CFL-FREE NUMERICAL SCHEMES
FOR THE TWO-FLUID MODEL

STEINAR EVJEA:C AND TORE FLATTENB

ABSTRACT. The main purpose of this paper is to construct an implicit numerical scheme for a
two-phase flow model, allowing for violation of the CFL-criterion for all waves. Based on the
Mizture Fluz (MF) approach developed in [12] we propose both a Weakly Implicit MF (WIMF)
scheme, similar to the one studied in [11], and a Strongly Implicit MF (SIMF) scheme. The
WIMF scheme is stable for a weak CFL condition which relates time steps to the fluid velocity
whereas the SIMF scheme is unconditionally stable, at least for a moving contact discontinuity.
Both schemes apply AUSM (advection upstream splitting methods) type of convective fluxes.

The SIMF scheme is obtained by enforcing a stronger implicit coupling between the mass
equations than the one used for the WIMF scheme. The resulting scheme allows for sequential
updating of the momentum and mass variables on a nonstaggered grid by solving two sparse
linear systems. The scheme is conservative in all convective fluxes and consistency between the
mass variables and pressure is formally maintained. We present numerical simulations indicating
that the CFL-free scheme maintains the good accuracy and stability properties of the WIMF
scheme as well as an explicit Roe scheme for small time steps.

Moreover, we demonstrate that the WIMF scheme is able to give an ezact resolution of a
moving contact discontinuity. Explicit schemes cannot possess this property since it closely hang
on the fact that the time step can be related to the fluid velocity. This feature of the WIMF
scheme explains why it is very accurate for calculation of unsteady two-phase flow phenomena,
as was also observed in [11]. The SIMF scheme does not possess the ”exact resolution” property
of WIMF, however, the ability to take larger time steps can be exploited so that more efficient
calculations can be made when accurate resolution of sharp fronts is not essential, e.g. to
calculate steady state solutions.

subject classification. 76T10, 76N10, 656M12, 35L65

key words. two-phase flow, two-fluid model, hyperbolic system of conservation laws, flux split-
ting, implicit scheme

1. INTRODUCTION

We consider in this paper the two-fluid model governing two-phase flow of gas and liquid in
a pipeline. Here each phase is treated separately in terms of two sets of conservation equations,
averaged in space to yield a one-dimensional model. The interaction terms between the two phases
appear in the basic equations as transfer terms across the interfaces (source terms).

More precisely, the basic form of the model can be written on the following vector form:

POl PgQgVg 0 0
oy proqu 0 0
0 +0 = + . 1
"1 peagug | peagvl + agp pOyog + Tg Qg + M%D (1)
pranu pLV; + aip pOzon + 7 Q1+ M,

Here ay, is the volume fraction of phase k with a4+« = 1, px and v, denote the density and fluid
velocities of phase k, and p is the pressure common to both phases. Moreover, 7, represents the
interfacial forces which contain differential terms (hence, is relevant for the hyperbolicity of the
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2 EVJE AND FLATTEN

model) and satisfy 7; + 7 = 0. M} represents interfacial drag force with My + M = 0 whereas
Q) represent source terms due to gravity, friction, etc.

The majority of computer software for such two-fluid simulations are based on implicit time
integration, allowing for violation of the CFL criterion

Az
- > max 2
A7 > Pmasl @)

where Apax is the largest eigenvalue for the system. Examples include the CATHARE code
[2] developed for the nuclear industry, as well as OLGA [3] and PeTra [13] aimed towards the
petroleum industry.
Following [11], we classify implicit schemes as follows:
o Weakly implicit. The original CFL criterion (2) may be broken for sonic waves, but a
weaker CFL criterion for volume fraction waves still applies

Az
Ar 2 | Aaxs (3)
where A} .. is the largest of the two eigenvalues corresponding to volume fraction waves.

e Strongly implicit. No CFL-like stability criterion applies and the equations may in principle
be integrated with arbitrary timestep. In practice, a stability criterion applies related
to the inherent stiffness of the equation system. However, by freeing themselves from
CFL considerations, strongly implicit schemes may allow for larger timesteps (and hence
potentially more efficient computation) than weakly implicit schemes.

To build a fully discrete numerical scheme we need a basis splitting technique for the discretiza-
tion of the pressure and convective fluxes at the cell interfaces. For one-phase flow, the AUSM
(Advection Upstream Splitting Method) and its derivatives [16, 15, 27, 7] have proved highly suc-
cessfull. These ideas have been extended to two-phase flow models by Niu [17, 18], Edwards et al
[6] and Evje and Fjelde [8, 9].

For the two-fluid model we will be concerned with here, Paillére et al [19] studied an extension
of the AUSM™ scheme of Liou [15]. Evje and Flatten [10] investigated an extension of the AUSMD
scheme of Wada and Liou [27]. Common to both these approaches is an inherent accuracy compa-
rable to approximate Riemann solvers, achieved by a computationally cheap algorithm. However,
spurious oscillations and overshoots are observed near discontinuities.

This problem was to a large extent solved by taking the coupling between the mass equations
into account [12]. This approach, denoted as the Mizture Fluxz (MF) methods, involves a rough
splitting of the mass fluxes into a fast-moving and a slow-moving component dependent of prop-
erties of the mixture. In a previous work [11], we developed a weakly implicit scheme, termed
WIMF-AUSMD, based on the MF approach combined with the use of AUSMD convective fluxes
similar to those applied in [10].

The purpose of the present work is to elaborate further on the class of MF schemes for the
two-fluid model. The MF methods are first presented in a semidiscrete setting, similar to the
one introduced in [11]. Particularly, the MF methods are constructed so that they satisfy the
following ”good” properties: (i) The numerical mass fluxes reduce to upwind type of fluxes for a
linear contact discontinuity similar to those produced by an exact riemann solver; (ii) Abgrall’s
principle is satisfied; that is, a flow uniform in velocity and pressure, must remain uniform during
its temporal evolution. Fully discrete MF schemes are then designed as follows:

e First, we construct a fully discrete Weakly Implicit MF scheme, denoted as WIMF-AUSM,
which employs AUSM type of convective fluxes similar to those used e.g. by Paillére et al
[19];

e second, we construct a fully discrete Strongly Implicit MF scheme, denoted as SIMF-
AUSM, which also apply convective fluxes of the AUSM type.

In previous works dealing with construction of schemes within the MF framework [12, 11], we
have applied AUSMD type of convective schemes similar to those used in [10]. Hence, this work
serves to demonstrate some of the flexibility of the MF approach by replacing the AUSMD/V
convective fluxes applied in [12, 11] with AUSM type. Roughly speaking, it seems that as long as
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we work with convective fluxes which satisfy the requirements of the MF framework, the resulting
MF schemes are not very sensitive for the specific choice. The motivation for using AUSM type
of fluxes in the present work is that we then naturally can enforce an implicit time discretization
which allows us to produce strongly implicit schemes as described above.

Many numerical simulations are made to highlight the differences and similarities between
WIMF-AUSM and SIMF-AUSM. In particular, we observe the following;:

e For timesteps dictated by the sonic CFL condition (2) both schemes give a performance
which is similar to an explicit Roe scheme.

o The WIMF-AUSM scheme allows exact resolution of a moving contact discontinuity. This
property closely hang on the fact that WIMF-type of schemes are stable for timesteps
dictated by the weak CFL condition (3). Explicit schemes, like the Roe scheme used in
this work for comparison purposes, are excluded from possessing this property since the
timestep must obey the strong CFL condition (2).

o The SIMF-AUSM scheme gives numerical mass fluxes similar to the WIMF-AUSM scheme,
but does not possess the ”exact resolution property” for a linear contact discontinuity due
to the implicit discretization of its numerical mass fluxes. On the other hand, this scheme
is unconditionally stable for a moving linear contact discontinuity, however at a price of
introducing a strong smearing of the contact discontinuity.

