Two-FLuiD MODEL

Throughout this paper we will be concerned with the common two-fluid model formulated by
stating separate conservation equations for mass and momentum for the two fluids, which we
will denote as a gas (g) and a liquid (1) phase. The model is identical to the model previously
considered by Paillere et al [19] and will be briefly stated here. We let U be the vector of conserved
variables

PgQg UL
pray mi
U= = . 5
Pglglg I, (5)
proqv I

By using the notation Ap = p — p?, where p' is the interfacial pressure, and 7, = (p' — p)9, s, we
see that the model (1) can be written on the form

e Conservation of mass

0 0
N (pgag) + 9z (pgagvg) =0, (6)
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0 0
5; (en) + = (marw) =0, (7)
e Conservation of momentum
0 ( ) 0 N A Jag 1P 8
51 \Pe%els +%(Pgag”g+agp)+( p—p)E—Qg-i- 8’ ®)
0 0 9 oy D
9 < Ap — p) 2 —
T (poqur) + Er (marvf + aip) + (Ap — p) o O+ M, 9)
Alternatively, the momentum conservation equations may be written on the equivalent form
0 1o} Op Ja
ot (pgagvg) + 9z (Pgagvg) + ag% + (Ap)a—; = Qg + Méja (10)
0 0 9 op Oy D
el = = +(Ap)— = MpP. 11
5 (Proav) + o (mauny) tag +(Ap) g =i+ M, (11)

2.1. Submodels. For the numerical simulations presented in this work we follow Paillére et al [19]
and use thermodynamic relations representative of water and air, derived under the assumption
of constant entropies.

For the gas phase we have

P\
ps(P) = pg (5) ; (12)
where C = 10° Pa, gz = 1 kg/m® and v = 1.4. The sound velocity is given by
2_Op _
2
a:i = — = =, (13)
¢ Ops Py
For the liquid phase we have
(D 1/n
pL = pi (E + 1) ; (14)
where pi = 10° kg/m?®, B = 3.3 - 10° Pa and n = 7.15. The sound velocity is given by
dp n
2
ai =—=—(p+B). 15
= =2+ B) (15)

Moreover, we will treat @y as a pure source term, assuming that it does not contain any differential
operators. We use the interface pressure correction
QO
Ap =g 28UPEPL ()2, (16)
Pgou + prog
where throughout this paper we use ¢ = 1.2, ensuring a hyperbolic model.

Having solved for the conservative variables U, we need to obtain the primitive variables
(ag,p,vg,v1). For the pressure variable we see that by writing the volume fraction equation
ag + a1 = 1 in terms of the conserved variables as

m m
e 4 1, (17)
pe(p)  p(p)
we obtain a relation yielding the pressure p(mg,m;). This is a nonlinear equation which does not
easily allow for an algebraic solution. Instead we use an iterative numerical algorithm to obtain
the pressure from (17).
Moreover, the fluid velocities v, and v are obtained directly from the relations

_B —"
T Uy Ty

Paillere et al [19] considered a more general model where conservation of total energy for each
phase was included. Throughout this work we will study only the isentropic 4-equation model given
above. The inclusion of energy equations does not significantly alter the existing eigenstructure of
the isentropic model, but adds entropy waves moving with the fluid velocities. It is therefore our
belief that the main difficulties related to the strong phasic couplings in the pressure and volume
fraction waves are fully present in the isentropic model.

Vg
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2.2. Wave Phenomena. The phasic sonic velocities are given by a, (13) and a; (15), satisfying

However, we note that the model possesses two characteristic sonic wave velocities approximately
given by

AP =P £ ¢, (19)
where
oP = pgalvl + PlOégUg (20)
pgu + piag
and ¢ is a mathematical mizture sound velocity approximately given by
c= [Pt P (21)

E) 3 :
BepIag + g pgan

In addition, the model possesses two characteristic volume fraction wave velocities approxi-
mately given by

A% = 0% 4, (22)
where
g = P50l + pog (23)
PgQ1 + p1og
and
= Ap(pgon + pag) — plpgalzag(vg —u)? (24)
(pgaun + prog)

These approximations are derived under the assumption that vz — v| << c¢. We refer to [26, 10]
for more details.

Remark 1. Using an interface pressure correction term of the form (16), we see that the ap-
prozimate volume fraction velocity (24) becomes imaginary if o < 1. Choosing o > 1 we obtain
real-valued wave velocities and a hyperbolic model.

3. Two AUSMT SCHEMES

We now consider the basic system (6)—(9), and assume it is discretized on the following form:
At

Uyt = U - 2L (F(U, U, - FOUY,, U)
At n gn n yn 25
- A (FP(U3, U3, — FP(UT, UD) (2)

— At ([Ap — plo;H)| + AtQJ.

Here F¢ and FP are numerical fluxes assumed to be consistent with the corresponding physical
fluxes f¢ and fP,

PgQlg Vg 0
£ — 010411112 ’ e — 0 ’
PgOlgV agp
proqvy ap
and H and Q is given by
0 0
0 0
H = y =
Qg Q Qg
a @

We see that the fluxes of the the model (6)—(9) consist of three different sort of terms; convective
flux terms 9, (paw) and 8, (pav?), conservative pressure terms 9, (ap) and non-conservative pres-
sure terms [Ap — p]0,a. The discretization of these terms as described below closely follows the
work of Paillere et al [19].
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3.1. Convective fluxes. For phase k we assume a numerical velocity of sound ¢ = [ck]j41/2
at the cell interface, to be defined below. Following Liou [15] and in turn Paillére et al [19], we
further consider the velocity splitting formulas

tlwte)? £ (0 —?)? ifju] <c

+ - 1
VEv,0) = { (v £1vl) otherwise. (26)
For each phase we now define the cell interface velocity v;; 1/, as
Vjt1/2 = v+ (vj,¢j41/2) + V7 (Vj41,C41/2), (27)
obtaining the convective mass flux
_ J (p)jvjt1s2 if vj41/2 >0
(pov)jy2 = { (pa)j11vj41/2  otherwise. (28)
From this we construct the convective momentum flux
2y _ | (paw)jq1/2v; if (paw)jt1/2 >0
(pav™)jp1/2 = { (paw)jt1/2vj41  otherwise. (29)
3.2. Pressure fluxes. We discretize the conservative pressure term as
(ap)j1/2 = PF(vj,cjq1p2)(ap)j + P~ (vj41,¢i01/2)(@p)j1 (30)
where the pressure splitting formulas are given as
pt L +c)?2F L)+ 00 —2)? if v <c 31)
7 (1 £sgn(v)) otherwise.

3.3. Definition of cell interface sound velocity. To define the sound velocities at the cell
interface we use the expression

[ekljrr/z = y/lerlilenl i (32)
for both phases. Here ¢; = ag and ¢, = a; given by (13) and (15), in accordance with Paillére et
al [19].

