WEAKLY IMPLICIT NUMERICAL SCHEMES
FOR THE TWO-FLUID MODEL

STEINAR EVJEAC AND TORE FLATTENB

ABSTRACT. The aim of this paper is to construct semi-implicit numerical schemes for a two-
phase (two-fluid) flow model, allowing for violation of the CFL-criterion for sonic waves while
maintaining a high level of accuracy and stability on volume fraction waves. Based on the
results of a previous work [12], we here present a general framework for constructing such weakly
implicit schemes without making use of any Riemann solver nor referring to any calculation of
flux jacobians.

One important step of the proposed methods is the introduction of a pressure evolution
equation. This equation, which is discretized at cell-interfaces, naturally defines a consistent
numerical flux for the discretization of the pressure term of the two momentum equations. This
step is crucial for the stability of the solutions when the CFL-criterion for sonic waves is violated.
Another major step is the decomposition of the numerical mass fluxes F}, corresponding to the
physical mass flux fi = pragvg, into two components FkD and F,f respectively. The purpose of
the FkD—component is to ensure stability (non-oscillatory behavior) of solutions when the time
step is dictated by the fluid velocity and not the sonic velocity, whereas the F,f—component is
designed such that accurate resolution of volume fraction waves is ensured. Our techniques,
which we refer to as "Mixture Flux” (MF) methods, are based on the above two steps, but
give room for different choices in the discretization of the pressure evolution equation as well as
the construction of the FkD and F,f’ flux components. Particularly, by using an AUSMD type
of discretization for the F,f—component (originally proposed for the Euler equtions in [32]) we
obtain a Weakly Implicit Mixture Flux AUSMD scheme.

We present several numerical simulations, all of them indicating that the CFL-stability of
the resulting WIMF-AUSMD scheme is largely governed by the velocity of the volume fraction
waves and not the rapid sonic waves. Comparisons with an explicit Roe scheme indicate that
the scheme presented in this paper is highly efficient, robust and accurate on slow transients. In
fact, by exploiting the possibility to take much larger time steps it outperforms the Roe scheme
in the resolution of the volume fraction wave for the classical water faucet problem. On the
other hand it is more diffusive on pressure waves. Although conservation of positivity for the
masses is not proven, we demonstrate that a transition fix may be applied making the scheme
able to handle transition to one-phase flow while maintaining a high level of accuracy on volume
fraction fronts.

subject classification. 76T10, 76N10, 656M12, 35L65
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1. INTRODUCTION

Accurate resolution of the dynamics related to two-phase flow phenomena is of high importance
for a number of engineering applications, including nuclear reactor safety analysis and petroleum
engineering. Among several two-phase flow models there are two fundamentally different formula-
tions of the macroscopic field equations; namely the two-fluid model and the mizture model [26].
Here we focus on the two-fluid model. This is considered to give the most general and detailed
description of transient two-phase flows. In the two-fluid model each phase is treated separately
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in terms of two sets of conservation equations; one for each phase. The interaction terms between
the two phases appear in the basic equations as transfer terms across the interfaces (source terms).
More precisely, the basic form of the model can be written on the following vector form:

Pgg PgPgly 0 0
prag Lo 0 0
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Here ay, is the volume fraction of phase k with a; + a4 = 1, p;, and vy, denote the density and fluid
velocities of phase k, and p is the pressure common to both phases. Moreover, 7, represents the
interfacial forces which contain differential terms (hence, is relevant for the hyperbolicity of the
model) and satisfy 7, + 7, = 0. M represents interfacial drag force with M;) + MP = 0 whereas
Q) represent source terms due to gravity, friction, etc.

The model we will be concerned with is classified as a hyperbolic set of differential equations,
with the implication that information flows in the system along characteristic curves with a certain
velocity. For such models ezplicit numerical schemes are commonly used, advantage being taken
of the fact that the time development of the state at some point depends only on points within the
span of the characteristic curves in time and space. Explicit schemes are simple to implement and
may give more flexibility in the treatment of complex pipe networks. However, they are subject
to the CFL constraint
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where Amax is the largest eigenvalue for the system. For the two-fluid model we are concerned
with, the four eigenvalues are pairwise associated with sonic and volume fraction waves [9]. The
sonic waves may be several orders of magnitude faster than the volume fraction waves, although
the latter may often be of greater interest to the researcher. For this reason the CFL criterion (2)
may severely limit the computational efficiency of explicit schemes.

To remedy the situation, a step in a more implicit direction, i.e. coupling one or more variables
throughout the computational domain, may be made. Such approaches may be classified as follows:

o Weakly implicit. The original CFL criterion (2) may be broken for sonic waves, but a
weaker CFL criterion for volume fraction waves still applies
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where A} .. is the largest of the two eigenvalues corresponding to volume fraction waves.
o Strongly implicit. No CFL-like stability criterion applies and the equations may be inte-
grated with arbitrary timestep. However, stability could still be affected by other issues

such as inherent stiffness of the equations.

The majority of engineering computer software for two-fluid simulations seems to be based on some
implicit approach. Examples include the CATHARE code [2] developed for the nuclear industry,
and OLGA [3] aimed towards the petroleum industry. The recently developed PeTra [13] is largely
based on the OLGA approach, being strongly implicit in the sense of the classification above. On
the other hand, the TACITE code [21] was originally based on an explicit approach.

Trapp and Riemke [31] describe some of the earlier computer simulation tools for two-phase
flow. It seems to be long known that a weak pressure-momentum coupling may be enough to
break the sonic CFL-criterion, making the scheme weakly implicit in the sense of the classification
above. However, due to the lack of computer power even weakly implicit schemes were often
too inefficient and strongly implicit schemes were favored in the early days. In addition, most
early schemes where based on upwinding based on the advective velocities, and the effect of sonic
waves was not naturally integrated in the discretization. Such advective splitting schemes are
intrinsically unstable and a staggered donor-cell approach was typically needed to stabilize the
numerical solution. This lack of stability seems also to have been a motivation in moving from
weakly to the more stable strongly implicit schemes.

In recent years there has been several new applications of different upwind techniques for the
equations of two-phase flow. Examples include implementations of the Roe scheme by Toumi et
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al [30, 29, 5], Romate [23], Tiselj and Petelin [27], Fjelde and Karlsen [11]. A rough Godunov
scheme was implemented by Masella et al [17]. Coquel et al [4] studied kinetic upwind schemes,
which do not make use of the eigenstructure, for the approximation of a general two-fluid model.
Saurel and Abgrall have studied a general compressible unconditionally hyperbolic two-phase
model with a wide range of applications, see [24, 25].

For one-phase flow, Wada and Liou [32] suggested a hybrid flux difference splitting (FDS) and
flux vector splitting (FVS) scheme with good accuracy and stability properties. Their idea has
been extended to two-phase flow models by Edwards et al [6], Niu [18, 19], and Evje et al [7, 8, 9].

Based on these recent results and the rapid development of computer speed we believe that
weakly implicit schemes may provide several advantages compared to strongly implicit or explicit
schemes. This is based on the following considerations:

e Efficiency. Many industrial applications require that simulations must be performed in
real time, for instance if the numerical model is used to produce input to an automatic
choke controller. This limits the applicability of explicit schemes due to the strict CFL
criterion (2). However, computers are now so fast that timesteps below the volume fraction
CFL criterion (3) may give real time performance.

e Robustness. Modern discretization techniques are more robust, implicating that the dif-
ference in stability between weakly and strongly implicit schemes may not be significant.

e Accuracy. As opposed to strongly implicit schemes, weakly implicit schemes more easily
allow for high resolution methods like the MUSCL approach of van Leer [14] to achieve
improved accuracy on the volume fraction waves.

A weakly implicit numerical scheme for the mixture model has been presented by Faille and Heinze
[10]. They used a rough finite volume method based on an eigenvalue decomposition of the jacobi
matrix for the system. A weakly implicit scheme for the two-fluid model was studied by Masella
et al [16].

The aim of this work is to develop a general methodology for constructing numerical schemes
for the two-fluid model which possesses the following important properties:

e No use of riemann solver or computation of nonlinear flux jacobians;

e Accurate and non-oscillatory resolution of mass fronts, i.e. slow-moving volume fraction
waves, comparable with the resolution given by upwind type of schemes like the Roe
scheme;

e Stability under the weak CFL condition (3).

We first describe the discretization procedure in a general semi-discrete setting where a system
of ODEs replaces the continuous model (1). A special feature of the proposed method is that we
systematically make use of the following pressure evolution equation (see Section 2 for details)

Op 0 0
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where .
K= : (5)
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The main mechanism of the proposed semi-discrete scheme can be described by the following two
steps:

(I) The pressure calculation is coupled to the momentum equations. This is achieved by
discretizing (4) at the cell interface j + 1/2. We then directly obtain a numerical flux for
the pressure term of the momentum equations which is consistent with the model under
considerations. This turns out to be an essential step in order to redeem the scheme from
the strong CFL condition (2).

(IT) As regards the mass conservation equations, we introduce a decomposition of the numerical
mass fluxes F},, which is an approximation to the physical mass flux fy = prayvg, into two
components FkD and F,f respectively. The purpose of the FkD -component is to couple the
mass and momentum equations in a consistent manner and thereby ensure that the scheme
yields stable mass calculations also for timesteps dictated by the weak CFL condition (3).
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The purpose of the F,;“ component is to ensure that accurate resolution of volume fraction
waves is obtained.

