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Abstract

We consider two new classes of examples of sup-norm blowup in finite
time for strictly hyperbolic systems of conservation laws. The explosive
growth in amplitude is caused either by a gradient catastrophe or by
a singularity in the flux function. The examples show that solutions
of (uniformly) strictly hyperbolic systems can remain as smooth as
the initial data until the time of blowup. Consequently, blowup in
amplitude is not necessarily strictly preceded by shock formation.
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1 Introduction

Consider the Cauchy problem for a one-dimensional system of conservation
laws of the form

Wt + F (W )x = 0, x ∈ R, t ≥ 0, (1.1)

where W (x, t) ∈ Rn. We will assume that the initial data W0(x) are smooth,
which means either of class C∞ or even analytic. The system will be strictly
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hyperbolic for all values of W in some open set Ω ⊂ Rn, i.e. the eigenvalues
λi, i = 1, . . . , n, of the Jacobian DF are real and satisfy

λ1(W ) < · · · < λn(W ).

Also, each characteristic field will be either genuinely nonlinear or linearly
degenerate, see [5].

The aim of this paper is to give two classes of examples of solutions of
such systems, with the property that there is a time t∗ ∈ (0,∞) such that

• the map x 7→ W (x, t) is as smooth as the initial data W0 for each time
t < t∗;

• limt↑t∗ ‖W (·, t)‖∞ = +∞.

We will refer to this as smooth L∞ blowup.
It has been conjectured that this type of behavior is nongeneric. More

precisely, it is believed that finite time blowup in L∞ is generically strictly
preceded by blowup of the gradient. While our examples are dependent
on certain symmetries in the data, and hence not generic, they do show
that shock formation need not occur before the amplitude reaches infinity.
Moreover, the large number of choices available suggests that such blowups
are not necessarily rare events. Our examples serve as a starting point for
addressing the interesting question of typical behavior for “large” solutions.

To motivate the first class of examples we recall recent work of the au-
thors [7, 4, 1, 8] where it has been shown that solutions of (1.1) (with three
or more equations) may blow up in finite time. However, in these examples
the solutions were always discontinuous, containing either shocks or contact
discontinuities in the initial data. The solutions were constructed by letting
one of the equations solve a decoupled scalar equation with two approach-
ing shocks forming a wedge in the (x, t)-plane. The solution of this equation
then served as a source that forced the remaining two variables to blow up
in amplitude. Using a similar technique, but using a centered compression
wave instead of two approaching shocks, we will give examples of smooth
blowup in L∞.

This type of example of singular behavior may be called “gradient driven
blowup”, where it is the well known phenomenon of gradient catastrophe in
one of the components that causes the other components to explode. We
remark that the solution blows up (albeit at different times) for any x, so
there is no possibility of extending the solution beyond the blowup time.

The second class of examples, again for systems of three or more equa-
tions, concerns the case where the flux F has a singularity in Ω. We give
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a simple example of blowup where the solution remains as smooth as the
data for all times t < t∗. It will be clear from the construction that a large
number of similar examples can be built. While not surprising, this class
of example highlights the fact that there is no general mechanism that pre-
vents a solution of (1.1) from approaching the boundary of the domain of
definition of the flux F .

We also stress the fact that the solutions we consider remain uniformly
strictly hyperbolic. That is, the range of eigenvalues taken on over the
entire solution lie in strictly separated intervals. We include an example
which indicates that it may be impossible for this to happen for pairs of
equations. On the other hand, there are recent examples of solutions to
strictly hyperbolic systems of two (or more) equations that do blow up in
L∞. However, in these cases two of the eigenvalues coalesce as blowup is
approached. We reproduce an example of this phenomenon from the recent
monograph of Sever [6]. It is noteworthy that this “non-strictly hyperbolic
blowup” may occur for systems with a strictly convex entropy; see [6] for
a detailed discussion and for further references. Also, it is interesting to
observe that this same example appears as a special case of the Born-Infeld
system discussed in [2].

