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Abstract

In this paper we study the large time step (LTS) Godunov scheme proposed
by LeVeque for nonlinear hyperbolic conservation laws. As we known, when the
Courant number is larger than 1, the linear interactions of the elementary waves
in this scheme will be much more complicated than those for Courant number
less than 1. In this paper, we will show that for scalar conservation laws, for
any fixed Courant number, all the possible wave interactions in each time step
tj < t < tj+1 only happen in finite number of cells, and the number is bounded
by a constant depending only on the Courant number for a given initial value
problem if the initial data is BV . This implies that the total length of the
linear superposition zone in x direction will go to zero as the spatial step size
goes to 0. And as an application of the result mentioned above, we show that
for any given Courant number, if the total variation of the initial data satisfies
some conditions, the solutions of the LTS Godunov scheme will converge to the
entropy solutions for the convex scalar conservation laws.

1 Introduction and Notation

We are concerned with initial value problems for nonlinear hyperbolic conser-
vation laws

ut + f(u)x = 0, −∞ < x < ∞, t ≥ 0, (1.1)
u(x, 0) = u0(x), −∞ < x < ∞, (1.2)
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in which the initial data

u0 ∈ L∞(R)
⋂

BV (R) with ‖u0‖∞ ≤ M (1.3)

the flux function f(u) is a smooth function of u.
It is well known that solutions to (1.1) and (1.2) generally develop discon-

tinuities even when u0(x) is smooth. Therefore we seek weak solutions, i.e.,
locally integrable function u(x, t) satisfies

∫∫

R×(0,∞)

[uϕt + f(u)ϕx] dxdt +
∫ ∞

−∞
u0(x)ϕ(x) dx = 0

for all ϕ ∈ C∞0 (R× (0,∞)).
Moreover, a weak solution u is called a entropy solution, if it satisfies

U(u)t + F (u)x ≤ 0 (1.4)

in the sense of distributions, that is

−
∫∫

R×(0,∞)

[U(u)ϕt + F (u)ϕx] dxdt ≤ 0, for all 0 ≤ ϕ ∈ C∞0 (R× (0,∞)),

(1.5)
where U is any strictly convex function,

0 < ca ≤ U ′′(u) ≤ cb, for |u| ≤ M.

U(·) is called an entropy of initial value problem (1.1) and (1.2), the function
F (u) =

∫ u

0
U ′(ξ)f ′(ξ) dξ is the associated entropy flux. Any smooth solution

u of (1.1) satisfies U(u)t + F (u)x = 0. The entropy condition (1.4) ensures
uniqueness of weak solutions to the initial value problem (1.1) and (1.2).

In order to compute the numerical approximation of (1.1) and (1.2), we
partition the x-axis into intervals of length h by the set of points xi = ih, i ∈ Z,
and the positive time axis into intervals by the points tj = j∆t, j ∈ N0. The
grid points (xi, tj) define a rectangular mesh on R × [0,∞). We will always
assume that the time step ∆t = λh for some fixed mesh ratio λ > 0. We denote
the Courant number C as

C =
a∆t

h
, where a = sup

|u|≤M

|f ′(u)|. (1.6)

Many approximate methods for (1.1) and (1.2) are based on solutions to
Riemann problems. At each time step t = tj , we just use a piece-wise constant
function

uj
h(x) = uj

i , x ∈ [xi, xi+1),

to approximate the true solution u(x, tj). Denote the Riemann solution at
each grid point (xi, tj) with left and right states uj

i−1 and uj
i as uj

h,i(x, t). In
convex scalar equations, uj

h,i(x, t) is either a shock wave or a rarefaction wave.
In general scalar equations, it is a composite wave consisting of admissible
discontinuities (shocks, contact discontinuities) and rarefaction waves. As long

2



as the Courant number C < 1
2 , the neighboring Riemann solutions will be

separated by the intermediate constant states. Therefore, setting

uj
h(x, t) = uj

h(x) +
∑

i∈Z
[uj

h,i(x, t)− uj
h,i(x, tj)] (1.7)

gives an exact weak solution to (1.1) with initial data uj
h(x) in the strip tj <

t < tj+1. When C > 1
2 the waves issuing from different grid points may

interact with each other. The use of the exact weak solution beyond the time
of interaction would be computationally difficult and expensive particularly for
systems, except for the Godunov scheme with Courant number less than 1, see
[12]. In the large time step (LTS) Godunov scheme proposed by LeVeque [11],
the solution (1.7) is taken despite C > 1

2 . This means that we let the waves
simply pass through one another with no changes in speed or strength and with
no creation of new waves, so they behave as the solutions in a linear system
ut + Aux = 0. In other words, we use linear superposition formula (1.7) to
approximate the nonlinear interaction. For convenience, we will still call each
wave in (1.7) as shock, admissible discontinuity or rarefaction wave respectively,
although it no longer is that beyond the linear superpositions.