Our techniques, represented by the above two steps, will be referred to as ”Mixture Flux” (MF)
methods. A delicate issue is to derive an appropriate balancing of the two components FkD and F,f
in the formulation of the numerical mass fluxes Fj. This balancing is achieved by systematically
using the important relation

mg my
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obtained from the volume fraction equation ay 4+ a; = 1. More precisely, we obtain mixture mass
fluxes F}, of the form

0 0 0
A=k <pga1ﬂF1D + prog ZEFM + prn S (FP — FA))
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where « is given by (5). We also verify that under natural assumptions on the F,f flux component
and the FkD flux component, the resulting MF schemes possess certain ”good” properties relevant
for the approximation properties of numerical schemes in general for the two-fluid model. These
results are stated in Lemma 1 and Lemma 2.

More specifically, Lemma 1 states that the MF mass fluxes recover the numerical fluxes of an
exact riemann solver for a moving or stationary contact discontinuity. Lemma 2 ensures that
Abrall’s principle [1] is satisfied; a flow, uniform in velocity and pressure must remain uniform
during its temporal evolution. The fact that this principle is obeyed, ensures that the use of
the pressure evolution equation (4) in the discretization of the non-conservative pressure term is
consistent with basic physcial understanding of two-phase flow phenomena.

Based on the semi-discrete MF scheme, we then proceed to the construction of fully discrete
schemes. Motivated by previous investigations of the current two-fluid model (1) for certain hybrid
FVS/FDS type of schemes, see [9, 12], we propose here to use an AUSMD/V-type discretization
(originally proposed for the Euler equations in [32]) for the numerical mass flux component F as
well as for the discretization of the convective terms g = pragvi of the momentum equations. In
this sense the present work can be considered as an extension to a weakly implicit version of the
MF-AUSMD scheme we developed in [12]. The Mixture Flux scheme studied in [12] was developed
in the same framework as presented in this work, however, only pure explicit time discretizations
was considered there. We emphasize that the approach presented in this paper should be general
enough to apply for other flux-splitting schemes as well.

In particular, we perform numerical experiments for this weakly implicit MF-AUSMD scheme,
denoted as WIMF-AUSMD, which indicate that the scheme in fact is subject to the weak CFL
condition (3). More precisely, we observe:

e For a typical shock tube problem the WIMF-AUSMD scheme give non-oscillatory approx-
imations of all waves, as opposed to the explicit AUSMD scheme investigated in [9] but
similar to the explicit MF-AUSMD scheme in [12]. Comparison with a Roe scheme shows
that the resolution of the volume fraction waves is very similar for both schemes whereas
the resolution of sonic waves is more diffusive for the WIMF-AUSMD scheme.

e For a typical mass transport problem, like the classical water faucet problem, the strong
features of the proposed WIMF-AUSMD scheme is clearly observed. Exploiting the pos-
sibility to take timesteps determined by (3), which in this case implies that the timestep
is chosen to be more than 50 times larger than the timestep we use for the explicit Roe
scheme, the WIMF-AUSMD scheme outperforms the Roe scheme in the resolution of the
volume fraction wave.

e Numerical tests demonstrate that by employing a minor modification, similar to the one
used in [9, 12], the good features of the WIMF-AUSMD scheme carries over to more
difficult flow cases which locally involve transition from two-phase to single-phase flow.
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Most importantly, the MF approach allows us to unify two different aspects of two-phase flow
calculation; namely producing a high level of accuracy on volume fraction waves while allowing
for violation of the sonic CFL criterion.

Our paper is organized as follows: In Section 2 we present the two-fluid model we will be working
with. In Section 3 the MF approach is presented in a semi-discrete setting where the pressure
evolution equation is introduced as well as the construction of mixture mass fluxes. These two
steps constitute the main components of the Mixture Flux (MF) methods. In Section 4 we present
a straightforward analysis, similar to the one presented in [12], demonstrating that the MF schemes
possess some desirable properties relevant for their approximation properties.

Based on the semidiscrete scheme of Section 3, we then in Section 5, 6, and 7 proceed to
construct fully discrete schemes which possess the properties identified in Section 4. In Section
8 we present numerical simulations where we attempt to shed light on the issues of stability,
robustness and accuracy for the scheme. Particularly, we investigate how the scheme can handle
a transition to one-phase flow using a transition fix similar to the one introduced in [9].

2. THE Two-FLuiD MODEL

Throughout this paper we will be concerned with the common two-fluid model formulated by
stating separate conservation equations for mass and momentum for the two fluids, which we
will denote as a gas (g) and a liquid (1) phase. The model is identical to the model previously
considered by Evje and Flatten [9] and will be only briefly restated here. For a closer description
of the terms and their significance, we refer to the previous work and the references therein.

2.1. Generally. We let U be the vector of conserved variables

Pglg mg
pray m
U= = . 7
PgQglg Iy ()
praqv I

By using the notation Ap = p — p?, where p' is the interfacial pressure, and 7, = (p’ — p)9.ax, we
see that the model (1) can be written on the form

e Conservation of mass

0 0
o (Pgrg) + o (Pgagvg) =0, (8)
0
En (pa) + e (main) =0, (9)
e Conservation of momentum
0 0 9 0 D
5 (pgagug) + E (pgagvg + agAp) + ag%(p —Ap) = Qg+ M, (10)
0 0 9 0 D
g (pavr) + p (parvf + a1Ap) + 041%(17 —Ap) = Qi+ M7, (11)
where for phase k£ the nomenclature is as follows
Pk - density
P - pressure
Vg - velocity
oy - volume fraction
Ap - pressure correction at the gas-liquid interface
Qr - momentum sources (due to gravity, friction, etc)

MP - interfacial drag force.

The volume fractions satisfy
Qg + o) = 1. (12)
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For the numerical simulations presented in this work we assume the simplified thermodynamic
relations

p1L=pro + P —on (13)
ay
and
p
== 14
Pg aé ( )
where
po = 1 bar = 10° Pa
pro = 1000 kg/m®,
aé = 10°(m/s)?
and

a; = 10° m/s,

The models (13) and (14) correspond to a general stiffened gas EOS of the form

p = (v — Vajpr — v,

where 7w, = (a%pk,o —po)/2 where py, o represents the material density and py the ambient pressure.
v, and 7y are constants specific for each phase. Particularly, by choosing v = 2 we recover (13)
while (14) is obtained by choosing v, = 2 and m; = 0.

Moreover, we will treat () as a pure source term, assuming that it does not contain any
differential operators. We use the interface pressure correction

Qg1 PgP1
Ap = Ap (U, ) = 6—2—L (v, — uy)?, 15
p=Ap(U,9) pga1+p1ag(g 1) (15)

where we set 6 = 1.2. This choice ensures that the model is a hyperbolic system of conservation
laws, see for instance [30, 5]. Another feature of this model is that it possesses an approximate

mixture sound velocity ¢ given by
Pr1ag + pgay
c= \/ 5 £ '8 (16)

P ap1 :
B—prlag + 5, Peul

We refer to [30, 9] for more details.

Having solved for the conservative variable U, we need to obtain the primitive variables
(ag,p,vg,vr). For the pressure variable we see that by writing the volume fraction equation
(12) in terms of the conserved variables as

LU S LS (17)
pg(p) ~ p(p)
we obtain a relation yielding the pressure p(mg,m;). Using the relatively simple form of EOS
given by (13) and (14) we see that the pressure p is found as a positive root of a second order
polynomial. For more general EOS we must solve a non-linear system of equations, for instance by
using a Newton-Rapson algorithm. Moreover, the fluid velocities v, and v; are obtained directly
from the relations
Us Uy

Vg = — v = .
g )
Ux Us

Remark 1. Concerning the EOS for the liquid and gas phase, we would like to emphasize that
the methods we develop do not require simple linear relations as given by (13) and (14). Formally,
the only point of the algorithm which is affected by using more complicated EOS is the resolution
algorithm which determines the pressure from the general relation (17).
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2.2. Some useful differential relations. Noting that the relation (17) can be written on the

form
g = mglm,p) = (1 - %) re0).

we see that
dmg = (mg)m,dm + (mg),dp

= Loam+ ([1= )50 + [“55] 0, )

In other words, we have the relation

dp = k(mdmg + pgdm), (18)
where
k= L (19)
= 5 .
%—galpg + %;agpl
Similarly, noting that
mg = mg(cu,p) = (1 — au)pg(p),
we see that
dmg = (mg)a,don + (myg)pdp
= —pgdon + (myg),dp.
Using (18), this relation can be rewritten as
o Pl 1
don = kog(pg)pdmi + | ag—(pg)pk — — | dmg
Pg Pg
= 1o ag(py)pdimi — an(pr)pdimg )
In other words, we have
9] 0
doy = ﬁ(—ﬂaldmg + ﬁagdml). (20)

9p 9p
By combining (18) and (20) we can write the masses my, in terms of a “pressure” and a “volume
fraction” component as follows:

dp
dmg = aga—pgdp — pgday (21)
and 5
dm = Oé]ﬂdp + prday. (22)
Op

The relations (18) and (20) reflect that differentials of the primitive variables a; and p generally
depend strongly on properties of the mixture of both masses through the differentials dmg and
dm,. Later we will derive numerical mass fluxes which are consistent with the differential relations

(18)-(22).

2.3. A pressure evolution equation. The relation (17) gives the pressure p = p(mg,m;)
through a state relation. Now we describe another procedure for determining the pressure through
a dynamic relation.

Multiplying the gas mass conservation equation with xp; and the liquid mass conservation
equation with kp, and adding the two resulting equations, we get

0 3} 0 0
KpL 5 Mg + Kpyg prill + WP (Pgagvg) + kP 5 (marwn) = 0.

In view of (18) we get the following non-conservative pressure evolution equation

Op 0 0
2t (g (srave) + e (o)) =0 (23)
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where & is given by (19). Coupling this pressure evolution equation to the momentum equation
will be an important ingredient in allowing us to break the CFL-criterion (2).