More generally, the results when WIMF-AUSM and SIMF-AUSM are explored for many different
flow cases, indicate that for several cases, the SIMF scheme allows for an increased timestep
and improved computational efficiency on a given grid. In particular the SIMF scheme allows
for efficient steady state calculations. However, the SIMF is inherently more diffusive than the
WIMF on volume fraction waves. This limits the applicability of the SIMF scheme for accurate
calculation of slow transients (mass fronts), where a weakly implicit scheme may generally be
preferable.

Our paper is organized as follows: In Section 2, the particular two-fluid model we study is
presented. In Section 3 we describe the MF approach as developed in [12, 11]. Then, in Section
4 we detail fully discrete numerical schemes by working within the MF frame of Section 3. In
particular, we develop a WIMF-AUSM scheme and a SIMF-AUSM scheme. In Section 5 we state
some important properties of the SIMF-AUSM and WIMF-AUSM schemes. Finally, in Section 6
we present numerical simulations. Particularly, we demonstrate that the SIMF scheme introduced
in this paper is able to violate the CFL criterion for all waves for a wide range of problems, justifying
its description as a strongly implicit scheme. In Section 6.5 we suggest a slight modification of
the SIMF-AUSM scheme consistent with our framework, enabling it to handle the transition to
one-phase flow in a stable and accurate manner.

2. THE Two-FLUID MODEL

Throughout this paper we will be concerned with the common two-fluid model formulated by
stating separate conservation equations for mass and momentum for the two fluids, which we
will denote as a gas (g) and a liquid (1) phase. The model has been studied by several authors
[25, 4, 5, 19, 10] and will be briefly stated here. We let U be the vector of conserved variables

Pl Mg
proy m
U= = . 4
PgQglg Iy )
pLagv| 5L

By using the notation Ap = p — p?, where p’ is the interfacial pressure, and 73, = (p' — p)d, g, we
see that the model (1) can be written on the form
e Conservation of mass

0 0
ot (pgag) + oz (pgagvg) =0, (5)

0
% (o) + B (peuwr) =0, (6)
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e Conservation of momentum

0 0 Op Oa

9t (Pgagvg) + 9z (pgagvg) + ag% + Apa—mg = Qg+ Mé)a (7)
0 0 0 0
E (plawl) + % (plalvf) + Oé]a—i + Ap% =Q+ MID. (8)

The system is closed by some equation of states (EOS) for the liquid and gas phase. The numerical
methods we study in this work allow general expressions for the EOS. However, for the numerical
simulations presented in this work we assume the simplified thermodynamic relations

p1L=pro + P _2p0 9)
a
and »
Pg = a_é (10)
where
po = 1 bar = 10° Pa
pro = 1000 kg/m”,
a; = 10°(m/s)*
and

a; = 10° m/s.
Moreover, we will treat @}, as a pure source term, assuming that it does not contain any differential
operators. We use the interface pressure correction

Qg
Ap =L () )2, (11)

Pg1 + prag
where unless otherwise stated we set ¢ = 1.2. This choice ensures that the model is a hyperbolic
system of conservation laws, see for instance [25, 5]. Another feature of this model is that it
possesses an approximate mixture sound velocity ¢ given by

c= [Pt P (12)

op Op !
Bp P10+ 5y Pe

We refer to [25, 10] for more details.
Having solved for the conservative variable U, we need to obtain the primitive variables
(g, p,vg,v1). For the pressure variable we see that by writing the volume fraction equation

ag + a1 = 1 in terms of the conserved variables as
Mg my

@ o (13
we obtain a relation yielding the pressure p(mg,m;). Using the relatively simple form of EOS
given by (9) and (10) the pressure p is found as a positive root of a second order polynomial.
For more general EOS we must solve a non-linear system of equations, for instance by using a
Newton-Rapson algorithm.
Moreover, the fluid velocities vy and v are obtained directly from the relations

U U

=0 v = 0

Throughout this work we will study only the isentropic 4-equation model given above, whereas

in general energy conservation equations for each phase could also be included. In this respect we
are consistent with our previous works [10, 11].

Vg

3. A SEMI-DISCRETE SCHEME

In this section we construct semi-discrete approximations of the model (5)—(8). In Section 4 we
describe fully discrete schemes obtained from the semi-discrete scheme, and in Section 5 we state
basic properties possessed by these schemes. Finally, in Section 6 we explore the performance of
these fully discrete schemes by studying several well known two-phase flow problems.
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3.1. General form. It will be convenient to express the model (5)—(8) on the following form:
omy; + 0z fr = 0, (14)
Ol + Ougr + axOup + (Ap)Oray, = Q,

where k = g,1 and

fr = progvr  and my = prog

2
gr = progv,  and Iy = progug.

We assume that we have given approximations (mzd,fﬁj) R (mk,j (t"), I, ; (tn)) Approxima-

tions my,;(t) and Iy ;(t) for t € (t",t"*'] are now constructed by solving the following ODE
problem:

ka +(5ka7]' = 0,
. (15)
Ik,j +0:Grj + a,j62 Py + (Ap)j6ali; = Qr.j
subject to the initial conditions
my (1) = mZ,j, I ;(t") = Il?,j'
Here 4, is the operator defined by

w; —wi_ s
j+1/2 i—1/2 Wj+1 — Wy
dpwj = . , OpWjyq1/2 = Ay

and (Ap);(t) = (Ap) (Uj(t),6) is obtained from (11). Moreover, Fy, ;1 1/2(t) = Fy.(U;(t),Uj11(t)),

are assumed to be numerical fluxes consistent with the corresponding physical fluxes, i.e.

Fk(U,U) = fr = prouyvi

Gr(U,U) = g, = pragvyp
PUU)=p
Ak(U U) = 0.

3.2. The class of Mixture Flux (MF) methods. Before we describe the MF approach it will
be useful to introduce some basic concepts consistent with those used in [11, 12]. Assume that we
consider a contact discontinuity given by
PL=PR =D (16)
Qaf, 75 QR
(vg)L = ()L = (vg)r = (0)r = v,
for the time period [t",#"!]. All pressure terms vanish from the model (5)-(8), and it is seen that

the solution to this initial value problem is simply that the discontinuity will propagate with the
velocity v. The exact solution of the Riemann problem will then give the numerical mass flux

1 1
(pav)jia2 = gplar +ar)v — 5p(ar — ar)vl. (17)

Definition 1. A numerical flux F that satisfy (17) for the contact discontinuity (16) will in the
following be termed a “mass coherent” flux.

Definition 2. A pair of numerical flures (Fi, Fy) that satisfy the relation
Pl jp1y2 T PEg ji172 = Pgp1v- (18)
for the contact discontinuity (16) will in the following be termed “pressure coherent” fluzes.

Definition 3. We will use the term Mixture Flux (MF) methods to denote numerical algorithms
which are constructed within the semidiscrete frame of (15) where fluzes are given as follows:
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(1) The numerical flux Ay ji1/2(t) is obtained as

o (t) + ag j1(t)

Agjyi/2(t) = 5 (19)
(2) We determine Pjiq/5(t) for t € (t",¢"'] by solving the ODE
Pit1/2 +Ejr1720551 2000 g jr1/2 + [Kjs1/20g 54172000 D jr12 =0
Dy + Dy (20)
Piiya(ty) = %

where the interface values Kji1/5 and py ji1/2 are computed from Pji /o (t) together with
the arithmetic average (19) which defines ay, jy1/2(t). Here k is given by

1
K= (21)
= Caipg + ap agpl

(3) We consider hybrid mass fluzes Fy, j11/2(t) of the form

0 0 0
Fian a0 = 5511720 (e G PO + pos GE BN O + o GUED ~EN0) @2
j+1/2
and
Ipg 1-n Ip1 oa Ipg A
Fogonfo(® = w511/0) ( mas PEED0) + ppan SO FR (1) + pag gS (B0 - FN0) . (29)
j+1/2

The coefficient variables at j+1/2 are determined from the cell interface pressure Pjq/5(t)
as well as the relation

ajy1/2(t) = %(aa‘ (t) + ;s (1)

which is consistent with the treatment of the coefficients of the pressure evolution equation
(20).