Although (1.7) will fail to be a weak solution of (1.1) on the strip tj ≤
t < tj+1 beyond the interaction time, in [12], LeVeque showed that even for
arbitrarily large Courant number, LTS Godunov scheme gives a consistent ap-
proximation for systems of conservation laws and convergent approximation to
the initial value problem of (1.1). Brenier [2] and Wang [15] showed that LTS
Glimm scheme gives a convergent approximation for Courant number less than
or equal to 1, and consistent approximation for any given Courant number for
system of conservation laws. In fact, the approximate solutions constructed
by LTS Godunov and Glimm schemes are total variation diminishing (TVD)
for the scalar conservation laws. Other LTS schemes had been introduced by
Brenier [1], Toro and Billet [14]. In [12] LeVeque conjectured that his LTS Go-
dunov schemes approximates an entropy solution. As we know, there does not
exist any numerical evidence of entropy violating shocks for this schemes, see
[11][8]. Surprisingly, it was found numerically that the LTS scheme with mod-
erate value of the Courant number (larger than 1 but smaller than 3, say) has
much higher resolution, see [11]. In [16] and [17] Wang and Warnecke proved
the entropy consistency of the LTS Godunov and Glimm schemes for Courant
numbers less than or equal to 1. If the flux function has constant curvature, the
results extend to Courant numbers slightly larger than 1. If the flux function
is monotone this holds for Courant number is 2 and for monotone initial data
this is true for arbitrary Courant number. The entropy consistency of large
time step schemes for the isetropic equations of gas dynamics was considered
by Jiang and wang [9]. For L1(R) error estimate of the LTS schemes see [13] and
[7]. To our knowledge, the entropy consistency results are essentially proved for
Courant number C ≤ 1 until now.

In this paper, we will study LTS Godunov scheme with arbitrary Courant
number. In this case, the waves can travel C cells in the time interval (tj , tj+1).
So the linear interactions of the elementary waves can not be confined in one
cell. In section 2 we will prove that in the time interval (tj , tj+1), waves issuing
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from all the grid points (xi, tj)(i ∈ Z) can be divided into several maximal
connected sets (see definition 2.1), and each of them consists of finite number of
waves. More specifically, if we denote a typical maximal connected set of waves
as

A = {Wi,Wi+1, · · · ,Wi+K},
then, the integer K is independent of mesh size. Actually, We can show that
the total number of cells including all the possible linear superpositions in the
strip tj < t < tj+1 is bounded by a constant depending only on the Courant
number C for a given initial value problem. From this result, we know that
each maximal connected set of waves A is confined in a closed trapezoidal zone
D, whose the top boundary is the line segment between (xi−[C]−1, tj+1) and
(xi+K+[C]+1, tj+1), the bottom boundary is the line segment between (xi, tj)
and (xi+K , tj), the left boundary is a broken line from (xi, tj) to (xi−[C]−1, tj+1),
the right boundary is a broken line from (xi+K , tj) to (xi+K+[C]+1, tj+1) (see
section 3 for the details about the left and right boundaries). This result plays
an important role for proving entropy consistency of the scheme. As in this
case, interactions of the waves involved can not be confined in a single grid cell,
so one has to set up a generalized cell entropy inequality in D, which is named
as a linear superposition zone. When the Courant number is fixed, the area of
D will go to zero as the spatial step goes to 0 for general scalar conservation
laws. The result is interesting in its own sake for the LTS Godnuve scheme,
because this implies that the consistency error of the linear superposition could
be ”negligible”, since the size of linear superposition zone is order of h for
arbitrary given Courant number.

It is well known that if the initial value u0 is in L∞(R)
⋂

BV (R), the solu-
tions of LTS Godunov scheme are bounded uniformly in L∞(R×(0,∞))

⋂
BV (R×

(0,∞)); see [12]. Thus the entropy condition (1.5) is a distributional inequality
for the signed Radon measure η(u) = U(u)t +F (u)x. This measure is called the
dissipation measure by DiPerna [3]. In order to investigate entropy consistency
of LTS Godunov scheme, we need to estimate the change of the dissipation mea-
sure through the linear superpositions. In section 3, we will study the change
of dissipation measure on each linear superposition zone. Because the change
of the dissipation measure across the linear superposition involving rarefaction
waves is too complicated to estimate, we use a piecewise constant function to
approximate the rarefaction wave. In the linear superpositions of all kinds of
waves , only a shock interacting a rarefaction wave will produce increase for the
dissipation measure. A rarefaction wave meeting another rarefaction wave, a
shock interacting another shock will produce decrease for the dissipation mea-
sure. We will estimate the net increase amount. Furthermore, we assume that
each rarefaction wave interacts with all the shocks in a maximal connected set
of waves. Therefore, conditions on the initial data in the entropy consistency
theorems is not optimal. The key estimation is (3.13) in Lemma 3.5, which
gives a sufficient condition to ensure the dissipation measure is negative on a
superposition zone D. In section 4, we prove a theorem (Theorem 4.1) on the
entropy consistency for LTS Godunov scheme, the final result is: for any given
Courant number C, if the product of increase total variation and decrease total
variation of the initial data is bounded by a constant depending on the Courant
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u−1 u1

u0
(a) linear superposition of a
rarefaction wave with a neigh-
boring admissible discontinu-
ity

u−1 u1

u0
(b) linear superposition of
two neighboring admissible
discontinuities

Figure 2.1: the figure for Lemma 2.1

number C for a given initial value problem of a convex conservation law, the
solution of the scheme will converge to the entropy solution.

2 The estimations on linear superposition zone

In this section, we are concerned with the initial value problem for general scalar
conservation laws (1.1), (1.2) with the flux function f satisfying

sup
|u|≤M

|f ′′(u)| ≤ c2 (2.1)

where c2 is a positive constant. And the initial data satisfies (1.3).
For LTS Godunov scheme proposed by LeVeque (1.7), waves issuing from

different grid points at time level t = tj may interact(linear superposition) with
each other in the time interval (tj , tj+1). We

definition 2.1. If a pair of neighboring waves interact with each other, we call
it an interacting neighbor pair.