3. A SEMI-DISCRETE SCHEME

In this section we construct semidiscrete approximations of solutions to (8)—(11). In the Sections
5, 6, and 7 we describe fully discrete approximations, and finally in Section 8 we explore properties
of these fully discrete schemes for several well known two-phase flow problems.

3.1. General form. It will be convenient to express the model (8)-(11) on the following form:
Oemy + Op fr, = 0, (24)
Oy + Ozgr + arOup + (Ap)Oray, = Qu,

where k = ¢, and

fr = pragvr and  my = prag

2
gr = pragv, and I = pragvg.

We assume that we have given approximations (mz,j,l,’:’j) = (mk,j ("), Ir,; (t”)) Approxima-
tions my ;(t) and Iy ;(t) for t € (¢",t"'] are now constructed by solving the following ODE
problem:

ka' +6IF]¢7]‘ =0,
. (25)
Ik,j +0:Grj + ak,j6. Pj + (Ap)jdeAr,j = Q.

subject to the initial conditions
my ;i (t") = mZ,j, I (") = II?,j'
Here ¢, is the operator defined by

Wiy1/2 — Wj—1/2 Wiyl — Wj
Spw; = 2 / o i—1/ : Satjyr /2 = ]+Am i
and (Ap);(t) = (Ap) (Uj(t), ) is obtained from (15). Moreover, Fy, ;11 /2(t) = Fy,(U;(t),Uj11(t)),
Grj+1/2(t) = Gr(Uj(t), Uj1(2)), Piy1/2(t) = P(U;(t), Uj1(t)), and Ay i1 /2(8) = Ax(Uj(t), Ujsa (1))
are assumed to be numerical fluxes consistent with the corresponding physical fluxes, i.e.

The purpose now is to derive these numerical fluxes.

3.2. The numerical flux Ay j;1/2(t). We first start with the numerical flux Ay, j11/5(t). Follow-
ing the approach taken by others, see for example Paille [20] and Coquel et al [4], we discretize
this term centrally. Thus we use the numerical flux
oy, (t) + ag j+1(t

Mgirjalt) = PO L i1 (0 (26)
In the following we seek to discretize the remaining fluxes so that they are consistent with the
underlying dynamics of the model. Essential information about the interplay between masses my,
and pressure p is given by the relation (17). We shall exploit this systematically when we devise
numerical fluxes Fy, ;1/2(t) and Pjyq/2(t).
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3.3. The numerical flux Pj,,/,(t). We suggest to associate the numerical flux Pj,;/,(t) with
the solution of the pressure evolution equation (23) and (19) discretized at the cell interface
j +1/2. More precisely, given the cell centered pressure p} =~ p(z;,t") we determine Pj,,/5(t) for
t € (t",t"*!] by solving the ODE

Pjy1sa kim0 /2000ly 1o + [Kig1/20g 412000 D1y /2 = 0
J i o (27)
Pip1)s(th) = %,
where the interface values ;1 1/o and py jy1/2 are computed from Pj_H/Q(t) together with the
arithmetic average (26) which defines oy, j11/2(%).

Remark 2. The numerical flux Pji1/5(t) = P(U;(t),Ujy1(t)) is consistent with the physical fluz.
This follows easily since assuming that U;(t) = Uj1(t) = U(t) for t € [t",t" 1], implies that we
shall solve the ODE

. n Py +Pj n
Pj+1/2: 07 Pj+1/2(t+) =1 :p(t )7

2
i.e. Pjpy)o(t) =p(t") = p(t) fort € [t t"+].

3.4. The numerical flux F}, j1/5(t). We first recall that from the masses my ;(t), which in turn
depend on the numerical mass fluxes Fy. j,1/2(t) via the mass conservation equations of (25), we
obtain the pressure p;(t) as well as the volume fraction ay ;(t) by using the relation (17). In
order to give more room for incorporating several properties which are relevant for accurate and
non-oscillatory approximations of the pressure p;(t) and the volume fraction oy ;(t), we suggest to
describe the numerical massfluxes FJ,(t) as a combination of two different flux components F,” (t)
and F{(t) respectively.

More precisely, we associate the mass flux component FkD with the pressure calculation p =
p(mgy,my;) via the relation (17) while the F! component is associated with the volume fraction
calculation oy = my/pr(p(mg,m;)). An important point here is to give an appropriate description
of the balance between the two components FkD and F,f as well as to develop the FkD - and F,f—
components themselves. The first point is discussed in the following while the latter is postponed
until Section 6 and 7 respectively.

From (21) and (22) we see that the mass differentials dmj, can be split in a pressure component
dp and a volume fraction component da. We now want to design numerical fluxes which are
consistent with this splitting, i.e. we introduce a flux component F}, and Fj, such that the mass
fluxes Fj and F} are given by

op

1
R = a3AF, + pF, (28)
and 9
D
Fg:aga—ngp_nga. (29)

The flux component F}, is associated with the pressure, hence it is natural to assign a diffusive mass
flux FP for stable approximation of pressure for the various waves. Inspired by the differential
relation (18) we propose to give F), the following form

F, = tpgF° + npngD (30)
Similarly, the flux component Fy, is associated with the volume fraction. Hence we seek to assign
an mass flux F* such that an accurate resolution of the volume fraction variable can be obtained.
Inspired by the differential relation (20), we propose to give F, the following form

9 A Ip A
Here we note that a subscript j + 1/2 is assumed on the fluxes and coefficients. Substituting (30)

and (31) into (29) and (28) we obtain the final hybrid mass fluxes

op Opg 1A P, D A
FlZH(ﬂgOéla—plﬂ +P1aga—ng1 +Plala—p(Fg - k) (32)
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and

) 9 )
F,=k <p1ag angD P a”‘FA + gty apg (FP — EA)> . (33)

The coefficient variables at j + 1/2 remain to be determined. We suggest finding these from the
cell interface pressure Pjq/5(t) as well as the relation

1
ai1/o(t) = 505 () + g4 (1)
which is consistent with the treatment of the coefficients of the pressure evolution equation (27).

Remark 3. We remark that the consistency criterion
F.(U,U) = fr(U) = pragoy,
relating the physical fluz fi to the numerical flux Fy, is satisfied for the hybrid fluzes (82) and

(33) provided the fluves F* and F}P are consistent. In particular if F* = F)P the expressions (32)
and (83) reduce to the trivial identity

F,=F!=FP.

3.5. The numerical flux Gy, ;1 1/>(t). Based on the belief that the difficult and critical part is to
obtain a numerical mass flux Fj, ;1 /2(t) which is consistent with the discretization of the pressure
term of the momentum equations, we seek a more straightforward construction of G j11/2(t). In
particular, we want to couple this convective flux to the mass flux F,f. In order to emphasize this
we use the superscript "A” i.e.

Gk7j+1/2 (t) = G?cél,j+1/2 (t). (34)

More precisely, we choose G\ ]+1/2( ) to be consistent with the flux component FY ]+1/2( ) in

the following sense: For a flow with velocities which are constant in space for the time interval
[t7,¢"+1] that is,

Ok, () = v (B) = w(t),  t et ", (35)

we assume that G\ H_1/2( ) takes the form
Gl?,j+1/2 (t) = Uk( )Fk J+1/2( ) (36)
where Fk e /2( ) is the numerical flux component introduced above and assumed to be consistent

with the physical flux fr = pragvg.
Remark 4. We remark that the consistency criterion
G(U,U) = gi(U) = pragvi,

relating the numerical flux Gy, to the physical flux gy, is satisfied for Gy as given by (36) provided
the numerical flux F,f is consistent with the physical flux fj,.

4. FURTHER DEVELOPMENT OF THE MASS FLUX F} ji1/2(t)

A main issue in the resolution of two-phase flow as described by the current model is to obtain
an accurate resolution of mass fronts, i.e. slow-moving volume fraction waves. Hence, in the
following we want to ensure that the mass fluxes F}”(¢) and F{}(t) are constructed so that certain
”good” properties in this respect are ensured for the resulting mass flux Fy(t). Particularly, we
shall identify a simple characterization of some properties which FkD and F,;“ should possess.

In order to identify this characterization, we consider the contact discontinuity given by

PL=PR =D (37)
Qaf, 75 QR
(vg)L = ()L = (vg)r = (V)R =,
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for the time period [t7,#"*1]. All pressure terms vanish from the model (8)-(11), and it is seen
that the solution to this initial value problem is simply that the discontinuity will propagate with
the velocity v. The exact solution of the Riemann problem will then give the numerical mass flux

1 1
(pow)jt1/2 = 5!’(0% +ar)v — 5[’(041% —a)|v]. (38)

Definition 1. A numerical flux F that satisfy (38) for the contact discontinuity (37) will in the
following be termed a “mass coherent” flux.

4.1. A ”mass coherent” flux F,f. The purpose of the flux component F,f is to ensure accuracy
at volume fraction waves. A natural requirement for F,;“ is then that it should be mass coherent
in the sense of Definition 1. We shall return to a more detailed specification in Section 7 but at
this stage it might be instructive to briefly mention two examples of numerical mass fluxes studied
before for the two fluid model [9], one which is mass coherent and one which is not mass coherent.

