A MIXTURE FLUX APPROACH FOR ACCURATE AND ROBUST
RESOLUTION OF TWO-PHASE FLOWS
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ABSTRACT. The aim of this paper is to construct robust and accurate hybrid FVS/FDS type
of schemes for a standard four-equation isentropic compressible two-fluid model governing 1-
dimensional flow of a gas (g) and liquid (1) mixture. The starting point for our investigations is
a Roe scheme and a hybrid FVS/FDS scheme. The latter is an AUSMD type of scheme obtained
through a natural and rather straightforward extension of the corresponding scheme for the Euler
equations (single-phase model) as described by Wada and Liou (1997, STAM J. Sci. Comput. 18,
633-657). The main advantage of such hybrid FVS/FDS schemes is that they neither require the
use of Riemann solvers nor the computation of nonlinear flux Jacobians. However, we observe
that the two-phase AUSMD scheme is prone to introducing oscillations and overshoots around
discontinuities. Based on the belief that this deficiency is due to the loose coupling between mass
and momentum equations in the discretization of the two-phase model, we propose a method
for improving the approximation properties of hybrid FVS/FDS schemes by enforcing a tighter
coupling between the various equations.

The method, which is denoted as a ”Mixture Flux” (MF) method, is composed of two
main ingredients. First, we make use of an additional pressure evolution equation which is
derived from the equation describing the conservation of the total mass. This provides us with
information how to construct an appropriate numerical flux for the discretization of the pressure
term of the momentum equations. Second, we introduce a consistent decomposition of the
numerical mass fluxes into two components; one flux component FP associated with the fast-
moving pressure waves and another component FA associated with the slow-moving volume
fraction waves. The FP-component is designed by using information from the momentum
equations and is crucial for ensuring non-oscillatory behavior around the slow-moving volume
fraction waves, whereas the FA-component is responsible for the accuracy of these waves.

Particularly, by associating the flux F2 with the AUSMD mass flux we demonstrate through
numerical experiments that the resulting MF-AUSMD scheme possesses accuracy and stability
properties on the same level as the Roe scheme while allowing for highly improved computational
efficiency. In addition, by using a slight modification of MF-AUSMD we can also simulate flow
cases which locally involve transition from two-phase to single-phase.

The MF-method represents a general strategy for refining hybrid FVS/FDS schemes for
two-phase flow models.
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1. INTRODUCTION

Among several two-phase flow models there are two fundamentally different formulations of the
macroscopic field equations for the two-phase flow system; namely the two-fluid model and the
mizture model [24], which is a simplified isothermal two-phase model consisting of separate mass
conservation equations and a mixture momentum equation. Here we focus on the two-fluid model,
which is considered to give a more general and detailed description of transient two-phase flows.
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This model is expressed as a set of 4 partial differential equations, one mass and one momentum
conservation equation for each phase. The interaction terms between the two phases appear in the
basic equations as transfer terms across the interfaces (source terms). More precisely, the basic
form of the model can be written on the following vector form:

PgQg PgPglg 0 0
prag P11V 0 0
0 +0 = + 1
1 peagug | peagv? + agp pOrog + Tg Qg + M%D (1)
prajv prauvy + aip POy + T Q1 + M,

Here ay, is the volume fraction of phase k with ay +a; = 1, py and v, denote the density and fluid
velocities of phase k, and p is the pressure common to both phases. Moreover, 7, represents the
interfacial forces which contain differential terms (hence, is relevant for the hyperbolicity of the
model) and satisfy 7; + 7 = 0. M} represents interfacial drag force with My + M = 0 whereas
Q) represent source terms due to gravity, friction, etc.

During the last decade, flux-splitting techniques denoted as “Advection Upstream Splitting
Methods” (AUSM) have become popular for solving the equations of gas dynamics [13, 12, 30, 5].
An advantage of such methods is that they do not require a knowledge of the full eigenstructure
of the system, and are consequently more efficient than classical approximate Riemann solvers like
the Godunov [16, 11] and Roe [19, 20] schemes.

A recent trend has been to adapt such ideas to two-phase flow models [6, 14, 15]. Evje and Fjelde
[7, 8] considered the mixture two-phase model. Basically, it was found that an AUSM scheme based
on a rough estimate of the sound velocity gave accurate and non-oscillatory resolution of mass
fronts comparable with the more computationally demanding Roe scheme [21, 10].

Regarding the two-fluid model, Paillere et al [17] investigated an extension of the AUSM™
scheme of Liou [12] on a model including an energy conservation equation for each phase. Evje
and Flatten [9] investigated a related approach, using an extension of the AUSMD/V scheme of
Wada and Liou [30] on the two-fluid model. Results similar to the work of Paillere et al were
obtained.

A feature common to both these approaches is a tendency towards introducing spurious oscilla-
tions and overshoots around discontinuities. Based on the belief that this deficiency is due to the
loose coupling between mass and momentum equations in the discretization procedure, we here
propose a general method for improving the approximation properties of such hybrid FVS/FDS
schemes for the two-phase model. The main idea behind this novel construction can be described
as follows: Assuming that the phases have equal pressure, the mass coupling can be expressed as
(writing my, = proy)

Mg o _
pe®)  p(p) b 2
which is a rewritten form of the basic volume fraction equation

ag +ap = 1.

The relation (2) contains essential information about the interrelation between the masses and the
pressure. The idea of this work is to derive hybrid FVS/FDS schemes which explicitly make use
of this relation in the construction of appropriate numerical mass fluxes. Basically, the implemen-
tation of this idea is carried out in two steps.

e First, we couple the pressure calculation more directly to the momentum equations. For
this purpose, we derive a pressure evolution equation by combining the mass conservation
equations (two first equations of (1)) and the relation (2). This pressure equation is
discretized at the cell interface whereas cell-centered pressure values are obtained directly
from (2). We apply a discretization of the pressure evolution equation which enforces a
coupling between the cell interface pressure p;;1/» and cell-centered pressure p;, ensuring
consistency of the pressure splitting.

e Second, we couple the calculation of masses my, closer to the momentum equations. To
achieve this, we employ (2) and derive consistent numerical mass fluxes associated with the
mass conservation equations which are composed of two components; one diffusive part F*
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for stable (non-oscillatory) resolution of volume fraction waves and another nondissipative
part FA for accurate resolution of these waves.

The above two steps bring forth numerical fluxes for the various equations of (1) which consist of
a mizture of terms from the other equations. This motivates us to denote the general algorithm as
a Mizture Fluz (MF) method. Consequently, we lose some of the simplicity of the original AUSM
concept which basically treats the system as a set of scalar equations without accounting for the
interrelation between the various equations. However, the efficiency properties of the original
AUSM type schemes largely remain for the proposed MF-type schemes as we still avoid use of
Riemann solvers and computation of nonlinear flux Jacobians.

Particularly, by associating the flux component FA with the AUSMD flux used in [9] we obtain
a MF-AUSMD scheme. We formally demonstrate that under natural assumptions on the FP flux
component, the resulting MF-AUSMD scheme recovers the numerical flux of an exact Riemann
solver for a moving or stationary contact discontinuity. This ensures that mass fronts are properly
resolved. We also verify that Abgrall’s principle [1] is satisfied; that a flow, uniform in velocity
and pressure, must remain uniform during its temporal evolution.

We demonstrate through numerical experiments that the proposed MF-AUSMD scheme matches
the good accuracy and stability properties of the Roe scheme. More precisely, the MF-AUSMD is
slightly more diffusive on the fast moving sonic waves. For the approximation of the slow volume
fraction waves we see that the MF-AUSMD scheme and the Roe scheme behave very similar. In
particular, the deficiencies of the AUSMD scheme studied in [9] have been removed. In addition,
we may easily modify the MF-AUSMD scheme so that it can handle flow cases which locally
involve transition from two-phase to single-phase flow.