Remark 2. Another natural choice, more in accordance with the mixture nature of the model, is
to use the mizture sound velocity cmix given by (21). That is, for the splitting formulas (26) we
could use

Cg = €| = Cnix- (33)
Such a choice was considered in [8] for the mizture model and in [10] for the two-fluid model. For

two-phase flows, the numerical performance of the AUSM scheme may not be strongly dependent
on the choice of expression for the numerical sound velocity [9].

3.4. Low Mach number flows. Paillére et al [19] noted the need to couple the pressure and
velocity fields for low speeds, as the AUSM™ scheme acts much like a central difference scheme
in the low Mach number limit. This may lead to oscillations due to odd-even decoupling. The
problem is particularly relevant for the near incompressible (i.e. liquid) phase, as the sound
velocity may here become very large. To remedy the situation, Paillére et al suggested following
the approach of Edwards [7], modifying the liquid mass flux as described by the steps below.

(1) Calculate the basic AUSM™* mass flux (piaivi);q1/2 as given by (28).
(2) Define a cell interface Mach number M; /5 as follows:

Mjp1)o = % <(:—:)J + (Z_i)m) . (34)

(3) Define a scaling factor f(M) as

V(L= M2)? M2 4+ 4043
1+ M2 ’

where the parameter M is a “cut-off” Mach number.

f(M) = (35)
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(4) Rescale the cell interface sound velocity c¢;1/2 as follows

a = f(Mjt1/2)[a]jr1/2- (36)
(5) Compute a rescaled interface liquid velocity correction as
-~ ~ 1 _ ~ 1
[ 11/2 = VF ([, @) — 5 ([ols +1[w]iD) = V™ ([wi]j1, @) = 5 ([l + [[oljal), (37)

where the splitting formulas V* are the AUSM™ splitting formulas (26).
(6) Evaluate the pressure diffusion term as

1/ 1 —~ (aip)j — (@up)j+1
D, === —1)[u] ) (38)
+1/2 7 5 (Mg ) j+1/2 [Cl]?+1/2

(7) Modify the liquid mass flux

(marvr) ;415 = (maav1) /2 + Djga - (39)

The diffusion term D;,/» has a stabilizing effect on oscillations in the pressure variable, and
vanishes for smooth flows. The disadvantage of this approach is that the parameter M, may
require some tuning.

3.5. Non-Conservative Differential Terms. For the spatial term on the form pd,a we follow
the approach of Coquel et al [4] and Paillere et al [19] who suggested a central differencing. That
is, we write

(189-2152) =9 -, 25221, (10)

3.6. Two AUSM type schemes. Based on the above specifications we introduce the two fol-
lowing definitions:

Definition 1. We will use the term AUSMT to denote the numerical algorithm obtained from
(25) by using the convective fluzes (28) and (29), the conservative pressure flurz (30), and the
non-conservative pressure fluz (40).

Definition 2. We will use the term PD-AUSMT™ to denote the numerical algorithm obtained as
for the AUSMY* scheme but where pressure diffusion has been introduced for the liquid mass flux
as described by (34)—(39).

4. THE MF (MIXTURE FLUX) CLASS OF SCHEMES

4.1. General form. In this section we first present the MF class of schemes in a semi-discrete
setting. Fully discrete approximations of the model (6)—(9) are then obtained in Section 5. The

starting point is the model (6)—(9) on the following form:
Oymp + Oz fr = 0, (41)
Ol + 029k + arkOup + (Ap)Oyar, = Qu,

where k = g,1 and
fe = progvr  and  my = prog

2
gk = progvy, and I = progug.

We assume that we have given approximations (mﬁ’ i Ik j) ~ (mk,j (t"),Ik,j(t”)). Approxima-

tions myg,;(t) and Iy ;(t) for t € (¢",t"!] are now constructed by solving the following ODE
problem:

Mp,; +6Fk; =0,
Ik +02Grj + an,j0o Py + (Ap)j0sAr = Qi
subject to the initial conditions

mi,; (") =mp;, I (") = I

(42)
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Here 6, is the operator defined by

w j+1/2 — wj71/2 Wjy1 — Wy
Spw; = 1= I /% Oz W; ="
z Wy A ) zWji+1/2 A )

and (Ap);(t) = (Ap) (U;(t),9) is obtained from (16). Moreover, Fy j11/2(t) = Fr(U;(t), Ujs1(t)),
G jy1/2(t) = Gr(Uj(t), Ujs1(8)), Pir1/2(t) = P(U;(t), Ujy1(t)), and Ay ji1/2(t) = Ap(U;(t), Uja(2))
are assumed to be numerical fluxes consistent with the corresponding physical fluxes, i.e.

Fy(U,U) = fr = pragvr

Gr(U,U) = g, = prayvp
PU,U)=p
Ak(U U) = Q.

4.2. The class of Mixture Flux (MF) methods. Before we describe the MF approach it will
be useful to introduce some basic concepts consistent with those used in [11, 12]. Assume that we
consider a contact discontinuity given by

PL=PpR =P (43)
a1, 76 QR
(vg)L = ()L = (vg)r = (W) = v,
for the time period [t",¢"!]. All pressure terms vanish from the model (6)-(9), and it is seen that

the solution to this initial value problem is simply that the discontinuity will propagate with the
velocity v. The exact solution of the Riemann problem will then give the numerical mass flux

1 1
(paw)ji1/2 = 5plar +ar)v — Splar —ar)lvl. (44)
Definition 3. A numerical fluz F' that satisfies (44) for the contact discontinuity (43) will in the

following be termed a “mass coherent” flux.

Definition 4. A pair of numerical fluzes (Fi, Fy) that satisfy the relation

Pel jr1y2 + P1EFy 11/ = pgprv- (45)
for the contact discontinuity (43) will in the following be termed “pressure coherent” fluzes.

For a more detailed presentation of the motivation behind these definitions we refer to [12, 11].
With these definitions in hand we can proceed to a more precise definition of the Mixture Flux
methods.

Definition 5. We will use the term Mixture Flux (MF') methods to denote numerical algorithms
which are constructed within the semidiscrete frame of (42) where fluzes are given as follows:

(1) The numerical flux Ay ji1/2(t) is obtained as

o i(t) +agj+1(t
Ak"]+1/2(t) — k:]( ) 2 k:]+1( )- (46)

(2) We determine Pj1/5(t) for t € (t",¢"*'] by solving the ODE

Pj+1/2 +kj41/201541/2002 g j11/2 + [Kjr1/2Pg,5+1/2]02 D1 j4172 =0
_ i+ Pl (47)

Pipa2(th) = B a—

where the interface values k172 and py ji1/2 are computed from Pjq,5(t) together with
the arithmetic average (46) which defines ay, j11/2(t). Here k is given by

1

ap Opg :
Bp MPg T 5, gl

(48)

K =
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(3) We consider hybrid mass fluzes Fy, j11/2(t) of the form

0 0 0
B a®) = 3117200 (pyen S EP(0) + ;i SEFA @)+ pen G2 (B - F)D)) L@
j+1/2
and
0 0 0
Fooa/a(0) = 5217200 (s S ED(0) + pscn S FR0) + pgas S (P = F)()) L6
j+1/2

The coefficient variables at j41/2 are determined from the cell interface pressure P 1 /5(t)
as well as the relation

1
jy1/2(t) = 5(%’ (t) + ajt1(t))
which is consistent with the treatment of the coefficients of the pressure evolution equation

(47).