Because any two neighboring rarefaction waves can not interact with each
other, in each interacting neighbor pair, at least one of the two waves is an
admissible discontinuity.

definition 2.2. A pair of waves W1 and W2 is called connected, if there ex-
ist Wi1 ,Wi2 , . . . , Wik

in the same strip such that W1 interacts with Wi1 , Wi1

interacts with Wi2 , · · · , Wik
interacts with W2.

definition 2.3. A set of waves A in the strip tj < t < tj+1 is called a maximal
connected set if any pair of waves in A is connected, and each wave in A doesn’t
interact with any waves not in A.
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Evidently, a maximal connected set of waves must consist of some waves
issuing from consecutive grid points at t = tj . Then, the question arises of how
many waves in each maximal connected set. In this section we will show that
each maximal connected set consists of a finite number of consecutive waves,
and the number is bounded by a constant depending on the Courant number
for a given initial value problem. (ref. Theorem 2.4).

Lemma 2.1. C is the Courant number (defined in (1.6)) of LTS Godunov
scheme (1.7).

(1) If an interacting neighbor pair consists of a rarefaction wave R(u−1, u0)
and an admissible discontinuity S(u0, u1) (ref. Figure 2.1(a)), then the
strength of S(u0, u1) is bounded below by 2a

c2C , i.e.,

|u0 − u1| ≥ 2a

c2C
. (2.2)

(2) If an interacting neighbor pair consists of two admissible discontinuities
S(u−1, u0) and S(u0, u1) (ref. Figure 2.1(b)), then,

|u−1 − u1| ≥ 2a

c2C
. (2.3)

This implies that at least one of them has a strength bounded below by
a

c2C ., i.e.,

either |u−1 − u0| ≥ a

c2C
, or |u0 − u1| ≥ a

c2C
. (2.4)

Proof : For (1 ), since the right boundary of the rarefaction wave R(u−1, u0)
travels with speed f ′(u0), and the discontinuity S(u0, u1) travels with speed
(f(u0)− f(u1))/(u0 − u1)

∣∣∣∣f ′(u0)− f(u0)− f(u1)
u0 − u1

∣∣∣∣ ∆t (2.5)

=
∣∣∣∣
f(u1)− f(u0)− f ′(u0)(u1 − u0)

u0 − u1

∣∣∣∣ ∆t (2.6)

≤ (u0 − u1)2
∫ 1

0
ξ|f ′′(ξu0 + (1− ξ)u1)| dξ

|u0 − u1| ∆t (2.7)

≤ c2

2
|u0 − u1|∆t (2.8)

so, if
c2

2
|u0 − u1|∆t < h (2.9)

then the rarefaction wave (left one) can not catch up the discontinuity ( right
one) within the time period 0 < t < ∆t. Hence, in order to let them interact,
we must have

c2

2
|u0 − u1|∆t ≥ h,
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i.e.,

|u0 − u1| ≥ 2a

c2C
. (2.10)

For (2 ), since,
∣∣∣∣
f(u−1)− f(u0)

u−1 − u0
− f(u1)− f(u0)

u1 − u0

∣∣∣∣ ∆t (2.11)

≤
∫ 1

0

|f ′(ξu−1 + (1− ξ)u0)− f ′(ξu1 + (1− ξ)u0)|ξ∆t (2.12)

≤
∫ 1

0

∫ 1

0

|f ′′(ηξ(u−1 − u1) + ξu−1 + (1− ξ)u0)||u−1 − u1|ξ dηdξ∆t (2.13)

≤ c2|u−1 − u1|
∫ 1

0

∫ 1

0

ξ dηdξ∆t (2.14)

≤ c2

2
|u−1 − u1|∆t (2.15)

by a similar way, we must have

|u−1 − u1| ≥ 2a

c2C
(2.16)

to ensure the two discontinuities interact with each other. If u−1, u0 and u1 are
three monotone numbers, then the total strength of the two discontinuities is
equal to |u−1 − u1|. If u0 is not between u−1 and u1, then

|u−1 − u1| = ||u−1 − u0| − |u1 − u0||.

So at least one of the discontinuity’s strength is greater than a
c2C .

Lemma 2.2. C is the Courant number (defined in (1.6)) of LTS Godunov
scheme (1.7). In the time interval (tj , tj + ∆t),

(1) an admissible discontinuity can interact at most with [2C] other waves;

(2) a rarefaction wave can interact at most with 2[2C] other waves.

proof: For the Courant number C, the two waves issuing from grid points
(xi, tj) and (xi+[2C]+1, tj) respectively can not meet each other within the time
period (tj , tj + ∆t), since each wave travels at most C∆t in this time interval.

Lemma 2.3. C is the Courant number (defined in (1.6)) of LTS Godunov
scheme (1.7). A is a maximal connected set of waves in the strip tj < t < tj+1.
B is any subset of A that consists of 2([2C]+ 1) consecutive waves in A. Then,
there exists at least one interacting neighbor pair in B.

Proof: Since each wave travels at most as far as Ch in the time interval
(tj , tj+1), the wave issuing from the middle grid point in B can not interact
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with any waves not in B. We denote this wave as Wi. Since A is a maximal
connected set, Wi must interact with another wave in B. If Wi interacts with
more than one waves in B, we pick out the one which is nearest to Wi, and
denote it as Wi+l. Without loss of generality, we can assume l > 0. If l = 1,
the proof is completed. If l > 1, because of the selection method of Wi+l, all
the waves between Wi and Wi+l must not interact with Wi, and must interact
with Wi+l. So Wi+l and its left neighbor is an interacting neighbor pair.