(a) The flur component F*(t) is assumed to be consistent with its physical fluz (pav)y(t)
as well as "mass coherent” in the sense of Definition 1.

(b) The flur component FP(t) is assumed to be consistent with its physical fluz (pawv)y (t)
as well as “pressure coherent” in the sense of Definition 2.

(4) We choose G, j11/2(t) to be consistent with the flux component Fy; ]+1/2( ) in the following
sense: For a flow with velocities which are constant in space for the time interval [t", "],

that is,

Ok j(t) = vp a1 (t) = v(t),  t e[t (24)
we assume that Gy, j11/2(t) takes the form

Gk7j+1/2( )= GA]+1/2( )= Uk(t)FI?,j+1/2 (t), (25)
where F), ]+1/2( ) is the numerical flur component introduced above.

It is easy to check that the above numerical fluxes Ay, j11/2, Pjy1/2, Fy jr1/2, and Gy jy1/2 are
consistent with the corresponding physical fluxes. We refer to [12] for more details. We now state
the following important lemma whose proof can also be found in [12]:

Lemma 1. Let the mizture fluzes (22) and (23) be constructed from pressure coherent fluzes F
in the sense of Definition 2, and mass coherent fluzes F,? in the sense of Definition 1. Then the
hybrid fluzes (22) and (23) reduce to the upwind fluzes (17) on the contact discontinuity (16), i.e.
they are mass coherent.

It follows directly from Definition 3 and Lemma 1 that

Corollary 1. The mass fluzes of the MF methods given by Definition 3, are mass coherent in the
sense of Definition 1.
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Moreover, by application of Lemma 1 and Definition 3, we can verify that the MF methods
satisfy the following principle due to Abgrall [1, 21, 22]:
A flow, uniform in pressure and velocity must remain uniform in the same variables during its
time evolution. We refer to [12] for its straightforward proof.

Corollary 2. The MF methods given by Definition 8, obey Abgrall’s principle. More precisely,
for the contact discontinuity (16) the semidiscrete approzimation (15) takes the following form
My, j +0z(prowve)j = 0, (26)
v My +0de (prarvr); =0,
where (prarvy)jq1/2 i85 on the form (17). Consequently, no momentum change is introduced and
the contact discontinuity remains unchanged except from experiencing a convective transport.

In conclusion, Corollary 1 states that the MF mass fluxes recover the numerical fluxes of an
exact riemann solver for a moving or stationary contact discontinuity. Corollary 2 ensures that
Abgrall’s principle [1] is satisfied. The fact that this principle is obeyed, ensures that the use of
the pressure evolution equation (20) in the discretization of the non-conservative pressure term is
consistent with basic physical understanding of two-phase flow phenomena.

Remark 1. The following differential relations are obtained from the basic relation (13) (see
[12, 11] for more details):

dp = K(pidmg + pgdmy)

27
aidmg + %agdml), 27)

Op

doy = k(—

o
where k is given by (21) and

0
dmg = agﬁdp — pgdo
op
K (28)
dm; = alﬂdp + piday.
Op
Multiplying the gas mass conservation equation by kp; and the liqguid mass conservation equation
by kpg and then adding the two resulting equations, yields the equation

) 3, 0 0
K15, M + KPg 7M™ + Koo (Pgagvg) + kPg 5 (pannn) = 0.

In view of the first equation of (27), the pressure evolution equation (20) follows.

The mizture mass fluzes (22) and (23) are obtained by first introducing a flux component F,
(associated with the pressure) and F, (associated with the volume fraction) such that the mass
fluzes Fy and Fy, inspired by (28), are given by

0
F=a22F, +pF,

g’; (29)
Fg = O{ga—ngp — nga.
Inspired by the differential relations (27) we propose to give F,, and Fy, the following form
F, = ”PgFlD + ”PngD
ap op1 (30)
Fa = Iﬁ?a—ngégF'lA - f‘éa_pangAa

where FlP should possess the "pressure coherent” property whereas Flj* should possess the "mass
coherent” property. Combining (29) and (30) yields the mizture mass fluzes (22) and (23).

It will be useful to introduce the following two definitions of the terms weakly implicit and
strongly implicit:
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Definition 4. Assume that we initially are given a contact discontinuity (16). A numerical
scheme is said to be weakly implicit if it allows stable calculation of solutions under the CFL

condition
Az

—_— >

At —
Definition 5. Assume that we initially are given a contact discontinuity (16). A numerical scheme
is said to be strongly implicit if it allows stable calculation of solutions under no restriction on
the time step.

o). (31)

Remark 2. Note that the time step restriction (31) is consistent with the CFL condition (3). This
follows from the fact that for the contact discontinuity (16) the two eigenvalues corresponding to
volume fraction waves degenerate and coincide with fluid velocity v. We refer to [10] for more
details concerning the eigenvalue structure of the two-fluid model under considerations.

4. FuLLy DISCRETE NUMERICAL SCHEMES

The purpose of this section is to construct fully discrete schemes based on the general class of
MF schemes given by Definition 3. We first describe how to construct appropriate candidates
for the mass flux components F,? and F,? which were introduced in Definition 3. Then we
apply these components to propose fully discrete schemes, one type which is denoted as Weakly
Implicit Mizture Fluz (WIMF) and another denoted as Strongly Implicit Mizture Fluxz (SIMF).
Both schemes contain the mechanism which allows us to obtain stable pressure calculation for
large time steps. The difference between them lies in the temporal discretization of the mass
fluxes, more precisely, the F,f mass flux component.

4.1. A pressure coherent convective mass flux FP. Due to the fact that the mass flux
component F,? is associated with the pressure calculation as described in Remark 1, it is natural
to choose a discretization of this flux which is consistent with the discretization of the pressure
evolution equation. On the semi-discrete level, in view of (20), we therefore propose to consider
the following discretization of the mass conservation equations

My jr1/2 021k jr172 = 0, te (", 1"

my s+ mp iy (32)
My jv1/2(t)) = %

We now suggest to average as follows:

1
my,j(t) = 3 (Mg j—1/2(t) +mp jp1/2(1))
which implies that
. 1., . .
Mg (1) =5 (g jmry2 ()4 Mg g2 (1)) - (33)

By substituting (32) into (33) we obtain the following ODE equation for my ;(t):

. 1
My + 5 (Tt = Tej-1) =0, t€ (", "]

2A
X (34)
my ;i (th) = 1 (mﬁ,jfl +2mp ; + m?,jﬂ)-
This equation is the basis for designing the flux component F,? i1/20 A fully discrete version of

(34) which employs updated mass fluxes I,?j-l is given by

+1 1
My 4 (ng,j tmg ot m?,jﬂ) 1 (
At 2Ax
This equation can be written on the flux-conservative form

mn+1 =mt. — At
ki = MG T Ag

Iy — [l?,ﬂl) =0. (35)

8o (FP)IH2,
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where

MEj = ME 1) (36)

i1z 1, n 1Az
(FPYIHMS = S (It + 1L ) + J

Jj+1/2 2 k,j+1 ZE(
We can easily check that the proposed flux F,? possesses the ”pressure coherent” property of
Definition 2, see [12, 11].

Proposition 1. The fluz component F,P given by (36) is pressure coherent in the sense of Defi-
nition 2.