Two examples. In [9] we studied a FVS type of scheme for the current two-phase model whose
mass fluxes are given by

(paw)jy1/2 = (pa).V*F (v, cjy12) + (p)RV ™ (UR, Cji1/2) (39)

for each phase where c;; 1/ = max(cr, cg) and V* are given by

1 SR
Vi(v,c):{ +EWw+xe)? ifp]<c

(v =+ o) otherwise.
Here the parameter ¢ controls the amount of numerical diffusion, and is normally associated with
the physical sound velocity for the system. This flux is not mass coherent according to Definition 1
and leads to poor resolution of mass fronts, as was clearly observed in [9].
In [9] we also studied a modification of the mass fluxes (39) obtained by replacing V* by

. Vi) +(1—x) 2 ) <e
Vj: — X 9 2
(U, c, X) { %(v + |v|) otherwise

where x1, and xR satisfy the relation
XrROR — xr.or = 0. (40)
It is easy to verify that the resulting mass flux is mass coherent in the sense of Definition 1, and
we observed in [9] that the level of accuracy was similar to that of a Roe scheme in the resolution
of mass fronts.
Knowing that the total flux component Fj, given by (32) and (33) also should be accurate at

volume fraction waves, i.e. mass coherent, we way ask: What is a minimal condition satisfied by
the FkD -component which ensures that Fj still becomes mass coherent?

4.2. A ”pressure coherent” flux FkD. We note that the pressure will remain constant and
uniform as the discontinuity (37) is propagating. Consequently, a natural requirement on a “good”
flux F for stable pressure resolution is that it preserves the constancy of pressure for the moving
or stationary contact discontinuity given by (37).
We write (18) as
dp = kdp

where

dp = pgdmy + prdmg. (41)
To maintain a constant pressure we must have du = 0. Assuming constant pressure, (41) can be
integrated to yield

1= pgmi + pimg = pepi(an + ag) = pgpr.

To maintain constancy of u, and hence p, we now insist that the flux F,? is a consistent numerical
flux when applied to the mix mass u. That is, we impose

ngll,Dj+1/2 + /’ng]?j+1/2 = PgP1U. (42)
for the contact discontinuity (37).
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Definition 2. A pair of numerical fluzes (F}, F;) that satisfy (42) for the contact discontinuity
(87) will in the following be termed “pressure coherent” fluzes.

In particular, we note that the FVS mass fluxes (39) as well as the upwind fluxes (38) are
pressure coherent. Thus, the class of mass coherent fluxes is contained in the class of pressure
coherent fluxes. However, it should be noted that we can easily construct a pair of perfectly valid
mass fluxes, in the sense that they are consistent with the physical flux, that are not pressure
coherent. Consider for example the stationary contact discontinuity (37) with v = 0. Let Fy be
given by the upwind flux (38) and F} be given by the FVS flux (39). Then

c
sl jriye + PFyg 12 = gy ((a)r — (e)r) # 0,
defying the requirement (42). Thus, this mass flux is neither pressure nor mass coherent in the
sense of Definition 1 and 2.

4.3. Construction of mass coherent fluxes Fj(t). We now state the following important
lemma:

Lemma 1. Let the mizture fluzes (32) and (33) be constructed from pressure coherent fluves FP
in the sense of Definition 2, and mass coherent fluzes F,;“ in the sense of Definition 1. Then the
hybrid fluzes (32) and (33) reduce to the upwind fluzes (38) on the contact discontinuity (37), i.e.
they are mass coherent.

Proof. We consider the hybrid liquid mass flux (32) and assume that v > 0. Remembering that a
subscript j + 1/2 is assumed on the variables, we write the flux as
Ip D D 9pg p1 a
B =x (ala—p(PgFl +pky) + Plaga—ngl - Plala—ng (43)
Using the required properties of F,? and F,? given by Definition 1 and Definition 2 respectively,
we obtain

K=k <a1%—2pgmv + p?ag%—f;g(al)w - nglalg—?(l - (Oél)L)v> = pi(a)rv, (44)

where we have used that
Pj+1/2 = PL = PR (45)
which follows from the assumption of constant, uniform pressure. Spatial and phasic symmetry
directly give the corresponding results for F; and v < 0, completing the proof. O

Remark 5. The importance of Lemma 1 lies in the fact that it allows us to search for an appro-
priate flur component FkD outside the class of mass coherent fluzes, and still, as long as FkD is
pressure coherent and F,f is mass coherent, we obtain mass coherent fluzes Fy,. This is the crucial
mechanism of the decomposition (32) and (33).

4.4. The class of Mixture Flux (MF) methods. Motivated by the mixture mass fluxes (32)
and (33) as well as the use of the pressure evolution equation (27), we propose the following
definition:

Definition 3. We will use the term Mixture Flux (MF) methods to denote numerical algorithms
which are constructed within the above semi-discrete framework, that is: (i) the numerical mass
fluz Fy, j11/5(t) is given by the mizture fluzes (32) and (33) where F)P is pressure coherent in the
sense of Definition 2 and FkA is mass coherent in the sense of Definition 1: (ii) the numerical
pressure flux Pjiq/5(t) is obtained as the solution of (27); (iii) the convective flux Gﬁjﬂﬂ(t)
satisfies (36) for flow with uniform velocity (35).

Next, we apply Lemma 1 to verify that the MF methods satisfy the following principle due to
Abgrall [1, 24, 25]:
A flow, uniform in pressure and velocity must remain uniform in the same variables during its
time evolution.

Lemma 2. The MF methods given by Definition 3, obey Abgrall’s principle.
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Proof. We assume that we have the contact discontinuity given by (37) and that it remains un-
changed during the time interval [t",#""1]. In view of Lemma 1 and the fact that the convective
fluxes G/,i 41/ (t) of the momentum equations of the MF methods satisfy (36), we immediately
conclude that the semidiscrete model (25) takes the form

my, j +0z(progvr); =0,

| (46)
v My, +0g (prarvr)j + ar ;0. Py + (Ap)jda Ak =0,

where (prayvr)jq1/2 is on the form (38). In view of (15) we conclude that (Ap); = 0. Moreover,
we see that (27) reduces to

Pjpij2 = =[Kjr1/20111/2100 1y jary2 + [Kj1/2Pg. 5417200211 112
= —Kj11/2P1PgV020 j 112 + PgP1VOz 0y 11 /2] = 0,
since ag + oy = 1. In other words,

P+ pi
Pii1/2(t) = Pipqpp(th) = % =p, te (", ",

for all j. Consequently, 6,P; = 0, and we can conclude that Abgrall’s principle holds for the MF
methods. d

Remark 6. We may consider the class of schemes introduced in this paper, which all employ mass
fluzes of the form (32) and (33), as genuine two-phase flux splitting schemes. This flux splitting
is based on a decomposition of the mass fluxes into several phasic components, i.e. one specific
mass flux involves components from both the liguid and gas phase. In this sense the class of schemes
we study is fundamentally different from the solution method used in e.g. [4, 19, 20, 9] where the
underlying philosophy is to solve the two-phase model basically as two single-phase problems.

In the next sections (Section 5,6 and 7) we shall specify fully discrete schemes based on the
semi-discrete scheme presented in Section 3 and 4. In particular, we will develop a flux component
FkD which is pressure coherent, but not mass coherent. This flux component is constructed so
that it allows us to obtain a stable pressure p = p(mg,my) via (17), even for time-steps which
obey only the weak CFL condition (2). The fact that it is pressure coherent, i.e. satisfies (42) for
a contact discontinuity (37), ensures that it does not introduce undesirable numerical dissipation
at volume fraction waves. For the construction of appropriate flux components F; ,;‘ and G? we
are going to use the AUSMV/D framework developed by Wada and Liou [32] for Euler equations
and adapted to the two-phase flow model in [9], see also [20] for similar type of schemes for the
two-fluid model.

5. FuLLy DISCRETE NUMERICAL SCHEMES

We now consider a fully discrete scheme corresponding to the semi-discrete scheme given by
(25), (26), (27), (32), (33), and (34).

General form.

e Gas Mass "
mhTt —m”
95J 9. _ n+1/2
e Liquid Mass
mn—j—l _ mn.
L,j Lj _ n+1/2
T - _690}7'[,]' (48)
e Pressure at cell interface
1
PJ'TE/Q - %(p? +p}’+1)
At
49)
n+1 n+1 n+1 n+1 (
Ig,j+1 g n Il,j+1 — Il,j

= _(“pl)?ﬂmT - (”/’g)jﬂ/z N
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e Gas Momentum

n+l _ 1n

At
= _51(GA)Q7J' - ayd# — (Ap)jo:Ag; + (Qg)j -
e Liquid Momentum
Ly I
At
n+1l n+1 (51)
= _6x(GA)l7j - au% — (Ap)j o Al; + (Q1)F-

Here we have introduced the shorthands
My = Pk, I, = myvy.

In accordance with (26) we use

n 0427 i+ 0427 j+1
Ay = % (52)

and where (Ap)} = (Ap) (U}L,é) is evaluated from (15). For the discretization of the pressure
evolution equation (27) as given by (49), we keep the coefficients kpy, fixed at timelevel ¢ whereas
the massfluxes Ij are given an implicit treatment as they are discretized at timelevel t"*!. Par-
ticularly, this enforces a coupling between the equations (49), (50), and (51). We end up with
solving a linear system Az = b where A is a sparse banded matrix with 2 superdiagonals and 2
subdiagonals.

For the numerical mass fluxes FIZ ;:152
we shall discretize some terms at time level ¢?, others at time t"*1. More precisely, we propose
to use the following time discretization for the mass fluxes (32) and (33) (for simplicity we have
again dropped the subscript j + 1/2):

the purpose of the ”n + 1/2” notation is to indicate that

F2 = rpgan(p)p )" (FP)™ 12+ [spiag(pg)o ) ()" + [kpran (o))" ((FD)™1/2 = (F2)") (53)
and

Fy2 = Inprarg gy (ED)™2 + [npgen ()" ()" + Ispgargpe) )" (FD)™1/2 — (B,
(54)
In other words, the flux component F,f is kept at the timelevel ¢ whereas the flux component FkD
involves terms at timelevel t"*1. Particularly, we want to make use of the updated momentums
I obtained from solving (49)—(51) in the expressions for FP. We describe the details in the
next section.

