L'-FRAMEWORK FOR CONTINUOUS DEPENDENCE
AND ERROR ESTIMATES FOR QUASILINEAR ANISOTROPIC
DEGENERATE PARABOLIC EQUATIONS

GUI-QIANG CHEN AND KENNETH H. KARLSEN

ABSTRACT. We develop a general L'—framework for deriving continuous de-
pendence and error estimates for quasilinear anisotropic degenerate parabolic
equations with the aid of the Chen-Perthame kinetic approach [9]. We ap-
ply our L'~framework to establish an explicit estimate for continuous depen-
dence on the nonlinearities and an optimal error estimate for the vanishing
anisotropic viscosity method, without imposition of bounded variation of the
approximate solutions. Finally, as an example of a direct application of this
framework to numerical methods, we focus on a linear convection-diffusion
model equation and derive an L! error estimate for an upwind-central finite
difference scheme.
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1. INTRODUCTION

We are concerned with the Cauchy problem for quasilinear anisotropic degenerate
parabolic equations of second order with the form

(1.1) Opu+ divf(u) =V - (A(u)Vu), u(0,x) = ug(x),
where (t,) € Ry x R%, div and V are with respect to z € R4, u = u(t, x) is the
scalar unknown function that is sought,

(1.2) uop € L*(R?) N L>=(RY)
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is the initial function,

(1.3) F=(fi.--., fa) € (Lip(R))"

is the vector—valued flux function, and
(14)  A(u) = o (w)o?(w)" >0, with o* € (LZ,(R)V, 1<K <d,

is the matrix—valued diffusion function. The symmetric dxd matrix A(u) = (a;;(u))
has entries of the form

K

aij(u) = ZU&(U)Uﬁ(u), i,j=1,...,d.
k=1

On the space of symmetric matrices, we employ the usual ordering in the sense of
quadratic forms. Note that the scalar hyperbolic conservation law (A = 0) is a
special case of (1.1).

Nonlinear partial differential equations of type (1.1) model convection-diffusion
motions in nature and occur in a variety of applications. Being very selective, we
mention here only flow in porous media (see, e.g., [12] and the references therein)
and sedimentation-consolidation processes [6]. It is well known that equation (1.1)
possesses discontinuous solutions, and weak solutions are not uniquely determined
by their initial data; hence (1.1) must be interpreted in the sense of entropy solutions
[19, 30, 31]. The uniqueness of entropy solutions was proved in the one-dimensional
context by Wu-Yin [32] and Bénilan-Touré [2]. In the multidimensional context
with isotropic diffusion (that is, A(-) > 0 is a scalar function), a general unique-
ness result is much more recent and was proved by Carrillo [7] by using Kruzkov’s
doubling of variables technique; and various extensions of his result can be found
in Biirger-Evje-Karlsen [5], Eymard-Gallouét-Herbin-Michel [15], Karlsen-Risebro
[18], Karlsen-Ohlberger [16], Mascia-Porretta-Terracina [24], Michel-Vovelle [25],
and Rouvre-Gagneux [28]. Chen-DiBenedetto [8] proved the uniqueness of un-
bounded entropy solutions by using the doubling of variables technique. Chen-
Perthame [9] finally introduced the notion of kinetic solutions and established an
L' well-posedness theory for the general anisotropic diffusion case by developing a
kinetic approach for (1.1). Let us also mention the earlier work by Tassa [29], who
proved the uniqueness for piecewise smooth weak solutions. There are also several
recent studies concerned with the convergence of various numerical schemes: see
[12] for operator splitting methods, [13, 17] for monotone finite difference schemes,
[15, 26, 25] for monotone finite volume schemes, and [1, 4] for BGK schemes. All
these papers provide the L' convergence of approximate solutions without a rate
of convergence (an error estimate). As is well known, L! error estimates are more
desirable for robust scientific computation and prediction, which have been an open
problem for the general anisotropic case in numerical analysis.

In the hyperbolic context (i.e., A = 0), error estimates for the vanishing isotropic
viscosity method were derived first in Kuznetsov [20] and more recently in Cockburn-
Gremaud [10] and Bouchut-Perthame [3, 27], while various estimates for continu-
ous dependence on the nonlinearity (i.e., the flux function f) were obtained first
in Lucier [22] and later in Bouchut-Perthame [3]. Regarding degenerate parabolic
problems with isotropic diffusion (that is, A(-) is a scalar function), continuous de-
pendence estimates for semigroup solutions, and hence also error estimates for the
vanishing isotropic viscosity method, were obtained by Cockburn-Gripenberg [11];
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see also [18, 14] for a different approach for the case that the flux function f also
depends on (t,x).

We are concerned with explicit estimates for continuous dependence on the non-
linearities and error estimates for the vanishing anisotropic viscosity method for
(1.1). We mention that, even in the isotropic case, continuous dependence esti-
mates have never been derived directly for entropy solutions. The purpose of this
paper is to use the Chen-Perthame kinetic approach [9] to develop an abstract L'—
framework for continuous dependence and error estimates for (1.1) and to present
several applications of this framework.

More precisely, we are interested in comparing an entropy solution u = u(t,x)
of (1.1) with an entropy solution v = v(¢, x) of

(1.5) O + divg(v) = V - (B(v)Vv) + error terms, v(0, z) = vo(x),
where

(1.6) vg € L*(R?) N L>=(RY),

(1.7) 9=1(91,---,94) € (Lipjoc(R))",

and

(1.8) B=oBweP)T >0, ofec@LZ®)PE, 1<K<d

The symmetric d x d matrix B = B(v) = (b;;(v)) has entries

K
bij(v) = > ofofi(v), dij=1,....d
k=1

Similar to the treatment of hyperbolic problems [3, 27], the error terms will take
the form of “partial derivatives” for applications, which will be specified later in
Section 3.