Denote the total variation of a function u(x) over (a, b) by TV(a,b)(u). We
have the following important theorem on the size of the superposition zone.

Theorem 2.4. C is the Courant number (defined in (1.6)) of LTS Godunov
scheme (1.7). Then, a maximal connected set of waves A contains finite number
of consecutive waves {Wi,Wi+1, · · · ,Wi+K}, i ∈ Z,K ∈ N, and the number K
satisfies

K ≤ 4c2C(C + 1)
a

TV(−∞,∞)(u0).

Proof: Let’s first show that K must be a finite number. If A contains infinite
consecutive waves, we can find disjoint subsets Bk of A with

Bk = {Wik
, · · · ,Wik+2[2C]+1}, ik+1 > ik + 2[2C] + 1

by Lemma 2.3, there are at least one interacting neighboring pair in each Bk.
By Lemma 2.1, we have

a

c2C
≤ TV[xik

,xik+2[2C]+1](uh(·, tj)).

Since we have infinite Bk, this contradicts with

TV (uh(·, tj)) ≤ TV (u0) < ∞.

Suppose that there are K+1 (K ≥ 1) consecutive waves Wi, · · · ,Wi+K in A.
If K < 2[2C]+1, there is at least one interacting neighbor pair in A. Otherwise,
we find the positive integer m such that 2([2C]+1)(m−1) < K ≤ (2[2C]+1)m,
and divide A into m + 1 subsets

B1 = {Wi, · · · ,Wi+2[2C]+1},
B2 = {Wi+2[2C]+1, · · · ,Wi+4[2C]+2},
· · ·
Bm = {Wi+2(m−1)[2C]+m−1, · · · ,Wi+2m[2C]+m},
Bm+1 = {Wi+2m[2C]+m, · · · ,WK+1}.

By Lemma 2.3, we have at least m interacting neighbor pairs in A. There is pos-
sibility that two interacting neighbor pairs shares one admissible discontinuity.
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For example, the interacting neighbor pair in B1 is {Wi+2[2C],Wi+2[2C]+1}, in
B2 is {Wi+2[2C]+1,Wi+2[2C]+2}, Wi+2[2C] and Wi+2[2C]+2 are rarefaction waves,
they share one admissible discontinuity Wi+2[2C]+1. In this case, the strength
of the admissible discontinuity Wi+2[2C]+1 is bounded below by 2a

c2C . So we can
regard Wi+2[2C]+1 as two admissible discontinuities whose strength are bounded
below by a

c2C . Then we have

a

c2C
m ≤ TV(−∞,∞)(uh(·, tj)) ≤ TV(−∞,∞)(u0),

which means
m ≤ c2C

a
TV(−∞,∞)(u0).

So,

K ≤ 2([2C]+1)m ≤ 2c2C([2C] + 1)
a

TV(−∞,∞)(u0) ≤ 4c2C(C + 1)
a

TV(−∞,∞)(u0)

which completes the proof.

Remark 2.5. This theorem tells us that when we use a LTS scheme to approxi-
mate a general scalar conservation laws, as long as the initial data u0 ∈ BV (R),
the number of grid cells in a linear superposition zone can be bounded by the
Courant number for a given problem. So when the mesh size h is small, each
linear superposition zone must be small.

If the flux function in (1.1) is convex, the total strength of the shocks is
bounded by decrease total variation of the initial data, so the number of grid cells
in a linear superposition zone can be bounded by the decrease total variation of
the initial data u0, i.e.

K ≤ 4c2C(C + 1)
a

DTV (u0) (2.17)

It is easy to know from the proof of Theorem 2.4 that in each strip

{(x, t)| −∞ < x < ∞, tj ≤ t < tj+1},

all the possible wave interactions happen in a finite number of cells, and the
number depends on the Courant number for a given initial value problem. So
when the Courant number is fixed, the total length of all linear superposition
zones in x direction from tj to tj+1 is equal to O(h), and will go to zero as h
goes to 0.
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3 Estimation on the change of dissipation mea-
sure in a linear superposition zone

In this section, we are concerned with convex scalar conservation laws (1.1), (1.2)
with

0 < c1 ≤ f ′′(u) ≤ c2, for |u| ≤ M,

where c1 and c2 are constant numbers. Denote Q(t) as

Q(t) =
∫ b(t)

a(t)

U(uh(x, t))t + F (uh(x, t))xdx, t ∈ (tj , tj+1) (3.1)

where a(t) and b(t) are the left and right boundaries of a typical linear super-
position zone corresponding to a maximal connected set of waves A. a(t) is
formed by all the points on the most left waves in A, b(t) is formed by all the
points on the most right waves in A. Evidently, they are broken lines satisfying
a(t) ≥ xi + xi−[C]−1−xi

∆t (t− tj) and b(t) ≤ xi+K + xi−[C]−1−xi

∆t (t− tj). From The-
orem 2.4, [a(t), b(t)] is a finite interval for a given initial value problem (1.1),
(1.2) and mesh. In this section, we will estimate the change of Q(t) on the time
interval (tj , tj + ∆t).