(a) The flur component FA(t) is assumed to be consistent with its physical fluz (pav)y(t)
as well as "mass coherent” in the sense of Definition 3.

(b) The fluz component FP(t) is assumed to be consistent with its physical fluz (pav)y (t)
as well as "pressure coherent” in the sense of Definition 4.

(4) We choose Gy, j11/2(t) to be consistent with the fluz component Fi* 41/2 (t) in the following
sense: For a flow with velocities which are constant in space for the time interval [t",t"T1],

that is,

Vk,j (t) = Vk,j+1 (t) = ’Uk(t), te [tn7tn+1]7 (51)
we assume that Gy j1/2(t) takes the form

Grjr1/2(t) = G jr1j2(t) = ve(OF 112 (8), (52)
where Fﬁj +1/2 (t) is the numerical flux component introduced above.

It is easy to check that the above numerical fluxes Ay ji1/2, Pjy1/2, Fr jy1/2, and Gy jy1/2 are
consistent with the corresponding physical fluxes. We refer to [12] for more details. We now state
the following important lemma whose proof can also be found in [12]:

Lemma 1. Let the mizture fluzes (49) and (50) be constructed from pressure coherent fluzes F
in the sense of Definition 4, and mass coherent fluzes F,f in the sense of Definition 3. Then the
hybrid fluxes (49) and (50) reduce to the upwind fluzes (44) on the contact discontinuity (43), i.e.
they are mass coherent.

It follows directly from Definition 5 and Lemma 1 that

Corollary 1. The mass fluxes of the MF methods given by Definition 5, are mass coherent in the
sense of Definition 3.

Moreover, by application of Lemma 1 and Definition 5, we can verify that the MF methods
satisfy the following principle due to Abgrall [1, 21, 22]:
A flow, uniform in pressure and velocity must remain uniform in the same variables during its
time evolution. We refer to [12] for its straightforward proof.

Corollary 2. The MF methods given by Definition 5, obey Abgrall’s principle. More precisely,
for the contact discontinuity (43) the semidiscrete approximation (42) takes the following form

mg,; +0z(prarvr); =0, (53)
v My, j +00z(pragvy); =0,

where (progvr)jq1/2 is on the form (44). Consequently, no momentum change is introduced and
the contact discontinuity remains unchanged except from experiencing a convective transport.
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In conclusion, Corollary 1 states that the MF mass fluxes recover the numerical fluxes of an
exact Riemann solver for a moving or stationary contact discontinuity. Corollary 2 ensures that
Abgrall’s principle [1] is satisfied. The fact that this principle is obeyed, ensures that the use of
the pressure evolution equation (47) in the discretization of the non-conservative pressure term is
consistent with basic physical understanding of two-phase flow phenomena.

Remark 3 (Mixture mass fluxes). The following differential relations are obtained from the basic
relation (17) (see [12, 11] for more details):

dp = k(pdmg + pgdmy)

0 0 54
doy = m(—a—/;ald g + 6ipgagdm1), (54)

where K is given by (48) and

dmg = ag%dp — pgdoy
op

9 (55)

dmi = a1~ dp + pda.

my Oélap p + paay

The mizture mass fluzes (49) and (50) are obtained by first introducing a flux component F,

(associated with the pressure) and F, (associated with the volume fraction) such that the mass

fluzes Fi and Fy, inspired by (55), are given by

0
E :alﬂFp"'plFa
op
9p (56)
F, = aga—;Fp — pgFy.
Inspired by the differential relations (54) we propose to give F, and Fy the following form
E, = mng]D + /<;p1FgD
op o (57)
Fa = Ka—;agﬂA — Ha—pOé]FgA,

where FP should possess the "pressure coherency” property whereas Flf should possess the “mass
coherency” property. Combining (56) and (57) yields the mizture mass flures (49) and (50). The
purpose of the F° component is to ensure that stable (non-oscillatory) pressure calculations based
on (17) is obtained whereas the purpose of the Flf‘ component is to ensure accurate resolution of
volume fraction contact discontinuities.

Remark 4 (Pressure evolution equation). Since the pressure calculation is based on the masses
my, through the relation (17), we want the pressure p to be consistent with the mass equations

Oymy, + 8wfk =0. (58)
This equation can be recast in terms of the pressure variable as follows: Multiplying the gas mass
conservation equation by kp1 and the liquid mass conservation equation by kpg and then adding
the two resulting equations, yields the equation
0 . 0 n 0 ( )+ 0 ( ) =0
KPl=—Mg + Kpg—m) + kp1 =— (pgQgv kpg=— (pragu) = 0.
pl@t g Pgat 1 pl@x Pgliglg Pgaw o
In view of the first relation of (54), the following pressure evolution equation is obtained
Op + kP10 Iy + kpg Oy = 0.

We want to consider a discretization of this equation at the cell interface in order to obtain an
appropriate numerical pressure fluz Pjiq/5(t) for t € (t",t"*']. This is the motivation leading to

(47).
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Remark 5 (The mass flux F°). The mass flut component FP is associated with the pressure
calculation as described in Remark 3. Therfore it is natural to choose a discretization of this flux
which is consistent with the discretization of the pressure evolution equation. On the semi-discrete
level, in view of (47), we therefore propose to consider the following discretization of the mass
conservation equation (58)

My jr172 021k jr172 =0, t € (t", 1"
Mg T Mg (59)
My, j1/2(th) = %

We now suggest to average as follows:

1

my,;(t) = B (M j—12(t) + M jy1/2()) 5

which implies that

. 1,. .

s (8) = 5 (g im1/2 (8)F a2 (1)) - (60)
By substituting (59) into (60) we obtain the following ODE equation for my ;(t):

. 1
g +oa (g —Teg 1) =0, te (¢

1
mi(t5) = § (m?,j—l +2my; + mZ,jH)-

This equation is the basis for designing the flux component F,?j +1/2°

5. THREE FULLY DISCRETE MF SCHEMES

The purpose of this section is to construct fully discrete schemes based on the general class of
MF schemes given by Definition 5. We first describe how to construct appropriate candidates for
the mass flux components F,f’ and F,? which were introduced in Definition 5. Then we apply these
components to propose fully discrete schemes, denoted respectively as ME-AUSM*, MF-CVS, and
MF-AUSMD. The difference between them lies in the choice of the convective fluxes only, that is,
the F,f and G‘,’? components.