It turns out that this implicit treatment is crucial in order to maintain the stability of the
scheme for large time steps. This aspect is explored in more detail in Section 8.1. Note that we
shall not need to solve any linear system here as will become clear from Section 6. In view of (53)
and (54), we see that what remains, is to specify the numerical flux components (F,f);’ 12 and

(G?)?+1/2’ as well as (FkD);lill//f We start with the latter.
Remark 7. The discretization of the pressure equation at the cell interface can be viewed as
a staggered Laz-Friedrichs scheme. We assume that the pressure p; is found from the masses
my by (17). The interdependence between Pjii/, and the couple (pj,pji1) through the proposed
discretization (49) ensures that the numerical flux Pji 4/ is consistent with the physical fluz, as
pointed out in Remark 2.
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6. SPECIFICATION OF THE PRESSURE COHERENT CONVECTIVE FLUX (F,QD)"“/2

Due to the fact that the mass flux component FkD is associated with the pressure calculation as
described in Section 3.4, it is natural to choose a discretization of this flux which is consistent with
the discretization of the pressure evolution equation. On the semi-discrete level, in view of (27),
we therefore propose to consider the following discretization of the mass conservation equations

My jr1/2 +0u1p jr172 =0, t e (t, "
mij Mg (55)
My i1/ (th) = ——

We now suggest to average as follows:
1

my,;(t) = 3 (M j—1/2(t) + M j1/2(1))
which implies that
. 1. .
myj (t) = 3 (g j—1y2 ()4 My g2 (1) - (56)

By substituting (55) into (56) we obtain the following ODE equation for my ;(t):

_ 1
g +oxg Tkgrt = Iej1) =0, te ("™

1
m;(th) = 3 (m?,j—l +2myp; + mz,j+1)'

To achieve conservative mass treatment while maintaining CFL-stability, it is clear that we some-
how should take advantage of the already implicitly calculated mass fluxes I,?j.l obtained from

(57)

solving (49)—(51). A fully discrete version of (57) which employs this updated mass fluxes I,?,}.Ll is
then given by

mZ-}-l _ % (sz,j +my g+ mz,jﬂ) 1 it it
At 2Az (I'w‘ﬂ N Ifw‘*l) =0 (58)
which can be written on flux-conservative form (47) and (48) with the numerical fluxes
1 1Az
+1/2 n n
(sz))?+1//2 = 5(11?;1 + It )+ 1Az Mg~ M jg)- (59)

Now we may solve for the masses mzyl using the fluxes (59), taking advantage of the fact that

they emerge through an implicit coupling to the pressure. We found that by doing this we were
able to violate the CFL-criterion for sonic waves. This is explored in more detail in the numerical
Section 8.1.

Next, we check that the proposed flux FkD possesses the ”pressure coherent” property of Defi-
nition 2.

Proposition 1. The fluz component FP given by (59) is pressure coherent in the sense of Defi-
nition 2.

Proof. We just need to check that F}” satisfies the relation (42). Using the constants of (37), a
direct calculation gives

nt1/2 n+1/2 v Az
Pg(F1D)j+1//2 + /’I(FgD)jJrl//? = Pebl {5((11?1 + o) + AL (M o)
v n n AII?
+ oo [Slazi! +alih) + Tl - al )
v Azx
PgPr {2( + 1)+ )} PgPIV

O

Note however, by direct calculation, that this F,? mass flux component is not mass coherent in
the sense of Definition 1.
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Remark 8. Our experience is that it is essential to use a discretization of the mass equations,
represented by the FkD flux component (59), which is consistent with the one used for the pressure
evolution equation in order to obtain non-oscillatory (stable) approzimations for the pressure when
large time steps governed by (2) are employed. However, this leads to mass fluzes FkD which are
not mass coherent according to Definition 1.

Consequently, by using FP only as mass fluzes, i.e. Fy = FP, we must expect that a strong
smearing of volume fraction waves is introduced. However, Lemma 1 states that by the introduction
of the mizture mass fluzes (32) and (33) we only need FP to satisfy the weaker "pressure coherent”-
condition given by Definition 2, and still we retain mass fluzes Fy, which are mass coherent as long
as we use a "mass coherent” F,f component.

7. SPECIFICATION OF THE MASS COHERENT CONVECTIVE FLUXES (F{!)" AND CORRESPONDING
CONVECTIVE MOMENTUM FLUXES (Gi)"

In this section we look for appropriate choices for the numerical flux components F,f and G’,;‘
by considering so-called hybrid FDS/FVS type of schemes. Such schemes have been explored for
the present two-fluid model more recently [9, 12]. We here briefly restate the numerical convective
fluxes (paw);i1/> and (paw?);; /> corresponding to the flux splitting schemes we investigated in

[9].

7.1. FVS/van Leer. We consider the velocity splitting formulas used in previous works [15, 32,
7,8,9].
n [ EEwxe)? ify<e
V3w, = { %é}cﬁ: [v]) otherwise.
Here the parameter ¢ controls the amount of numerical diffusion, and is normally associated with
the physical sound velocity for the system. Following [9] we here assume that the sound velocity
is given by (16). Following the standard set by earlier works [32, 7, 9] we choose a common sound

velocity

(60)

Ciy1/2 = max(cr,, cr)
at the cell interface.
(1) Mass Fluz. We let the numerical mass flux (paw);,1/2 for FVS and van Leer be given as

(paw)jy1/2 = (pa).VH (v, cjy12) + (pa)RV ™ (VR, Cji1/2) (61)

for each phase.
(2) Momentum Fluz. We let the numerical convective momentum flux (pav?);41/2 be given

as
e FVS:
(pav®)jr1y2 = VT (vn, ¢jpay2)(pav) + V7 (vR, ¢jp1)2) (pav)r (62)
e van Leer:
1 1
(pav?)jy12 = 5(Pav)ji1pa(vr +vr) = Sl(paw)jia/2[(vr — vL) (63)

7.2. AUSMV /AUSMD. Following [9], we consider the convective fluxes associated with the
AUSMYV and AUSMD scheme obtained by replacing the splitting formulas V* used in (61)—(63)
with the less diffusive pair

- _ [ @+ -0S l<e
Vi(v,C, X) = { %((v + |v) X otherwise (64
where 2(p/a)
___2p/a)
XL = (/o + (p/o)m o)
and 2(p/0)
— Q)R
XE = oJa) + (pla)m o

for each phase.
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Definition 4. Using the terminology of Wada and Liou [32], we will henceforth refer to the FVS
scheme modified with the splittings (64) and the choice of x described by (65) and (66) as the
AUSMYV scheme. That is, the convective fluxes of AUSMYV are described by

e Mass Flux:

(pav) NNV = (pa) LV (vi, g y2s X1) + (p2) RV ™ (VR, €412, XR) (67)

e Momentum Flux:

(POW2)?E1S/1\2W = ‘7+(UL, Cjt+1/25 x)(pav) L, + Vﬁ(UR, Cjt+1/25 XR)(paw) R. (68)

Definition 5. Similarly, we will henceforth refer to the van Leer scheme modified with the split-
tings (64) and the choice of x described by (65) and (66) as the AUSMD scheme. That is, the
convective fluzes of AUSMD are described by

e Mass Flux:

(pav) WP = (pa) LV (vis g gas 1) + (p) RV ™ (R, €412, X R) (69)

e Momentum Flux:

1 1

(pav®) 2P = i(POéU)jH/z (ve +vR) — §|(P0w)j+1/2|(vR —vr). (70)

We note that x1, and xr given by (65) and (66) satisfy the relation (40). Consequently, as

remarked in Section 4.1, it is easy to check by direct calculation that the AUSMV and AUSMD
convective fluxes hold the following property, see also [9, 12].

AUSMV
j+1/2

AUSMD

it1/p are mass coherent in the

Proposition 2. The convective fluzes (pawv)
sense of Definition 1.

7.3. WIMF-AUSMD and WIMF-AUSMYV. We are now in a position where we can give
a precise definition of fully discrete MF schemes. We shall consider the following two different
choices for (F)" and (G)" leading to two different MF schemes:

Definition 6. We will use the term WIMF-AUSMYV to denote the numerical scheme given by
(47)—~(54) where (FkD)n'H/2 is given by the pressure coherent component (59) whereas (F1)"

and (paw)

Jj+1/2 J+1/2
and (G]?).;L+1/2 are given by
A AUSMV, A _ AUSMV,
(Fk );’:—1/2 = (pav)k7j+1/2 n, (Gk )?+1/2 - (pa’l)2)k7j+1/2 "

Definition 7. We will use the term WIMF-AUSMD to denote the numerical scheme given by
(47)—(54) where (FkD)nH/2 is given by the pressure coherent component (59) whereas (F{')

JH1/2
and (GI?)?+1/2 are given by

n
j+1/2

A\n AUSMD,n Avn AUSMD,n
(Fi)ja/2 = (pav)i ™ (GE)i1/2 = (pov®) 51

The following result holds for WIMF-AUSMYV and WIMF-AUSMD:

Proposition 3. WIMF-AUSMYV and WIMF-AUSMD satisfy the following properties:
(i) The mass fluzes of WIMF-AUSMYV and WIMF-AUSMD are mass coherent in the sense of
Definition 1. (i) Both schemes obey Abgrall’s principle.