In order to investigate the interaction of a rarefaction wave with a shock,
we use a fan function of piecewise constants to approximate a rarefaction wave.

definition 3.1. For a rarefaction wave

R(x/t;ul, ur) =





ul, x/t ≤ f ′(ul),
g(x/t), f ′(ul) ≤ x/t ≤ f ′(ur),
ur, x/t ≥ f ′(ur),

in which g is the inverse of function f ′. Denote

ui = ul + i
ur − ul

n
, i = 0, . . . , n,

u− 1
2

= u0,

ui+1/2 =
1

f ′(ui+1)− f ′(ui)

∫ f ′(ui+1)

f ′(ui)

u(ξ) dξ, i = 0, . . . , n− 1,

=
f ′(ui)ui−1/2 − f ′(ui+1)ui+3/2 − f(ui) + f(ui+1)

f ′(ui)− f ′(ui+1)
,

un+ 1
2

= un,

AR(ul, ur;n) =





u0 = ul, x/t ≤ f ′(ul),
ui+1/2, f ′(ui) ≤ x/t ≤ f ′(ui+1), i = 0, . . . , n,

un = ur, x/t ≥ f ′(ur).

Then we call AR(ul, ur;n) is the approximate rarefaction wave for R(x/t;ul, ur).

In this way, we approximate a rarefaction wave by n discontinuities with
speed f ′(ui)

(u0, u1/2, f
′(u0)), (u1/2, ui+3/2, f

′(u1)), · · · , (un−1/2, un+ 1
2
, f ′(un)).
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In fact, AR(ul, ur;n) can be considered as one kind of the approximate
Riemann solver proposed by Harten, Lax and Van Leer [6], which is consistent
with (1.1) and satisfies entropy condition in the sense given by them.

If there is only a single rarefaction wave in (xi, xi+K) × (tj , tj + ∆t), then
we have Q(t) ≡ 0, t ∈ (tj , tj + ∆t). When we replace R(ul, ur;x/t) with
AR(ul, ur;n), this will lead to an approximation for Q(t), let’s call it Qn(t).
First of all, we can show that Qn(t) is negative, and will tend to zero as n goes
to infinity. In fact we have

Qn = (U(u0)− U(u 1
2
))f ′(u0)− F (u0) + F (u 1

2
)+

+ (U(u 1
2
)− U(u 3

2
))f ′(u1)− F (u 1

2
) + F (u 3

2
)+

+ · · ·+
+ (U(ui− 1

2
)− U(ui+ 1

2
))f ′(ui)− F (ui− 1

2
) + F (ui+ 1

2
)+

+ · · ·+
+ (U(un− 1

2
)− U(un))f ′(un)− F (un− 1

2
) + F (un)

= U(u0)f ′(u0) + U(u 1
2
)(f ′(u1)− f ′(u0))+

+ · · ·+
+ U(ui+ 1

2
)(f ′(ui+1)− f ′(ui))+

+ · · ·+
+ U(un− 1

2
)(f ′(un)− f ′(un−1))−

− U(un)f ′(un)− F (u0) + F (un) (3.2)

By Taylor expansion, we have

U(u(ξ)) = U(ui+ 1
2
)− U ′(ui+ 1

2
)(ui+ 1

2
− u(ξ)) +

1
2

U ′′(ũ)(u(ξ)− ui+ 1
2
)2.

If we set η = u(ξ), then f ′(u(ξ)) = ξ, f ′(η) = ξ, dξ = f ′′(η)dη. From the
definition of ui+ 1

2
, we have

∫ f ′(ui+1)

f ′(ui)

(ui+ 1
2
− u(ξ)) dξ = 0.

11



Therefore,

1
f ′(ui+1)− f ′(ui)

∫ f ′(ui+1)

f ′(ui)

U(u(ξ)) dξ

= U(ui+ 1
2
) +

1
2(f ′(ui+1)− f ′(ui))

∫ f ′(ui+1)

f ′(ui)

U ′′(ũ)(u(ξ)− ui+ 1
2
)2 dξ

= U(ui+ 1
2
) +

U ′′(û)
2(f ′(ui+1)− f ′(ui))

∫ ui+1

ui

f ′′(η)(η − ui+ 1
2
)2 dη

= U(ui+ 1
2
) +

U ′′(ũ)f ′′(η̂)
2(f ′(ui+1)− f ′(ui))

ui+1 − ui

3
[(ui+1 − ui+ 1

2
)2+

+ (ui+1 − ui+ 1
2
)(ui − ui+ 1

2
) + (ui − ui+ 1

2
)2]

= U(ui+ 1
2
) +

U ′′(ũ)f ′′(η̂)
6f ′′(η̃)

[(ui+1 − ui+ 1
2
)2+

+ (ui+1 − ui+ 1
2
)(ui − ui+ 1

2
) + (ui − ui+ 1

2
)2].

Since

0 > (ui+1 − ui+ 1
2
)(ui − ui+ 1

2
) ≥ −

(ui+1 − ui+ 1
2
)2 + (ui − ui+ 1

2
)2

2
and

0 < c1 ≤ f ′′(u) ≤ c2, 0 < ca ≤ U ′′(u) ≤ cb,

we have

1
f ′(ui)− f ′(ui+1)

∫ f ′(ui+1)

f ′(ui)

U(u(ξ)) dξ ≥ U(ui+ 1
2
)+

ca c1

12c2
[(ui+1−ui+ 1

2
)2+(ui−ui+ 1

2
)2].