5.1. A pressure coherent convective mass flux FP. As explained in Remark 5 we shall define
the numerical flux F{° from the following ODE equation for my,;(t):

. 1
Mg +oay Tkitt = Tkj-1) =0, t€ (", "]

X (61)

mi;(th) = 7 (mg,j,l +2mi; + m;{j“).
A fully discrete version of (61) is given by

midt =3 (g )
A7 + 555 Uk = Tijo1) =0 (62)
This equation can be written on the flux-conservative form
mptt =mp - At6, F",
where . LA
D, €z
Feitage = gk + Ieje) + 31 (i = M jia)- (63)

We can easily check that the proposed flux F,? possesses the ”pressure coherent” property of
Definition 4, see [12, 11].

Proposition 1. The fluz component FP given by (63) is pressure coherent in the sense of Defi-
nition 4.

5.2. Convective fluxes F,f and GkA.
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5.2.1. Van Leer. Our starting point is a simpler (lower order) version of the splitting formulas
(26) used in the AUSM™ scheme

+ _f xEWw=x0)? ifp<c
V3,0 = { T(wxv|)  otherwise. (64)
We now let the numerical fluxes be given as follows:
ass Flux. We let the numerical mass flux (pav),;,1/2 be given as
(1) Mass Fluz. We let th ical flux (pawv) ;11,2 be gi
(pav)j172 = (pA)LV T (vL; ¢jyrya) + (pa)RV ™ (VR Cja/2) (65)

for each phase.
(2) Momentum Fluz. We let the numerical convective momentum flux (pav?); 1,2 be defined
by employing upwinding based on the cell interface momentum (paw);t1/2

(pav)jy1pvr if (paw)jp1/2 >0 (66)

2y =
(pav )J+1/2 { (pav)j+1/2UR otherwise.

The van Leer fluxes possess good stability properties but are excessively diffusive on the volume
fraction waves. This motivates for proposing a mechanism for eliminating numerical dissipation,
along the lines of Wada and Liou [28].

5.2.2. AUSMD. We consider the AUSMD scheme [10] obtained by replacing the splitting formulas
V* in the van Leer scheme with the less diffusive pair

B _ vE|v] v c
Prmex = { YO0 el )
where 2 / )
_ P/
Xe= Gl + (plaw o
and 2(p/a)
— Q)R
XE= oo + (p/a)w (%)

for each phase. That is,
(1) Mass Fluz.

(paw)jr1/2 = (pa)Lv+(UL,cj+1/2aXL) + (POA)R‘N/'*(UR,CHl/z,XR) (70)
for each phase.
(2) Momentum Fluz.

(paw)jraavr  if (pav)jyij2 >0 (71)

2 . =
(paw®) 12 { (paw)j11/2vR  otherwise.

We remark that for the van Leer and AUSMD schemes, it is essential to use a common velocity of
sound to both phases to avoid oscillations in the pressure variable. We refer to [10, 12] for details.
Here we use the mixture sound velocity given by (21), and define

Cjp1/2 = max(cj, ¢jt1)- (72)

5.2.3. AUSM*. We define a cell interface velocity Vjt1/2 as
Vit12 = V(on, ¢jp1/0) + V7 (0R, ¢iga/2), (73)
where the splitting functions V* now are given by (26) and obtain the convective fluxes as follows:

(1) Mass Fluz.

. _J (pa)rLvjyise ifvjp1e 20
(pav)jyi/2 = { (pa)rVj1/2 Otherwise (™)

(2) Momentum Fluz.

2y . _§ (pav)rvjprye i vj4a/2 20
(pav™)jp1/2 = { (pav)rvjy1/2  otherwise. (1)
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5.2.4. CVS. We define a cell interface velocity v;1/2 as
vis2 = 5o+ ) + 5 (om = [on]). (76)
This corresponds to (73) with V* chosen as
VE(w,c) = %(v + |v]).

Then we obtain convective fluxes as for the AUSM* scheme described by (74) and (75). Hence,
the upwinding in CVS is based on pure advection. In particular, CVS does not make use of a
numerical sound velocity to determine the upwind direction.

In the following we use AUSMD, AUSM*, and CVS convective fluxes as bases to define MF
type of schemes. In this connection it is relevant to note that AUSMD, AUSMT, and CVS mass
fluxes possess the ”"mass coherent” property.

s ; AUSMD Ausm+ Ccvs
Proposition 2. The convective fluzes (pozv)jJrl/2 , (pav)j+1/2 , and (pow)jJrl/2 are mass co-

herent in the sense of Definition 3.

5.3. Three Mixture Flux (MF) Schemes. We are now ready to describe fully discrete MF
schemes.

5.3.1. General form. We use the shorthands my = praj and I, = myvr and consider a fully
discrete scheme based on (42) given as follows.

o Gas Mass —

myt —mn

87 8J _

AT —(SngTfj (77)
e Liquid Mass

mp; - mp;

Mt 2T - 5y (78)
e Gas Momentum

+1
Lyi —1Ig,
At (79)

An n n+1 n n n
= —6ng7j — ag ;0. P o (Ap)7d.Ag; +(Qg)7-

e Liquid Momentum
I -1y
At (80)
= —0,G" — a0, PP — (Ap)Ra, Al + (Qu)7.

5.3.2. MF-AUSMD.

Definition 6. We will use the term MF-AUSMD to denote the numerical algorithm which is
constructed within the discrete frame of (77)—(80) where fluzes are given as follows:

(1) The numerical fluz A} ;. , is obtained as

n n
Qi T U i1

Az,j+1/2 = D) (81)

2) We determine P™TY. by considering the following discretization of the pressure evolution
J+1/2

equation (47)
1 _1
PjT:-1/2 - 5@? +p]ﬂ+1)

At
.., =17, .., =1 (82)
= —(kp)" gJj+1 8 _ (kpg )" Lj+1 Lj
i+1/2 Az 8/i+1/27 Ay

where the interface values f-c]". 1/2 and p;‘,j 412 Gr€ computed from PﬁH /2 together with the
arithmetic average (81) which defines ay, ;-
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(3) We consider hybrid mass fluzes F}! 'i+1/2 of the form
Fipye = ([fﬂpgm@pm]"lﬂD’" + [kpagBppg " F" + [spcndppl] ™ (Fp ™ — FgA’"))jH/z (83)
and
P = ([fiplagappg]anD’n + [kpga1Bpp|"F2™ + [kpgagDppg]" (F" — FIA’"))HI/Z . (84)

The coefficient variables at j + 1/2 are determined from the cell interface pressure PJ 12
as well as the relation

1
Ly = 5(0‘? +af)

which is consistent with the treatment of the coefficients of the pressure evolution equation
(82).