Hence, the MF-AUSMD scheme, which is totally free from Riemann solvers and computation
of nonlinear flux Jacobians, allows for highly improved computational efficiency compared to the
Roe scheme.

Our paper is organized as follows: In Section 2 we present the two-fluid model we will be
working with. In section 3 we briefly restate the flux-splitting schemes that were investigated in
[9] and which will be used as a basis for the methods we develop in this paper. The purpose of
Section 4 is to motivate for the Mixture Flux method by observing some ”weak points” of the
flux-splitting schemes considered in [9]. In Section 5 we introduce the Mixture Flux method, and
in Section 6 we verify that the method satisfies certain ”good” properties. In Section 7 we apply
it to a set of test cases found in the literature. Comparisons are made with the Roe scheme as
well as the AUSMD scheme considered in [9] and an appropriate modification is applied making
the scheme able to handle the transition to one-phase flow.

2. THE Two-FLUID MODEL

Throughout this paper we will be concerned with the common two-fluid model formulated by
stating separate conservation equations for mass and momentum for the two fluids, which we
will denote as a gas (g) and a liquid (1) phase. The model has been studied by several authors
[28, 3, 4, 17, 9] and will be briefly stated here. We let U be the vector of conserved variables

Pl mg
pray mi
U= = . 3
Pgliglg Iy )
proqv I

By using the notation Ap = p — p', where p' is the interfacial pressure, and 7, = (p' — p)9rap =
—Apd,ayr, we see that the model (1) can be written on the form

e Conservation of mass

0 0
ot (pgorg) + 9z (pgrgvg) =0, (4)

0 0
% (o) + B (peuwr) =0, (5)



4 FLATTEN AND EVJE

e Conservation of momentum

0 0 0

g (pggvg) + Ey (pgagvg + agAp) + ag%(p —Ap) = Qg + Méj, (6)
) 9 , 9 5
5 (P + 5 (parvf + arAp) + ap(p—Ap) = Qu+ M. (7)

Since we focus on the development of numerical schemes which can handle the basic two-fluid
model, we have set the interfacial drag force terms to zero, i.e. My = MP =0.

In addition, other constitutive laws are needed to close the system. In particular, the volume
fractions must satisfy

ag +ap = 1. (8)
The system is closed by some equation of states (EOS) for the liquid and gas phase. The numerical

methods we study in this work allow general expressions for the EOS. However, for the numerical
simulations presented in this work we assume the simplified thermodynamic relations

pL=pro+ P _2p0 (9)
a
and
p
= — 10
Pg aé ( )
where

po = 1 bar = 10° Pa
pro = 1000 kg/m®,
aé =10°(m/s)?
a = 10° m/s.
The models (9) and (10) correspond to a general stiffened gas EOS of the form

p = (v — Vajpr — v,

where m;, = (a%pk,o —po)/2 where py, o represents the material density and py the ambient pressure.
v and 7, are constants specific for each phase. Particularly, by choosing y = 2 we recover (9)
while (10) is obtained by choosing v, = 2 and 7z = 0.

Moreover, we will treat () as a pure source term, assuming that it does not contain any
differential operators. We use the interface pressure correction

Qg pgp >
Ap =0 —"LEBC (v, —uy)?, 11
CEOUP -y, —u) (1)

where we set ¢ = 1.2. This choice ensures that the model is a hyperbolic system of conservation
laws, see for instance [4, 9]. Another feature of this model is that it possesses an approximate
mixture sound velocity ¢ given by

= Py T Pen (12)

dp dp :
Bp P10 + 5y PeCu

We refer to [28, 9] for more details.

Having solved for the conservative variable U, we need to obtain the primitive variables
(ag,p,vg,v1). For the pressure variable we see that by writing the volume fraction equation (8) in
terms of the conserved variables as

m m,
—5 4 1 (13)
pg(p) ~ p(p)
we obtain a relation yielding the pressure p(mg, m). Using the relatively simple form of EOS given
by (9) and (10) we see that the pressure p is found as a positive root of a second order polynomial.
For more general EOS we must solve a non-linear system of equations, for instance by using a
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Newton-Rapson algorithm. Moreover, the fluid velocities v, and v are obtained directly from the
relations
Vg = Us v = Us
g — []1 ) 1 — UQ .

Remark 1. Throughout this work we will study only the isentropic 4-equation model given above.
The inclusion of energy equations does not significantly alter the existing eigenstructure of the
isentropic model, but adds entropy waves moving with the fluid velocities. It is our belief that the
main difficulties related to the strong phasic couplings in the pressure and volume fraction waves
are fully present in the isentropic model. Formally, the method investigated in this paper should
be naturally extensible to the full model. This will be explored elsewhere.

Remark 2. Concerning the EOS for the liquid and gas phase, we emphasize that the methods we
develop do not require simple linear relations as given by (9) and (10). In principle, the only point
which is affected by using more complicated EOS is the resolution algorithm which determines the
pressure from the general relation (13).

Remark 3. The Mizture Fluz approach we propose in this paper is to a large extent independent
of the hyperbolicity assumption since it does not rely on any Riemann solver nor calculation of
flux jacobians. Thus, there are good reasons to believe that MF-schemes can be used to explore
problems where the model becomes non-hyperbolic. More generally, since the dependence on the
special properties of the underlying model is weak, the MF-methods should have a potential for
becoming a useful tool when studying what happens when perturbation parameters reach critical
values such that the nature of the model changes.

3. Two HYBRID FVS/FDS NUMERICAL SCHEMES

We here briefly restate two of the flux splitting schemes we investigated in [9], the van Leer
scheme and the modified version denoted as AUSMD. Both are discrete schemes of the general
form

n n At c n n c n
Uj+1 = Uj T Az (F (UjanJrl) -F (Ujfla
At

- &, (F'(U},U}y) - FP(U}_,,U7))

At <H6p ) N
J

uy)

 Ar or

Here F¢ and F? are numerical fluxes assumed to be consistent with the corresponding physical
fluxes f¢ and f?,

PgligUg 0
£ — P1O V) £ — 0
peig? |’ agAp |’
P11V alAp
and H is given by
0
H= 0
Qg
[&7]

We see that the fluxes of the the model (4)—(7) consist of three different sort of terms; convective
flux terms 9, (pav) and 8,(pav?), conservative pressure terms d,(aAp) and non-conservative
pressure terms ad,(p — Ap). The discretization of these terms follows closely the work of Wada
and Liou [30] for Euler equations (except from the non-conservative pressure term which does not
appear in their model).

3.1. Convective Flux Splitting for the F°-component.
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3.1.1. Van Leer. We consider the velocity splitting formulas used in previous works [12, 30, 7, 8, 9].

+L(vEe)? if v <c

+ _
Vi) = { t(vtv])  otherwise. ’ (14)

where the parameter ¢ represents the physical sound velocity for the system. For the two-fluid
model, we assume that it is given by the approximate expression (12). We now let the numerical
fluxes be given as follows:

(1) Mass Fluz. We let the numerical mass flux (paw);11/2 be given as

(paw)j172 = (pa); VT (vj,¢ji12) + (pa) 11V ™ (Vj41,€j41/2) (15)

for each phase.
(2) Momentum Fluz. We let the numerical convective momentum flux (pawv?);41/2 be given
as

1 1
(pav®)ji1/2 = i(POév)j+1/2 (vj +vjt1) — §|(P0w)j+1/2|(vj+1 —vj). (16)

Here and in the following ¢;1 /> = max(cj,¢j41) in accordance with the practice of other works
[30, 7, 9]. The van Leer scheme possesses good stability properties but is excessively diffusive,
especially on the volume fraction waves. This motivates for proposing a mechanism for eliminating
such numerical dissipation. This leads to the AUSMD scheme which we define next.