Finally, in all of the examples we consider the data are dependent on
the particular fluxes F ; once F is chosen, the data W0(x) is carefully se-
lected to produce blowup. In particular, the total variation of the initial
data exceeds the critical value determined by the flux, and these examples
do not contradict Glimm’s theorem [3] on time-global existence of weak so-
lutions when the data have sufficiently small total variation. See [9] for an
example of blowup with initial data having arbitrarily small total variation.
This again does not violate Glimm’s theorem because there is no connected
neighborhood U of the range of the initial data throughout which the system
is strictly hyperbolic.

The paper is organized as follows. In Section 2 we briefly consider the
role of strict hyperbolicity vs. uniform strict hyperbolicity for 2×2 systems.
In Section 3 we turn to blowup for 3× 3 systems. We first construct a class
of examples where a continuous solution blows up. We then extend this to
arbitrarily smooth profiles. Finally, in Section 4 we consider the case where
the flux has a singularity along a hypersurface in W -space. The main results
are recorded in Theorem 1 in Section 3 and in Theorem 2 in Section 4.
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2 Preliminary discussion

A basic feature of nonlinear hyperbolic equations is gradient blowup. In
searching for ways in which a solution of a nonlinear hyperbolic system
might become large, it is natural to consider the possibility of gradient
blowup driving sup-norm blowup.

We reproduce an example of this phenomenon for a 2× 2 system, taken
from the recent monograph [6], and which may also be obtained in a one-
dimensional model problem for the Born-Infeld equations [2].

Example 2.1. Consider the system
(

1

v

)

t

+
(u

v

)

x
= 0 (2.1)

(u

v

)

t
+

(

u2 − v2

v

)

x

= 0, (2.2)

with v > 0. Introducing the “Lagrangian” coordinate y by dy = dx/v −
(u/v)dt, we obtain the linear wave equation

vt − uy = 0 (2.3)

ut − vy = 0. (2.4)

One can clearly give data for u and v such that v → 0 in finite time for the
system (2.3)-(2.4), and this corresponds to a finite time blowup of amplitude
in (2.1)-(2.2). Notice however that the eigenvalues for (2.1)-(2.2) are u±v,
which coalesce exactly at v = 0.

We have not been able to construct an example of a pair of equations
exhibiting blowup of amplitude and where at the same time the system
remains (uniformly) strictly hyperbolic. To highlight the issue consider the
following example where it is seen how hyperbolicity quantifies the degree
of blowup.

Example 2.2. Consider the triangular 2 × 2-system,

ut + uux = 0 (2.5)

vt + ux = 0. (2.6)

We give initial data of the form

u0(x) =







1 for x < 0,
1 − x for 0 ≤ x ≤ 1,
0 for x > 1,

4



and v0(x) ≡ 0. The characteristic speeds are λ1 ≡ 0 and λ2 = u so that
strict hyperbolicity fails at u = 0. For any time t ∈ [0, 1) we have,

u(x, t) =







1 for x < t,
1−x
1−t

for t ≤ x ≤ 1,

0 for x > 1.

(2.7)

Substituting into (2.6) shows that,

v(x, t) =







0 for x < 0, and for x > 1
− ln(1 − x) for 0 ≤ x ≤ t,
− ln(1 − t) for t ≤ x ≤ 1.

(2.8)

Thus, v(·, t) blows up in L∞ at time t∗ = 1. Observe that if we change the
initial data of u to be

u0(x) =







1 for x < 0,
1 − x for 0 ≤ x ≤ 1 − α,
α for x > 1 − α,

(2.9)

then the largest value |v| now takes is − ln α. We can regard α in this case
as a measure of the (strict) hyperbolicity of the system, and we see that less
hyperbolicity allows for larger values in the solution.

The behavior exhibited here seems to be generic for 2 × 2 systems: that
is, it appears that if we assume that gradient steepening of one family drives
growth of the other, then shock formation generates blowup only if the eigen-
values coincide.

We proceed by considering systems of three (or more) equations in which
case we can ensure uniform strict hyperbolicity along solutions that explode.