The first application of our general L!'-framework is an explicit estimate for
continuous dependence on the nonlinearities in (1.1). If g = f (see Section 4 for
the general case), ug € BV (RY), and the error terms in (1.5) are zero , we obtain
that, for any ¢ > 0,

||u(t> ) - U<ta ')”Ll(Rd)

< fluo — ol pr g + C\ﬁ\/H (VA-VE) (vVA- @)TH ,

[e )

(1.9)

where the oo - norm is taken componentwise (see Section 3 for the precise definition).
We must emphasize that the proof of a result like (1.9) depends in a fundamental
way on using the parabolic dissipation/defect measure identified in Chen-Perthame
[9], which is also the cornerstone of the uniqueness proof in [9].

The second application of our L'—framework is an error estimate for the vanishing
anisotropic viscosity method for (1.1):

(1.10) G +divf(v) =V - (A(U)Vv) +uV - (B(U)Vv), v(0,2) = vo(x),

where the matrix B(v) > 0 is of the same type as in (1.8). If ug € BV (RY), we
prove that, for any ¢ > 0,

(1.11) [t ) = v(t )l 1 may < lluo = voll 11 ray + OV,
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where C' depends only on the L® norms of the matrices A and B.

Within our L'-framework, there are two ways to obtain an L! estimate for u—v.
A traditional way is to view the equation for the anisotropic viscous approximate
solutions as the original equation perturbed by the error terms taking the form of
partial derivatives. If v is uniformly BV bounded in space variables, one obtains
the optimal % rate of convergence. However, if v is not BV bounded, only a sub-
optimal rate of convergence can be obtained in this way. The more efficient way is
to derive the optimal rate of convergence from an estimate like (1.9) for continuous
dependence with B properly chosen, without imposition of bounded variation of
v. Indeed, in this paper we apply the second way to establish the optimal rate of
convergence for the vanishing anisotropic viscosity method for (1.1).

While the vanishing anisotropic viscosity method has received almost no atten-
tion in the literature, the vanishing isotropic viscosity method for the purely hyper-
bolic case (A = 0) is well-studied [3, 10, 19, 20, 27]. One motivation for studying
the vanishing anisotropic viscosity method is that anisotropic viscosity approxima-
tions are closely related to finite volume numerical schemes on unstructured grids,
for which uniform BV bounds are not available for finite volume schemes, and the
standard error estimate theory for hyperbolic problems provides only a sub-optimal
rate of convergence (see Makridakis and Perthame [23]).

Although the significant applications of our L'-framework are the estimate for
continuous dependence on the nonlinearities and the error estimate for the vanishing
anisotropic viscosity method, as an example of direct applications of this framework
to numerical methods, we focus in Section 6 on a linear convection-diffusion model
equation and derive an L' error estimate for a upwind-central difference scheme.
We will present further applications of our L!-framework to numerical methods
for nonlinear degenerate parabolic-hyperbolic equations elsewhere. Also we remark
that the results in this paper can be extended to more general equations with
(t, z)—dependent coeflicients; the details will be presented elsewhere.

This paper is organized as follows. We first establish the L!'-framework for con-
tinuous dependence and error estimates in Sections 2 and 3. Then we apply our
general L'-framework to obtain the following results: (i) an explicit estimate for
continuous dependence on the nonlinearities in Section 4; (ii) an optimal error esti-
mate for the anisotropic vanishing viscosity method in Section 5; (iii) an error esti-
mate for an upwind-central finite difference scheme for a linear convection-diffusion
equation in Section 6.

2. ENTROPY SOLUTIONS AND KINETIC FORMULATION
For any entropy function 1 : R — R, the corresponding entropy fluxes
¢=(qi,...,qa) :R—R? and R= (rij) :R — R4
are defined by
q¢'(u) =n"(u)f'(u), R(u)=n"(u)A(u).

We will refer to (1, q, R) as an entropy-entropy fluz triple.
Fori=1,...,dand k=1,..., K, we let
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and
Gt = [ Viwohw)de,  for b € CalR)
0
According to Chen-Perthame [9], entropy solutions can now be defined as follows.

Definition 2.1 (Entropy Solutions). A function u € L= (Ry; L'(R%))NL>® (R4 x
R%) is an entropy solution of the Cauchy problem (1.1) if the following conditions
are satisfied:

(D.1) Foranyk=1,...,K,

d
> 0..Gi(u) € L*(Ry x RY).
1=1

(D.2) Forany k=1,...,K and ¢ € Co(R) with ¢ > 0,
d d
D00 (W) = V(W) Y de Gl (u) € LRy x RY),
i=1 i=1

and the parabolic dissipation measure n®¥ (t,z), defined by

K d 2
n" Y (tx) = p(ult,z) > < f)ziCﬁg(U(taﬂﬁ))) 7
1

k=1 \i=
satisfies

d

% 2
n“Y(t, x) = Z (Z 8xiCi’w(u(t7m))> a.e. in Ry x R
k=1

i=1

(D.3) There exists an entropy dissipation measure m™“¥ (t,x) of the form
it (ta) = [ (et a©) s for any b € ColR),
R

for some nonnegative entropy defect measure m*(&,t,x) such that, for any
C? entropy-entropy fluz triple (n,q, R) with n” € Co(R), there holds

(2.1) 8n(u) + div g(u) — V - (R (u)Vu) = — (m“’”“ + n"") in D' (R4 x RY),

with initial data n(u)li=0 = n(uo). That is, for any test function ¢ €

DR, x RY),
d d
n(w)owg + Z qi(u)0x, ¢ + Z Tij (U)ag7rj¢ dx dt
R xR =1 ij=1

+/Rd n(uo(2))$(0, z) do = / (m“’”” +n"”’") ¢ dx dt.

R+XRd
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Remark 2.1. The nonnegative parabolic defect measure n*(&, t, x) can be defined
as

(2.2) n“(&,t,x) = 6(€ — u(t, z) Z <Z 0, G (u )
k=1

Using the duality (Co(R); M(R)), the parabolic dissipation measure n*¥ then
takes the form

2

Wt x) = /R (€t () dE, b € Co(R).

In the “diagonal case” a;; = 0 for all ¢ # j, the chain rule (D.2) is automatically
satisfied.

We also follow Chen-Perthame [9] to give the equivalent kinetic formulation of
entropy solutions for (1.1) which can be derived essentially from duality and the
representation formula

(2.3) / n'(& w) dg, for any h € C*,
where the indicator function x(&;u) is defined by
Loce<us when u > 0,
x(&u) =40, when u = 0,

see also Lions-Perthame-Tadmor [21].
For later use, we note that the following formulas are valid:

(2.4) Oux(§u) =0(§—u),  Oex(§u) =0(8) —6(€ —u).