Remark 3. The motivation for enforcing an implicit treatment of the terms I, in the mass fluzes
(36) is to free the resulting schemes from the strong CFL condition (2). In [12] we studied explicit
MF schemes where the mass fluzx F,? was given the pure explicit form

1 1Az
(FI?)?+1/2 = i(lﬁj + Il?,j+1) + ZE(WZJ - mZ,jH)- (37)
The main difference between using (36) and (37) is that that (36) introduces a stronger smearing
of the sonic waves, see [11]. On the other hand, (37) does not allow the resulting MF schemes to

break the strong CFL condition (2).
4.2. Convective fluxes F* and G£.

4.2.1. FVS. For an FVS type of scheme, the convective flux terms are split into upstream and
downstream travelling components as

F(U) =F"(U) + F (U), (38)
where F = (pav, pav?)T so that the numerical flux at the interface j + 1/2 is given as
Fj+1/2 - F(UL, UR) - F+(UL) + F_ (UR) (39)

We consider the velocity splitting formulas used in previous works [15, 27, 8, 9, 10]

1 2
Vi(v,c):{ +L(vxe)? ifu]<ec

t(vtv])  otherwise
where the parameter ¢ represents the physical sound velocity for the system. For the two-fluid
model, we assume that it is given by the approximate expression (12). We define a cell interface
sound velocity ¢;; /2 as follows

; (40)

Cit1/2 = max(cj, Cjy1). (41)
We now let the numerical fluxes be given as follows
(1) Mass Fluz. We let the numerical mass flux (paw);11/2 be given as

(pav) ji1/2 = (pa) VT (vj,¢jp12) + (p@)j1 V7 (Uj41,€Cj41)2) (42)
for each phase.

(2) Momentum Fluz. We let the numerical convective momentum flux (pawv?);1/> be given
as

(pan)jHﬂ = (pav)jV+(vj,cj+1/2) + (paw)j 11 V™ (Vjg1, Cjg1/2)- (43)
4.2.2. AUSM. We define a cell interface velocity v;;/2 as

vit12 = VT (05, ¢i401/2) + V7 (041, ¢i11/2), (44)
and obtain the convective fluxes as

(p)jvjsr2 Hwjp1)2 >0 (45)
(pa)jy1vj11/2  otherwise

(pav)jyi/ = {

and (pav) )
2y _ POV) V112 ifvji1/2 >0
(pav™) 12 { (paw)j11vj41/2 otherwise. (46)
In the following we use AUSM convective fluxes as bases to define MF type of schemes. It is
straightforward to check that AUSM possesses the "mass coherent” property.

AUSM

P is mass coherent in the sense of Definition 1.

Proposition 2. The convective fluz (paw)



10 EVJE AND FLATTEN

The FVS convective mass fluxes are pressure coherent but not mass coherent. Consequently,
they are not accurate for a moving or steady contact discontinuity [10]. However, the FVS convec-
tive fluxes are very stable and will be introduced in an appropriate manner when we study flows
which involve transition to single-phase flow. We refer to Section 6.5 for details.

4.3. A Weakly Implicit Mixture Flux (WIMF) Scheme.

4.3.1. General form. We use the shorthands my = pray and I, = mygvg and consider a fully
discrete scheme based on (15) given as follows.

e Gas Mass
mtt —mn n+1/2
g,J N 8. _ _5ng7j (47)
e Liquid Mass
mlny'H —my; n+1/2
e Gas Momentum
+1 n
Lei — 13
At
Pn+1 _ pn+l (49)
i+1/2 i—1/2
= —0,(GM)g ;= o T — (AL + Q)]
e Liquid Momentum
L -1y
At (50)

ntl _ pntl

= —0,(GY)f; = ofy LHL

T (AD)SAL + (@)

4.3.2. WIMF-AUSM.
Definition 6. We will use the term WIMF-AUSM to denote the numerical algorithm which is
constructed within the discrete frame of (47)—(50) where fluzes are given as follows:

(1) The numerical flux A} ;. is obtained as

n 0427 i+ 0427 j+1
Ak7j+1/2 = % (51)

(2) We determine Pj’fllm by considering the following discretization of the pressure evolution

equation (20)
—+1 1 n 7
P — 3(0f + )
At

In-‘rl n+1 In-‘rl _ [n+1 (52)
= (k1) BB (), LT
J+1/2 Az g)j+1/2 Az )

J1/2
arithmetic average (51) which defines aj; ;. /.

(3) We consider hybrid mass fluzes F:ji{% of the form

where the interface values k and pZJ.H/Q are computed from Pj’f‘_l/2 together with the

2 ([ﬂpga18pp1]”ﬂD’n+1/2 + [kpragDppg]"FO™ + ['iplotlappl]n(FgD’ThLl/2 - FgA’n))

Lj+1/2 = i41/2
(53)
and
D, n
Fy 7 = (Ismoadyos ED™ 0 + [npeondypl FL" + [spgodyod” (12 = FEm))

(54)
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The coefficient variables at j + 1/2 are determined from the cell interface pressure Pj’f‘_l/2
as well as the relation

1
a?+1/2 = i(a? +ajyy)

which is consistent with the treatment of the coefficients of the pressure evolution equation

(52).
(a) For the flux component F2}11/2 we refer to Section 4.2 and use
AT = (paw) USMn = (P)i vk 412 v jp1ya 20 (55)
kojt1/2 = POV it/ (pa)g7j+1v2j+l/2 otherwise.
b) For the flux component FPm 2 e refer to Section 4.1 and use
k,j+1/2
D,n+1/2 1 1 1 1 Az
L = SIS+ i) + g1y (i = mij)- (56)
(4) The flux component G} j+1/2 is chosen to be consistent with the flur component F:}ilﬂ
by using
n _ An o AUSM,n _ | (POO)E S0E 5y /o v 12 20
Gigti/e = Grlyn = (P00)g i)y = { (pav)} s OF iy jy  Otherwise. (57)

4.4. Two Strongly Implicit Mixture Flux (SIMF) Schemes.

4.4.1. General form. We use the shorthands my = pray and Iy = myvr and consider a fully
discrete scheme based on (15) given as follows.

e Gas Mass
n+'1 _ mn .
g,J A7 8.J _ _6mFgrtj-1 (58)
e Liquid Mass
m,lrhLl - mJ;
»J A L _633}717,7_1 (59)
e Gas Momentum
+1 n
At
prtl  _ pn+l (60)
n j+1/2 ji—1/2
= 0. (GM)p5t = ap A 2 (Ap)jaaAg; + Qo)
e Liquid Momentum
IIT}J'H — Ilrfj

P7L+1 _ Pn+1

= =6, (@M = af; TR (AL + Q)]

4.4.2. SIMF-AUSM.

Definition 7. We will use the term SIMF-AUSM to denote the numerical algorithm which is
constructed within the discrete frame of (58)—(61) where fluzes are given as follows:
(1) The numerical flux AR i1/ is defined as in (51).
(2) We determine Pj’fllm by considering the discretization (52) of the pressure evolution equa-
tion (20)
(3) We consider hybrid mass fluzes Fgﬁlﬂ of the form

n D, 1/2 A,n
B = ([pgcndpml " FP" 2 4 [mpragpe "B+ [opandyppn) (P12 = B0t ) j1/2

(62)
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and
1/2 n n n n n D, 1/2 A,n
F;j+{/2 = ([’iplagappg] Fg]l /2 [Iipgalappl] FéA’ ot [Hpgagappg] (F1 nt/2_ F +1))j+1/2 .
(63)
The coefficient variables at j + 1/2 are determined from the cell interface pressure Pj’me

as well as the relation )
Afy)e = i(a? +aj)

which is consistent with the treatment of the coefficients of the pressure evolution equation
(52).