3 Gradient driven blowup

A strictly hyperbolic 3×3 system Our goal next is to construct a 3×3
system with a continuous solution which blows up in sup-norm. The idea is
to replace the shocks of earlier constructions [7, 4, 1, 8] with a single large
compression. We start with a Burgers’ compression focusing at the point
(0, t∗). That is, with W tr = (u, v, z) we let the middle component solve

vt +

(

v2

2

)

x

= 0, (3.1)
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with decreasing data v0(x) which we choose to be antisymmetric about the
origin, i.e. v0(−x) = −v0(x).

Following [7] we augment equation (3.1) with a system of two conserva-
tion laws whose coefficients depend on the solution v. The two new fields
will be the ones which blow up and, for simplicity, we will take these to be
linearly degenerate. Because we want the system in conservation form, we
take the two equations to be

(

u
z

)

t

+

[

A(v)

(

u
z

)]

x

= 0, (3.2)

where the smooth matrix function

A(v) =

(

a11(v) a12(v)
a21(v) a22(v)

)

is to be chosen later. As v is explicitly given, (3.2) is a linear 2 × 2 system
with variable coefficients that are as smooth as v. This guarantees that the
u- and z-solutions will remain as smooth as v.

The resulting 3 × 3 system thus has flux

F (W ) = F





u
v
z



 =





a11(v)u + a12(v)w
v2/2

a21(v)u + a22(v)w



 ,

whose Jacobian has eigenvalues λ1, λ3 equal to those of A(v), together with
λ2 = v.

Our solution will consist of the fixed compression (2-wave) which is fo-
cusing at (0, t∗), plus 1- and 3-waves (carrying changes in u and z) which are
blowing up. They do this as follows: forward 3-waves interact with 2-waves
and reflect 1-waves. These 1-waves in turn interact with 2-waves and reflect
3-waves, etc. Because the compression converges at (0, t∗), these interac-
tions happen more and more quickly. We choose the data so that the 1- and
3-wave strengths continually increase, eventually resulting in blowup.

Note that these interactions are taking place inside the focusing com-
pression. It will therefore be simpler to study the solutions by working with
the natural rescaled equations.

Rescaled system Since the gradient of v blows up like (1 − t)−1 it is
natural to apply the coordinate transformation

y =
x

1 − t
and τ = − log(1 − t). (3.3)
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Defining




U(y, τ)
V (y, τ)
Z(y, τ)



 =





u(x, t)
v(x, t)
z(x, t)



 ,

the 2 × 2 system (3.2) takes the form
(

U
Z

)

τ

+ y

(

U
Z

)

y

+

[

A(V )

(

U
Z

)]

y

= 0, (3.4)

and
Vτ + (y + V )Vy = 0. (3.5)

The idea is now to generate blowup of (u, z) by finding solutions (U,Z) of
(3.4) whose sup-norm tend to ∞ as τ → +∞. As this system is linear it is
natural to seek time-exponential solutions.

3.1 Continuous blowup in a wedge

Consider the case where we give the following continuous data for v,

v0(x) =







V0 x ≤ −V0,
−x −V0 ≤ x ≤ V0,
−V0 V0 ≤ x,

(3.6)

where V0 > 0 will be specified later. In this case t∗ = 1 and the solution of
(3.1)-(3.6) is given explicitly, for times t ∈ [0, 1), by

v(x, t) =























V0
x

1−t
≤ −V0,

−x
1−t

−V0 ≤ x
1−t

≤ V0,

−V0 V0 ≤ x
1−t

.

(3.7)

The transformed system (3.4) takes the following form in the three regions
y ≤ −V0, −V0 ≤ y ≤ V0, and V0 ≤ y, respectively.

(

U
Z

)

τ

+ (y + A(V0))

(

U
Z

)

y

= 0, for y ≤ −V0, (3.8)

(

U
Z

)

τ

+ y

(

U
Z

)

y

+

[

A(−y)

(

U
Z

)]

y

= 0 for −V0 ≤ y ≤ V0, (3.9)

(

U
Z

)

τ

+ (y + A(−V0))