Moreover,

ui+1 − ui+ 1
2

=
1

f ′(ui+1)− f ′(ui)

∫ f ′(ui+1)

f ′(ui)

(ui+1 − u(ξ)) dξ

=
1

f ′(ui+1)− f ′(ui)

∫ ui+1

ui

(ui+1 − η)f ′′(η) dη

=
f ′′(η̂)

f ′(ui+1)− f ′(ui)
· 1
2
(ui+1 − ui)2

≥ c1

2c2
(ui+1 − ui),

so we finally have

1
f ′(ui+1)− f ′(ui)

∫ f ′(ui+1)

f ′(ui)

U(u(ξ)) dξ ≥ U(ui+ 1
2
) +

ca c3
1

24c3
2

(ui+1 − ui)2. (3.3)

Hence,

U(ui+ 1
2
)(f ′(ui+1)− f ′(ui)) ≤

∫ f ′(ui+1)

f ′(ui)

U(u(ξ)) dξ − ca c4
1

24c3
2

(ui+1 − ui)3. (3.4)

12



u0

u−1 u1

ũ
s−1/2s1/2

Figure 3.1: a pair of interacted discontinuities

Substituting (3.4) into (3.2) gives

Qn ≤
∫ f ′(ul)

f ′(ur)

U(u(ξ)) dξ − U(ur)f ′(ur) + U(ul)f ′(ul)− F (ul) + F (ur)−

− ca c4
1

24c3
2

n−1∑

i=0

(ui+1 − ui)3.

Since u(ξ) is a rarefaction wave, we have
∫ f ′(ul)

f ′(ur)

U(u(ξ)) dξ − U(ur)f ′(ur) + U(ul)f ′(ul)− F (ul) + F (ur) = 0.

Notice that ui+1 − ui =
ur − ul

n
, we obtain

Qn ≤ −ca c4
1

24c3
2

(ur − ul)3

n2
< 0 (3.5)

Now let’s estimate the change of Q(t) when two discontinuities interact
linearly with each other.

Lemma 3.1. Suppose that a pair of neighboring discontinuities (u−1, u0, s− 1
2
)

and (u0, u1, s 1
2
) interacts linearly with each other(ref. figure 3.1). Then, through

the interaction, Q(t) must be decreased when (i) u−1 > u0 > u1, or (ii) u−1 <
u0 < u1; must be increased when (iii) u−1 < u0 and u0 > u1, or (iv) u−1 > u0

and u0 < u1.

proof: Before the interaction,

Q1 = (U(u−1)− U(u0))s− 1
2
− F (u−1) + F (u0)+

+ (U(u0)− U(u1))s 1
2
− F (u0) + F (u1).

After the interaction,

Q2 = (U(u−1)− U(ũ))s 1
2
− F (u−1) + F (ũ)+

+ (U(ũ)− U(u1))s− 1
2
− F (ũ) + F (u1),

13



u
k−

1
2

u
k+ 1

2

ũ1

ũ2

ũ3

ũ4

(x′

k
, t′

k
)

u0 u1ũ0

u
−1

other interactions

other interactions

Figure 3.2: Figure for Lemma 3.2

where ũ = u−1 + u1 − u0.
We study their difference

−(Q1 −Q2) = −(U(u−1)− U(ũ)− U(u0) + U(u1))(s− 1
2
− s 1

2
)

= −
∫ u−1

u0

∫ u

u+(u1−u0)

U ′′(η) dηdu · (s− 1
2
− s 1

2
). (3.6)

In order to make sure that the two discontinuities interact with each other, we
must have s 1

2
< s− 1

2
. Thus,

−sign(Q1 −Q2) = sign

(∫ u−1

u0

∫ u

u+(u1−u0)

U ′′(η) dηdu

)
(3.7)

= −sign ((u−1 − u0)(u1 − u0)) . (3.8)

Here U ′′ > 0 is used. And the conclusion of the lemma follows from (3.8).

Now, let’s consider a typical case for the linear interactions in a LTS scheme.
Suppose that AR(u−1, u0;n) and S(ũ0, u1) are in a linear superposition zone D,
and they interact with each other in D. Generally speaking, there are several
shocks and rarefaction waves between AR(u−1, u0;n) and S(ũ0, u1). We denote
the total strength of all the shocks between AR(u−1, u0;n) and S(ũ0, u1) as S̄,
ref. figure 3.2.

Lemma 3.2. For the typical case mentioned above, Qn will increase after the
interaction of AR(u−1, u0;n) and S(ũ0, u1) happens, and the increased amount
∆Qn satisfies

∆Qn ≤ n + 1
n

c2cb

2
(u0 − u−1)(ũ0 − u1)

[
2S̄ + (ũ0 − u1)

]
.

14



proof: Qn(t) remains unchanged until the interaction happens. Now let’s look
at the interaction point (x′k, t′k) of a discontinuity in AR(u−1, u0;n)

x− xi = f ′(u′k)(t− tj),

with the shock

x− xi+1 =
f(ũ0)− f(u1)

ũ0 − u1
(t− tj).