3.1.2. AUSMD. We consider the AUSMD scheme obtained by replacing the splitting formulas V+
given by (14) and used in (15) and (16) with the less diffusive pair

N )2y <e
Vi(v,C, X) = { E_Cg;ii(ﬁ;j; Ty ? Lt|h:rwise (17)
where
_ 2p/an
XL = (/o + (p/o)m .
and

2(p/a)r
p/a + (p/a)r

for each phase. In order to depict the main idea of the modification leading to AUSMD we consider
a contact discontinuity given by

XR = ( (19)

bPL=Pr =D
AT, 75 QR (20)
(Ug)L = (UI)L = ('Ug)R = (vl)R = .

All pressure terms vanish from the model (4)-(7), and it is seen that the solution to this initial

value problem is simply that the discontinuity will propagate with a velocity corresponding to the
velocity v. The exact solution of the Riemann problem will then give the numerical mass flux

1 1
gPlar +ar)v = gp(ar —ar)lvl. (21)
It is easy to check that the use of the modified splitting functions (17)-(19) ensure that AUSMD

mass fluxes satisfy (21) for the contact discontinuity (20). This is not true for the van Leer scheme.

(Pav)j+1/2 =

3.2. Pressure Splitting for the F? and F*-components. The discretization of the pressure
terms is the same for both schemes.
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3.2.1. Conservative pressure term. We follow the approach used in [9] which is based on [30],
where an upwind type of discretization was used. The conservative pressure term given by aAp
is discretized as follows

(aAp)ji1/2 = P (v, ¢ji1/2)(@Ap)L + P~ (vR, ¢ji1/2)(@Ap)R. (22)

where the pressure splitting formulas P* (v, c) are given by

Lix2-2) ifpw<ec
Pi(v,c) = Vi(v,c) . { § ( C) Ot}|1e|rv_vise (23)
. .
3.2.2. Non-conservative pressure term. The non-conservative term is discretized as follows
api 1 _ ~ i _ — A i
(a%> T Az ([O‘J’—l/2p+(va‘, Ej-1/2)Pj + @jr1/2P” (Vi1 Eip12)Pj 1] (24)
J

- [dj71/2p+(vj—17éj71/2)p§‘71 +dj+1/2P_(vjvéj+1/2)p;'])a
where
_ 1
Qjp1/2 = 5(%‘ +aji1).

We refer to [9] for a description of the motivation behind this particular discretization.

4. SOME OBSERVATIONS

In the following two selected numerical examples taken from [9] will be presented. We want
to compare the performance of the van Leer, AUSMD, and a Roe scheme and thereby reveal
characteristic behavior. The implementation of the Roe scheme is described in [9].

As will be the case for all numerical simulations presented in this paper, our main concern will
be to demonstrate the inherent accuracy and stability properties of the schemes. Consequently we
limit ourselves to first order accuracy in space and time together with an explicit time integration.

4.1. A Large Relative Velocity Shock. We consider an initial Riemann problem also investi-
gated by Cortes et al [4] for a similar two-fluid model. The initial states are given by

P 265000
_ (%] _ 0.71
Wi, = o | = 6 (25)
U1 1
and
p 265000
_ 5] _ 0.7
We=| | = 0 | (26)
U1 1

No source terms are taken into account. We used the timestep Az/At = 10® m/s and a com-
putational grid of 100 cells. The results, plotted at the time 7' = 0.1 s, are given in Figure 1.
The reference solution was computed using the Roe scheme on a fine grid of 10 000 cells. The
existence of two separate volume fraction waves can be seen from the small wedge in liquid fraction
at z = 50m. We make the following observations:

e The van Leer scheme is able to produce stable and nonoscillatory approximations, however,
it is excessively diffusive on the slow volume fraction waves.

e The AUSMD produces a resolution of sonic waves which is comparable to that of the van
Leer and Roe scheme. However, the slow volume fraction waves located around z = 50 m
are reproduced with less numerical diffusion. Unfortunately numerical oscillations, which
are especially severe for the liquid velocity, occur for AUSMD.
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F1GURE 1. LRV shock tube problem. Comparison between van Leer, AUSMD,
and Roe scheme on a grid of 100 cells. Top left: liquid fraction. Top right:
pressure. Bottom left: liquid velocity. Bottom right: gas velocity.

4.2. Water Faucet. We now consider a benchmark faucet flow problem proposed by Ransom
[18], which has been extensively studied [3, 9, 28, 15, 29, 17].
We consider a vertical pipe of length 12 m with the initial uniform state

P 10° Pa
_ 5] _ 0.8
W = v | = 0 ) (27)
vl 10 m/s

Gravity is the only source term taken into account, i.e. in the framework of (6) and (7) we have

Qr = 9pra, (28)

with g being the acceleration of gravity. At the inlet we have the constant conditions o = 0.8,
v = 10 m/s and vy = 0. At the outlet the pipe is open to the ambient pressure p = 10° Pa. The
remaining variables at the boundaries are determined by simple extrapolation.

A contact discontinuity in the volume fraction will arise as the liquid falls under the acceleration
of gravity. It is possible to express an approximate solution in analytical form: [9, 29, 17]

3 142
vl(a?,t):{ Vg +2gx for z < wot + gt (29)

vo + gt otherwise.

ao(1+ 2g2v5%) "2 for z < vot + &gt
Qg otherwise.

a(z,t) = {

The parameters ag = 0.8 and vy = 10 m/s are the initial states.

A comparison between the AUSMD and the Roe scheme regarding the accuracy on volume
fraction is given in Figure 2. For coarse grids, the AUSMD and Roe scheme produce similar solu-
tions. However, AUSMD introduces a slight overshoot for 1200 cells, which increases in amplitude

(30)
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F1GURE 2. Water Faucet. t=0.6 s. Accuracy on volume fraction. Top: Grid
refinement for Roe scheme. Bottom: Grid refinement for AUSMD scheme.

with further grid refinement. This contrasts the Roe scheme where the reference solution seems
to be approached in a fully monotone way.

This problem indicates the same as we observed for the previous example: AUSMD has some
problems with resolving the slow-moving volume fraction waves without introducing oscillations.

Remark 4. Despite the above observed deficiency of the AUSMD scheme, the scheme still seems
to be a good candidate for solving two-phase problems relevant e.g. for the petroleum industry. In
[9] we demonstrated that by introducing a slight modification of the basic AUSMD scheme, mainly
consisting of a switch to a more diffusive scheme like the van Leer scheme in the transition to
single-phase flow, we could accurately solve difficult problems like separation of two phases and the
oscillating manometer problem.

4.3. Conjecture. The above numerical experiments indicate that the numerical fluxes of the Roe
and the AUSMD scheme possess numerical dissipation of very similar strength. However, while
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the Roe scheme gives stable and non-oscillatory approximations we observe that the AUSMD
scheme tends to introduce oscillations and/or overshoot around volume fraction waves. We believe
that this deficiency is due to the weak coupling between mass and momentum equations in the
construction of numerical fluxes for AUSMD. Basically, the equations are discretized as a set of
scalar equations. This strongly contrasts the Roe scheme which treats the model in a strongly
coupled manner through the Jacobian matrix. In the next section, motivated by the success of the
Roe scheme, we propose a general method for modifying hybrid FVS/FDS schemes such that the
numerical flux associated with the pressure term as well as the numerical mass fluxes are composed
of a mixture of components from the momentum equations and by that enforce a stronger coupling
between the mass and momentum equations.