Definition 2.2 (Kinetic Formulation). Let u be an entropy solution of (1.1) in the
sense of Definition 2.1. Then the kinetic formulation of (1.1) reads

ix(&u) + (&) - Vax (&5 u)

(25) - Z aZJ r i Tj X g? ) + af (m’l—b + nu) (£7t7:ﬂ) in Dé,t,z?

7,7=1
X(&u)li=0 = x (& o),
for some nonnegative entropy defect measure m*, which measures “hyperbolicity”
in the solution, and some nonnegative parabolic defect measure n* with the form
(2.2), which measures “parbolicity” in the solution.

3. GENERAL L'-FRAMEWORK

Let u be an entropy solution of the original problem (1.1). Let g be the flux
function defined in (1.7) and B = (b;;) be the d X d symmetric matrix defined in
(1.8). We then let v solve the “approximate” kinetic problem

dix(&v) + ’(5) - Vax(&v)

(3'1) - Z le gcgc X 57 )+a£ (mv+nU+E) (f,t,x) in Dé,t,za

7,7=1

X (&5 v)li=0 = x(&; o),
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for some nonnegative entropy defect measure m* and nonnegative parabolic defect
measure n® taking the particular form

K /d 2
nv(gvt’x) = 6(5 - U(ta I)) Z ( ﬁ(v(t’x))>

k=1 \i=
with

) = [ ohiw)du.
0
Correspondingly, for ¢ € Cy(R)), define the function

v = [ @) (w) dw.

Motivated by Bouchut-Perthame [3] and Perthame [27] in their treatment of the
hyperbolic problem, we assume that the error term FE(&,t,x) takes the form of
“partial derivatives”:

B to) =0 (& t,x)+ Y, Dlef(6tx)
J=(J1,...,Ja)
0<|J|< .

for some error terms ey and ef with Jy, J, > 0 integers and J multi-indices. We
assume that the error terms eq and ef satisfy

H(supleo(fw,-)L sup!@f(éw«)\)
¢ ¢

< 00, 0<|J| < Js
(R4;L1 (R4))

LilOC
where sup is taken over all
&€ I(v) := [infv,supv].

Define the d x d symmetric matrix

st6) = (VA© - VB®) (VAEQ - VB©)

= (4(&) = %) (" (© ~ ")
Then the entries of S(£) = (s;;(§)) take the form

Sij(f) =
(3.2)
{amaﬁm oA )05 (€) — 0O (E) + ook <£)}.

To state the following theorem, we use the notations:

Soo = [ISle = sup 5@l =" sup lsi5(6)],

€1(uo) £€l(uo)
ij=1,....d
and
1f' =9l := sup [[f'(§) =g Ol = sup [fi()—gi(E)l-
&€ (uo) £€I(uo)
i=1,....d

Hereafter, C' will denote positive constants, not necessarily the same at different
occurrences, which are independent of the small parameters and time variable t.
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The main result of this section is the following abstract L!'—framework for error
estimates.

Theorem 3.1 (General L'-Framework). Letu € C(Ry; L}*(R?)) be an entropy so-
lution of (1.1), and suppose v € L= (R, ; LY (RY))NL®(Ry x RH)NC(R; L} (R?))
solves the “approzimate” kinetic problem (3.1). Then, for any t > 0 and any
€1,€0,€1 > 0,
(3.3)

[u(t, ) —v(t, ‘)”Ll(Rd) < juo — UO”LI(Rd)

+ C<55,t(61) + &5 1(E0) + €54 (E1) + E T e) + £ P () + 5u,t(50751)> :

where
Euiler) = sup [lu(r, +y) —u(r, )11 (Ray
lyl<e1
7=0,t
EviE0) = sup lo(s,-) = o(7, )l 1 may »
0<s—7<Ep
7=0,t
Ev(r) = sup (T, +y) — (7, ’)”Ll(Rd) )
ly|<ér
7=0,t
t||f -9
et = {lilon L, g ovime,
luoll gy may tI1f" = 'l > 1o € BV(RY),
er ey Mol 7w ¢ BV(RY),
t 1) =
luoll gy (ra) = uy € BV(RY),
and
o 1
Evt(€0,61) = —7 ||sup leo(§, - )]
o £ L1(0,t4&0; L1 (R4))

1
Py
J=(J1,...,Ja) €1
0<|J|< T,

If g = f and B = A, then the terms &£ ,(e1), &l79(ey), and £ P (ey) in (3.3)
can be dropped, that is, there holds

l[u(t, ) = vt ) L1 may < lluo = voll 1 ray

+O(E54(E0) + €54(E0) + EuslE0,20)),

sup lef (&, )]

L1(0,t4+&0;L1 (R4))

(3.4)

for anyt >0 and €p,£1 > 0.

Proof. Some arguments in this proof follow Chen-Perthame [9] closely, for which
we are very concise here and refer instead to [9] for more details.

We set € = (g9,€1), €0 > 0 for the forward time regularization and £; > 0 for
the space regularization. We then define

we(t, ) = we, (Hwe, (@),
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1 t 1 x T4
wao(t) = %WO (&_O> s Weq (ZE) = s—dwl (;) ceewq (81) ,
1

and wy > 0, £ =0, 1, denote the normalized regularization kernels with

[ orydr =1, suppen) © (~L0),  supp(er) € (~1,1)
R
‘We use the notations

X = X(f,t,x) = X({,u(t,x)), X = )z(é.?tax) - X(§7’l)(t, Z)),
Xe = Xa(gatvx) = (X * wE) (gvtax)v Xz = )Zg(f,t,l‘) = (5& (t*)wé) (57t7x)7

t,x) @
where £ = (&p,€1) > 0 is another pair of time-space regularization parameters.
Moreover, we use the notations