(

U
Z

)

y

= 0 for V0 ≤ y. (3.10)
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Boundary conditions. The solution U := (U,Z)tr of (3.8)-(3.10) can be
decomposed into backward (left-moving) and forward (right-moving) waves.
We will keep the problem as simple as possible by insisting that there be no
forward waves present in the left region y ≤ −V0, and no backward waves
present in the right region V0 ≤ y. That is, there should be only outgoing
waves from the central region −V0 ≤ y ≤ V0. Since we insist that our
solution be continuous, these constraints provide boundary conditions for
(3.9). To formulate these we introduce the following notation. Let λ−(V ) <
0 < λ+(V ) denote the eigenvalues of A(V ) and let `−(V ) (r−(V )), `+(V )
(r+(V )) denote the corresponding left (right) row (column) eigenvectors.
We thus have that

A = (r− r+)

(

λ− 0
0 λ+

)(

`−
`+

)

.

We assume the normalizations |`±| = 1 and `± · r± ≡ 1, and we decompose
the solution U = (U,Z)tr along the basis of right eigenvectors

U = U−r− + U+r+,

such that
U± = `± · U .

The no-wave requirements described above thus take the form

U+ = `+ ·

(

U
Z

)

≡ 0 for y ≤ −V0, (3.11)

and

U− = `− ·

(

U
Z

)

≡ 0 for y ≥ V0. (3.12)

The appropriate boundary conditions for (3.9) follow from (3.11)-(3.12),
and the requirement that the solution should be continuous. That is, for
the solution U of (3.9), we should have the boundary conditions

`+(V0) · U(−V0) = 0, `−(−V0) · U(V0) = 0. (3.13)

Explicit solution. Rewrite (3.9) in conservation form as

(

U
Z

)

τ

+

[

(A(−y) + y)

(

U
Z

)]

y

=

(

U
Z

)

, (3.14)
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and substitute the ansatz
(

U(y, τ)
Z(y, τ)

)

= eτ

(

û(y)
ẑ(y)

)

.

This yields the trivial system

[

(A(−y) + y)

(

û
ẑ

)]

y

= 0,

with solution
(

û
ẑ

)

= [A(−y) + y I]−1

(

α
β

)

. (3.15)

The constants α and β need to be chosen so that the boundary conditions
(3.13) are satisfied. Because the eigenvectors of (A + y I)−1 are those of A,
we can choose such constants α and β provided that the vectors `−(−V0)
and `+(V0) are linearly dependent.

We proceed to choose such left eigenvectors for the 2 × 2 matrix A(v).
Since `−(v) must rotate relative to `+(V0), it is convenient to let `±(v) rotate
as v varies, so that after v changes enough, the projected eigenvectors are
linearly dependent. We thus let

`−(v) = (− cos v, sin v), `+(v) = (sin v, cos v).

Again, to simplify, we choose constant eigenvalues ±λ for the matrix A(v).
That is, λ± = ±λ, where we must have λ > V0 to ensure strict hyperbolicity
of the resulting 3 × 3 system. Thus our choice of the matrix A(v) is

A(v) =

(

`−
`+

)−1 (

−λ 0
0 λ

)(

`−
`+

)

= λ

(

− cos 2v sin 2v
sin 2v cos 2v

)

. (3.16)

Choosing V0 = π/4, we get

`−(−V0) =
(

−1√
2

−1√
2

)

= −`+(V0),

and we can take α = −β = 1 in (3.15). An easy calculation now shows that
the solution of (3.9) and (3.13) is explicitly given by

(

U(y, τ)
Z(y, τ)

)

=
eτ

λ2 − y2

(

λ[sin 2y − cos 2y] − y
y − λ[sin 2y + cos 2y]

)

, (3.17)
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for −π/4 ≤ y ≤ π/4. Transforming back to the original coordinates we get
that (u, z)tr is given explicitly by

(

u(x, t)
z(x, t)

)

= eτ

(

U(y, τ)
Z(y, τ)

)

=
1

λ2(1 − t)2 − x2





λ(1 − t)
[

sin
(

2x
1−t

)

− cos
(

2x
1−t

)]

− x

x − λ(1 − t)
[

sin
(

2x
1−t

)

+ cos
(

2x
1−t

)]



 , (3.18)

in the central wedge |x|/(1 − t) ≤ π/4, t ∈ [0, 1). As a check we compute
that

(

u(0, t)
z(0, t)

)

=
1

λ(1 − t)

(

1
1

)

,

which shows that the solution blows up in L∞ norm at time t∗ = 1.
To finish, we describe the solution outside the central wedge in the orig-

inal variables. On the right of the wedge, we have v(x, t) ≡ −π/4, and from
(3.10), the system becomes

(

u
z

)

t

−

(

0 λ
λ 0

) (

u
z

)

x

= 0.