(a) For the flux component FA

. +1/2 we refer to Section 5.2 and use

A,n AUSMD,n
it = (pav)k,j+1/2 (85)

(b) For the fluz component F-:m o, we refer to Section 5.1 and use

k.j+1/
D,n 1 A.Z’ n
F, kj+1/2 = (ij + Iy J+1) + - 1 At( k,j mk,j+1)- (86)

(4) The flux component G, J+1/2 is chosen to be consistent with the fluz component F,C
by using

J+1/2

n AUSMD,
Gtz = =Gy 12 = = (pow® Vegirjz (87)

Definition 7. We will use the term MF-AUSMT to denote the numemcal algomthm which is

identical to MF-AUSMD ezcept from the convective flux terms F,c 11 /2 and G ko +1 /2 which are
defined as follows:
(a) For the flux component Fk 12 we use
A AUSMT,
R = o) S50 )
(b) For the flur component G?ﬁ_l/z we use
A AUSMT,
Gyl = (pa“2)k,j+1/2 " (89)

Definition 8. We will use the term MF-CVS to denote the numerical algom'thm which is identical

to MF-AUSM except from the convective flux terms Fk it1/2 and G2 koj +1 /2 which are defined as
follows:
(a) For the flur component F,c 10 We use
A Cvs,
F) ,111/2 (/’av)k,j-u%' (90)
(b) For the flur component Gﬁ”;f'_lﬂ we use
A cvs,
Gy = (pav®) 5. (91)

In view of Definitions 6, 7, and 8 and Proposition 1 and Proposition 2 it follows that MF-
AUSMD, MF-AUSM™, and MF-CVS are MF schemes in the sense of Definition 5. Consequently,
Corollary 1 and 2 are applicable, and we immediately conclude that

Proposition 3. MF-AUSMD, MF-AUSM™*, and MF-CVS satisfy the following properties:
(i) The mass fluzes are mass coherent in the sense of Definition 3. (i) All schemes obey Abgrall’s
principle.
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6. VISCOSITY RESCALING

6.1. Motivation. Although the MF class of schemes allows for excellent accuracy and robustness,
it is observed that a timestep stability criterion applies that is more strict than the standard CFL

criterion
Az

22> Winas. (92)
To shed some light on the mechanism behind this feature, we write (63) as
Foilte = FE U7 Uf) = SR + Tgen) + 575 Diva e (M = M) (93)

where the numerical viscosity coefficient is simply D7 /2
waves travel with the velocity of sound ¢ (i.e. assuming vy << ¢), the following stability criterion

applies [24]

= 1/2. Assuming that the pressure

At
A < DJ+1/2
where we consider the mass equation as an independent, scalar equation. Hence, using the value

Djt1/2 = 1/2 we obtain the CFL-like criterion

<1, (94)

Ax

—>2

AL c, (95)
which is twice as strict as the expected

Ax

— >ec.

Ap 2 € (96)

Here the mass equations are viewed as scalar equations and stabilizing effects related to couplings
between the other equations are not taken into account. However, this simple analysis may to a
large extent explain why a restrictive stability criterion applies for the explicit (in time) MF class
of schemes.

6.2. Rescaled MF schemes. To improve matters, we suggest scaling the numerical viscosity of
the flux (63) as follows

Az
D,
Fy 111/2 (U" ) = (Ik IR ) ¢ i+1/2° A7 (mp; — M jv1)s (97)
where A
t
Vi1 = 2¢ Az (98)
Here we use the mathematical mixture sound velocity (21) to define 7, J2-

The choice (98) ensures that the numerical viscosity behaves as an upwind viscosity for a wave
which travels with the velocity ¢. That is, assuming that [v} ;| = [0} ;41| = [V} ;4 ol = €]/ We
see that Fk 11 /» takes the form

Fon Mi kg2 10 20 (99)
n n 1
kij+1/2 = My i1V jv1/2 otherwise.

In view of (93) and (94) we see that the stability condition now reads
Vi _ 1,
5 S
which is in accordance with the standard CFL criterion (96).

The interplay between the pressure evolution equation and the FP flux suggests that we should
also rescale the viscosity for the cell interface pressure (82). We modify as follows:

1 At
1 n n n n n
Pitie = 5 (0F +Pi) + G, [Dg ir1/oUgs = Igjen) + Ditjpa o (I — Il,j+1)]’ (100)
where Dg 1o = (lip1)]+1/2 and D Lty = (lipg)]+1/2
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To determine 5;‘“ /2 We consider the model equation
ou + cau
ot ox

which describes advection of u with the velocity ¢ > 0. Discretizing (101) at the cell interfaces
with a staggered Lax-Friedrichs scheme, similar to (100), we obtain

a1 1 n At

=0, (101)

witie = 5 (W +ufen) + G i i (47 —ufi) (102)
Treating u;irll /2 38 & flux, we wish to recover the upwind form
U?Ll/z =uj, (103)
which suggests that yn /2 should be chosen as
" 1Az 1 " -1
i+1/2 = 5 A n ( '+1/2) : (104)
J 2 At a2 J

Remark 6. An essential property of the kind of flow model we are studying is that the pressure and
momentum are inversely related to each other. More precisely, the pressure appears as a flux term
in the momentum equations and the momentum appears as a flux term in the pressure equation.
This relationship is numerically expressed by the fluzes (63) and (82). The inverse relationship
between the rescaled viscosities (104) is natural in view of this inverse relationship between the
pressure and momentum.

Definition 9. We will use the term RMF-AUSMD (Rescaled Mizture Fluz AUSMD) to denote
the numerical algorithm which is constructed within the discrete frame of (77)—(80) where fluzes
are given as follows:

(1) The numerical fluz A} jt+1/2 is obtained as in (81).
(2) We determine P;fl /2 by considering the following discretization of the pressure evolution
equation (47)

1
PTE/2 2(p1n'+p?+1)
At

(105)
In. — I, I, [

— n J+1 s n L,j+1 1,
= _(”Plf)j.ﬂ/z_gj Az Bl — (“Pg&)j_u/z ’ Az Z,

where the interface values n?+1/2 and pZ,j+1/2 are computed from P! 1 /2 together with the

arithmetic average (81) which defines o} 1/20 and &,y is given by (104).

(3) We consider hybrid mass fluves Fy'; , ,, of the same form as given by (83) and (84).

(a) For the flux component F ’+1/2 we refer to Section 5.2 and use

A A bl
Bty = (pav)g5iu ™ (106)
(b) For the flur component Fk r1/a We use
D 1 Az
Oy = U+ T + 1051/ r iy = mi ), (107)

where 7, is given by (98).
e flux componen , is chosen to be consistent wi e flux componen
4) Th t Gy iz 15 ch to b istent with th t FM

k ]+1/2
by using

2\AUSMD,n
Grjv1/2 = Gk GH1/2 = = (pav® )k,j_i_l/g (108)

Definition 10. We will use the term RMF-AUSMT™ to denote the numemcal algorzthm which
is identical to RMF-AUSMD ezcept from the convective flux terms FA and G2 which

k, +1/2 k]+1/2
are defined as follows:
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(a) For the flur component F,f:;_"H/Q we use

A, _ AUSMT,
Fiitaye = (pov) i (109)
(b) For the flur component G?,’J'T-LH /o We use
A,n _ 2\AUSM T ,n
Gk,j+1/2 = (paw )k,j+1/2 . (110)

To illustrate the basic effect of the RMF strategy, we will also consider a more elementary
scheme where the mass fluxes consist of only the F'° component.
Definition 11. We will use the term MF-F(D) to denote the numerical algorithm which is
identical to MF-AUSMD except from the mass flux terms Flﬁ 1,11 /2 which are defined as follows:
B = Ffiae (111)
Similarly, we will use the term RMF-F (D) to denote the numerical algorithm which is identical
to RMF-AUSMD ezcept from the mass flux terms FkA’ ]:L*l /2 which are defined as follows:

A‘7 — D’
Feitie =Fg i e (112)

7. NUMERICAL SIMULATIONS

7.1. AUSMTY vs PD-AUSM™. The purpose of this section is to investigate the effect of the
pressure diffusion term as described in Section 3.4. We explore the performance for two shock
tube problems as well as for the classical water faucet flow problem.