(et ) = (mu(*)ws) (€.,2),

where

m

LS

t,x

nd :=nl( t,x) = ( *ox w5> (&, t,x),

(t,x)

mg :=mi(& t,x) = (m” * w€> (&, t,x)

ng :=ng( t,x) = (n” (* w5> (&, t,x),

and Ez = Ez(,t,x), which is similarly defined.
We intend to study the microscopic functional
0 < Q€ t,2) = [Xe| + [Xe| — 2xe Xz
More precisely, we will calculate
d
dt Jre xR
Note that x:(&,¢, x) satisfies

(3.5) Qe (& t, ) dr dE.

d
(3.6) Oixe + £1(§) - Vaxe = Y aij(§)02,, X + O (ml +nl),
ij=1
and that yz(&,t, x) satisfies
(3.7) Xz +9'(€) - Vake = Z bij ()02, 4, Xe + D¢ (mY +nl + Bx) .
4,j=1

Multiplying (3.6) by sign(£), using sign(§)xe. = |xe|, and then integrating in
(&, 7) € Re x RY yield

d .
(3.8) — Ixc|da dE = —2/ (mf +n?)(0,t, ) dz.
dt Jre xR R
Similarly,
d
(3.9) 4 | dode = —2 / (m2 + n? + E2) (0,1, 7) da.
dt Jr, xR R
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We now consider the quadratic term. To this end, we need an additional regu-
larization in the kinetic/velocity variable &:

X€,5(§7t7$) = (Xe?%) (§7t>x)7 )25,5(5”5737) = (f(é*g%) (f,t7l'),

for a standard regularization kernel ¢5. We also need a &-truncation 77, (€), which is
a smooth nonnegative function with bounded support. That is, 71, (£) = 7 (/L) —
1 as L — oo with

0< T(é-) <1 for 5 € (_00700)7
() =1, for |€] <1/2,
T =0, for [¢|>1.

The destiny of these additional parameters is that § | 0 first and L T oo second.
Then x. s satisfies

ath,& + fl(f) : Vsz,J
3.10 d
310 =Y 9., ((%Xs) g%) + O¢ ((m? +ng) §¢5> + RZ 5,

3,j=1
and Xz s satisfies

OiXes +9'(6) - VaXes

3.11 d
(3.11) =Y &, ((bijf(é) z%) + O¢ ((mg +ng+ Eg)*glba) + R s

ij=1

In (3.10) and (3.11),

Ry = divy (F'(€xes = (FX) x5 ). REs = dive(o/(O0%es — (o'%e) 1 ).
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A simple calculation reveals

d -
(3.12) — TL(§)Xe,6Xe,5 dx dE
dt Jre xR

_ / To(6)%es (f/(€) = 6'(€)) - Varxe da de
R¢xRZ

d
+ /1:{£><Rd TL(f)Xé,é Z Gﬁﬂj ((ainE) 2”(/}6) dx d¢

T i,j=1

T / T(©)%e.s0e [ (m2 +n)*¢a> da d

Re xRd 3

+/ s > 22 o, ((00Xe) 1 s )
RgXRd

3,j=1

+ / T1.(8)Xe,50¢ ((mg +n?+ Ex) *%) dx d¢
R5 XRd 5

+ / To(6) (ResRs + Xe s RY5) da dg
RgXRd

6
Z (t;e,€,0,L).

=1
As in Chen-Perthame [9], we have

(3.13) %iﬁ)l Is(t;¢,0,L) =0 in LP(0,T) for any 1 < p < oc.

Writing out the convolution products explicitly, we have

1(t;e,8,6,L)
/TL g'(&)  Vawe(t — s,z —y)ws(t — s,z —y)
x 5§ —m)s (& —n')x(msul(s, y))x(n'sv(s',y')) ds dy dnds’ dy' d' da d€.

Sending first § | 0 and second L T 0o, we get

lim hmIl(t €,€,0,L)
Lloo §

(3.14) = /(f’(ﬁ) —g(6) Vawe(t — 8,0 — y)ws(t — s’z — ¢/

x x(&uls,y)x(& (s, y)) dsdy ds' dy' da dg
= —&79(t;¢,8).
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Integrating by parts yields
(3.15) I5(t;e,€,0, L)

= _/ T7(E)Xes ((mg +n) *¢5> dx d¢
Re xRy 13
_/ T(§)vs(E) ((mg +n) *%) du d¢
R¢ xR4 3
(s g ) o )

N /R T (6(5—u> o (wswa)) (ngzwé) da de

4

=Y Isy(t;e,,0,L),

(=1
and
(3.16) I5(t;¢,€,6, L)
/ §)Xes ((mg +nf + Ez) *%) dx d§
R de £
-/ 6s(€) ((mz o+ B) s) da d
Rg XRd

/Rsde ( €-v) 5 (wets) | | m2 »g%) dx d¢

Y

)
/REW ( €=v) e x (wé%)> (7115251/15) dz d¢
/EXRd < (=v) * (wé%)> (E~§w5> dx dg

5

Z o(t;e,€,0,L).

As in [9], we have

(3.17) hm hmlg 1(t;€,€,6,L) = lim lim I5 1 (¢;¢,€,9, L) = 0,
L1oo 510
in LP(0,T) for any 1 < p < o0.
Moreover,
(3.18) lim (Lsa(t:2,2.6.R) + L a(t:2.€.6. )

= —/ (mg +n +mg +nf+ E:) (0,t,z) dz,
Rg

in L?(0,T) for any 1 < p < oc.
Clearly,
I3 3(t;¢,€,0,L), Is 3(t;¢,€,0,L) > 0 for any t > 0.
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Integrating by parts also yields

(3.19)  Iy(e,6,L)
K d

= _ /11ng2 7.(§) Z Z O, ((Uﬁgfcg) 21/15)6'%. ((oﬁxs) agi/)(;) dx d¢

k=11,j=1

K d
+ /Rngg L)Y Y {6%- ((05‘&25) 2%)8% ((Uﬁ;Xe) 2%)

k=114,5=1
— amij&f,(;aa:j ((aZ]XE) ‘2(’(/}6) } de dé‘

=:I51(t;¢,€,0,L) + Iz 2(t;¢,€,0, L).
Similarly,
(3.20) I4(t;e,6,0,L) = Iy 1(t;6,,0, L) + Iy 2(t;€,€,0, L),
where

(321) I4,1(t;57§7 67L)

K d
—— [ T©Y Y ou((ohie) £ vs) o, ((ofine) vs) o de
R¢ xRd k—1ij=1 3 1
and
(322) 1472(15;6,5, 5, L)
K d
- [ mey Y {am((a{ifcg)*w(s)amj((aﬁxe)wa)
R¢xR4 k=14,j=1 ¢ ¢

= O, () £ 05) 0, Xs,a} da dg.