From the boundary condition (3.13) we have u + z = 0 in this region, and
the state from the boundary x0 = (1 − t0)π/4 simply propagates forward
along the lines x − x0 = λ (t − t0), i.e. from (3.18),

u(x, t) = −z(x, t) = u(x0, t0) =
1

1 − t0

1

λ + π/4
,

and where

t0 = max

{

π/4 − (x − λ t)

λ + π/4
, 0

}

,

which yields initial data that is compactly supported.
Similarly, on the left of the wedge, v(x, t) ≡ π/4, the system is

(

u
z

)

t

+

(

0 λ
λ 0

) (

u
z

)

x

= 0,

and the solution is given by

z(x, t) = −u(x, t) = z(x0, t0) =
1

1 − t0

1

λ + π/4
,
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where

t0 = max

{

π/4 + (x + λ t)

λ + π/4
, 0

}

.

This concludes the description of a continuous (C0) solution that blows up
in amplitude in finite time.

3.2 Ck blowup in a wedge

We now modify the construction above to obtain an example where the
data are Ck-smooth and where the solution remains Ck-smooth for each
time prior to blowup time. We begin with a Burgers equation (3.1) which we
augment with the “linear” system (3.2). Applying the change of coordinates
(3.3) we again obtain the system (3.4)-(3.5).

In regions in which A(V ) is described as a function of y only, we observe
that (U,Z) solves a linear nonconstant coefficient system. We will choose
V and A(V ) so that this is in fact the case, and then look for a solution of
(3.4) which has the required blowup property. We must do these things in
such a way that the solutions remain Ck in x.

We first choose V and the matrix A(V ) in such a way that A(V ) can be
regarded as a function of y. To do so, we take A(V ) to be of class Ck and
with constant values for V > 1 and V < −1:

A(V ) ≡ A(1) for V > 1, and

A(V ) ≡ A(−1) for V < −1. (3.19)

Now choose non-increasing initial data V0 ∈ Ck(R) which are constant for
large |y|, and such that V0(y) = −y for |y| ≤ 1, and V ′

0(y) ≥ −1 for all y.
As a consequence of our choice of V0, the v-wave breaks exactly at time

t = 1 as before. We can then solve (3.5) for V (y, t) for t < 1, to get

V (y, t) = −y for − 1 ≤ y ≤ 1,

while |V (y, t)| > 1 for all |y| > 1.
With this choice of V , and with A chosen to satisfy (3.19), we indeed

have that A(V (y, t)) is a function of y alone for all t < 1. Denoting the
resulting matrix by A(y), the transformation (3.3) thus yields the linear
2 × 2 system

(

U
Z

)

τ

+ y

(

U
Z

)

y

+

[

A(y)

(

U
Z

)]

y

= 0, (3.20)

which is valid for all values of y ∈ R.
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It follows that if we can find a Ck solution (U,Z) of (3.20) which is
unbounded as τ → ∞, then we will have Ck blowup in finite time for the
original system.

It is convenient to choose the matrix A(V ) similar to our previous choice,
but now of class Ck. Therefore, let

A(V ) = λ(V )

(

− cos 2θ(V ) sin 2θ(V )
sin 2θ(V ) cos 2θ(V )

)

, (3.21)

where we need to choose the Ck functions λ(V ) and θ(V ). Since A(V )
has eigenvalues ±λ(V ) we ensure strict hyperbolicity of the resulting 3 × 3
system by taking λ(V ) as any constant λ larger than sup |V0|. Also, we take
θ = θ(V ) to be any monotone Ck function satisfying

θ(V ) =
π

4
for V ≥ 1, and θ(V ) = −

π

4
for V ≤ −1. (3.22)