(a) For the flux component F:]T;% we use
1 .
Antl - (ap)AUSMntL (PO‘)Z;r Vi jrie WU e 20 (64)
k,j+1/2 k,j+1/2 (pa)Z’ij,’;jH/Q otherwise.
(b) For the fluz: component F,?/_ﬁ}f we use
Dn+1/2 1, p11 11 1Az
k12 §(Il?j + I 7)) + Zﬂ(mz,j =M jy1)- (65)
+1 : : ; A,n41
(4) Z"he ﬂua: component GZ7j+1/2 is chosen to be consistent with the flur component Fk7j+1/2
y using
+1 -
Gl — GAJH‘l — (pav2)AUSM7n+1 _ (pav)Z,j vl?,j+1/2 if Ug,j+1/2 >0 (66)
k,j+1/2 k,j+1/2 koj+1/2 (pav)z’jilvgjﬂﬂ otherwise.

4.4.3. SIMF-FVS.

Definition 8. We will use the term SIMF-FVS to denote the numerical algorithm which is
identical to SIMF-AUSM ezxcept from the convective flux terms F,?JT{% and G,;A’]T'llm which are
defined as follows:

(a) For the flux component FX" . we use

k,j+1/2
Antl _ FVS,n4l _ 1 T
FAEL = (o) S = (o) LV (0, ey ) + ()L V(0 ). (67)
(b) For the flux component G?;fllﬂ we use

A,nt1 FVS,n+1 _
Gk,ﬁH/z = (PCWQ)k,j+1n/2 = (PQU)Z;lv+(UZ,jaC?+1/2) + (POW)Z;}HV (Uz?,jH,C?H/Z))- (68)

Some comments are in order.

Remark 4. The MF approach, as reflected by the above WIMF and SIMF schemes, allows for
sequential updating of the conservative variables in the following manner:

(1) For both schemes the momentum equations (49) and (50) are solved coupled with the
pressure equation (52) to yield p;fillm and I,?;l.

(2) For WIMF the mass equations (47) and (48) with the mizture fluzes (53) and (54) are
solved separately and in an explicit manner whereas for SIMF the mass equations (58)
and (59) with the mizture fluzes (62) and (63) are solved coupled with each other to yield

n+1
m,w. .

In this respect our strongly implicit schemes (SIMF) resemble the schemes used in common in-
dustrial codes [3, 13]. Advantages of the current schemes include:

o The use of the hybrid FVS/FDS convective fluzes allows for solving the conservative vari-
ables on a nonstaggered grid.

e The central pressure flux FkD and the stronger coupling between the mass equations allow
for nonoscillatory resolution of the pressure for large timesteps.
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e The conservative momentum variables Iy, are solved for directly, and there is automatic

consistency between the pressure and mass variables.
An advantage of using the AUSM and FVS fluxes described above is that they are linear with
respect to their arguments (pa)Z'}Tl and (pav)zyl. Hence only one matriz inversion (per set of

equations) is required to solve the resulting system exactly.

5. PROPERTIES OF THE FULLY DISCRETE MF SCHEMES

In view of Definitions 6 and 7 and Proposition 1 and Proposition 2 it follows that both the
WIMF-AUSM and SIMF-AUSM scheme are MF schemes in the sense of Definition 3. Conse-
quently, Corollary 1 and 2 are applicable, and we immediately conclude that

Proposition 3. WIMF-AUSM and SIMF-AUSM satisfy the following properties:
(i) The mass flures of WIMF-AUSM and SIMF-AUSM are mass coherent in the sense of Definition
1. (ii) Both schemes obey Abgrall’s principle.

More precisely, for the contact discontinuity (16) the mass fluxes of WIMF-AUSM take the
form

WIMF—AUSM,n+1/2
(pav)y 172 /2= PLAF, 0, (69)
whereas SIMF-AUSM gives mass fluxes on the form
STMF—AUSM, _
(pav)k7]’+1/2 = pkaZ;lva (70)

where we have assumed (without loss of generality) that v > 0. The term mass coherent of
Definition 1 does not take into account the temporal aspect of the discretization and both schemes
are classified as ”mass coherent” since they produce the correct upwind form.

The purpose of the next paragraph is to focus on this temporal aspect and provide some insight
into a special feature possessed by WIMF type of schemes concerning the ability to resolve a linear
contact discontinuity (16) accurately.

5.1. Resolution of moving or stationary contact discontinuity. We now take a closer look
at the contact discontinuity given by (16). We consider a WIMF scheme where the flux component
F,? is mass coherent in the sense of Definition 1. Then, as noted above, we obtain the mass fluxes

+1/2
(pkakvk);:q//g = prag ;v, (71)
where we have assumed that v > 0.
The discrete evolution equation for the mass at cell j is given by
(prar)] ™ — (pran)} U(pkak)?fl — (prow)} (72)
At N Az '

Using that py is constant, this may be simplified to yield the discrete evolution equation for the
volume fractions. For simplicity in notation we drop the phase index k and obtain

n+1
a; - ag-‘ _ va?_l — a? (73)
At Az

If the contact discontinuity is exactly reproduced within the grid at time t" = nAt, the discrete
representation may be expressed as

o =a, for  j<i, (74)

n C
aj =ag for j>i

for some i. We remember that here vy ; = v and p; = p. From (73) we see that for such an
exactly reproduced discontinuity, only the value o; will change by stepping forward in time from

n to n + 1. We then obtain
ntl _

« QR a1, — R
i = . 75
At T Az (75)
In particular, if Az/At = v we obtain an interesting result. Then
o™ —ar =ap, —ag (76)
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or simply

at = ay,, (77)
whereas

T = ag. (78)
So we conclude that integrating the contact discontinuity (74) using the timestep Ax/At = v will
simply shift the location of the discontinuity exactly one grid cell to the right. This is exactly

the distance the contact discontinuity will move in one timestep, Az = vAt. The discrete volume
fraction distribution is now given as

a?“ = ay, for j<i+1, (79)
a™! = ag for j>i+1,

and by induction

a?+m = ag, for j<i4+m, (80)
a?“”:aR for j>i+m

for all m (within the boundaries of the grid). We may now state the following lemma

Lemma 2. Consider a WIMF type of scheme as described in Section 4.3 which is mass coherent
in the sense of Definition 1. Apply the WIMF scheme to a contact discontinuity moving with the
velocity v, as described by (16). If the optimal timestep Ax/At = |v| is used, the WIMF scheme
will exactly capture the contact discontinuity for all t™ > t°,

Proof. The above discussion proves the Lemma for v > 0. Repeating the steps for v < 0 completes
the proof. O

Some remarks are now in order.

Remark 5. Notably the proof of Lemma 2 does not rely directly upon the scheme being of the
WIMF class. An explicit scheme (like the basic AUSMD scheme studied in [10], or the MEF-
AUSMD scheme considered in [12]) which correctly reduces to the upwind scheme for the contact
discontinuity (16) will also formally satisfy Lemma 2. However, in practice such schemes will not
work as they are unstable under the violation of the sonic CFL criterion implied by the timestep
Ax /At =v. This means that slight numerical oscillations will grow exponentially into instabilities.
Even for the above case with a linear contact discontinuity, such numerical errors are expected due
to the limited floating point precision of computers.

For the WIMF class of schemes however, the presence of the implicit flux component F,? as
given by (56) will prevent the development of such instabilities.

The ability to exactly capture a contact discontinuity in a stable manner is a very desirable
feature unique to the class of WIMF schemes. Numerical evidence of this fact will also be provided
in the next section.

Remark 6. Lemma 2 does not apply to the SIMF class of mass coherent schemes as described in
Section 4.4. In this case, the numerical mass fluz becomes

(prawv) i)y = praj o (81)
for a contact discontinuity of the form (16), and (73) must be replaced by

a —an atl — L

J J Jj—1 J
= . 82
At T Ar (82)
Hence SIMF operates on a contact discontinuity much the same way as an implicit upwind scheme
operates on a scalar advection equation. That is, we expect the SIMF class of schemes to be stable,

yet diffusive. This issue is explored in the numerical section.
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T
reference
R

WIMF-AUSM ~ ©
SIMF-AUSM ~ »

Liquid fraction
-

Distance (m)

F1GURE 1. Linear contact discontinuity, 100 cells, T=5.0 s. Roe, SIMF-AUSM,
and WIMF-AUSM scheme for Az/At = 1000 m/s.