As in Chen-Perthame [9], we have
(3.23) 161%1 Iro(t;e,€,0,L) = léifgl Iyo(t;e,€,0,L) =0
in LP(0,T) for any 1 < p < o0.
We now study the new term
(3.24)
EAB(t;¢,6,6,L)
=1I51(t;6,€,0,L) + I3 4(t;€,€,0, L) + I41(t;€,E,6, L) + I5 4(t;¢,€,0, L).

From now on in this proof, for notational simplicity, we drop writing the domains
of integration. Writing out explicitly the convolution products, we have

Igﬁl(t;é]é, (57 L)

K d
=3 [Tt~ sz = )0 et~ =y Ys(€ (6~ )

k=114,j=1

x ot (mx(m;u(s, y)oi () x (s v(s',y')) ds dy dn ds’ dy' dn’ dz d€.
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Similarly,

1471(1‘,;6,5, (5, L)

K d
=3 [ T@0nnlt — 53— )0 et — o = sl — )

k=114,j=1

x 5§ =)ol (mx(m; (s, v))o (" )x(n'sv(s'sy")) ds dy dn ds' dy' dn’ d d€.
Note that
13’4(t; g, g, 57 L) -+ 1574(15; g, 5, 5, L)
K
= Z/TL(g)we<t — 5T — y)w§(t - Slvx - y/)wﬁ(g - U(Say)ﬁ%@ - U(Sl7yl))
k=1

2

d 2 d
x (Z Oy, £<u<s,y>>> + (Z By, G (v(s, y’))) ds dy ds’ dy dz dé
i=1 j=1
K
>2%" / To(€w-(t — s,7 — y)ws(t — '@ — ¢ ) s (€ — uls,9))s(€ — v(s',y))
k=
' d d
x>0y, uls,y) D> 0y (L (v(s'y)) ds dy ds' dy' dav d€
i=1 j=1
p J
=23 [ Ti(nlt — 5.0 = sl — 5'a -y
k=1
d ) d R
x>0, (s, ) Y 0, T (s y)) ds dy ds' dy de dé
i=1 j=1

K d
=2 Z Z /TL(ﬁ)amiwg(t — 85,2 — Y)Op,we(t — s’ o —y )s(€ —n)vs(E—n')
k=1

Q=1
< o mx(msuls,y)obm ) x(n'sv(s',y) ds dy dnds' dy’ dy’ da dg,

where we have used the chain rule (D.2), integration by parts, and (2.3). From this
and the previous calculations, we find

EAB(t;e,6,6,L)
d

K
> — Z Z /TL<£)aIiw€(t - 5T = y)a:rjwé(t — s,z — y/)%(ﬁ - 77)1#5(5 - 77/)
k=14,j=1
« {otnoskton) — 2oktaon) + ookt |
x x(myuls,y)x(n'sv(s',y') ds dy dnds’ dy' dn’ dz d€.
After performing the changes of variables:

225*777 2/25*77/7 dZdZ/:dUdﬂl>
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Y
(S5
€
m

K d
303 [ TQ0uonlt = sz )0t~ 5w s ()

k=14,j=1
x {a;‘m o€~ ) — 206 — 2)oBE — ) + o€ — 2)olh(e - z'>}
X

X x(& — z;u(s,y))x (€ = 2"50(s',y)) dsdy dz ds’ dy' dz' dx dE.

From this, it follows easily that

(3.25) lim lim EA~B (t;¢,¢,6, L)
L1oo 610

d
> Z /tﬁmng(t—s,x—y)wg(t—s',x—y/)
i,j=1

x {afz(oamo 20 (0B () + oB(€)oh, (5)}
x x(&uls,y))x(&v(s' y)) dsdy ds' dy' dx dE,

where we have also performed integration by parts.
Now it is crucial to exploit the symmetry property of (i, j) — 8§ixjw5(t— $,x—y)
to obtain a favorable quadratic form:

(326) 3 02, welt—s,0 - y>{oﬁ<s>aﬂ<§> 20l (©)ohe) + aﬁ<s>aﬁ<£>}

d
=Y & wt—s2—y) (0(&) = () (056 — ahh() -

ij=1
In view of (3.25), (3.26), and the definition of s;;(£) in (3.2), we finally get

(3.27) lim lim E4~B (t;¢,2,6, L)
L1oco 610

d
> Z /a:%iijea_Sum_y)wé(t_8/7x_y/)

i,j=1

x $i; (©)x(& uls, y)x(& (s, y')) ds dy ds’ dy' dw d€
= —E47B(t;¢,8).
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Writing out the convolution products, we have

(3.28)
15,5(t; g, év 5a L)

= [ Tul©)uslé — vl )oale ~ W )stt ~ 5.0~ )
X <8t‘JOWg(t —s,z—1y)eo(n,s,y")

+ Z Dlws(t — s,z —y el (0,5, y’)) dsdydnds’ dy’ dn' dx d¢
J=(J1,.Jd) >0

— /wg(t —8,T—1Y) <8£]°wg(t -8,z —1y)eo(v(s,y),s,y)

+ Y Diwt—sx—y)ef(v(s,y),5, y')) ds dy ds' dy' dzx

J=(J1,d )20
T1< .

=:—&,(t;€), when L T oo and d | 0.

Summarizing our calculations from (3.12) to (3.28), we obtain that, for any
g,€>0,

d
(3.29) — / XeXe dx d€ > —/ (mg +ng +mf¢ +ng+ Ez) (0,t,x) dx
dt Jre xR R
— &7t e,8) — EATB(ty6,8) — E,(t;6).