7.1.1. Toumi’s Water-Air Shock. We consider an initial value problem of a kind introduced by
Toumi [25] and investigated by several authors [23, 19, 12]. The initial states are given by

P 2.107 Pa
_ (65} _ 0.75
we=| =] (113)
V1 0
and
P 1-107 Pa
_ (85} _ 0.9
We=| = 0 . (114)
v 0

No source terms are taken into account.

Using the timestep Az/At = 1200 m/s, results for AUSM™ and PD-AUSM are given in Figure
1. The computation was performed on a grid of 100 cells for a time of ¢t = 0.04 s. For the pressure
diffusion term, the value

My =0.2 (115)

was used. The MF-AUSMD scheme was used to compute the reference solution, using a fine grid
of 10 000 cells.

We observe that severe oscillations are produced using the basic AUSM™T. For PD-AUSMT,
these oscillations are significantly reduced. However, a slight overshooting behaviour still persists.

The results for PD-AUSMT are qualitatively consistent with the results reported by Paillere et
al [19] for this problem, who considered a full 6-equation model assuming an initial temperature
corresponding to athmospheric conditions. The isentropic model with the state equations (12) and
(14) we use here assumes an entropy corresponding to atmospheric conditions. These approaches
give somewhat different results as the conditions of the problem are not atmospheric. In particular
we observe a much less dense gas phase as compared to Paillére et al [19].
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FIGURE 1. Toumi’s shock tube problem, 100 cells. AUSMt vs PD-AUSM*. Top
left: Gas fraction. Top right: Pressure. Bottom left: Liquid velocity: Bottom
right: Gas velocity.

7.1.2. A Large Relative Velocity Shock. We now consider the Riemann problem given by the initial
states

» 265,000 Pa
(3] 0.71
Wi = vg | 65 m/s (116)
O 1m/s
and
p 265,000 Pa
Wx = [65] _ 0.7 (117)
BR= e | 7 50 m/s '
vl 1m/s

Again, no source terms are taken into account. This initial value problem has previously been
studied by Cortes et al [5] and Evje and Flatten [10, 11, 12]. In particular, this problem tests the
ability of numerical schemes to handle a large velocity difference between the phases.

Using the timestep Az/At = 1000 m/s, results for AUSM* and PD-AUSMT' are given in
Figure 2. The computation was performed on a grid of 100 cells for a time of ¢ = 0.08 s. The
RMF-AUSMD scheme was used to compute the reference solution, using a fine grid of 10 000 cells.
For the pressure diffusion term, the value

Mo = 0.005 (118)

was used.

We observe that the basic AUSM™ scheme is stable on the sonic waves. However, severe
oscillations are produced around the volume fraction waves. These oscillations are removed for
PD-AUSMT, at the price of slightly smearing out the solution.
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left: Gas fraction. Top right: Pressure. Bottom left: Liquid velocity: Bottom
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7.1.3. Water faucet. We now study the classical faucet flow problem of Ransom [20], which has
become a standard benchmark [4, 10, 26, 18, 27, 19, 12].
We consider a vertical pipe of length 12 m with the initial uniform state

P 10° Pa,
_ (03] _ 0.8
w=| = 0 (119)
1 10 m/s

Grayvity is the only source term taken into account, i.e. in the framework of (8) and (9) we have

Qr = gprak, (120)

with g being the acceleration of gravity. At the inlet we have the constant conditions a; = 0.8,
v = 10 m/s and vg = 0. At the outlet the pipe is open to the ambient pressure p = 10° Pa.

We restate the approximate analytical solution presented in the references [10, 27, 19], derived
from a simplified model where the pressure variation is neglected.

VUi + 29z

for x < vot + %gt2

o 121
vi(z,t) { vo + gt otherwise. 20
—2\_1/2 142
a(z,t) = { ao(1 + 2gzv, 7) for z < Yot + 39t (122)
o otherwise.

Here the parameters ap = 0.8 and vo = 10 m/s are the initial states.

In Figure 3 we compare the basic AUSM* scheme (that is, in the framework of Section 3.4 we
consider My = 1) and the PD-AUSM* scheme with My = 1075. A grid of 1200 cells and the
timestep Az /At = 550 m/s was used.

We observe that the schemes are inseparable to plotting accuracy, and both schemes produce a
slight overshoot in the gas fraction. A similar behaviour was reported by Paillere et al [19], and the



20 FLATTEN AND EVJE

0.5 T
~ reference ——
X

045 | \ R
04| \ i

0.35 - i B

Gas fraction

0.25 - i B

02 F

L L L L L
0 2 4 6 8 10 12
Distance (m)

FIGURE 3. Water faucet problem, 1200 cells. AUSM* (M = 1) vs PD-AUSM™
(Mo = 1079).

basic AUSMD scheme also suffers from this [10]. For this problem the pressure is approximately
uniform, hence the pressure diffusion term has little effect.

7.1.4. Conclusions. These flow cases illustrate that the basic AUSM™ scheme suffers from a ten-
dency to produce numerical oscillations near discontinuities. The modified PD-AUSM™ is better,
altough some oscillatory behaviour still persists. A weakness of the PD-AUSM™ approach is that
the diffusion parameter M, requires some tuning and may be problem-dependent.

7.2. Comparison of the MF schemes. In this section, we compare the performance of MF-
AUSMD, MF-AUSM* and MF-CVS. In particular, it is demonstrated that MF-AUSMT is a better
alternative than PD-AUSMT for removing numerical oscillations from the basic AUSMT scheme.

7.2.1. Toumi’s Water-Air Shock. In Figure 4 the MF-AUSM, the MF-AUSMD and the MF-CVS
schemes are compared. A grid of 100 cells and a timestep Az/At = 2000 m/s was used.

We see that the results represent a significant improvement as compared to the basic AUSM*
scheme of Figure 1. Notably the MF-CVS produces results comparable to the PD-AUSM™ scheme
without incorporating free parameters nor a numerical sound velocity.

We observe no oscillatory behaviour around sonic waves. However, a slight difference between
the different schemes in the resolution of volume fraction waves is visible. The MF-CVS scheme
produces a significant overshoot in the liquid velocity, and we also observe some spurious oscilla-
tions for MF-AUSM™. The performance of MF-AUSMD is best.