Proof. In view of Lemma 1, result (i) follows directly from Proposition 1 and Proposition 2.
Result (ii) follows by observing that the flux component G3 of both schemes (see Definition

6 and 7) satisfy the relation (36) for flow with uniform velocity (35), and then applying Lemma

2. g

Remark 9. We observed in [9] that the convective fluxes of AUSMV were considerably more
diffusive on volume fraction waves than those of AUSMD. Thus, for numerical simulations we
prefer to use the WIMF-AUSMD scheme which applies AUSMD mass and momentum fluzes for
F,f and G,? respectively. However, we will take advantage of the robustness of the convective fluxes
of AUSMYV and apply these in combination with the convective fluxes of AUSMD in an appropriate
manner when we consider flows which locally involve transition to single-phase flow. We refer to
Section 8.3 for details.
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8. NUMERICAL SIMULATIONS

In the following some selected numerical examples will be presented. We will consider the
performance of the WIMF-AUSMD scheme given by Definition 7. In order to ensure that this
scheme can handle flow cases which involves transition to single-phase flow, we introduce a slight
modification whose purpose basically is to introduce more numerical dissipation near the single-
phase zone. This is explained in detail in Section 8.3.

As our main concern will be to demonstrate the inherent accuracy and stability properties of
the WIMF-AUSMD scheme, we limit ourselves to first order accuracy in space and time. The
boundary conditions are implemented using a simple “ghost cell” approach, where the variables
are either imposed or determined by simple (zeroth order) extrapolation from the computational
domain.

In the first example we explore more carefully central mechanisms of the WIMF-AUSMD
scheme.

8.1. A Large Relative Velocity Shock. We consider a Riemann initial value problem investi-
gated by Cortes et al [5] for a similar two-fluid model. Our primary motivation for studying this
problem is to investigate the performance of WIMF-AUSMD on sonic waves. The initial states
are given by

D 265000 Pa
_ (%] _ 0.71
Wi = vg | 65 m/s (71)
v 1m/s
and
P 265000 Pa
_ 5] _ 0.7
Wr = vg | 50 m/s ' (72)
vl 1m/s

8.1.1. Comparison with explicit scheme. We here aim to compare the WIMF-AUSMD with an
explicit Roe scheme at the same spatial and temporal grid. We refer to [9] for a description of the
implementation of the Roe scheme. We assume a grid of 100 cells and use the timestep

% =400 m/s. (73)
The results, plotted at the time ¢t = 0.1 s, are given in Figure 1. The reference solution was
computed using the Roe scheme on a grid of 10 000 cells.

We note that the implicit pressure-momentum coupling used in WIMF-AUMSD causes a
stronger numerical dissipation associated with the sonic waves as compared to the explicit Roe
scheme whereas the approximation of the volume fraction waves located at about 50 m seem
to be very similar. The approximation properties regarding the slow volume fraction waves for
WIMF-AUSMD is explored in more detail in the next example (water faucet).

8.1.2. Test of timestep sensitivity for calculation of pressure using the WIMF-AUSMD scheme.
We now investigate what happens when the timestep is increased beyond the sonic CFL criterion.
The two-fluid model possesses an approximate mixture velocity of sound given by (see [30, 9] for
details)

P T e (74)
Opg + ;e )
ap P1% T Bp Pe
Hence the mixture sound velocity is approximately given by the sound velocity of the gas phase,

giving

CcC =

¢~ 317 m/s. (75)

Hence for timesteps satisfying

Az
E <.c, (76)
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F1GURE 1. LRV shock tube problem. WIMF-AUSMD vs Roe scheme for a grid
of 100 cells. Top left: Liquid fraction. Top right: Pressure. Bottom left: Liquid
velocity: Bottom right: Gas velocity.

the sonic CFL criterion is broken. For a grid of 1000 cells, the results of the pressure calculation
for several different values of Az/At is given in Figure 2. We observe that increasing the timestep
beyond the sonic CFL criterion (2) does not induce instabilities. However, a significant increase
of the numerical dissipation of the sonic waves follows the increased timestep.

8.1.3. Test of stability and convergence for the WIMF-AUSMD scheme under violation of sonic
CFL condition. Using the timestep Az/At = 100 m/s, the effect of grid refinement for the WIMF-
AUSMD scheme is demonstrated in Figure 3. We observe that the Roe reference solution is
approached in a monotone way and by that verifies that the stability of the WIMF-AUSMD
scheme is not governed by the maximal speed of the sonic waves.

8.1.4. Test of using purely explicit mass fluxes Fj,. We now wish to illustrate the need for using the
implicitly calculated mass fluxes I,?H as given by (59) when we approximate the mass equations.
We consider a slight modification of the flux component F; ,]3 given by (59), where we instead use
the momentum from the previous timestep as follows
1 1Az
(FkD)?+1/2 = 5(11?,1' + I 1) + Zﬂ(ng — M i)

Results are given in Figure 4 for the timesteps Az/At = 1000 m/s and Az/At = 100 m/s using
a grid of 1000 cells. We observe that this works well for Az/A¢ = 1000 m/s when the sonic CFL
condition is satisfied. However, increasing the timestep by an order of magnitude leads to CFL-like
instabilities, despite the fact that the pressure-momentum coupling still is implicit. It seems to be
a crucial step to use information from time level t"*! to achieve stable mass calculations.

Remark 10. In particular, these results illustrate that the combination of using the pressure
evolution equation (49) and the mizture mass fluzes (53) and (54), where (FP)"+'/2 is given by
(59), makes the pressure calculation independent of any sonic CFL condition.



20

Liquid fraction

Liquid velocity (m/s)

271000

270000

269000

268000

Pressure (Pa)

267000

266000

265000

EVJE AND FLATTEN

reference

25m/s ———-
15m/s ----

40
Distance (m)

60

FicURE 2. LRV shock tube problem. Pressure is shown for a grid of 1000 cells.
Different timesteps are considered by considering different values for Axz/At for

the WIMF-AUSMD scheme.

0.712 T T T T 271000 T T T T
reference
101000 cells ------
2500 cells -~
071 800 cells
200 cells -~~~ 270000 - 1
0.708 - R
0.706 - 4 269000 |- 4 4
5 y
0.704 - g < \
£ 268000 - reference ki R
2 10000 cells ===~
0702 | 1 $ 2500 cells -
a 800 cells
200 cells -~
07 ; 267000 |- ; \ g
0698 - R
266000 |- R
0.696 - R
0.694 L L L L 265000 bomm”” L L L L SR
0 20 40 60 80 100 0 20 40 60 80 100
Distance (m) Distance (m)
102 T T T T 66 T T T T
reference reference
10000 cells ------- 101000 cells -------
ol 2500 cells -
800 cells
200 cells -~
62 [
60 -
g
E
s s
8
S sl
8
o
54 1
52 1
50 -
0975 . . . . 48 . . . .
0 20 40 60 80 100 0 20 40 60 80 100
Distance (m) Distance (m)

F1GURE 3. LRV shock tube problem. Grid refinement for the WIMF-AUSMD
scheme. Top left: Liquid fraction. Top right: Pressure. Bottom left: Liquid
velocity. Bottom right: Gas velocity.



WEAKLY IMPLICIT NUMERICAL SCHEMES 21

274000 T T T T
reference
1000 m/s -------

100m/s --------

273000 -

272000

271000

270000

269000

Pressure (Pa)

268000

267000

266000

1 1 1
40 60 80 100
Distance (m)

265000

F1GURE 4. LRV shock tube problem, 1000 cells. Modfied WIMF-AUSMD. Purely
explicit mass fluxes are used.

The strength of the mixture fluxes (53) and (54) lies in their ability to properly combine the
stability of an implicit scheme with the accuracy of an explicit scheme, at least for the resolution
of volume fraction waves. This is the central issue in the next example.

8.2. Water Faucet Problem. We now wish to focus more on the resolution of volume fraction
waves. For this purpose, we study the faucet flow problem of Ransom [22], which has become a
standard benchmark [31, 30, 4, 19, 20].

We consider a vertical pipe of length 12 m with the initial uniform state

P 10° Pa
_ 5] _ 0.8
W = o | = 0 : (77)
vl 10 m/s

Gravity is the only source term taken into account, i.e. in the framework of (10) and (11) we have

Qr = gprok, (78)
with g being the acceleration of gravity. At the inlet we have the constant conditions a; = 0.8,
vy = 10 m/s and vy = 0. At the outlet the pipe is open to the ambient pressure p = 10° Pa.
We restate the approximate analytical solution presented in the references [20, 31]

3 142
vl(w,t):{ Vg + 29z for z < wot + gt (79)

vo + gt otherwise.

| ao(1 4+ 2g2v,2)" 2 for @ < ot + 1 gt?
Oél(l', t) - :
Qap otherwise

where the parameters ap = 0.8 and vy = 10 m/s are the initial states.

8.2.1. Comparison with explicit Roe scheme. We now compare the WIMF-AUSMD scheme with
the explicit Roe scheme under equal conditions. That is, we assume a grid of 120 cells and use
the timestep

Ar

3
;= 10° m/s. (81)
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Results are given in Figure 5 after t = 0.6 s. We note that there is hardly any visible difference
between WIMF-AUSMD and the Roe scheme on the volume fraction wave. However, the WIMF-
AUSMD is somewhat more diffusive on pressure. This is consistent with our observations in
Section 8.1.1.

8.2.2. Effect of increasing the timestep for WIMF-AUSMD. An eigenvalue analysis (see [30, 9])
reveals that the velocities of the volume fraction waves are approximately given by

\E _ PeCi1 + pragu; n Ap(pgou + prag) — prpgouog(vg — v1)? (82)
v pPgu + prag (,OgOél + plag)2
For a weakly implicit scheme as defined by (3) we must then have
Az "
—_— > .
7 > max(\) (53)
Having py >> p, we obtain from (82)
M x o, (84)

hence we expect a weakly implicit scheme to encounter CFL related stability problems near
timesteps corresponding to the liquid velocity.

