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Abstract

If Ωj ∈ Rd are bounded open subsets and Φ ∈ C1(Ω1 ; Ω2) respects
Lebesgue measure and satisfies F ◦ Φ ∈ BV (Ω1) for all F ∈ BV (Ω2)
then Φ is uniformly Lipshitzean.

The problem addressed in this note was motivated by the study of the
propagation of regularity in the transport by vector fields with bounded
divergence,

∂u

∂t
+

d∑
j=1

aj(x, t)
∂u

∂xj

= 0, x ∈ Rd, d ≥ 2, t > 0, (1)

where x = (x1, x2, · · · , xd) and,

divxa =
d∑

j=1

∂xj
aj(x, t) ∈ L∞

(
[0, T ]×Rd

)
(2)

in the sense of distribution. To guarantee the uniqueness of L∞ solutions of
Cauchy problem it suffices to assume that (cf. [Am])

a = (a1, a2, · · · , ad) ∈ L1([0, T ], BVloc(R
d)) ∩ L1([0, T ], L∞(Rd)) .

Then for arbitrary initial data u0(x) ∈ L∞(Rd) there is a unique solution
u(x, t) ∈ L∞

(
[0, T ]×Rd

)
with u|t=0 = u0. With the same hypotheses, there

is a well defined flow Φt and the solution is given by u(t) = u0 ◦ Φ−t. The
flow respects Lebesgue measure in the sense of (3) below.
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We have given examples [CLR2] which show that such transport equations
do not in general propagate either Holder or BV regularity. The counterex-
amples had flows which were mostly smooth with small singular sets. Thus
there were large open sets on which the flow was a C1 maps. On those sets,
the next result shows that BV preservation implies that the flow must of
necessity be uniformly Lipschitzean. In the examples it is easily verified that
the derivative is not bounded.

The example (shown to us by L. Ambrosio) of the measure preserving
map Φ : ]0, 2[ → ]− 1, 1[

Φ(x) = x for 0 < x < 1 , Φ(x) = x− 2 for 1 < x < 2 ,

shows that measure preserving maps which are smooth except for jumps, can
preserve BV without being Lipschitzean.

Theorem 1. If Ωj are bounded open subsets of Rd and Φ is a continuously
differentiable map from Ω1 to Ω2 with the following two properties

∃γ > 0 , ∀ Borel subsets A ⊂ Ω1, γ
∣∣Φ(A)

∣∣ <
∣∣A

∣∣ <
1

γ

∣∣Φ(A)
∣∣ , (3)

where
∣∣ · ∣∣ denotes Lebesgue measure and

∀F ∈ BV (Ω2), F ◦ Φ ∈ BV (Ω1) . (4)

Then, Φ ∈ W 1,∞(Ω1).

The proof of the Theorem consists of two lemmas.

Lemma 2. If Φ ∈ C1 but not in W 1,∞ then for any positive number M ,
there exists an F ∈ C∞

0 (Ω2) such that

||(F ◦ Φ
)′||L1(Ω1) ≥ M ||F ′||L1(Ω2). (5)

Proof. The chain rule implies that for any F ∈ C1
0 and 1 ≤ i ≤ d,

∫

Ω̃

∣∣∣∂(F ◦ Φ)

∂xi

∣∣∣dx =

∫

Ω

∣∣∣
d∑

j=1

∂F
(
Φ(x)

)

∂yj

∂Φj

∂xi

∣∣∣ dx. (6)

Since Φ′ is not bounded, there is for any M > 0, an x̄ ∈ Ω̃ such that

max
1≤i, j≤d

∣∣∣∂Φi

∂xj

(x̄)
∣∣∣ ≥ 8M/γ. (7)
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Without loss of generality, we may assume that

∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣ = max

1≤i, j≤d

∣∣∣∂Φi

∂xj

(x̄)
∣∣∣ ≥ 8M/γ. (8)

Let ȳ = (ȳ1, ȳ2, · · · , ȳd) =: Φ(x̄). Choose 0 < ε < 1
16(d−1)2

such that

Nε(ȳ) =
{

y ∈ Rd : |y1 − ȳ1| < ε, |yj − ȳj| <
√

ε for 2 ≤ j
}
⊂ Ω2, (9)

and for x ∈ Φ (Nε(ȳ)),

∣∣∣∂Φ1

∂x1

(x)
∣∣∣ ≥ 1

2

∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣, and for j ≥ 2,

∣∣∣∂Φ1

∂xj

(x)
∣∣∣ ≤ 2

∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣ . (10)

Choose φ ∈ C∞
0 (R1) satisfying

∫ ∞

−∞
|φ(z)|dz = 1, supp φ ⊂ [−1. 1]. (11)

Define

F =: φ

(
y1 − ȳ1

ε

) d∏
j=2

φ

(
yj − ȳj√

ε

)
.