7.2.2. Large Relative Velocity Shock. As can be seen from Figure 2, the volume fraction waves
appear as a small wedge near £ = 50 m. As opposed to the water faucet problem, the volume
fraction waves here split into two genuinely non-linear waves moving with different velocities. We
now wish to focus more strongly on this phenomenon, and thereby illustrate a basic difference in
the dissipative mechanism of MF-CVS and the MF-AUSM schemes.

Focusing the plot around the voulme fraction waves, the MF-AUSM* and MF-AUSMD schemes
are compared in Figure 5, using a grid of size Az = 0.01 m. We observe little difference between
the schemes.

The MF-CVS scheme is compared with the MF-AUSM* scheme in Figure 6, using the same
computational grid Az = 0.01 m. Strong oscillations occur for the MF-CVS scheme.

It is worth noting that the pure advective upwinding (76) used by CVS is the correct upwind
form for a contact discontinuity of uniform pressure and velocity. Hence we expect MF-CVS to
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work well for such contact discontinuities (or weakly non-linear waves). However, as this last
example shows, the more refined dissipative mechanisms of the MF-AUSM schemes are needed to
properly resolve strongly non-linear phenomena in the volume fraction waves.

7.2.3. Water Faucet. In Figure 7 we investigate how the different schemes converge to the expected
analytical solution for the gas fraction as the grid is refined. There is no significant difference
between any of the MF schemes, which all produce non-oscillatory behaviour for this problem. In
particular we observe that the overshoot of Figure 3 is removed.

7.2.4. Conclusions. MF-AUSM™ represents a better way of introducing the right amount of dis-
sipation for a robust resolution of pressure than PD-AUSM™. No significant differences between
MF-AUSMT and the related MF-AUSMD scheme have been demonstrated. The simpler MF-CVS
scheme performs well when the volume fraction waves are essentially linear, as is the case for the
water faucet problem, but is inferior to the MF-AUSM schemes in resolving non-linear volume
fraction waves.

7.3. The RMF Strategy. In this section we apply the rescaling technique descried in Section 6 to
the MF-AUSM™ and MF-AUSMD schemes, enabling us to use larger timesteps and achieve a more
accurate resolution of sonic waves. In order to demonstrate clearly the impact of the rescaling on
the resolution of the sonic waves, we first compare the performance of the MF-F (D) and the RMF-
F(D) schemes given by Definition 11. For these schemes the flux component F,;“ = FkD , hence,
we cannot expect an accurate resolution of the volume fraction contact discontinuity. Comparison
with a Roe scheme is made. We refer to [10, 26] for a description of the implementation of the
Roe scheme.

Next, we compare the RMF-AUSMD and RMF-AUSM™T. We shall observe that the rescaling
technique reveals a difference in the dissipative mechanisms of AUSM* and AUSMD regarding
their behaviour on sonic waves.



FIGURE 7. Water faucet problem, T=0.6s. Grid refinement for different schemes.
Top: MF-CVS scheme. Middle: MF-AUSM™ scheme. Bottom: MF-AUSMD
scheme.
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7.3.1. Large Relative Velocity Shock. For the LRV shock, the maximum wave velocity is approxi-
mately

[Almax & 500m/s, (123)

representing the right-moving sonic wave.
Assuming a grid of 100 cells, numerical investigations reveal the critical timestep to be

Az /At =525 m/s (124)
for the RMF schemes, and more strictly
Az /At = 660 m/s (125)

for the basic MF schemes. Hence the RMF schemes allow for larger timesteps and more efficient
integration.

In Figure 8 we compare the Roe scheme, the MF-F(D) scheme and the RMF-F(D) scheme using
a grid of 100 cells. Here the timestep (124) is used for the Roe and RMF-F(D) scheme, whereas
(125) is used for the MF-F(D) scheme. We observe that RMF-F(D) produces a non-oscillatory
approximation of the sonic waves, while noticably improving the approximation properties of the
basic F(D) flux. We obtain an accuracy on sonic waves comparable with the Roe scheme, and the
RMF strategy works as intended.

In Figure 9, RMF-AUSMD and RMF-AUSM™ are compared to the RMF-F(D) scheme using a
grid of 100 cells and the timestep (124). The RMF-AUSMD is able to preserve the basic stability
properties of RMF-F(D), while being significantly more accurate on the volume fraction waves.
However, RMF-AUSM™ introduces small overshoots as compared to RMF-F(D). This comparison
reveals that the AUSMD fluxes seems to be more consistent with the MF approach than the
AUSMT fluxes.



AUSM SCHEMES FOR TWO-PHASE FLOWS 25

0.712 T T T T 271000

RMF-F(D) -------
RMF-AUSM+ ~ ~
RMF-AUSMD ©

270000 -

-

0.708 -
269000 -

L reference
0.706 F-Fo

268000 -

Liquid fraction
Pressure (Pa)

0.704 -

267000 -
0.702 -

266000 -

0.698 . . L . 265000
0 20 40 60 80 100 0

Distance (m) Distance (m)

1.015 T T T T 66

reference —— reference J—
RMF-F(D) ------- N peocssssscssey; RMF-F(D) ------
RMF-AUSM+ ~ ~ essses sassassassasssassassaseat’ o L RMF-AUSM+ ~ ~
RMF-AUSMD o e ® RMF-AUSMD ©

62 -

60 -

58 -

56 -

Liquid velocity (m/s)
Gas velocity (m/s)

54 -

52 -

50 -

0.98 L L L L a8 L L L L
0 20 40 60 80 100 0 20 40 60 80 100

Distance (m) Distance (m)

FIGURE 9. LRV shock tube problem, 100 cells. RMF-F(D), RMF-AUSM* and
RMF-AUSMD scheme. Top left: Liquid fraction. Top right: Pressure. Bottom
left: Liquid velocity: Bottom right: Gas velocity.

7.3.2. Toumi’s Water-Air Shock. Results are given in Figure 10 for the RMF-AUSM™ scheme and
RMF-AUSMD scheme, using a grid of 100 cells and a timestep

A

Tf = 1140 m/s. (126)
We observe that the sonic waves are reproduced with less numerical diffusion as compared to
Figure 4. There is an overshoot in the right-going (fastest) sonic wave for RMF-AUSM™, whereas
RMF-AUSMD has no such problems.

7.3.3. Water Faucet. As observed for the shock tube problems, we found that the viscosity rescal-
ing allows us to use a bigger timestep for the numerical integration. In particular, we found the
critical timestep to be Az/At = 540 m/s for the basic MF schemes and

A

Tj =390 m/s (127)
for the RMF schemes.

In Figure 11 the RMF-AUSM™ scheme is compared to the RMF-AUSMD scheme for T' = 0.6

s on a grid of 120 computational cells, using the timestep Az/At¢t = 390 m/s. The schemes are
inseparable to plotting accuracy.