Then the estimates (3.5), (3.8), (3.9), and (3.29) yield that, for any €, > 0,
[ Qutetaydnic
REXRg
¢
g/ Qe2(£,0,2) dmd£+2/ EI9(rie,8)dr

R¢ xR 0

¢ ¢
+ 2/ EAB(t;e,8) dr + 2/ Ev(t;e,€)dr.

0 0

Similarly, we have

/ Qec(€.0,2) de de
R¢ xRZ

= /(|U(S,y)‘ + |U(S/7yl)| — 2min (|U(S,y)| ) IU(SI7y)D 1{sign(u(s,y)v(s’,y’))>0}>

X we (=8, —y)wsz(—s",x —y)dsdyds’ dy' dz

= / u(s,y) = v(s', y)|we(=s,2 — y)we(=5", 2 —y) ds dy ds’ dy' d.
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A standard calculation reveals

/ Qe :(£,0,z) dx dE
R¢xRZ

< HUO - UO“Ll(Rd) + O<SE£€ ||u(57 ) - UO(')HLl(R”)
0

£ s [1065,) = o)l sy + sup ol +9) — oIl
0<s<égp lyl<er

+ sup |lvo(- +y) —vo( )l 11 (mey -
ly|<éq

Similarly, we find

/ Quc(E,t,x) du de
RgXRg

> Ju(t) = vl may = sup luls, ) = ult, )] Loy

0<s—t<ep
— sup (s, 1) = ot ) prmay — sup lult, - +y) — ult, )l (g
0<s—t<&g ly|<e1
— sup [lo(t, - +y) = vt )2 (ra) -

ly|<ér

Sending g | 0, we conclude

[ult, ) = vt )l L1 (ra)
< fluo — UOHLl(Rd) +285,(e1) + 25'3,15(50) +287 (1)

t

¢
+2lim [ E779(r;e,8)dr +21lim [ EA7B(r;e,8)dr
5010 0 €0l0 0

t
—|—2/ Eu(T;€) dr, 0<t<T.
0
It remains to estimate the last three terms.

Recall that u(t,z) € I(ug) = [inf ug, supug] for a.e. (t,z) € Ry x R, It is easy
to see that

¢
lim/ ET79(r;¢e,8)dr
EolO 0

d
s/nf'—g’nwZ|axiwsl<x—y>|cug<7—sxx—y/>
=1

x x(&u(r,y)) dyds' dy'dr dx d€

I = 9'llse

< CHu||L°°(O,T;L1(Rd)) €

Note that, if up € L*(R?), then lull Lo 0,701 (my) < llullprray < 0o (see [31]).
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On the other hand, if u € L>®(R.,; BV (R%)), then we can first integrate by parts
in (3.14) and utilize (2.4) to obtain

60l0

t
lim / E179(r;¢e,8)dr
0

d
/ S (1 (s, 9) — 6405, 9))wen (@ — g)we(r — 87— o)
=1

x Oy, u(r,y)x(u(r,y);v(s',y")) dy ds" dy'dr dx
< C||“||L°°(O,T;BV(Rd))t ||f/ - 9/||oo .

Note that, if up € BV (R?), then ||ul| &, ;pv®a)) < uoll gy ray < oo (see [31]).
Using again the standard properties of regularization kernels, we find

Eoio
d
< Seo Z / 89:1%(4)51(1' y)‘wg(T_ 3'71'_ y’) \X(f;U(ﬂy))I dyds'dy’drdxdg
3,j=1
d
=S Z / aizjwﬁl (z — y)‘ lu(r,y)| dydr dx
i,7=1
tS

s¢ 5%)0 HUHLW(O»T;LI(Rd)) :

For u € L®(R; BV(R?)), then we can improve this estimate. In this case, we
may integrate by parts in (3.27) and employ (2.4) to obtain

¢
lim / EAB(r;e,8)dr
0

6010

d
Z /&ijel (x —y)we(r — 8,2 — o)

ij=1

X sij(u(t,y)) 0y, ul(r, y)x(u(r,y);v(s",y")) dy ds’ dy’ dr dx d§

d
< S Z /|5‘ijsl(x—y)|wg(7—s’,x—y’)

i,j=1
X |0y, u(r, )| [x(u(r, y);v(s',y"))| dyds' dy' dr dx

d
S Soo Z /‘8$jw51 (Z‘ - y)’ |8yiu(7—a y)| dydrdx
ij=1
tSoo

<C ||u||L°°(0,T;BV(Rd)) ?
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Finally, we estimate
t
/ Eu(T;é)dr| < /wg(T -8,z —y)
0

X (lafowg(r i~ y’)’ Slgp leo (&, 5/7?//)|

+ Z |D:;c]wg(7'—s’,x—y’)|sup‘e‘{(§,s’7y’)‘> dsdyds’ dy' drdx
3

L1(0,t+&0; L1 (R4))

1

+C Z e

J=(J1,...,Jq)>0¢1
|']|§']*

sup [ef (€, -, )]

L1(0,t+&0; L1 (R))

This concludes the proof of (3.3). If g = f and B = A, then 5{79,5;4_3 =0.
Consequently, we can let £1 | 0, and hence &, — 0 in (3.3). This completes the
proof of (3.4). O

4. ESTIMATES FOR CONTINUOUS DEPENDENCE ON THE NONLINEARITIES

We now apply the L'-framework developed in Section 3 to derive an explicit
estimate for continuous dependence on the nonlinearities in quasilinear degenerate
parabolic equations with anisotropic diffusion. Consider the problem

(4.1) O + divg(v) = V - (B(v)Vv), v(0,z) = vo(z),

where g, B, and vy satisfy the conditions stated in Section 1. The kinetic formulation
of (4.1) is (3.1) with F = 0. For simplicity of presentation, we assume that uy €
BV (R?).

We can now apply Theorem 3.1 with &, = 0, &, | 0 (so that & ;, £, — 0),
and &7 4(e1) < €1 ||luoll gy (ra)- Hence, for any ¢ > 0 and any &1 > 0,

u(t,-) = v(t, ) 11 may < lluo = voll 1 (may
tSeo
+ Clluolly e (61 + 1 = g/l + ).
Choosing the optimal 1, we end up with the following theorem.