6. NUMERICAL SIMULATIONS

In the first example we study the performance of WIMF-AUSM and SIMF-AUSM for a linear
contact discontinuity. In particular,
e we want to demonstrate that WIMF-AUSM possesses the ”exact resolution property” of
Lemma 2 and is ”weakly implicit” in the sense of Definition 4;
e we want to demonstrate that SIMF-AUSM is ”strongly implicit” in the sense of Definition
d.
The purpose of the rest of the examples is to demonstrate that these ”good” properties observed
for WIMF-AUSM and SIMF-AUSM for a linear contact discontinuity to a large extent carry over
to more difficult flow cases. For many flow cases we also include results produced by the explicit
Roe scheme considered in [10].

6.1. Linear Contact Dicontinuity. We now wish to illustrate the properties of WIMF-AUSM
and SIMF-AUSM as stated in Section 5. We consider a simple linear contact discontinuity in the
volume fraction, where the initial states are given by

P 10° Pa
| | o
Wi = vg | | 10m/s (83)
vl 10 m/s
and
P 10° Pa
_ ] _ 0.25
Wi = vg | | 10m/s |~ (84)
] 10 m/s

We consider a 100 m long pipe and assume that the discontinuity is initially located at z = 0. We
use a computational grid of 100 cells and simulate a time of ¢ = 5.0 s. The discontinuity will then
have moved to the center of the pipe, being located at = = 50 m.

First, in Figure 1 we have plotted the solutions produced by the Roe, WIMF-AUSM, and
SIMF-AUSM scheme when the timestep corresponding to Az/At¢t = 1000 m/s is applied. All
three schemes are mass coherent, i.e. they produce the same upwind type of mass fluxes, and for
this time step the solutions are the same, practically speaking.

Results for different lower values of Az/At are given in Figure 2 for the WIMF and SIMF
scheme. For these larger values of At the Roe scheme becomes unstable since it must obey the
sonic CFL condition (2). SIMF-AUSM and WIMF-AUSM behave very similarly for a low timestep
(Az/At = 1000 m/s). However, increasing the timestep increases the accuracy for WIMF-AUSM
but decreases it for SIMF-AUSM.
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%AA & 1000ms ¥
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%
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%
*x
03 - x5
x
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0 20 4‘0 pistance () i;D B‘O 100 0 2‘0 4‘0 pistance () i;D B‘O 100
FIGURE 2. Linear contact discontinuity, 100 cells. SIMF-AUSM vs WIMF-AUSM
scheme for different values of Ax/At. Left: WIMF-AUSM. Right: SIMF-AUSM.

We observe that for the critical timestep Az/At = vy = vj = 10 m/s, WIMF-AUSM captures
the discontinuity exactly, as stated by Lemma 2. Increasing the timestep beyond this value will
make the WIMF-AUSM scheme unstable. On the other hand, we may increase the timestep
beyond Az/At = 10 m/s for SIMF-AUSM without inducing instabilities. Once we exceed this
critical timestep, there is a significant increase in numerical diffusion.

Thus, we may conclude that the WIMF-AUSM scheme is weakly implicit in the sense of Def-
inition 4 whereas the SIMF-AUSM scheme is strongly implicit in the sense of Definition 5. In
addition, we have demonstrated that the WIMF-AUSM scheme possesses the ”exact resolution
property” of Lemma 2.

6.2. Water Faucet Problem. We now choose another problem which focuses on volume fraction
waves. We consider the classical faucet flow problem of Ransom [20], which has become a standard
benchmark [4, 10, 25, 18, 26].

We consider a vertical pipe of length 12 m with the initial uniform state

p 10° Pa
_ ] _ 0.8
W=l = 0 : (85)
U] 10 m/s

Gravity is the only source term taken into account, i.e. in the framework of (7) and (8) we have

Qr = gprak, (86)
with g being the acceleration of gravity. At the inlet we have the constant conditions o = 0.8,

v = 10 m/s and v; = 0. At the outlet the pipe is open to the ambient pressure p = 10° Pa.
We restate the approximate analytical solution presented in the references [19, 26]

p) 142
vl(a?,t):{ Vg +2gx  for x <wot + gt (87)

vo + gt otherwise.

ao(1+ 29205 %)% for z < vot + &gt

Qg otherwise (88)

a(z,t) = {

where the parameters ap = 0.8 and vy = 10 m/s are the initial states.

In Figure 3 we compare the SIMF-AUSM and the Roe scheme for 7" = 0.6 s on a grid of 120
computational cells. In addition, the effect of reducing the timestep to A = 17 m/s is investigated
for the SIMF-AUSM and the WIMF-AUSM scheme.

We note that for the small timestep A = 1000 m/s the SIMF-AUSM scheme is virtually in-
distinguishable from the Roe scheme. Only for the pressure is any difference visible, here the
SIMF-AUSM scheme is slightly more diffusive.

However, increasing the timestep to A = 17 m/s (approximately the liquid velocity) causes
a significant increase in numerical diffusion for the SIMF-AUSM scheme, both in pressure and
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F1GURE 3. Water faucet problem, 120 cells, T=0.6 s. SIMF-AUSM, WIMF-
AUSM and Roe scheme. Top left: Gas fraction. Top right: Pressure. Bottom
left: Liquid velocity. Bottom right: Gas velocity.
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F1GURE 4. Water faucet problem, 120 cells. SIMF-AUSM vs WIMF-AUSM
scheme for different values of Axz/At. Left: WIMF-AUSM. Right: SIMF-AUSM.

volume fraction. This sharply contrasts the results of the WIMF-AUSM scheme, where the lower
integration velocity significantly improves the performance of the scheme on the slow waves.

6.2.1. Effect of increasing the timestep. We now investigate further how the SIMF and WIMF
schemes behave under different timesteps. Results after t = 0.6 s are given in Figure 4.

We observe the same picture as for the linear contact discontinuity studied in the previous
section. For low timesteps, the SIMF-AUSM and WIMF-AUSM have a similar behaviour. In-
creasing the timestep improves the accuracy of WIMF-AUSM but has the opposite effect on the
SIMF scheme. Upon breaking the strong (volume fraction) CFL criterion, WIMF-AUSM becomes
unstable whereas SIMF-AUSM merely becomes more diffusive.
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FiGURE 5. Water faucet problem, 60 cells, stationary conditions at T=5.0 s.
SIMF-AUSM vs analytical solution. Left: Gas fraction. Right: Liquid velocity.

Remark 7. These results confirm the picture observed in Section 6.1 and highlight an important
difference between the SIMF and WIMEF class of schemes. In effect, WIMF-AUSM reduces to the
upwind explicit flux (69) for a contact discontinuity, whereas SIMF-AUSM reduces to the upwind
implicit flux (70).

6.2.2. Stationary solution. We now investigate the performance of the SIMF-AUSM scheme for
very large timesteps, where the volume fraction CFL criterion is strongly violated.

Using the timestep At = 5 s, results after 2, 4 and 7 iterations are given in Figure 5, where
the results are compared to the analytical stationary solutions. We observe that the SIMF-AUSM
scheme produces qualitatively correct solutions already after 2 iterations. After 7 iterations, the
numerical solutions coincide with the analytical reference solutions for liquid velocity and volume
fraction.