We now study the effect of increasing the timestep for the WIMF-AUSMD scheme. We consider
the following timesteps:

Az/At = 1000 m/s.
Az /At =25 m/s.
Az /At =17 m/s.
Az/At =14 m/s.

Results for these timesteps are given in Figure 6. We observe that increasing the timestep towards



WEAKLY IMPLICIT NUMERICAL SCHEMES 23

0.55 T T T T T 100000
reference Y
14mis

Roe 1200 cells
——————— i 14mis ------
17 mfs - Fi 17 mfs -
05 25 mis i 4 99950 - 25 mis

: 1000 m/s - ; 1000 mis -

99900

99850 - B — —

99800 -

Gas fraction
Pressure (Pa)

99750 -

99700 -

99650 -

. . . . . 99600 . .
o 2 4 6 8 10 12 0 2 4 6 8 10 12
Distance (m) Distance (m)

17 T T T T T 5
reference
14 mis

17 mis -eeee 25 m/s
6l 25ms - | ~ 1000 mis ---=
1000 m/s ~--~ e o

a0 b

Liquid velocity (m/s)
Gas velocity (m/s)

a5 1

20 |

10 . . . . . 25 . . . T Lo
0 2 4 6 8 10 12 0 2 4 6 8 10 12

Distance (m) Distance (m)

FIGURE 6. Water faucet problem, 120 cells, T=0.6 s. Different timesteps for the
WIMF-AUSMD scheme. Top left: Gas fraction. Top right: Pressure. Bottom
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the timestep corresponding to the liquid velocity significantly improves the accuracy of WIMF-
AUSMD on the volume fraction wave, as seen on the plots of velocities and volume fraction. The
rate of improvement in accuracy is largest near the optimal timestep Az/At = v;. Increasing
the timestep further violates the weak CFL criterion (83) and instabilities occur. The increased
accuracy in volume fraction is accompanied by increased numerical dissipation in the pressure
variable, consistent with our observations in Section 8.1.2.

8.2.3. Optimal WIMF-AUSMD vs Roe scheme. To emphasize the increased accuracy in volume
fraction that is allowed by increasing the timestep beyond the sonic CFL criterion, the explicit
Roe scheme at Az/At = 1000 m/s is plotted together with the optimal WIMF-AUSMD scheme
(Az/At = 17 m/s) in Figure 7. The improvement of the WIMF-AUSMD scheme is rather striking
and is equivalent to an increase in the number of grid cells by an order of magnitude for the Roe
scheme.

8.2.4. Test of convergence for WIMF-AUSMD. In Figure 8 we investigate how the scheme con-
verges to the expected analytical solution as the grid is refined. The optimal timestep Az /At = 17
m/s is used. As we can see, the expected analytical solution is approached in a nonoscillatory way.

8.3. Separation Problem. We consider a gravity-induced phase separation problem introduced
by Coquel et al [4], also investigated by Paillere et al [20]. This problem tests the ability of
numerical schemes to handle the transition to one-phase flow under stiff conditions.

We assume a vertical pipe of length 7.5 m, where gravitational acceleration and possibly inter-
facial friction are the source terms taken into account. Initially the pipe is filled with stagnant
liquid and gas with a uniform pressure py = 10°> Pa and a uniform liquid fraction aq = 0.5.
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Assuming that the liquid column falls freely under the influence of gravity, the following ap-
proximate analytical solution can be derived for the transient period
V2gz  for z < $gt?
vz, t) = gt for $gt* <x < L — Sgt* (85)
0 for L — %gt2 <z
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0 forz< igt?
a(z,t) =4 0.5 for $g9t> <z < L — gt (86)
1 for L— % gt? <=z
where L = 7.5 m is the length of the tube. This approximate solution consists of a contact
discontinuity at the top of the tube and a shock-like discontinuity at the lower part of the tube.

After the time
[ L
T = E =0.87s (87)

these discontinuities will merge and the phases become fully separated. The volume fraction reach
a stationary state, whereas the other variables slowly converge towards a stationary solution.
Assuming hydrostatic conditions the pressure will approximately be given by

Do for z < L/2

ple,t) = { po+pg(x—L/2) forz> L§2- (88)
8.3.1. Transition to one-phase flow. We observed that the basic WIMF-AUSMD scheme would
produce instabilities in the transition to one-phase flow. Indeed this is a common problem for two-
phase flow models, observed among others by Coquel et al [4] for their kinetic scheme, Paillére et
al [20] for their AUSM™ scheme and Romate [23] for his Roe scheme. Romate suggested a scheme
switching strategy for solving this problem, where the original scheme is replaced with a stable,
diffusive scheme near one-phase regions. Here we will follow a similar approach, using a strategy
that has been previously applied with success [9, 12]. We proceed as follows:

8.3.2. Modification of basic AUSMV and AUSMD splitting formulas. We modify the parameters y
used in the splitting formulas (64) corresponding to the AUSMV and AUSMD schemes as follows

2(p/a)r.

=(1- 89
=G+ (e T &
and 2p/a)
1 P/ )R,
X = 0T e+ (o T )
for each phase. Here ¢ is the transition fix function
b= ¢lag) = e Tss 4 g Till—ag) (91)

where [y is a parameter controlling the diffusive effect of the transition fix. This fix ensures that
we recover the more stable FVS/van Leer fluxes, as given by (60)—(63), in one-phase regions.

We observe that the transition to one-phase liquid flow (the denser phase) more easily induces
instabilities than the transition to one-phase gas flow (the less dense phase). For the purposes of
this paper, we choose the parameters

Iy =50 (92)
and
Ty = 500. (93)

Definition 8. The modified AUSMD scheme as described by (89) and (90) will be denoted as the
AUSMD* scheme. Similarly, the modified AUSMV scheme as described by (89) and (90) will be
denoted as the AUSMV* scheme.

8.3.3. WIMF-AUSMDV*. We consider convective fluxes which are a hybrid of those employed by
AUSMD* and AUSMV*, and denoted as AUSMDV*. More precisely, the numerical convective
fluxes (apv);y1/2 and (apv?);41 /2 are given by the following expression:

(apo) 5PV = s(ap) R + (1= 8)(apv) 205" (94)
A * A * A *
(apv®) 3 Y = s(ap®)iin Y + (1= s)(apv®) 340"

Here s is chosen as
s = max(¢r, #r), (95)
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where ¢ is the transition fix function given by (91). Note that this hybridization only affects the
momentum convective fluxes since (apv);f‘fls/l\gv* = (apv);f‘fls/l\gD*. The construction (94) ensures
that AUSMDV* uses the accurate AUSMD* fluxes in two-phase regions and switches to the more
stable AUSMV* fluxes in one-phase regions.

The WIMF-AUSMDV* scheme is now constructed straightforwardly by associating the fluxes

F2 and G2 with the corresponding AUSMDV* fluxes as follows.

Definition 9. We will use the term WIMF-AUSMDV™* to denote the numerical scheme given

by (47)—(54) where (FkD);LLl//; is given by the pressure coherent component (59) whereas (F{')

and (GI?)?+1/2 are given by

n
j+1/2

(FI?)?+1/2 = (PQU)I;AE_,S_IYI/];V ", (Gl?)?+1/2 = (,00“)2)?345_1;/[/2\/ i

Remark 11. The idea of increasing the numerical dissipation near one-phase regions may be
explored more systematically with the aim of obtaining more general relations that do not involve
free parameters. Paillére et al [20] used a related approach, introducing a diffusion term depending
on the pressure gradient to improve the performance of their AUSM' scheme near one-phase liquid
regions. We stress that the above modified schemes are still fully conservative and consistent with
the original basic two-fluid model. In particular the WIMF-AUSMDV* scheme differs from the
WIMF-AUSMD scheme only for one-phase regions.

8.3.4. Numerical Results. We now consider two different formulations of the two-fluid model:

e Frictionless flow. We assume that gravity is the only source term taken into account. In
this case, the lack of friction terms causes the gas velocity to become large as the gas
phase is disappearing. We note that for one-phase liquid flow we have oy >> a, and the
volume fraction velocities (82) are dominated by this large gas velocity. Hence the weak
CFL criterion (83) becomes very restrictive here. With this model we use the relatively

low timestep

A
K”; = 500 m/s. (96)
For stability of the FVS scheme, which AUSMDV* employs in the transition to single

phase flow, we rescale the sound velocity ¢ as described in the Appendix, using
c =750 m/s (97)

instead of the sound velocity determined from (16). This choice was based on the fact
that we observed that the gas velocity could become as high as approximately 400 m/s.
According to (124) in the Appendix, we should then choose ¢ such that 200 < ¢ < 800.
We consistently have chosen ¢ in the upper region.

e Interfacial momentum exchange. The low timestep needed for the frictionless model is
undesirable. In addition the assumption of frictionless low is unphysical. In reality we
expect the last remnants of the disappearing phase to be completely dissolved, and we
expect vg &~ v} near one-phase regions. To more realistically model this situation, we
consider an interfacial momentum transfer model also used by Paillere et al [20]. For the
gas momentum equation, we introduce the source term

Mé) = Cogaipg(vg — 1), (98)
where C' is a positive constant. Likewise the liquid momentum source term is given as
MP = —Mé) = —Cagaipg(vg — v1), (99)

conserving total momentum. We write
C = Coo, (100)

making the exchange term kick in more strongly near one-phase regions. Following Paillere
et al [20], we set
Co = 50000 s~ (101)
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FIGURE 9. Separation problem, T=0.6 s, 100 grid cells. WIMF-AUSMDV*
scheme with and without interfacial momentum exchange terms. Top left: Liquid
fraction. Top right: Pressure. Bottom left: Liquid velocity. Bottom right: Gas
velocity

To avoid stability problems related to stiffness in this term, we use a semi-implicit imple-
mentation as follows

(I)f* (™!
MD ”'L+1/2 — C’ﬂ n 8/j _ J 102
( g )] j (agalpg)g (mg);;, (ml)? ( )
We found that we could now increase the timestep to
A
Kf = 75 m/s, (103)

consistent with the largest gas (volume fraction) velocities during the transient period.
The sound velocity is rescaled as

¢ =150 m/s. (104)

Again, this choice is based on the criterion (124) where we now can assume that the
fluid velocity becomes zero in the transition to single-phase flow (due to the inclusion of
the interfacial momentum transfer model). This gives us that ¢ should be chosen in the
interval 0 < ¢ < 2\ = 2Az/At.