Clearly, this guarantees that (3.19) is satisfied so that (3.20) holds with

A(y) = λ

(

− cos 2θ(−y) sin 2θ(−y)
sin 2θ(−y) cos 2θ(−y)

)

,

As in (3.15), equation (3.20) has a particular solution of the form

(

U
Z

)

= eτ [A(y) + y I]−1

(

α
β

)

, (3.23)

where α and β are constants. In contrast to the above construction of a
continuous solution, the expression (3.23) now gives a solution for all y ∈ R.
By choosing α = −β = 1 we ensure that the solution satisfies

`∓(y) ·

(

U(y, t)
Z(y, t)

)

≡ 0 for y ≷ ±1.

That is, there are only forward (linear) waves on the right and backward
waves on the left of the central region |y| ≤ 1. With these substitutions, the
solution becomes

(

U(y, τ)
Z(y, τ)

)

=
eτ

y2 − λ2

(

λ[sin 2θ(−y) + cos 2θ(−y)] + y
λ[cos 2θ(−y) − sin 2θ(−y)] − y

)

, (3.24)

where the function θ is chosen as above. Notice that the solution (U,Z)
remains Ck at y = ±λ due to the particular properties of the function θ(V ).

12



Transforming back to the original variables (x, t), we now have a solution
(u, v, z) which is Ck for times t < 1, and such that u and z blow up in sup-
norm at time t = 1, as does the derivative vx. This solution has initial data
given by v0(x) = V0(x) as described above, and

(

u0(x)
z0(x)

)

=
1

x2 − λ2

(

λ[sin 2θ(−x) + cos 2θ(−x)] + x
λ[cos 2θ(−x) − sin 2θ(−x)] − x

)

, (3.25)

which is bounded for all x ∈ R. Of course, due to finite speed of propagation
we may choose our data to have compact support.
We collect the results in the following theorem.

Theorem 1. For any k = 0, 1, 2, . . . there exist one-dimensional hyperbolic
systems of conservation laws with three (or more) equations for which there
are (classical) solutions with the following properties:

(i) the system is uniformly strictly hyperbolic on the range of the solution;

(ii) the supremum-norm of the solution approaches infinity at a finite time
t∗;

(iii) the data are bounded, compactly supported and of class Ck, and the
solution remains of class Ck at any time strictly preceding t∗.

4 Smooth blowup for systems with singular flux

In this section we consider the possibility of blowup when the flux F in (1.1)
has a singularity at some point. The following type of example is motivated
by the fact that for systems of three or more equations one can let two of the
components, u and z say, satisfy decoupled equations, while the evolution
of the third component depends on a quantity (defined in terms of u and z)
which blows up in finite time.

Consider again a system of conservation laws (1.1) which we now write
out as

ut + f(u, v, z)x = 0, (4.1)

vt + g(u, v, z)x = 0, (4.2)

zt + h(u, v, z)x = 0. (4.3)

As an example let two initial profiles u0(x) and z0(x) for the first and
last components be given as in Figure 1. For simplicity let these be smooth,
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monotone increasing and decreasing, respectively, and take constant values
0 and 1 outside (−1, 1). Also let f(u, v, z) = −u and h(u, v, z) = z. That is,
the solutions of the first and third equations are simply these initial profiles
shifted to the left and right with constant speeds λ1 ≡ −1 and λ3 ≡ +1. An

0 +1−1 x

u

0

1

z

Figure 1

easy way to construct blowup in v is to let the flux in the second equation
be of the form

g(u, v, z) = g(u, z) =
u − z

α − (u + z)
,

for a constant α > 0 to be determined. Note that since g depends only on
u and z, the second eigenvalue of the Jacobian of F = (f, g, h)tr is λ2 ≡ 0.
The Jacobian of F thus has eigenvalues 0 and ±1, which shows that the
system is strictly hyperbolic and linearly degenerate in all three fields.

With this choice for g the second equation takes the form

vt =
(2z − α)ux + (α − 2u)zx

(α − (u + z))2
. (4.4)

Assume for simplicity that z0(x) = 1 − u0(x), so that

u(x, t) = u0(x + t), and z(x, t) = z0(x − t) = 1 − u0(x − t).