6.3. Toumi’s Water-Air Shock. We consider an initial value problem introduced by Toumi [24]
and investigated by Tiselj and Petelin [23] and Paillére et al [19]. The initial states are given by

P 2-107 Pa
| o | 0.75
Wi, = v | T 0 (89)
U1 0
and
P 1-107 Pa
_ ] _ 0.9
Wr = v | T 0 . (90)
U1 0

No source terms are taken into account. For consistency with the work of Paillere et al [19],
we modify the interfacial pressure correction (11) for this problem, setting o = 2. Results after
T = 0.08 s are given in figure 6, using a grid of 100 cells and a timestep Az/At¢ = 1000 m/s. Here
we compare an explicit Roe scheme, the WIMF-AUSM scheme and the SIMF-AUSM scheme. The
reference solution was calculated by the explicit MF-AUSMD scheme described in [12], using a
grid of 10 000 cells.

We observe that the implicit schemes seem slightly more diffusive than the explicit Roe scheme.
On the other hand, the Roe scheme seems to overshoot on the volume fraction waves compared
to the reference solution.

We also note that for this low timestep, the SIMF-AUSM scheme and the WIMF-AUSM scheme
produce virtually identical solutions.

6.3.1. Effect of increasing the timestep. We now consider the SIMF-AUSM scheme on a grid of
2000 cells for varying values of the integration parameter A\ = Axz/At. Results for A = 1000 m/s,
A =100 m/s and A = 10 m/s are given in Figure 7.
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F1GURE 8. LRV shock tube problem. Grid refinement for the SIMF-AUSM
scheme. Top left: Liquid fraction. Top right: Pressure. Bottom left: Liquid
velocity: Bottom right: Gas velocity.

We observe that increasing the timestep to A = 100 m/s has the effect of increasing the numerical
diffusion on pressure waves. However, CFL instabilities are not produced even if the sonic CFL
criterion is violated.

Increasing the timestep even further to A = 10 m/s violates also the volume fraction CFL
criterion. We note that the diffusion on the pressure waves is increased even further. CFL
instabilities do not occur in the volume fraction waves, although for this high timestep spurious
oscillations and overshoots are observed.

6.4. A Large Relative Velocity Shock. We consider the Riemann problem given by the initial
states

D 265000 Pa
_ ] _ 0.71
Wi = vg | 65 m/s (91)
) 1m/s
and
D 265000 Pa
_ 5] _ 0.7
Wi = vg | 50 m/s ’ (92)
vl 1m/s

Again no source terms are taken into account. This initial value problem was proposed by Cortes
et al [5] and is of interest in that the initial discontinuity contains a large difference in the relative
velocity between the phases.

6.4.1. Convergence of SIMF-AUSM scheme. In Figure 8, grid refinement for the SIMF-AUSM
scheme is studied using a timestep of A = 1000 m/s. For reference, the Roe scheme on a grid of
10 000 cells is included. The simulation is carried out until the time 7" = 0.1 s is reached.



CFL-FREE NUMERICAL SCHEMES 21

0.715

T 271000 T
reference reference  ———
SIMF-AUS| SIMF-AUSM

SIMF-FVS -+ SIMF-FVS -+

0.71 4 270000 -

0.705 - 4 269000 -

268000 -

Liquid fraction
°
~
Pressure (Pa)

0.695 |- 4 267000 -

0.69 | 4 266000 -

L L L L L L L L L 265000 ] L L L L L L L L R
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Distance (m) Distance (m)
66

T T T
reference reference ———
SIMF-AUS! SIMF-AUSM -------

SIMF-FVS -+

SIMF-FVS  ----o-

64 -

62 -

60 -

58 -

56 -

Liquid velocity (m/s)
Gas velocity (m/s)

54

52 -

50 -

. . . . . . . . . 8 . . . . . . . . .
0 10 20 30 40 50 60 70 80 % 100 0 10 20 30 40 50 60 70 80 % 100
Distance (m) Distance (m)

FigURE 9. LRV shock tube problem, 2000 cells. Effect of large timestep for
SIMF-AUSM and SIMF-FVS. Top left: Liquid fraction. Top right: Pressure.
Bottom left: Liquid velocity: Bottom right: Gas velocity.

We see that the SIMF-AUSM scheme seems to converge to the reference Roe solution in a
monotone way. Note that the wedge in the liquid fraction at x = 50 m is a slow moving wave
structure, not a numerical oscillation.

6.4.2. Comparison with SIMF-FVS scheme. We now compare the SIMF-AUSM scheme with the
SIMF-FVS scheme using a large timestep. We use a grid of 2000 cells and a timestep A = 10 m/s,
results are given in Figure 9.

We oberve that the schemes are indistuingishable on sonic waves. On volume fraction waves, the
SIMF-AUSM scheme produces oscillations whereas the SIMF-FVS scheme is stable, yet somewhat
diffusive.

Remark 8. This is an interesting property of the SIMF-FVS scheme. Whereas the SIMF-AUSM
is preferable for small timesteps due to its accuracy properties, the more diffusive SIMF-FVS has
the ability of removing some stiffness from the system (58)—(61). Hence there may be cases where
the SIMF-FVS is the preferable approach if large timesteps are used.

6.5. Separation Problem. We follow Coquel et al [4] and consider a vertical pipe of length 7.5
m, where gravitational acceleration is the only source term taken into account. Initially the pipe
is filled with stagnant liquid and gas with a uniform pressure of py = 10° Pa and a uniform liquid
fraction of o = 0.5. The pipe is considered to be closed at both ends, i.e. both phasic velocities
are forced to be zero at the end points.

Assuming that the liquid column to be incompressible and freely falling under the influence of
gravity, the following approximate analytical solution was derived [10] for the transient period

V2gz  for z < $gt?

v(x,t) = gt for $gt* <x < L — Sgt* (93)
0 for L — %gt2 <z
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0 forz< igt?
a(z,t) =4 0.5 for $g9t> <z < L — gt (94)
1 for L— % gt? <=z
where L = 7.5 m is the length of the tube. This approximate solution consists of a contact
discontinuity at the top of the tube and a shock-like discontinuity at the lower part of the tube.

After the time
| L
T = 3 =0.87s (95)

these discontinuities will merge and the phases become fully separated. The volume fraction reach
a stationary state, whereas the other variables slowly converge towards a stationary solution. In
particular we expect the stationary pressure to be fully hydrostatic, approximately given by

Po forz < L/2

p(@,t) = { po+pig(z—LJ2) forz> L?Q. (96)
6.5.1. Transition to one-phase flow. As for the WIMF-AUSMD scheme [11], we observed that the
basic SIMF-AUSM scheme could produce instabilities in the transition to one-phase flow.

Here we will follow a strategy successfully applied in earlier works [10, 11]. We consider a hybrid
of the SIMF-AUSM and the SIMF-FVS scheme, denoted as SIMF-AUSM*, where the numerical
convective fluxes F = (pawv, paw?) are given by the following expression

FSIMF-AUSM® _ (pSIMP-FVS | (1 _ ) pSIMF-AUSM, (97)

Otherwise the SIMF-AUSM* scheme is identical to the SIMF-AUSM scheme. Here s is chosen as

s = max(¢r,, ¢r), (98)

where ¢ is an indicator function designed to be 1 near one-phase regions, 0 otherwise. For the
purposes of this paper we follow [11] and choose

¢j — e*kg[ag]? + efkl[al]? (99)

where we use the parameters kz = 50 and k; = 500.
We note that the SIMF-AUSM* scheme differs from the SIMF-AUSM scheme only near one-
phase regions.

6.5.2. Numerical results for the transient period. In Figure 10 the results of the SIMF-AUSM*
scheme are plotted for a grid of 100 cells and a timestep A = 100 m/s. The simulation was carried
out until the time 7' = 0.6 s was reached.

We observe good accordance with the expected analytical solutions.

6.5.3. Numerical results for the stationary state. Using the same grid of 100 cells and the timestep
A =100 m/s, results for the SIMF-AUSM* scheme are plotted in Figure 11 at the time 7' = 1.0 s.
Now quasi-stationary conditions are reached.