Then,

||F ′ ||L1(Ω2) =:

∫

Ω

d∑
j=1

∣∣∣∂yj
F (y)

∣∣∣ dy =

∫

Nε(ȳ)

d∑
j=1

∣∣∂yj
F (Y )| dy

= ε(d−1)/2(1 + (d− 1)
√

ε)

∫ ∞

−∞
|φ′(z)|dz. (12)

Since ε < 1
16(d−1)2

, we have

||F ′ ||L1(Ω2) ≤ 2 ε(d−1)/2

∫ ∞

−∞
|φ′(z)|dz. (13)
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In view of (6), (9) and (10), we have

∫

Ω̃

∣∣∣∂F ◦ Φ(x)

∂x1

∣∣∣ dx =

∫

Ω

∣∣∣
d∑

j=1

∂F

∂yj

∂Φj

∂x1

∣∣∣ dx

≥
∫

Ω

∣∣∣∂F

∂y1

∂Φ1

∂x1

∣∣∣ dX −
∫

Ω

d∑
j=2

∣∣∣∂F

∂yj

∂Φj

∂x1

∣∣∣ dx

=

∫

Nε(ȳ)

∣∣∣∂F

∂y1

∂Φ1

∂x1

∣∣∣ dX −
∫

Nε(ȳ)

d∑
j=2

∣∣∣∂F

∂yj

∂Φj

∂x1

∣∣∣ dx

≥ 1

2

∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣
∫

Nε(ȳ)

∣∣∣∂F

∂y1

∣∣∣ dX − 2
∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣
∫

Nε(ȳ)

d∑
j=2

∣∣∣∂F

∂yj

|dX

=
∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣
(

1

2
− 2ε(d− 1)

)
ε(d−1)/2

∫ ∞

−∞
|φ′(z)|dz .

Since ε < 1
16(d−1)2

< 1
8(d−1)

,

∫

Ω̃

∣∣∣∂F ◦ Φ

∂x1

∣∣∣ dx ≥ 1

4

∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣ ε(d−1)/2

∫ ∞

−∞
|φ′(z)|dz. (14)

Estimates (13) and (14) and the fact that Φ respects Lebesgue measure in
the sense of (3) imply

∫

Ω̃

∣∣∣∂F ◦ Φ

∂x1

∣∣∣ dx ≥ 1

4γ

∣∣∣∂Φ1

∂x1

(x̄)
∣∣∣
∣∣|F ′ ∣∣|L1(Ω2). (15)

(5) follows from (7) and (15).

The next lemma completes the proof.

Lemma 3. If Φ ∈ C1(Ω2 ; Ω2) satisfies hypotheses (3) and (4) of Theorem
1, then there is a constant C > 0 so that for all F ∈ BV (Ω2)

∥∥(F ◦ Φ)′
∥∥

Var
≤ C ‖F ′ ∥∥

Var
.

Proof. The space of BV (Ωj) maps H modulo the constants is a Banach
space normed by ‖H ′ ‖Var. It suffices to verify that the map from BV (Ω2) to
BV (Ω1) which sends F to F ◦ Φ has closed graph.
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To that end, suppose that

Fn → F in BV (Ω2) ,

and

Fn ◦ Φ → G in BV (Ω1) .

It suffices to show that G′ = (F ◦ Φ)′.
Choose the representative F̃n of Fn and F̃ of F so that

∫

Ω2

F̃n dy = 0 ,

∫

Ω2

F̃ dy = 0 .

Then, passing to a subsequence, there is a Lebesgue null set E2 ⊂ Ω2 so that

F̃nk
→ F pointwise on Ω2 \ E2 .

Then,

F̃nk
◦ Φ → F ◦ Φ pointwise on Ω1 \

(
E1 ∪ Φ−1(E2)

)
.

The exceptional set has measure zero since Φ respects the measure. There-
fore, Fnk

◦ Φ → F ◦ Φ a.e. on Ω1 and therefore in the sense of distributions.
It follows that F ◦ Φ = G almost everywhere and the proof is complete.
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