From (3.6), we have

Q(t′k + 0)−Q(t′k − 0)

=
∫ ũ3

ũ4

∫ u

u+(ũ1−ũ4)

U ′′(η) dη

(
f(ũ0)− f(u1)

ũ0 − u1
− f ′(u′k)

)
du (3.9)

≤
∫ ũ4

ũ3

∫ u

u+(ũ1−ũ4)

U ′′(η) dη

(
f ′(u0)− f(ũ0)− f(u1)

ũ0 − u1

)
du. (3.10)

Since (
f ′(u0)− f(ũ0)− f(u1)

ũ0 − u1

)

=
∫ 1

0

(f ′(u0)− f ′(ũ0ξ + u1(1− ξ)))dξ

=
∫ 1

0

f ′′(η)[(u0 − ũ0)ξ + (u0 − u1)(1− ξ)]dξ

≤ c2

2
[(u0 − ũ0) + (u0 − u1)]

≤ c2

2


2

∑

j

|Sj |+ (ũ0 − u1)




where S′js are the shocks between AR(u−1, u0;n) and S(ũ0, u1), |Sj | is the
strength of Sj . So

Q(t′k + 0)−Q(t′k − 0) ≤ c2cb

2
(ũ4 − ũ1)(ũ4 − ũ3)[2

∑

j

|Sj |+ (ũ0 − u1)].

Notice that
ũ4 − ũ3 = uk+ 1

2
− uk− 1

2
, ũ4 − ũ1 = ũ0 − u1.

and the definition of uk+ 1
2
, we have

Q(t′k + 0)−Q(t′k − 0) ≤ c2cb

2
u0 − u−1

n
(ũ0 − u1)[2

∑

j

|Sj |+ (ũ0 − u1)]

Summation with respect to k, we get the total increased amount satisfies

∆Qn =
∑

k

(Q(t′k + 0)−Q(t′k − 0))

≤ c2cb

2
n + 1

n
(u0 − u−1)(ũ0 − u1)


2

∑

j

|Sj |+ (ũ0 − u1)



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which complete the proof.

Now we need a technical Lemma which can be deduced by Hölder inequality
to estimate Qn(t) in a linear superposition zone.

Lemma 3.3. Assume that a1, a2, . . . , an are positive real numbers, then we
have

n2
n∑

i=1

a3
i ≥

( n∑

i=1

ai

)3

(3.11)

Lemma 3.4. Assume that there are l shocks S1, S2, . . . , Sl and m (m ≥ 1)
approximate rarefaction waves AR1, AR2, . . . , ARm in a superposition zone D,
with

S =
l∑

i=1

|Si|, R =
m∑

j=1

|Rj |

Then for any t ∈ (tj , tj + ∆t),

Qn(t) ≤ c2cb

2
S2

[
2(n + 1)

n
R− c1ca

c2cb
l−2S

]
(3.12)

where |Rj | is the strength of ARj.

Proof: For t ∈ (tj , tj + ∆t), Qn(t) remains unchanged until the interaction
happens. By Lemma 3.1, Qn(t) increases only when it passes a interaction point
of a discontinuity in an approximate rarefaction wave and a shock. By Lemma
3.2, for a typical case (x′k, t′k) we have

∆Qn ≤ c2cb
n + 1

n
(u0 − u−1)(ũ0 − u1)S.

Summation over all the interaction points from tj to t, we have,

Qn(t)−Q(tj + 0) ≤ c2cb
n + 1

n
S2R.

where

Q(tj + 0) ≥ −c1ca

2

l∑

i=1

|Si|3.

So by the technical Lemma 3.3

Qn(t) ≤ c2cb

2

[
2(n + 1)

n
S2R− c1ca

c2cb

l∑

i=1

|Si|3
]

≤ c2cb

2

[
2(n + 1)

n
S2R− c1ca

c2cb
l−2S3

]

which complete the proof.
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Lemma 3.5. Assume that there are l shocks S1, S2, . . . , Sl and m rarefaction
waves R1, R2, . . . , Rm in a maximal connected set A, and the corresponding lin-
ear superposition zone is D. Denote R as the total strength of R1, R2, . . . , Rm,
S as the total strength of S1, S2, . . . , Sl, and

< η, 1 > |D =
∫ tj+1

tj

∫ b(t)

a(t)

(U(uh)t) + F (uh)x)dxdt

Then

< η, 1 > |D ≤
(

1− 1
2C

)
∆t c2cbS

2

[
R− c1ca

c2cb
l−2S

]
. (3.13)

Proof: Denote un as the linear superposition of l shocks S1, S2, . . . , Sl and m
approximate rarefaction waves AR1, AR2, . . . , ARm, and denote

ηn = U(un)t + F (un)x.

Then, because any pair of waves from (xi, tj) and (xk, tj) can’t meet each other
before

t = tj +
∆t

2C
,

by Lemma 3.3, (3.5) and a classical result for shock (see Lemma 2.1 in [16]),
we have

< ηn, 1 > |D ≤
∫ tj+1

tj+
∆t
2C

∫ b(t)

a(t)

ηn dxdt +
∫ tj+

∆t
2C

tj

∫ b(t)

a(t)

ηn dxdt

≤
∫ tj+1

tj+
∆t
2C

Qn(t) dt +
∫ tj+

∆t
2C

tj

(
−c1ca

2

l∑

i=1

|Si|3
)

dt

≤ ∆t

(
1− 1

2C

)
c2cb

2
S2

[
2(n + 1)

n
R− c1ca

c2cb
l−2S

]

− ∆t

2C

c1ca

2
l−2S3

≤ ∆t

(
1− 1

2C

)
c2cb S2

[
n + 1

n
R− c1ca

c2cb

C

2C − 1
l−2S

]
.