5. THE MIXTURE Frux (MF) METHOD

The aim of this section is to develop a modification of the AUSMD scheme presented in Section
3 which possesses the following properties:
e Riemann-free solver;
e non-oscillatory approximations;
e accuracy comparable to the Roe scheme on all waves.

The starting point is the model (4)—(7) written on the form

Pelig PgOlgUg 0 0 0
0 0 0
ol PN |+, | P |+ + = . 31
"l peagug Pglgl2 agOyp (Ap)d,aq Qg (31)
pragv; progv; 0;p (Ap)Ozcu )

As a motivation, before introducing the modified solution method we now focus on the following
two observations:

5.1. Two Observations relevant for the MF method.

Observation 1. We have already observed that the pressure is related to the masses m, and
my through the static relation (13). In the following we want to demonstrate how the pressure is
related to the momentums pg v through a certain dynamical relation.

To see this, we consider the total mass conservation equation obtained by adding the two
separate mass conservation equations.
0 0
¢ (Mg + 1) + 5 (pgagty + progu) = 0. (32)
From (13) we have that

Consequently, we see that

omg  pg Omg LM Opg mipg | Op

— = - —=1-—|F 5| A (33)
omy Pl Op pr] Op pi | Op

Differentiating out the first temporal term of (32) and using (33) we get the following non-

conservative differential equation for the pressure

Op

0 0
2 s (g () + pe g (o)) =0 (34)

where )
= : (35)
3
%—’;‘amg + Biifagpl
Having seen that the pressure is directly related to the momentums pr vy, we also recall that the
pressure p can be obtained from the masses my, = pra;, through the relation (13). In the following
we want to include both these aspects in the calculation of the pressure. First, as before we obtain

the pressure p; at the cell center from (13). In addition, we will introduce the pressure p;;,, at
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the cell interface, obtained through an appropriate discretization of the pressure evolution equation
(34).
Observation 2. Again, noting that the relation (13) can be written on the form

m

mg = mg(mi,p) = <1 - M) Pg(p),

we see that

dmg = (mg)m,dm + (mg),dp

=L+ (1= 2] + [“45] 0, ) d

In other words, we have the relation
dp = k(mdmg + pgdm), (36)

where
1

op1 Opg ’
Bp UPg T F, AP

R =

Moreover, noting that the relation (13) can be written on the form
mg = mg(c,p) = (1 — a)pg(p),
we see that
dmg = (mg)a,don + (myg)pdp
= —pgdon + (mg)pdp.
Using (36), this relation can be rewritten as
day = Kag(pg)pdmi + <agﬂ(pg)pn - l) dmg
Pg Pg

= 1o ag(py)pdimi — an(pr)pdimg )

In other words, we have

om Opg

—-— ——aedmy). 37
op p Qg ml) ( )
By combining (36) and (37) we can write the masses in terms of a “pressure” and a “volume
fraction” component as follows:

doy = k(—z—aidmg +

dp
dmg = aga—pgdp — peday (38)
and 5
dm, = alﬁdp + prday. (39)
Op

The relations (36) and (37) reflect that differentials of the primitive variables a; and p generally
depend strongly on properties of the mixture of both masses through the differentials dmg and dm;.
We recall from Section 3.1 that the AUSMD scheme is derived with the motivation of obtaining
an accurate resolution of a discontinuity in the volume fraction variable, with the assumption of
equal pressure. The derived mass fluxes do not take into consideration the effect of a warying
pressure, and for the numerical experiments in Section 4 spurious oscillations were observed near
discontinuities in the volume fraction variable. We want to take this aspect into account in the
proposed modification of AUSMD. More specifically, we shall derive numerical mass fluxes which
are consistent with the differential relations (36)—(39).

Related to this, we may also recall that the eigenstructure of the system is such that the pressure
is commonly associated with fast-moving waves and the volume fraction is associated with slow-
moving waves. This suggests that we should solve the pressure with a more robust scheme, where
the numerical dissipation is increased to be in accordance with the faster velocity of the sonic
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waves whereas for the slow volume fraction wave we should use a numerical flux whose numerical
dissipation is low. In the next section we try to implement this understanding is a specific sense.

5.2. Outline of the MF method. With the above two observations in hand we will now describe
an approach consisting of basically two main steps; the first step deals with the calculation of the
cell interface pressure p;1/2 (Observation 1) whereas the second deals with the calculation of the
cell center pressure p; from the masses my,; via (13). The essential part of the second step is to
develop numerical mass fluxes which are consistent with Observation 2.

Note that step (I) deals with the pressure splittings whereas step (IT) deals with the convective
splittings.

(I) Derivation of an evolution equation for the pressure p;ji1/> at the cell interface. The
purpose of this pressure equation is to allow the pressure p and the momentum pgavy
to develop in a coherent manner. Particularly, we obtain a stronger coupling between
the pressure and velocity fields than was the case for the pressure splittings used in the
previous AUSM-type schemes [17, 9]. Increased robustness is the motivation behind our
present approach.

By splitting the pressure based on an evolution equation, we honor time-tested tradi-
tions (see for instance [2]). However, by means of the mizture fluzes defined below, several
new aspects are introduced.

(ITa) Derivation of mizture mass fluzes appropriate for solving for my ; from the mass equa-
tions. This step involves the construction of mizture mass flures which are motivated by
the relations (36) and (37). In particular, we introduce flux components F” associated
with sonic waves and F,f associated with volume fraction waves.

(ITb) Specification of appropriate choices for FkD and F,f

e FP: The calculation of this mass flux component should be tightly coupled with the
calculation of the cell interface pressure p;; 1/, obtained from the pressure equation.
This step ensures that p;, 1/ and p; will follow a concurrent time development, and
this is important in order to avoid oscillations around the slow-moving volume fraction
waves.

° F,g“: The construction of this mass flux component should be chosen such that an
accurate resolution of volume fraction waves is ensured.

We now describe a fully discrete implementation of the above algorithm. Given a uniform
grid with time step At and spatial mesh grid size Az, we can define an approximation U;-"H of
U(z;,t" ") by the following three step algorithm:

Step I: The Pressure Evolution Equation. Discretizing the equation (34) by a staggered
Lax-Friedrichs type of scheme we obtain
n+l _ 1/,n n n n n n
Piti/2 2(pj +pj+1) = —(kp)" Ig7j+1 — Igvj — (kpg)" Il,jJrl — ILJ' (40)
AL = P1)jt1/2 Az Peliv1/2 ™ Ap

where we use the shorthand
Ik: = MgVE-

This cell interface pressure p?j_rll /2 is then used in the momentum equations of (31) as follows

InJrl _ In pn+1/ _pn+l/

\J \J n n n ntj+1/2 j—1/2 n
= At 2= _695 (Pgagvg)j - (Ap)j 6m(ag)j - (ag)j ! Ax Iz + (Qg)j (41)
[1n.+1 — I pntl o —pntl

5] J o 2\ n n ntj+1/2 j=1/2 n
LM o, ()] - (Ap) Su(n)} — () LR @ (42)

Here §, represents the operator
Spw;j = Wir1/2 — Wi—1/2 (43)

Az
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For the numerical fluxes (prov);j41/2 we employ the AUSMD fluxes as described by (15)—(19).
For the numerical flux (ag);41/2 we use a central discretization as follows

1
(ak)jy1/2 = 3 (ki + ajr1) - (44)

In this respect we follow in the footsteps of Coquel et al [3] and Paillére et al [17]. In particular,
this simple treatment is independent of the splitting formulas P* given by (23).