Also, let the initial value of v be some positive constant,

v(x, 0) ≡ C0 > 0.

To simplify further we assume that u0(x)+u0(−x) ≡ 1 (in particular u0(0) =
1/2), and we also let u′′

0(x) < 0 for x ∈ (0, 1). Note that the function
(u + z)(x, t) has first derivative u′

0(x + t) − u′
0(x − t), whose only zero in

(−1, 1) is at x = 0 (when t > 0). The second derivative of (u + z)(x, t) at
x = 0 is 2u′′

0(t) which is negative for t ∈ (0, 1). This shows that (u + z)(x, t)
attains its unique maximum value at x = 0 when t > 0. Also, this maximum
value is strictly less than α for small t > 0 provided α ∈ (1, 2). As the
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numerator of the right-hand side of (4.4) is a bounded function, it follows
that if v blows up in sup-norm, then this will first happen at x = 0.

With these choices, equation (4.4) takes the form

vt =
[2 − 2u0(x − t) − α]u′

0(x + t) − [α − 2u0(x + t)]u′
0(x − t)

[α − 1 − u0(x + t) + u0(x − t)]2
, (4.5)

Setting V (t) := v(0, t) it follows that

V̇ (t) = −
u′

0(t)

α/2 − u0(t)
.

We now fix α ∈ (1, 2), and define x∗ to be the unique number in (0, 1) for
which u0(x

∗) = α/2. Since u0 is convex down on (0, 1) the graph of u0 lies
above the chord joining the points (0, 1/2) and (x∗, α/2), see Figure 2.

u

*x

u0

1/2

α/2

0 x

Figure 2

Thus

0 <
α

2
−u0(t) <

α − 1

2x∗ (x∗− t) and u′
0(t) > u′

0(x
∗) for t ∈ (0, x∗).

It follows that

V̇ (t) < −
C

x∗ − t
,

where C = 2x∗u′
0(x

∗)/(α − 1). Thus,

V (t) < C0 + C ln

(

1 −
t

x∗

)

,

which shows that v(x, t) blows up in sup-norm at some finite time t∗ ≤ x∗.
It follows by integrating (4.5) in time that v(x, t) has the same degree of
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smoothness (jointly in (x, t)) in R × (0, 1) as u′
0(x) has. This provides an

example of (arbitrarily) smooth blowup in L∞ for strictly hyperbolic systems
of three conservation laws. It is clear from the construction that one can
construct many similar examples of the same type. However, some care
must be taken in choosing the singular component of the flux. For example,
at first sight it may seem simpler to use the function

g(u, v, z) =
1

α − (u + z)
.

However, the choice of the second flux function g(u, v, z) is really dictated
by the form of u0 and z0. So, if u′

0 is to be symmetric about x = 0 and
z0 = 1 − u0, then u + z takes its maximum at x = 0, and V̇ (t) = vt(0, t)
would be zero with this choice of flux. The factor u− z is needed to “break
the symmetry” in this case.

We finally note that due to finite speed of propagation we could just as
well let the data u0 and z0 have compact support. We record these findings
in the following theorem.

Theorem 2. For any k = 0, 1, 2, . . . there exist one-dimensional hyperbolic
systems of conservation laws of the form (1.1) where the flux F is smooth
except on a smooth hypersurface S where it has an algebraic singularity, and
for which there are solutions with the following properties:

(i) the system is uniformly strictly hyperbolic along the solution,

(ii) the supremum-norm of the solution approaches infinity at a finite time
t∗,

(iii) the data are bounded, uniformly bounded away from S, and of class
Ck,

(iv) at any time strictly preceding t∗ the solution is of class Ck.

We also note that the system considered in this last section is linearly
degenerate in all three characteristic fields. Theorem 2 thus highlights the
fact that such systems do allow gradient blowup, albeit as a consequence of
a singularity in the flux.
Remark. In both types of blowup we have considered the blowup first occurs
at a single point. However, this is not necessarily the case for sup-norm
blowup in general. See [8] for an example where the solution blows up at
each point in a full spatial interval at a fixed time.
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