Theorem 4.1 (Continuous Dependence Estimate). Suppose ug € BV (R?). Let
u be an entropy solution of (1.1) with (1.2)~(1.4). Let v € C(Ry; L*(R%)) be an
entropy solution of (4.1) with (1.6)—(1.8). Then, for any t > 0,

(42)  Ju(t,-) = o, ) L1 (ra)

< lluwo = voll 1 (ray

+ Clluoll v (t 17 =gl + ﬁ\/H (VA-VB) (VA- @)THO) .
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Remark 4.1. Note that Theorem 4.1 holds without the assumption that v €
L>®(R,; BV(RY)). Also, observe that, in the isotropic case: A = diag(ai,...,aq)
and B = diag(b,...,bq),

Jlova-ve) (va-va) | =
i=1,....d

Vail§) - Vou(e))

We remark that, in the estimate (4.2) for continuous dependence, the strong norms
for f — g can be replaced by weaker norms in the spirit of [3], although we do not
pursue this here.

5. AN ERROR ESTIMATE FOR THE VANISHING ANISOTROPIC VISCOSITY
APPROXIMATION

We now consider the anisotropic viscous problem (1.10) with f, A, B, and vg
satisfying (1.3), (1.4), (1.6), and (1.8), respectively. Suppose B(v) > 0 (i..e, (1.10)
is uniformly parabolic which admits a unique classical solution) and

Boo :=|Bllo = sup b;;(§) < oc.
£e€l(uo)
hj=1,...,d
We are interested in applying the L'-framework established in Section 3 to derive
an explicit error estimate for u — v as p | 0, where u is an entropy solution of the
original problem (1.1). As in the previous section, we assume that ug € BV (R?).

Let (n,q, R) be an entropy-entropy flux triple. Multiplying (1.10) by 7/(v), we

recover the usual dissipation structure

d
dm(v) + divg(v) = V - (R (v)V Z (V)0 Oy, v
(5.1) =t .
+uV - (7' (v)B(v)Vv) — un” (v) Z bij ()0, v Oz, 0.

We identify the entropy defect measure mv (€, ¢, x) as
2

(6 1,2) = 56 — ol ) z(zaﬁgk ) |
k=1 =1

and also the entropy dissipation measure m®¥(t,z) as
mUY(t,z) = /m (& t,x)p(&)de, b€ Cy(R),

via the duality (Co(R); M(R)).
The parabolic defect measure n¥ (¢, ¢, z) is identified as
2

nv(g?tax) :6(5_1} t m Z (Za C'Lk: ) >0,
k=1

and again, via the duality, the parabolic dissipation measure n"%(t,z) as

n”ﬂ"(t,x):/ nP(&,t,z) (&) dE, Y € Co(R).
R
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Hence we can write (5.1) as
O (v) + divg(v) — V- (R (u)Vv)
= - (um“’”” + n”’””) + V- (1 (v) B(v) Vo).

We can now transform the dissipation structure (5.2) via the duality into the
kinetic structure [9]:

6tx(€;v)+f’(§)- Vex(&v)

(5.3) d
- Zaw xxxga )+8E(mv+nv)+uzbij(§> wizy X (Ev )

2,j=1 i,j=1

(5.2)

We first assume that vy € BV (R?). Then we can write

H Z bl] 93 93] U)

1,j=1

where

. 1
E( t,2) Zarjel (& t,x), el(&tz)= (/ bij(n dn) .

From (2.4), it is clear that, for any &,

‘el(ftx’<u2bm \a$,y|<uBooZ|axYU| j=1,....d

=1

Hence

< utBss|[voll By (ra)-
L1(0,t;L'(R%))
Applying Theorem 3.1 with €9,1,0 | 0 (so that &, &%, &L, — 0), and

Slglp ’6]1(53 ) )’

& 1(é1) < érllvolly(re,
we obtain that, for any ¢ > 0 and £; > 0,
- T
st ) =0t 13 sy < o = v0ll s gy + Clleoll v (81 + ).

Choosing the optimal €, we get a rate of convergence in p | 0 that is of order /tpu.
If vo ¢ BV (RY), then we must write the error term as

K Z bi] m x; X ga ) 3§E(§,t,$),

3,j=1

where

. £
Bt = 3 &, dieto),  I(Eto) —n / by (M) () dn.

3,j=1
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Clearly, for any &,

eij(f,t,x)‘ < Booplv(t,z)|, i,5=1,...,d.
Hence

< tBoop ||U0HL1(Rd) )
L1(0, LY (R))
so that, for any ¢ > 0 and &; > 0,

sgp ’6?(67 , -)‘

- tp
lut, ) = (t s ey < Tto = voll s ey + Cllvoll s ey (81 + 25 )-
1

Choosing the optimal 1, we get a rate of convergence in y | 0 of order (t,u)%.

Observe that we do not get an optimal convergence rate when vy ¢ BV (R?) in
this way. However, as already mentioned in Section 1, one of our observations is
that, by interpreting the desired error estimate as a continuous dependence esti-
mate, we can obtain the optimal result. Indeed, in the present context, Theorem
4.1 gives

Jult,-) = v(t, )l L1 (may

< luo = voll 1 (ray

=
+ cu0||BV(Rd)ﬁ\/H (\/Z VAT uB) (\/Z VAT uB) H
for any t > 0. Now a simple calculation reveals

(A~ va+uB) (VA va+uB)

We summarize the discussion in this section in the following theorem.

Y
oo

< Cu.

Theorem 5.1 (Vanishing Anisotropic Viscosity). Suppose ug € BV (R?), and let
u be an entropy solution of (1.1) with (1.2)~(1.4). Let v € C(Ry; L*(R%)) be an
entropy solution of (1.10) with (1.3), (1.6), and (1.8). Then, for any t > 0,

Ju(t, ) = v, M 11 ray < lluo = voll g1 way + Clluoll By ray Vi
6. ERROR ESTIMATES FOR A FINITE DIFFERENCE APPROXIMATION

In this section, as an example of a direct application of the L'—framework to make
error estimates for numerical methods, we focus on a linear convection-diffusion
model equation:

(6.1) Ou + div(Vu) = V- (AVu), u(0, ) = ug(z),

for some constant velocity vector V' = (Vi,...,V4) > 0 and some small constant

diffusion matrix A = diag(ay,...,aq) > 0. We assume that uy € BV (R?).