Note that the cell interface pressure p;’ill /2 can be written on the viscous form

pﬁfﬂ = P(Uj,Uj}4)
=5 (P} +1f4) - [Dg,j+1/2(fg,j+1 = Lj) + Dijryp Ui — 1)
where the numerical viscosity coefficients D}’ jt1/2 are given by
At
g,j+1/2 = Hﬁg‘lﬂ/zloﬁjﬂ/m (46)
and A
t
Dlr,bj+1/2 = H“?ﬂﬂpgﬂl/m (47)
Interface values ()7, needed for the coefficients (46) and (47) are obtained by using p}., ,
(which has been calculated from (40) at the previous timestep) and o, , , defined as the arithmetic
average
a;-l+1/2 = 5(04? + ayﬂ).

Remark 5. We note that the role of the non-conservative pressure evolution equation (40) is
simply to define an appropriate numerical fluz p; 1/ = P(U;,Uji1) for the discretization of the
pressure term in (41) and (42). From (45) we easily see that this numerical fluz is consistent with
the physical fluz, i.e. P(U,U) =p for all U.

Remark 6. Other choices for the discretization of the pressure evolution equation (34) than the
one given by (40) would of course be possible. One natural choice could be to consider
T R (kp0)? Igjm — 15 no A - A

- Ar Pl)j+1/2 Az (“Pg)j+1/2 Az . (48)
We will refer to this as the FTCS (forward time, centered space) scheme. Now the consistency
relation (45) between the interface pressure pjiq/, and cell center pressure p; no longer holds, and
there is no obvious mechanism that drives the difference between these two pressures to zero. Note
also that there is no numerical dissipation terms associated with the discretization of 0,1 in (48),
whereas such dissipation terms may be introduced in (45) through the term (p} + pj,)/2. In the
numerical section we explore these two different discretizations of the pressure evolution equation
in order to shed light on the importance of a consistent treatment of p; and pj,/2-

Step IIa: Construction of Mixture Mass Fluxes. What remains to be solved for now is
the masses mZJ]rl through a proper discretization of the mass conservation equations of (31). We
consider a general discretization

miy —miy 1 o o

— A - A_x( fj41/2 — k,jq/z), (49)
where Fy ;1172 = Fj,(Uj,Ujy1) is the numerical mass flux at cell interface j + 1/2 corresponding
to the physical flux f;(U) = prarve. From (38) and (39) we see that the mass differentials dm,
can be splitted in a pressure component dp and a volume fraction component da. We now want to
design a numerical flux which is consistent with this splitting, i.e. we introduce a flux component
F, and F;, such that the mass fluxes F{ and Fy are given by

0
LF, + piFa (50)

=
1 alap
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and oy
Fe=ag EF, — pgFa- (51)

The flux component F), is associated with the pressure, hence we want to assign a diffusive mass
flux FP for stable approximation of pressure for all waves. Inspired by the differential relation
(36) we propose to give F, the following form

F, = “PgFlD + ”PngD (52)

Similarly, the flux component F, is associated with the volume fraction, hence we want to assign
an accurate mass flux F*. Inspired by the differential relation (37), we propose to give F, the
following form

F, = n%—‘;fagﬂ - n%—;alFA. (53)
Here we note that a subscript j + 1/2 is assumed on the fluxes and coefficients. Substituting (52)
and (53) into (51) and (50) we obtain the final hybrid mass fluxes

op dp 9
K=« <pga1 8; FP + p1aga—F1 + paoy a';l (FgD - FgA)> (54)
and
3} 3} 3}
Fg =K <p1ag apg FD Pg1 apl FA +p Pglg apg (F - ‘FIA)> (55)

The coefficient variables at j +1/2 remain to be determined. Consistent with the treatment of the
coefficients of the pressure evolution equation (45) we suggest finding these from the cell interface
pressure p;;/o as well as the relation

1
172 = 5 (5 + @),
Remark 7. We remark that the consistency criterion

Fp(U,U) = fx(U) = pragvr, (56)

relating the numerical fluz F, to the physical flux fi, is satisfied for the hybrid fluzes (54) and
(55) provided the fluves F* and FP are consistent. In particular if F* = FP the expressions (54)
and (55) reduce to the trivial identity

Fp = F = FP. (57)
Step IIb: Specification of Mass Flux Components FkD and F,:‘.

FkD -component. The purpose of this flux component is to ensure consistency between calculation
of masses and the pressure calculation and by that ensure stable (non-oscillatory) approximations
of slow moving volume fraction waves. Going back to the pressure equation (40), we see that it
naturally defines a conservative scheme for calculating masses at j + 1/2 as

n+1 1 n n n n
My ivi/2 — 2 (mk,j + mk,jH) n I — 18 0 (58)
At Az ’
If we now compute the simple average
1
M = 5 (Mkjo1/2 +mejg1y) (59)

and substitute (58), we obtain the following difference equation for my, ;

miy — i (27”27]' tmg it mzw-l) 1, N
At + oAz (Ik,j+1 - Ik,jfl) =0, (60)
which can be written on flux-conservative form (49) with the numerical fluxes
1 1Az
Fivay = FP(U;,Ujp) = 3 Uk + Ingr) + 717 (Mg = M jia)- (61)
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Now we may solve for the masses my, ; using the fluxes (61), taking advantage of the stabilizing
effect given by their interdependence of the cell interface pressure p;, /> through Iy ; and Ij ji1.

F,f—component. The purpose of this flux component is to ensure accurate resolution of slow-moving
volume fraction waves (mass fronts). As demonstrated in Section 4 the AUSMD mass fluxes give
a resolution of such waves comparable to that of the Roe scheme. Hence, we propose to identify
F# with the AUSMD mass fluxes given in Section 3.1 and defined by (15) and (17)—(19). We
expect that other choices also would be possible, e.g. the AUSM™ flux of Paillere et al [17]. This
will be explored elsewhere.

Remark 8. The fluzes (61) are central and hence highly diffusive. Consequently the fluzes (61)
will produce highly inaccurate solutions to slow volume fraction fronts. Therefore we wish to
hybridize the flux (61) with a more accurate flur FA via the mizture fluzes (54) and (55) such
that we maintain the stability of (61) for the pressure variable while falling back to the accuracy
of F4 on the volume fraction waves.

5.3. MF-AUSMD. We now summarize the numerical scheme just derived, referred to as the
MF-AUSMD (Mixture Fluxes based on AUSMD) scheme. Let §, be defined as in (43).

Mass Equations. We discretize the mass equations as follows

iy 5, FI
At Tk
where the mass fluxes Fy, j /> are given by
ap dp ap A
E—H<Pgala—Fl + pag agﬂ + pon—— o (Fy — F})

and

Op 0 0
Fy =k | pag gFD Pgul plFA"’ Pglg pg(F FIA)
Op Op Op
as described in Step ITa. Here
1Az
Fpivije = kg + Irger) + 317 (Mg —Migir),  me = peok,  Te = myoe

and
A _ AUSMD
Fk,j+1/2 = (Pkakvk)j+1/2

as described in Section 3.1.

Momentum Equations. We discretize the momentum equations as follows

+1
Il? _II?,J'__(S 2”_A ng n _ ngs * n
AL = —0g (Pkakvk)j ( p)j z(ak)j (ak)j z (p)j + (Qg)j'
Here
(k) jp1/2 = 3 (ap,j + arjy1)
and
. 1 Ipio1 — Iy Ly — Ly
Pir1j2 = 5 (P +Pir1) = At(kp1)j1 /2222 N B — At(kpg) 1y =2 Az g

as described in Step I. Finally

AUSMD
(pkakv%)j+1/2 = (pkakvk)]+1/2

as described in Section 3.1.