Results after ¢ = 0.6 s are plotted in Figure 9, using a grid of 100 cells. The approximate
analytical solutions (85) and (86) are used for reference. We note that good accordance with the
expected analytical solutions is achieved. The most notable effect of the interfacial momentum
exchange term is the reduction of the gas velocity in the one-phase liquid region.

Although the phases will be separated for ¢ < 1.0 s, it takes some seconds before the excess
momentum has been dissipated at the endpoints. Results for fully stationary conditions (¢ = 5.0
s) are plotted in Figure 10. We note that the frictionless model does not exactly yield the expected
hydrostatic pressure distribution. This seems to be due to the strong velocity gradients at the
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separation point, and hydrostatic conditions are never fully reached. The inclusion of the interfacial
friction term removes these gradients.

In Figure 11 the effect of grid refinement on the resolution of volume fraction is illustrated for
the WIMF-AUSMDV* scheme with momentum exchange terms. The timestep Axz/At = 75 m/s
is used. The expected analytical solution is approached in a monotone way.

8.4. Oscillating Manometer Problem. Finally, we consider a problem introduced by Ransom
[22] and investigated by Paillere et al [20] and Evje et al [9]. This problem tests the ability of
numerical schemes to handle a change in the flow direction.

We consider a U-shaped tube of total length 20 m. The geometry of the tube is reflected in the
z-component of the gravity field

g for0<z<5m
gz() =< gcos ((11705mm) 7r) forbm<z<15m (105)
—g for 15 m < z < 20 m.

Initally we assume that the liquid fraction is given by

107% for0<z<5m
a(z) =< 0999 for5m<z<15m (106)
1076 for 15 m < z < 20 m.

The initial pressure is assumed to be equal to the hydrostatic pressure distribution. We assume
that the gas velocity is uniformly v, = 0, and the liquid velocity distribution is given by

0 for0<z<bm

vx)=¢ Vo for5m<z<15m (107)
0 forlbm<z<20m,
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FIGURE 11. Separation problem, T=0.6s. Convergence properties of the WIMF-
AUSMDV* scheme with interfacial momentum exchange terms.

where V5 = 2.1 m/s.
Ransom [22] suggested treating the manometer as a closed loop. We will follow the approach

of Paillere et al [20], assuming that both ends of the manometer are open to the atmosphere.
We assume that the liquid column will move with uniform velocity under the influence of gravity,
giving the following approximate analytical solution for the liquid velocity [20]

v (t) = Vo cos(wt), (108)
where
e (109)
TV

where L = 10 m is the length of the liquid column.
In order to exploit the possibility of taking large timesteps, we include the interfacial momentum

exchange term as described in Section 8.3.4. The sound velocity is rescaled to ¢ = 30 m/s which
is consistent with (124) where we use that the fluid velocity becomes zero in the transition to

single-phase flow.

8.4.1. Numerical results. We consider the following grids

e 100 cells. We use a timestep corresponding to Az/A¢t = 50 m/s.

e 500 cells. We use a timestep corresponding to Az/A¢t = 15 m/s.
For the fine grid with 500 cells, the critical timestep was found to be consistent with the weak
CFL criterion (83). For the coarse grid consisting of 100 cells, a lower CFL number was needed
to ensure stability. The evolution of the center cell liquid velocity is given in Figure 12. We note
that the results for 100 and 500 cells are virtually identical, indicating that the resolution of the
liquid velocity is not grid sensitive. We observe a slight phase difference from the approximate
analytical solution as was also observed in [20, 9].

The distribution of all variables after ¢ = 20 s is given in Figure 13 for the grid of 500 cells.
We observe that the variables are approximated without any numerical oscillations. In particular
there is little numerical diffusion for the volume fraction variable. The strong gradients in the
velocities are a consequence of the sudden volume change at the transition points between the
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phases. We remark that the gas velocity was extrapolated at the boundaries, whereas the liquid
velocity was forced to zero at the boundaries to avoid liquid mass leakage.

9. SUMMARY

We have proposed a general framework for constructing weakly implicit methods for the two-
fluid model. Particularly, we have constructed a weakly implicit numerical scheme, denoted as
WIMF-AUSMD, that allows the CFL criterion for sonic waves to be violated. All the numerical
experiments indicate that a weaker CFL criterion applies with relation to the slow-moving volume
fraction waves.

The scheme is based on a previously developed “Mixture Flux” approach [12] which properly
combines diffusive and nondissipative fluxes to yield an accurate and robust resolution of sonic
and volume fraction waves on nonstaggered grids. The sonic CFL criterion is violated by enforcing
a coupling between the “pressure wave” component of the mixture flux, the cell center momenta
and the cell interface pressure. In particular all convective (mass and momentum) fluxes are
treated in an explicit manner. Hence we believe that higher order versions of the scheme may be
implemented, for instance by using the MUSCL technique of van Leer [7, 14].

The numerical evidence indicates that the WIMF-AUSMD is highly robust and efficient, and
gives an accuracy potentially superior to the explicit Roe scheme on volume fraction waves. An
added advantage of the WIMF-AUSMD scheme is that it does not require a full eigenstructure
decomposition of the jacobi matrix for the system. However, the scheme is diffusive on pressure
waves, especially for large timesteps.

By increasing the numerical dissipation near one-phase regions, we have demonstrated that
the framework allows for accurate, efficient and robust solutions also for flow cases which locally
involve the transition from one-phase to two-phase flow.
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APPENDIX

Rescaling the Sound Velocity. A problem with the original FVS scheme is that it can produce
instabilities for large timesteps if the discretization parameter A = Az /At is chosen much smaller
than the sound velocity. For an explicit scheme this will never be a problem as the CFL criterion
limits the timesteps we can take. For a semi-implicit method however, we wish to use a value for
A that may be several orders of magnitude smaller than the physical sound velocity and the issue
becomes of relevance. To describe the problem, we consider the mass conservation equation

ou  O(uw)
- =0 110
ot * os (110)
where u = prpay. We now consider the FVS scheme
(uv) 4172 = V+(vj,c)uj + V= (vj41,0)Ujt1. (111)
where we use the splitting formulas (60), assuming v < ¢
1
VE(v,c) = ﬂ:%(vic)? (112)

Total Variation Stability. We now take advantage of the following theorem due to Harten, as
stated by Tadmor [28]

Theorem 1. Consider the scalar equation

ou  Of(u)
T =0 113
ot + ox (113)
solved by the numerical scheme
utt — 1
L+ o (Fluf,ufy) = Fufp,uf)) =0 (114)

At Az
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where the numerical flux F(u},u}, ) is written on viscous form
1 1Az
Fii1)0 = F(“?a“?ﬂ) =3 (f(“;b) + f(“?ﬂ)) - §EQ?+1/2(“?+1 - U?) (115)
The scheme (114) is total variation nonincreasing provided its numerical viscosity coefficient
Q?+1/2 = Q(u}’,u}’ﬂ) satisfies

At | fufy) = fuf)
— Q" <1. 11
Al‘ U?+1 — 'U,;L = Q]+1/2 — ( 6)

For the scheme (111) using the splitting formulas (112) we obtain the numerical viscosity
coefficient

At v* + 2
Y Rl Vs P (117)
Using this and assuming uniform velocity we can write the requirement (116) as
At At v? + 2
—v < — <1 11
Az’ S Az 2c (118)

which yields the following lemma

Lemma 3. Let the mass equation (110) be solved using the numerical fluzes given by (111) and
(112). Then the resulting scheme is total variation nonincreasing if

Ar _ v +c?
=" s 119
At =  2¢ (119)
and
c> 0. (120)
The criterion (119) attains its minimum value for v = ¢, for which we obtain
Az
-— > 121
At p U) ( )
which is the standard CFL criterion.
To further investigate how ¢ should be chosen, we now assume that
Az
A= — 122
s (122)
is known and investigate which criteria govern the possible choices for ¢. From (119) we obtain
& —2cA+v? <0. (123)

Solving this equation we obtain the following corollary

Corollary 1. Let the linear advection equation (110) be solved using the numerical fluzes given
by (111) and (112). Assume the timestep X = Ax/At is known. Then the resulting scheme is
total variation nonincreasing if the “sound velocity” c satisfies

A=V =02 <e< A+ VA2 -2 (124)

This result is confirmed by numerical experiments and illustrates that if ¢ >> A the FVS
scheme is unstable. We hence propose to rescale the sound velocity used in the flux-splitting
schemes such that the requirement (124) is satisfied also for large timesteps. We stress that this
step is necessary to achieve stability on the advective effects for the FVS scheme. Stability of the
sonic waves is an independent problem that we wish to achieve through taking advantage of the
implicit pressure-momentum coupling together with the decomposition of Fj, into FkD and F,f.