We see that the phases are well separated at this point. The lack of friction terms causes the
gas velocity to be large as the gas phase is disappearing, which causes the pressure distribution to
deviate slightly from the expected hydrostatic distribution.

6.5.4. Convergence properties of SIMF-AUSM*. In Figure 12 we investigate the convergence of
the SIMF-AUSM* scheme as the grid is refined. We use the timestep A = 100 m/s and the plot is
made at the time T'= 0.6 s. As we can see, the SIMF-AUSM* approximates the expected solution
in a monotone way.

Remark 9. An eigenvalue analysis [10] demonstrates that the volume fraction wave velocities are
roughly given by

\ = PgVg + P1agl I \/Ap(pgal + plag) — plpgalag(vg — v1)2. (100)

Pg + prog (pgou + prog)?
For this particular problem we see that these are approximately given by the gas velocity as the
gas phase is disappearing. As the maximum gas velocity here becomes higher than the integration
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F1GURE 12. Separation problem, T=0.6s. Convergence properties of the
SIMF-AUSM* scheme.

parameter X, we conclude that the the SIMF-AUSM* scheme is able to violate the CFL criterion
for both sonic and volume fraction waves for this problem.

6.6. Oscillating Manometer Problem. Finally, we consider a problem introduced by Ransom
[20] and investigated in [19, 10, 11]. This problem tests the ability of numerical schemes to handle
a change in the flow direction of a moving liquid plug.

We consider a U-shaped tube of total length 20 m. The geometry of the tube is reflected in the
z-component of the gravity field

g for0<z<5m
gz(z) =< gcos ((ml—OSmm) 7r) for5m<z<15m (101)
—g for 15 m < z <20 m.

Initally we assume that the liquid fraction is given by
107% for0<z<5m
a(z)=¢ 0999 for5m<z<15m (102)
107% for 15 m < = < 20 m.

The initial pressure is assumed to be equal to the hydrostatic pressure distribution. We assume
that the gas velocity is uniformly v = 0, and the liquid velocity distribution is given by
0 for0<z<bm
v(r)=< Vo forbm<az<15m (103)
0 forldm<ax<20m,
where Vp = 2.1 m/s.

Ransom [20] suggested treating the manometer as a closed loop. We will follow the approach
of [19, 11], assuming that both ends of the manometer are open to the atmosphere. We assume
that the liquid column will move with uniform velocity under the influence of gravity, giving the
following approximate analytical solution for the liquid velocity [19]

v (t) = Vo cos(wt), (104)
where

w=1/2 (105)



CFL-FREE NUMERICAL SCHEMES

T T T
reference
3 NF50m/s ------- 4
WF50m/ls ©
WF 15 m/s - -
A o e
2 é % §: /e ®| BN, .
2. ¥ o\ 7\
& P i \ §\®
\ v ] © ] \
o i i \ [} \
§ / y © 7 Vi h Vi
h ¢ b \ ! | ! y
| : , ! :
» \ ® \ / \ ! o3
€ 1} i ¢ : 3 / o
E ~ I P o} { |
[\ \ I v : i
> i ; : ¢ it
8 ‘. ¢ § -; ; : b
o ‘
) \ ® & ¥ v i i
> q i i ¥ i @
T o | ‘ i ® @ ; v
2 h b & !
g A ] ® i [ @ i
3 ! é L i i i ;
Y H ¢ It I ¥ ! "
| f ® £ I ¥ | X
Q ] i i H i ®
4 ! It P & H y
-1+ h X [ v
1 | o) fi 4 ¢ §
\ ® h i \ 3 i
| ] ® t i \ ! i
y P Vo Lo &
i / ; b & i \
\ g ® 3
\ ¢ Y 4 L N/
2 e o e o |
I I I =
0 5 10 15 20
Time (s)
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where L = 10 m is the length of the liquid column.

6.6.1. Interfacial momentum exchange terms. For this problem we will investigate the effect of in-

cluding a source term modelling momentum exchange between the phases. For the gas momentum
equation, we introduce the source term [19, 11]

Mé) = Cagoupg(vg — 1),

(106)
where C' is a positive constant. Likewise the liquid momentum source term is given as
MID = —M? = _Cagalpg(vg — ’Ul), (107)
conserving total momentum. We write
C = Cog, (108)
making the exchange term kick in more strongly near one-phase regions. For the purposes of this
paper we choose
Co = 1000571, (109)
and use a semi-implicit discretization as follows
(L7 (Wi
MP)FHE = on | TR 110
My = Gl | G ™ G .

We now consider the following models:

WF (With friction). We use the momentum exchange terms M and M, as described above.
NF (No friction). We set M? = —Mp = 0.

6.6.2. Temporal evolution of the liquid velocity. Using a grid of 100 cells, the evolution of the center
cell liquid velocity is given in Figure 13. For the frictionless model the timestep Az/At = 50 m/s
was used. By including the friction terms, we found we could increase the timestep to Az /At = 15

m/s without losing stability. However, for this timestep a non-physical increase in momentum is
observed due to the coarse Euler discretization of the gravity field.
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scheme. Top left: Liquid fraction. Top right: Pressure. Bottom left: Liquid
velocity. Bottom right: Gas velocity

We observe little difference between WF and NF for Az/At = 50 m/s, where we achieve good
accordance with the expected analytical solution. A slight phase difference seems to develop,
which is in accordance with previous results [19, 10, 11].

6.6.3. Frictionless versus frictional flow. The distribution of all variables after ¢ = 20.0 s is given
in Figure 14 for the grid of 100 cells and the timestep Az/At =50 m/s.

We see that the inclusion of interfacial friction terms has the effect of reducing the gas velocity
in the near one-phase liquid regions. As an effect of this, the pressure distribution approximates
more accurately the expected hydrostatic distribution.

By the comments of Remark 9, we see that we are able to violate the CFL criterion for all
waves also for this problem.

7. SUMMARY

We have constructed a framework termed Strongly Implicit Mizture Fluz (SIMF) which allows
us to construct fully CFL-free numerical schemes for a standard two-fluid model. This class of
schemes keeps the accuracy and stability properties of its explicit predecessors for small timesteps.

Within this framework we have constructed natural extensions of the schemes investigated by
Evje et al [8, 10, 12, 11], resulting in the WIMF-AUSM, SIMF-AUSM, and SIMF-FVS schemes.

We have demonstrated that the SIMF-AUSM scheme possesses accuracy and stability properties
comparable to the Roe scheme for small timesteps. On breaking the sonic CFL criterion, the
SIMF-AUSM scheme becomes less accurate than its weakly implicit variant WIMF-AUSM in the
resolution of volume fraction waves.

Based on observations in this paper as well as previous works [12, 11], we may classify schemes
in terms of their applicability as follows:

e Faxplicit schemes. Due to their easy and efficient implementation, explicit schemes are
suitable for applications where fast pressure transients are of interest. This may more
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often be the case for the nuclear industry than for the petroleum industry, where slow
transients related to mass transport are generally more interesting.

o Weakly implicit schemes. These schemes are superior to explicit schemes in stability for
large timesteps and accuracy on the slower waves. In particular, by choosing the timestep
optimally, weakly implicit schemes may capture a moving contact discontinuity exactly.
Consequently these schemes may be suitable for cases where slow transients are the main
focus.

o Strongly implicit schemes. These schemes are superior to weakly implicit schemes in
stability for very large timesteps. However, they are more diffusive and do not easily allow
for high-resolution extensions like the MUSCL strategy of van Leer [14]. For this reason
they are not well suited for cases where accurate tracking of the volume fraction waves
is of interest. On the other hand, strongly implicit schemes may be used as steady state
solvers or for cases where a computationally cheap qualitative description of the transient
is desired.
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