6. BASIC PROPERTIES POSSESSED BY THE MIXTURE FLux AUSMD SCHEME

In this section we want to verify that the proposed MF-AUSMD scheme possesses certain basic
accuracy and stability properties known from the literature.
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6.1. Accurate approximation of steady and moving contact discontinuities. We will now
investigate how this Mixture Flux method is related to the AUSM (Advection Upstream Splitting
Method) framework of Liou et al [12, 13, 30] regarding the performance on a moving or stationary
contact discontinuity. For this purpose we consider the contact discontinuity given by

PL =PR =P (62)
oy, # aR
(vg)L = ()L = (vg)r = (V)R = v.

All pressure terms vanish from the model (4)-(7), and it is seen that the solution to this initial
value problem is simply that the discontinuity will propagate with the velocity v. The exact
solution of the Riemann problem will then give the numerical mass flux

Solar, + an)o — £ plan — oz (63)
As remarked in Section 3.1 AUSMD mass fluxes take this form for the contact discontinuity (62).
Now we want to find a criterion for the FkD flux components that ensures that the mixture mass
fluxes (54) and (55) also will possess this good feature.

In particular, we note that the pressure will remain constant and uniform as the discontinuity
is propagating. Consequently a natural requirement on a “good” flux F}° for stable pressure
resolution is that it preserves the constancy of pressure for the moving or stationary contact
discontinuity given by (62).

We write (36) as

(Pav)j+1/2 =

dp = kdp (64)
where
dp = pgdmy + pdmg. (65)

To maintain a constant pressure we must have du = 0. Assuming constant pressure, (65) can be
integrated to yield

1= pgmi + pimg = pgpi(an + ag) = pgpr.

To maintain constancy of z and hence p we now insist that the flux F is a consistent numerical
flux when applied to the mix mass u. That is, we impose

peF + pEy = pgprv. (66)
for the contact discontinuity (62).

Definition 1. A pair of numerical fluzes Fi and F, that satisfy (66) for the contact discontinuity
(62) will in the following be termed “pressure coherent” fluzes.

We note that the van Leer mass fluxes given by (15) and (14) as well as the upwind fluxes (63)
are pressure coherent. However, we can easily construct a pair of perfectly valid mass fluxes that
are not pressure coherent. Consider for example the stationary contact discontinuity (62) with
v =0. Let Fy be given by the upwind flux (63) and F; be given by the van Leer flux (15). Then

(), = (a)r) £0,

peli+ pFy = pgpry

not satisfying the requirement (66).
We now state the following lemma relevant for schemes obtained by using the Mixture Flux
method.

Lemma 1. Let the mizture fluzes (54) and (55) be constructed from pressure coherent fluzes
FP, and fluzes FkA that reduce to the upwind fluzes (63) on a contact discontinuity of the form
(62). Then the hybrid fluzes (54) and (55) also reduce to the upwind fluxes (63) on the contact
discontinuity (62).



A MIXTURE FLUX APPROACH 17

Proof. We consider the hybrid liquid mass flux (54) and assume that v > 0. Remembering that a
subscript j + 1/2 is assumed on the variables, we write the flux as

apl 8 8p1

E=ﬁ<ala—p(PgﬂD+PngD)+Plaga R - pa 9 F} (67)

Using the required properties of Fj; D and FA we obtain

Im 0pg om
i = (G2 o + s S o = pepren G (1 = (e o) = lano. (68)
where we have used that

Pi+1/2 = Pj = Pj+1 (69)
which follows from the assumption of constant, uniform pressure. Spatial and phasic symmetry
directly give the corresponding results for F; and v < 0, completing the proof. O

In view of Lemma 1 we obtain the following result for the MF-AUSMD scheme.

Proposition 1. The mass fluxes of the MF-AUSMD scheme described in Section 5.3 reduce to
the upwind fluzes (63) on a contact discontinuity of the form (62).

Proof. In view of Section 3.1.2 we know that the F,? components in the MF-AUSMD scheme
reduce to the upwind fluxes (63) on a contact discontinuity of the form (62). Thus, we only need
to check that the F° components given by (61) are pressure coherent in the sense of Definition 1
and then appeal to Lemma 1. Substituting constant pressure and velocities in (61) we get

Az
psFi° + pEP = pepr {2 (o, +anj1) + m(au - 041,j+1)]

Az
+ pep1 2(ozg it agr) + m(%,j — g j+1)

Azx
= o1 51+ 1)+ 1301 1] = pagre
O

This result illustrates that the Mixture Flux method presented here is a close relative to the
AUSMYV/D philosophy of Wada and Liou [30], as it achieves the same goal of accurately resolv-
ing moving or stationary contact discontinuities. A notable difference is that the AUSMV/D
framework combines velocity splitting formulas, whereas the MF method presented here com-
bines numerical fluxes directly and thereby enforces a much stronger coupling between the various
equations.

6.2. Abgrall’s principle. According to the principle due to Abgrall [1, 22, 23] it is desirable that
the numerical scheme respects the following physical principle:

A flow, uniform in pressure and velocity must remain uniform in the same variables during its
time evolution.

In other words, if we had constant pressure and velocity everywhere in a flow at the time level ",
then we will get the same pressure and velocity at the time t"*+!.

We now check if the MF-AUSMD scheme obeys Abgrall’s priciple. Consequently, we assume
that we have the contact discontinuity given by (62) and that it remains unchanged during the
time interval [t",¢"*!]. In view of Proposition 1 and the fact that the convective fluxes of the
momentum equations are based on (16), we immediately conclude that the mass equations (49)
and the momentum equations (41) and (42) take the form

At
)i+t = (pa); = 5= ((pa0)r 2 = (pa0)}y )

v(pa)j ! = v(pa)} — v ((pav) o = (pav)y o)

(pox

- (Ap)j E(O‘j+l - C“jfl) —Qj A_(pjill/g - pjjll/Q)a
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F1GURE 3. LRV shock tube problem, 7" = 0.1 s, 100 grid cells. MF-AUSMD vs
Roe scheme. Top left: Liquid fraction. Top right: Pressure. Bottom left: Liquid
velocity: Bottom right: Gas velocity.

where (pav)?+1/2 is on the form (63). From (11) we conclude that (Ap)? = 0. Referring to (45)

we also see that pﬁ_‘ll /2 reduces to
At
1
p?—tl/Q =p- ”?4-1/25 [mpgv(ag,jt1 — agj) + ppgo(anjp — o)) = p.

Consequently, the pressure terms vanish and we can conclude that the discretization of the MF-
AUSMD satisfies Abgrall’s principle.

7. NUMERICAL SIMULATIONS

In the first example we seek to obtain some more detailed insight into the mechanisms of the
MF method. Particularly, we focus on the two following points which constitute the heart of the
MF approach: (i) The effect of using the mixture mass fluxes (54) and (55) obtained by mixing
the F;P and the F;* components; (ii) The discretization of the pressure evolution equation (40).

The purpose of the rest of the section is to demonstrate the overall good approximation prop-
erties of the MF-AUSMD scheme by considering the performance for a series of various flow cases.
In particular, we compare with the AUSMD and the Roe scheme used in Section 4. The purpose
is to demonstrate that the MF-AUSMD scheme possesses stability properties similar to the Roe
scheme and at the same time keeps the accuracy of the AUSMD scheme.