Fix a time step size At > 0 and a spatial step size Az > 0. We use J¢ a; for the

temporal difference operator:

v(t + At,x) —v(t,x)
At ’

0Oz, g for the first order spatial difference operator in the direction z;:

v(t,z) —v(t,x — Azxe;)
Ax

6t7At’U(t, 3?) =

Oz; Azv(t,T) = . i=1,....d,
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where e; denotes the ith unit vector in R%; and 92, A, for the second order spatial
central difference operator in the direction x;:

v(t,x — Aze;) — 2v(t, x) + v(t, z + Axe;)

2 _ -
Oz, azvV(t, ) = L , i1=1,...,d.
We consider the explicit upwind-central finite difference scheme:
d
(6.2) Opav(t, )+ ZV&E“A;EU (t,x) Zaz s AVt ), v(0,x) = ug(x).
=1

As usual, to ensure the stability, it is necessary to require the CFL condition:
At At
. 2A 5 <1 = i A = ;e
From the CFL condition (6.3) and ug € BV, it follows in a standard fashion (see,
g, [13, 17]) that [[o(Z, )| L (may < lluoll oo may and [[0(E, )| By @e) < lluollBy me)

for all t >0, and [[v(t2,-) — v(t1, )| 11 (ray < CV/|t2 — 1] for all £, 22 > 0.

Our goal is to derive an L' error estimate that is uniform with respect to small
diffusion matrix A. For technical reasons, we are not going to work directly with
v, but instead with a regularized version v, defined by

Ul)(t7$) = (wp (t*a:) U) (t71')a p= (PO;Pl) > Oa

where w, = w,(t, x) is a standard regularization kernel of the type used in the proof
of Theorem 3.1 with the smoothing radius pg in ¢ and p; in x.

Evaluating (6.2) at (t — s,z — y), then multiplying by w,(s,y), and finally inte-
grating the result over (s,y), we obtain that the “smooth” function v, satisfies the
finite difference equation:

(6.4) O, atvp(t, ) + ZV@Q AzUp(t, ) Zal s Amvp (t, ),
=1

with initial data
v,(0,2) = (wp;%) (z).
Clearly, the approximate solution v, satisfies the following a priori estimates,
uniform in At, Az, p:

0o (2, )“Loo(Rd < HuOHLOC(Rd) )
(6.5) va( )”BV(R'i) < HUJOHBV (R4)>
lvp(ta, ) — vp(ts,-) HLI(Rd) < Cy/|ta — t1|, for any ti,t5 > 0.
A Taylor expansion yields
O, atvp(t, @) = Opv,(t, ) + Eo(t, ),
with
- 1 At
Eo(t,x) = 3 ), v, (t + z, ) dz.
Observe that, for any ¢t > 0,
(6.5) was used.

_ HLI(O Lt (R)) S C;Q%, where the third part of
it s
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Similarly,

d d
S Vide, aovp(t.x) = Y Vidy,v,(t ) + Er(t,2),

i=1 i=1

with

1(t, ) Z / 2 v,(t, @ + ze;) dz,

Ctm”7 in which the second part of (6.5)

HLl(O,t;Ll(Rd
has been used.

Finally,
Zal . AxUp(t, ) Zaza ,(t,x) + Es(t, x),
i=1
with
Ey(t,z) = ale/ vp (t,x + ze;) dz,

and, for any ¢ > 0, ||E2HL1(O HLI(RAY) S Ccthz” 3 , in which we have used (6.5) again.

Hence, from (6.4), it follows that Uy satlsﬁes the “approximate” convection-
diffusion equation

(6.6) o, + div(Vv,) = V- (AVu,) + E(t, z),

where E(t,x) := Eo(t,x) + E(t,x) + Es(t,r), which suggests that we may apply
Theorem 3.1 with Jy = J; = 0 to estimate u — v,,.

Let n : R — R be an entropy function. Multiplying (6.6) by 7’(v,), we obtain
the usual dissipation structure

d

om(vp) +div(Vn(v,)) = V- (AVn(v,)) = —1" (v)) <Z \/aj-axivp> +1'(vy)E(t, ).

i=1

As usual, we can transform this dissipation structure via the duality into the kinetic
structure:

d
Oix(&0,) +V - Vax(&0p) = Y @i x(§v,) + e (m” +n° + E) (&, t,2),
=1

where m? = 0 and

2
n' = - Up <Z \/E&uﬂg) 5 E(f,t,l‘) = 15>UpE(tax)a

so that O¢E = (¢ — v,)E.
Observe that, for any ¢ > 0,

At Az Az
<Ot<t+m+m).

sup E(faa) >
¢ | | p¥ = p PP

L(0,t;L1 (R%))
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Hence, using (3.4) in Theorem 3.1 with Jy = J; = 0 (after having sent £y,£; | 0),
we get

At Ax  Ax?
ot ) = 0ot Yty < et — 20, )l g2 gy + C (,)/ phr p) |
for any ¢t > 0 and p > 0. From (6.5), we have

l[uo — v, (0, ')”Ll(Rd) s ot ) —v,(t, ')HLl(Rd) < C(Vpo+p1)-

Hence

tAt  tAz  tAz?
) = vt gy < € (VAo + 01+ o+ DL BB s,

2 P1 P1
Choosing the optimal p, we get the following theorem regarding the convergence
rate for the upwind-central finite difference scheme.

Theorem 6.1. Let u be an entropy solution of (6.1) with (1.2) and ug € BV (R?).
Let v = v(t,x) be the upwind-central finite difference solution generated by (6.2)
with (6.3). Then, for any t > 0,

lut, ) = o(t, )| g ray < C ((mt)i + \/tAsc) < CViAz.

Remark 6.1. Note that the L' error estimate in Theorem 6.1 is robust with
respect to sending the diffusion matrix A to zero. We emphasize that, although
the problem (6.1) under consideration is linear, our L' method of analysis is still
very much nonlinear! We will develop further our approach to analyze and derive
L' error estimates for monotone finite difference schemes for nonlinear degenerate
parabolic equations elsewhere.
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