7.3.4. Conclusions. The viscosity rescaled RMF-AUSM™T and RMF-AUSMD allow for higher in-
tegration timesteps than the basic MF-AUSM* and MF-AUSMD schemes. A difference between
the inherent robustness properties of AUSMT and AUSMD manifests itself on the resolution of
sonic waves. More precisely, we observe that the RMF-AUSMD scheme is robust whereas the
RMF-AUSMT scheme may induce oscillations around sonic shocks.
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velocity: Bottom right: Gas velocity.

7.4. Extensions to Higher Order Spatial Accuracy. In this section, we illustrate the pos-
sibility of achieving higher order spatial accuracy by adapting the MUSCL strategy of van Leer
[14]. Following [15, 8], we apply a slope-limiting procedure to the primitive variables

W = (128)

to calculate new interface values UY(W;_1,W;, W;1) and UNW,_1,W;, W;;1). We now
modify the convective fluxes F{* and G2 of Definition 5 as follows:

ﬁﬁ-1/2 = FA(IA-T?;IAJ?H) (129)
and
G?—i-l/? = GA(U?,U;‘_H), (130)

where we use the “minmod” slope-limiter.

Remark 7. In general, one could explore applying a slope-limiting procedure also on the pres-
sure evolution equation (A7) and the flur component Fp, aiming for higher order accuracy on
the pressure waves. In this paper, we restrict ourselves to demonstrating that the above simple
procedure allows for improved accuracy on the volume fraction waves without sacrificing stability
on the pressure waves.

7.4.1. Water Faucet. In Figure 12 the first order and minmod RMF-AUSMD schemes are com-
pared, using a grid of 120 computational cells.

We observe that the minmod strategy allows for significantly improved accuracy, at the price
of introducing slight overshoots. These overshoots seem to decay with grid refinement, as is
illustrated in Figure 13.
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7.4.2. Separation Problem. We now consider the separation problem introduced by Coquel et al
[4], previously investigated by Paillere et al [19] and Evje and Flatten [10, 11, 12]. The problem
consists of a vertical pipe of length 7.5 m, initially filled with stagnant liquid and gas with a
uniform pressure of pg = 10® Pa, and a uniform liquid fraction of oy = 0.5. The pipe is considered
to be closed at both ends, i.e. both phasic velocities are forced to be zero at the end points.

Assuming that the phases are accelerated by gravity only, the following approximate analytical
solution was presented in [10]

0 forz< %th
a(z,t) =4 0.5 for $gt® <z < L — gt? (131)
1 for L — %th <z

where L = 7.5 m is the length of the tube. This approximate solution consists of a “contact” wave
at the top of the tube and a shock wave forming at the bottom. After the time

L
T = \/; =0.87s, (132)

these discontinuities will merge and the phases become fully separated. The volume fraction
reaches a stationary state, whereas the other variables slowly converge towards a stationary solu-
tion. In particular we expect the stationary pressure to be fully hydrostatic, approximately given
by

_ Do for x < L/2
pla,t) = { po+mg(x—LJ2) forz>L/j2. (133)

7.4.3. Transition to One-Phase Flow. Tt has previously been observed that the basic MF-AUSMD
scheme may produce instabilities as the limit a,; = 0 is approached [12]. The minmod RMF-
AUSMD scheme has a similar behaviour, and a modification is required for a stable numerical
transition to one-phase flow.
We will here follow an approach similar to the one used in [12]. The approach may be described
by two steps:
(1) Remowal of numerical stiffness. The idea is to replace the RMF-AUSMD scheme with a
more dissipative scheme near one-phase regions, as described by the following definition
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FIGURE 14. Separation problem, T=1.5s. RMF-AUSMD* with minmod limiter,
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velocity. Bottom right: Gas velocity.

Definition 12. We consider a hybrid of the RMF-AUSMD and the van Leer scheme,
denoted as RMF-AUSMD*, where the numerical mass fluxes are given by the following
expression

FRMF-AUSMD® _ cpvan Leer | (] _ o) pRMF—AUSMD, (134)

Here s is chosen as
§ = max(¢L7 ¢R)7 (135)

where ¢ is an indicator function designed to be 1 near one-phase regions, 0 otherwise.
The momentum fluzes are unchanged.

For the purposes of this paper we choose
¢; = e klagly | o—klaul} (136)

where we use the parameter k¥ = 50. In addition, the minmod limiter is used both on the
RMF-AUSMD component and the van Leer component.

(2) Remowal of unphysical velocity gradients. With no friction forces acting upon the phases,
the hydrostatic pressure gradients will induce an acceleration of the light gas phase as
ag — 0. The resulting large velocity gradients are unphysical, as in reality we expect the
last remnants of gas to be dissolved in the liquid, yielding vg ~ vi.

To remedy this, we follow the approach of Paillére et al [19], and include an interface
momentum exchange term on the form

Mx? = Cogaipg(vg — v1), (137)
where C > 0 and MP = —Mg , conserving total momentum. For the coefficient C' we
choose

C = Coe Flosly | (138)

where Cy = 3000 s~ 1.

Results after T' = 1.5 s are plotted in Figure 14, using a grid of 100 cells and a timestep
Az /At = 650 m/s. At this point stationary conditions are reached. The phases are separated,
and the expected hydrostatic pressure gradient is recovered.

A comparison between the minmod and first order RMF-AUSMD* schemes during the transient
period is given in Figure 15, where we consider the effect of grid refinement. As expected, we
observe a significant improvement in accuracy for the minmod scheme.
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8. SUMMARY

In this paper, we have investigated several aspects of AUSM type schemes for a two-phase flow
model. Our conclusions may be summarized as follows:

e The basic AUSM™ scheme is highly oscillatory around discontinuities. In particular,
AUSM™ lacks robustness around sonic waves. Additional dissipative terms are required
to stabilize AUSM™.

o Paillére et al [19] investigated the effect of a pressure diffusion term, resulting in the
scheme denoted as PD-AUSM™ in this paper. We have demonstrated that the mizture
fluz (MF) strategy of Flatten and Evje [12] may be applied to AUSM™, and the resulting
MF-AUSMT is more robust than PD-AUSM.

e There is little difference between the MF-AUSMD and the MF-AUSM™ schemes. However,
they are both superior to a simple one-sided advective splitting, the MF-CVS, in robustness
on volume fraction waves.

e We have introduced a viscosity rescaling technique allowing us to relax the timestep re-
striction for the MF schemes. Within this framework, denoted as Rescaled Mixture Flux
(RMF), the poorer stability properties of AUSM™ on sonic waves resurface. We observe
that the RMF-AUSMD is superior to RMF-AUSM™ in robustness on sonic waves.

e The MUSCL strategy has been successfully applied to the RMF-AUSMD scheme, allowing
for higher order accuracy on the volume fraction waves.

In particular, we have generalised the mixture flux strategy introduced in [12]. Within the MF
framework, the AUSMD seems the most promising candidate for the convective flux splittings.
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