7.1. Large Relative Velocity Shock. We now revisit the LRV shock studied in Section 4.1.

7.1.1. Test of stability and accuracy for MF-AUSMD. We now aim to compare the MF-AUSMD
scheme with the Roe scheme under equal conditions. As in Section 4.1, we assume a grid of 100

cells and a timestep of
Az

A7 (70)
The results, plotted at the time 7" = 0.1 s, are given in Figure 3. As the figure indicates, the schemes

=10% m/s.
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F1GURE 4. LRV shock tube problem, 7' = 0.1 s, 100 grid cells. MF-AUSMD
vs the purely diffusive (F) and accurate (F{*) components. Top left: Liquid
fraction. Top right: Pressure. Bottom left: Liquid velocity: Bottom right: Gas
velocity.

are virtually inseparable on the resolution of the right-going sonic wave. On the left-going sonic
wave, the MF-AUSMD scheme is slightly more diffusive than the Roe scheme. A comparison with
the plot in Section 4.1 reveals that the MF-AUSMD scheme introduces somewhat more diffusion on
this wave also compared to the AUSMD scheme. On the other hand, we note that the oscillatory
behaviour of the original AUSMD scheme is completely absent, demonstrating the fruitfulness of
the MF approach.

7.1.2. Mizture mass fluzes versus single mass flures. We now wish to illustrate more precisely
the effect of introducing the mixture mass flux obtained by combining the two different flux
components FP and F{* as described by (54) and (55). For that purpose, we consider the following
3 schemes:

(1) The MF-AUSMD scheme.

(2) The scheme obtained by replacing the MF-AUSMD mass fluxes with the pure AUSMD
fluxes F;*. This is denoted as the F'(A4)-scheme in Figure 4. Note that this is not identical
to the AUSMD scheme of Section 3.1.2, as the discretization of the pressure term is
different.

(3) The scheme obtained by replacing the MF-AUSMD mass fluxes with the pure diffusive
mass fluxes F}° given by (61). This is denoted as the F(D)-scheme in Figure 4.

Results for 100 cells are given in Figure 4. We note the following:

e The F(D)-scheme is very stable but highly diffusive for the volume fraction wave, more
diffusive than the van Leer scheme (compare with Figure 1 of Section 4.1).

e The F(A)-scheme is accurate on all waves, similar to the AUSMD scheme. However, the
heavy oscillations observed for the liquid velocity for the AUSMD scheme (Figure 1 of
Section 4.1), have been eliminated. This clearly is an effect of the use of the pressure
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FiGURE 5. LRV shock tube problem, 7" = 0.1 s, 100 grid cells. Lax-Friedrichs
based MF-AUSMD vs FTCS based MF-AUSMD. Top left: Liquid fraction. Top
right: Pressure. Bottom left: Liquid velocity: Bottom right: Gas velocity.

evolution equation (40) in the discretization of the pressure terms of the momentum equa-
tions. However, the F'(A)-scheme is not perfect as the oscillation for the pressure variable
remains.

The use of the mixture mass fluxes (54) and (55) in the MF-AUSMD scheme efficiently
removes the oscillation observed for the pressure variable of the F'(A)-scheme. The MF-
AUSMD scheme really seems to combine the fluxes F,? and FP in the desired way, giving
results similar to F}? for fast waves and F}* for slow waves.

The fact that MF-AUSMD is slightly more diffusive than AUSMD on the sonic waves
seems to follow directly from the fact that F{ is slightly more diffusive than F,? on these
waves.

7.1.3. Comparison of two different discretizations of the pressure evolution equation (34). We now
compare the Lax-Friedrichs discretization of the cell interface pressure used in MF-AUSMD, with
a modified variation where we use the FTCS scheme of Remark 6. This latter scheme implies that
the cell interface pressure p;; /o is uncoupled from the cell center pressure p;. We keep the mass
fluxes unchanged, using the mixture mass fluxes (54) and (55). Results are given in Figure 5. We
note the following:

e The lack of a consistency mechanism between the cell interface pressure p; /> and the

cell center pressure p; produces a large undershoot in the pressure near x = 50 m where
the volume fraction wave is located.

The uncoupled scheme based on a FTCS pressure discretization produces a sharp resolu-
tion of the pressure waves. On the other hand, numerical oscillations are produced near
the pressure discontinuities. As noted in Remark 6 the FTCS scheme has zero numerical
viscosity, and will be unstable on a scalar equation (see for instance [25]). The result
above indicates that a certain amount of numerical dissipation in the pressure equation is
needed to stabilize the solution for sonic waves.
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FiGURE 6. Modified LRV shock tube problem, 7" = 0.1 s, 100 grid cells. MF-
AUSMD, AUSMD and Roe scheme. Top left: Gas fraction. Top right: Pressure.
Bottom left: Liquid velocity: Bottom right: Gas velocity.

Remark 9. Clearly, the discretization of the pressure evolution equation at the cell interface
has a strong effect on the cell center pressures produced by the MF scheme. For the purposes of
this paper, we prefer to stick to the Laxz-Friedrichs discretization (40), because of the simplicity
and robustness of this scheme. In particular it allows for writing the cell interface pressure on
a consistent, viscous form (45) in a straightforward manner. The numerical results indicate that
other ways of discretizing the pressure equation could be explored with the possibility of improving
the accuracy of the fast (sonic) waves.

7.2. Modified Large Relative Velocity Shock. We consider a modified version of the LRV
shock, where we introduce a jump in the liquid velocity as well as a larger jump in volume fraction.
This problem was studied as shock tube problem 2 in [9].

The initial states are given by

P 265000 Pa
(%] 0.7

Wi = vg | 65 m/s (1)
] 10 m/s

and

P 265000 Pa

WR — [e%] — 0.1 (72)
Vg 50 m/s )
vl 15 m/s

7.2.1. Comparison between AUSMD, MF-AUSMD and Roe scheme. Results after T = 0.1 s are
given in Figure 6, using a grid of 100 cells and a timestep Az/At¢t = 750 m/s. The reference
solution was calculated by the Roe scheme on a grid of 10 000 cells.
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vs basic AUSMD scheme. Top left: Gas fraction. Top right: Pressure. Bottom
left: Liquid velocity: Bottom right: Gas velocity.

We note that the AUSMD scheme produces a large overshoot in the pressure variable, and is
also inaccurate in the resolution of the left-moving sonic wave. MF-AUSMD is non-oscillatory,
and produces here a solution that is intermediate between the Roe and AUSMD solution.

7.3. Toumi’s Water-Air Shock. We now consider an initial value problem of a kind introduced
by Toumi [27] and investigated by Tiselj and Petelin [26] and Paillere et al [17]. The initial states
are given by

p 2.107 Pa
| 0.75
wi=| = X (73)
U1 0
and
P 1-107 Pa
_ ] _ 0.9
Wg = o | = 0 : (74)
U1 0

Again no source terms are taken into account. Following Paillere et al [17], we modify the interfacial
pressure correction (11) for this problem, setting o = 2.

7.3.1. Comparison between MF-AUSMD and basic AUSMD scheme. Results after T = 0.08 s are
given in Figure 7, using a grid of 100 cells and a timestep Az/A¢ = 1000 m/s. The reference
solution was calculated by the MF-AUSMD scheme on a grid of 10 000 cells. We note that we
achieve a wave structure that is highly similar to the one reported by Paillere et al [17], although
slightly different submodels are used. This observation supports our belief that the wave structure
of the model is largely unaffected by the inclusion of energy equations, as stated in Remark 1.

This example demonstrates overshoots for the basic AUSMD scheme whereas the MF-AUSMD
scheme is fully nonoscillatory.
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7.3.2. Comparison between MF-AUSMD and Roe scheme. Results after T = 0.08 s are given in
Figure 8, using a grid of 200 cells and a timestep Az/At¢ = 1000 m/s.

We observe that the Roe and MF-AUSMD schemes give a similar resolution of the sonic waves
for this problem. However, tendencies for overshoots on the volume fraction waves are observed
for the Roe scheme whereas the the MF-AUSMD scheme is nonoscillatory. On the other hand,
MF-AUSMD seems more diffusive on the near-stationary discontinuity at z = 50 m.