Since AR(ul, ur;n) converges to R(ul, ur;x/t) point-wisely when n −→ ∞, we
have

< η, 1 > |D = lim
n→∞

< ηn, 1 > |D

≤
(

1− 1
2C

)
∆t c2cbS

2

[
R− c1ca

c2cb

C

2C − 1
l−2S

]

which complete the proof.
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4 Entropy consistency of LTS Godunov scheme

In this section, we will prove a theorem on the entropy consistency of the LTS
Godunov scheme. It is well known (ref. [4]) that for scalar conservation laws
with a convex flux function a weak solution satisfies (1.5) for all convex entropy
pairs {U(u), F (u)} if it satisfies (1.5) for the special entropy pair

U(u) =
u2

2
, F (u) =

∫ u

uf ′(u) du (4.1)

Theorem 4.1. Assume the initial data u0(x) satisfies (1.3). For LTS Go-
dunov scheme, a sufficient condition to ensure entropy consistency for any given
Courant number C is

ITV (u0)DTV (u0) ≤ a2c1

8c3
2C(4C2 − 1)(C + 1)

(4.2)

Proof: By Theorem 2.4, in each linear superposition zone D, there are at
most K + 1 waves, and

K ≤ 4c2C(C + 1)
a

DTV (u0).

If all of them are shocks, by Lemma 3.1, we have < η, 1 > |D < 0. Otherwise,
there are at most K shocks among the K +1 waves, by Lemma 2.1 and Lemma
2.3, there are at least m shocks (m ≥ K

2[2C]+2 ) with strength bounded below by
a

c2C in D. By Lemma 3.5, we have < η, 1 > |D ≤ 0 if

∆ =
∑

i

|Ri| − c1

K2c2

C

2C − 1

∑

j

|Sj | ≤ 0.

Since ∑

Ri∈D

|Ri| ≤ ITV (u0),
∑

Sj∈D

|Sj | ≥ m
a

c2C
,

when DTV (u0) 6= 0, we have,

∆ ≤ ITV (u0)− c1

c2
2

1
K2

a

2C − 1
m

≤ ITV (u0)− ac1

c2
2

1
K

1
2C − 1

1
2([2C] + 1)

≤ ITV (u0)− a2c1

8c3
2

1
C(4C2 − 1)(C + 1)

1
DTV (u0)

≤ 0

in which we use (4.2) in the final inequality. If DTV (u0) = 0, the initial data is
monotone increasing, there are only rarefaction waves in the solution and there
is no interaction, so the entropy consistency is guaranteed.
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Finally, let’s consider the relation between the inequality

< η, 1 > |D ≤ 0 (4.3)

and the cell entropy inequality
∫ xi+1

xi

U(u(x, tj+1 + 0)dx−

−
∫ xi+1

xi

U(u(x, tj + 0)dx +
∫ ti+1

ti

(F (u(xi+1, t)− F (u(xi, t)) dt ≤ 0

where {U,F} is the entropy pair (4.1).
On any cell Dij = (xi, xi+1) × (tj , tj+1), by the generalized Gauss-Green

formula for BV functions [5],

< η, 1 > |Dij

=
∫ xi+1

xi

U(u(x, tj+1 − 0)dx−
∫ xi+1

xi

U(u(x, tj + 0)dx

+
∫ ti+1

ti

(F (u(xi+1, t)− F (u(xi, t)) dt,

so
∫ xi+1

xi

U(u(x, tj+1 + 0)dx−

−
∫ xi+1

xi

U(u(x, tj + 0)dx +
∫ ti+1

ti

(F (u(xi+1, t)− F (u(xi, t)) dt

=< η, 1 > |Dij +
[∫ xi+1

xi

U(u(x, tj+1 + 0)dx−
∫ xi+1

xi

U(u(x, tj+1 − 0)dx

]
.

By the construction of Godunov scheme, from Jensen’s inequality, the second
term in the right hand side is non-positive. So if < η, 1 > |Dij

≤ 0 we can get the
ordinary cell entropy inequality. But in the LTS Godunov scheme with Courant
number C > 1, if D is a linear superposition zone, or there is no interaction
happening in D, (4.3) is valid. From theorem 2.4, the number of waves in a
linear superposition zone is finite and independent of the mesh size h, so we
can add the neighboring cells, in which there are no interactions of waves, to
one or several linear superposition zones, and form a rectangular zone Di,

Di = {(x, t)|xi ≤ x < xi+ki , tj ≤ t < tj+1}.

By ∫ ti+1

ti

F (u(xi − 0, t))dt =
∫ ti+1

ti

F (u(xi + 0, t))dt
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we have
∫ xi+ki

xi

U(u(x, tj+1 + 0)dx−

−
∫ xi+ki

xi

U(u(x, tj + 0)dx +
∫ ti+1

ti

(F (u(xi+ki
, t)− F (u(xi, t)) dt

=< η, 1 > |Di
+

[∫ xi+1

xi

U(u(x, tj+1 + 0)dx−
∫ xi+1

xi

U(u(x, tj+1 − 0)dx

]

+

[∫ xi+2

xi+1

U(u(x, tj+1 + 0)dx−
∫ xi+2

xi+1

U(u(x, tj+1 − 0)dx

]

· · · · · ·

+

[∫ xi+ki

xi+ki−1

U(u(x, tj+1 + 0)dx−
∫ xi+ki

xi+ki−1

U(u(x, tj+1 − 0)dx

]

≤< η, 1 > |Di
≤ 0. (4.4)

This is in fact a cell entropy inequality on Di. By the technique used in the
Lax-Wendroff Theorem[10], this inequality also implies the entropy condition
(1.5) for LTS Godunov scheme.

Acknowledgement: the first author would like to express deep thanks to
Gerald Warnecke for general discussions on various LTS schemes.
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