7.3.3. Convergence properties of the MF-AUSMD scheme. In Figure 9 we study the convergence
of the MF-AUSMD scheme as the grid is refined. The result demonstrates that the MF-AUSMD
approaches the reference solution without introducing any spurious oscillations.

7.4. Water Faucet Problem. We now wish to focus more on the resolution of volume fraction
waves. For this purpose we revisit the water faucet problem studied in Section 4.2.

7.4.1. Comparison between MF-AUSMD and Roe scheme. In Figure 10 the MF-AUSMD is com-
pared to the Roe scheme for T = 0.6 s on a grid of 120 computational cells. The timestep
Az /At =103 m/s is used. The pressure reference was calculated using MF-AUSMD on a grid of
12 000 cells, for gas fraction and liquid velocity the approximate analytical expressions were used.
Only for the pressure does the plot demonstrate any notable difference between the schemes - the
MF-AUSMD is somewhat more diffusive than the Roe scheme.

7.4.2. Convergence properties of the MF-AUSMD scheme. In Figure 11 we investigate how the
scheme converges to the expected analytical solution as the grid is refined. In Section 4.2 we
found that AUSMD produces small overshoots in the volume fraction for very fine grids. A
similar behaviour was reported by Paillére et al [17] for their AUSM™ scheme. As we can see, no
overshoots are produced by the MF-AUSMD scheme, and by that the improved approximation
properties of the MF-AUSMD scheme over the AUSMD scheme are verified.
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7.4.3. Non-hyperbolic model. We now consider a non-hyperbolic model, that is in the framework

of (11) we consider the choice
o = 0. (75)

Paillere et al [17] found that for this non-hyperbolic model, oscillations were produced near the
discontinuity as the grid was refined. We now want to investigate to which degree this effect is
independent of the numerical scheme, and to which degree the dissipative mechanism of different
schemes act differently in magnifying the expected oscillatory behaviour of a non-hyperbolic model.
The effect of grid refinement for the MF-AUSMD scheme is demonstrated in Figure 12.
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We observe that an oscillation is produced to the right of the discontinuity for the grid of 600
cells. In fact it was observed that for 1200 cells, this oscillation would grow to the point were
the scheme exploded. This confirms the assertion of Paillere et al [17] that we should expect
oscillations of a mathematical nature for this test case, demonstrating the importance of using a
hyperbolic model.

7.5. Separation Problem. We now consider the separation problem introduced by Coquel et al
[3], previously investigated by Evje and Flatten [9] and Paillére et al [17]. We consider a vertical
pipe of length 7.5 m, where gravitational acceleration is the only source term taken into account.
Initially the pipe is filled with stagnant liquid and gas with a uniform pressure of py = 10°> Pa and
a uniform liquid fraction of o) = 0.5. The pipe is considered to be closed at both ends, i.e. both
phasic velocities are forced to be zero at the end points.

The following approximate analytical solution was presented in [9]

V2gx  for x < %th
vz, t) = gt for $gt? <z < L — $gt? (76)
0 for L — 1gt* <z

0 forz< %gt2
a(z,t) =4 05 for $gt* <z < L — gt (77)
1 for L—igt’<w

where L = 7.5 m is the length of the tube. This approximate solution consists of a contact
discontinuity at the top of the tube and a shock-like discontinuity at the lower part of the tube.

After the time
[ L
T = g =0.87s (78)

these discontinuities will merge and the phases become fully separated. The volume fraction
reaches a stationary state, whereas the other variables slowly converge towards a stationary solu-
tion. In particular we expect the stationary pressure to be fully hydrostatic, approximately given
by

B Do for x < L/2
pot) = { po+pg(x—L/2) forz>L/2. )

7.5.1. Transition to One-Phase Flow. We observed that the basic MF-AUSMD scheme would
produce instabilities in the transition to one-phase flow. Indeed this is a common problem for two-
phase flow models, observed among others by Coquel et al [3] for their kinetic scheme, Paillére et
al [17] for their AUSM™ scheme and Romate [21] for his Roe scheme. Romate suggested a scheme
switching strategy for solving this problem, where the original scheme is replaced with a stable,
diffusive scheme near one-phase regions.

In [9] we introduced a modification of the basic AUSMD scheme, denoted as AUSMDV*, where
we took advantage of a highly robust flux vector splitting (FVS) scheme to achieve a stable
transition to one-phase flow. Using a frictionless model, we observed strong velocity gradients
for the disappearing phase. Such large velocities are unphysical and may also cause the pressure
variable to fail to converge to a hydrostatic distribution [9].

In this paper we follow the approach of Paillére et al [17], and include an interface momentum
exchange term on the form

Méj = Cogaipg(vg — 1), (80)

where C' > 0 and MP = —Mg, conserving total momentum.

In addition to allowing for more physically valid velocity calculations, this term also prevents
numerical instabilities related to large relative velocities in the one-phase regions. This allows for
a stable numerical transition to one-phase flow using only a slight modification of the MF-AUSMD
scheme, as described in the following.
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FIGURE 13. Separation problem, T=0.6 s. MF-AUSMD* scheme, 100 cells. Left:
Liquid fraction. Right: Liquid velocity.

Definition 2. We consider a hybrid of the MF-AUSMD and the van Leer scheme, denoted as
MF-AUSMD*, where the numerical mass fluxes are given by the following expression
FMFfAUSMD* — gFvan Leer + (1 _ S)FMFfAUSMD‘ (81)

Here s is chosen as
s = max(¢r,, ¢Rr), (82)
where ¢ is an indicator function designed to be 1 near one-phase regions, 0 otherwise.

For the purposes of this paper we choose
¢; = e~ Mol (83)

where we use the parameter k = 50.
We note that the MF-AUSMD* scheme differs from the MF-AUSMD scheme only near one-
phase liquid regions. For the coefficient C of (80), we choose the expression

C = Cy9;, (84)

ensuring that the interface friction acts more strongly near one-phase liquid regions where we
expect the gas to dissolve in the liquid. For the value Cy we follow Paillére et al [17] and choose

Co = 50000 s . (85)

7.5.2. Numerical results. Results after 7' = 0.6 s are plotted in Figure 13, using a grid of 100 cells
and a timestep Az/A¢ = 2000 m/s. We note that good accordance with the expected analytical
solution is achieved.

Results after T = 1.5 s are plotted in Figure 14, using the same grid. Now fully station-
ary conditions are reached. Again we observe good agreement with the approximate analytical
solutions.

7.5.3. Convergence properties of the MF-AUSMD* scheme. In Figure 15 the effect of grid refine-
ment on resolution of volume fraction is illustrated for the MF-AUSMD* scheme at the time of
T=0.6 s. The figure indicates that the expected analytical solution is approached in a monotone
way.

8. SUMMARY

We have presented a framework, the Mixture Flux (MF) method, for constructing accurate and
robust numerical schemes for the two-fluid model. The framework may be viewed as a refinement
of previously studied flux-splitting schemes, involving a stronger coupling between the phasic vari-
ables in accordance with the mixture nature of the model. Particularly, we have constructed a
numerical scheme on the basis of the AUSMD flux used in [9], demonstrating that we keep the
accuracy properties of the basic AUSMD while significantly improving its stability properties.
In particular we have demonstrated that the resulting MF-AUSMD scheme compares very well
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with the Roe scheme in terms of accuracy and robustness for several different test cases. Most
importantly the MF-AUSMD does not involve solving a local Riemann problem by eigenstruc-
ture decomposition and is therefore superior to the Roe scheme when it comes to computational
efficiency.
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