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Abstract

We present an example of a uniformly bounded divergence free
vector field a(x).∂x on R

3 which has the property that the linear
transport equation

∂u

∂t
+

d
∑

i=1

aj(t, x)
∂u

∂xj
= 0 , div a =

d
∑

i=1

∂aj

∂xj
= 0 (1)

has a nontrivial bounded solution with vanishing Cauchy data. The
coefficients have the property that x3∇a is a bounded measure.

For the same equation we prove uniqueness in the Cauchy problem
when the coefficients a and u belong to (H1/2 ∩ L∞)([0, T ] ×R

d).

1 Introduction

We prove two results concerning the uniqueness and nonuniqueness in the
Cauchy problem for the linear transport equation (1). If the coefficients
are Lipschitz, the proof of existence and uniqueness of solutions which are
continuous in time with values in Lp(Rd), p ∈ [1,∞[, is classical.

In the case of coefficients less regular than Lipschitz, the notion of a
solution u ∈ L∞([0, T ] × Rd) of (1) with initial data equal to u0 ∈ L∞(Rd)
is taken in the weak sense that ∀φ ∈ C∞

0 (] −∞, T [×Rd),

∫

[0,T [×Rd

(

−
∂φ

∂t
−

d
∑

i=1

∂(aj φ)

∂xj

)

u dx dt =
∫

Rd

u0(x) φ(0, x) dx . (2)

∗Version du 9 décembre 2003.
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Di Perna and P.-L. Lions [DL] showed uniqueness of solutions u ∈ L∞

when the coefficients a ∈ W 1,1(R1+d). This result is particularly striking
because the characteristics, that is the integral curves of the vector field,
do not have uniqueness. Lions [Li] proved uniqueness for a generic class
of piecewice W 1,1 functions, and raised the question of uniqueness for BV
vector fields. That uniqueness has recently been proved in a sequence of
successively finer results.

Uniqueness for BV fields and continuous solutions was proved in [CL1].
In [CL3] the uniqueness of L∞ solutions is proved for coefficients that, possi-
bly excluding a relatively closed domain of d-dimensional Hausdorff measure
zero, belong to the class of functions ”Conormal BV ”. Roughly speaking, lo-
cally the derivatives of the vector field are measure only along one direction,
while they are L1 functions in the others. Starting from this and from a re-
sult of geometric measure theory by Alberti [Al], Ambrosio [Am] has proved
the uniqueness of L∞ solutions for the general case of BV coefficients.

One can ask for uniqueness results for coefficients, and solutions, belong-
ing to other spaces. With nonlinear equations in mind it is desireable that
the coefficients be no smoother than the solutions. In this direction, [CL2]
proved the uniqueness of solutions u ∈ H1/2 when a is in the Besov space
B

1/2
∞,2 ⊃ ∪δ>0C

1/2+δ.
In space-time dimension equal to 2, [CL2] prove uniqueness of L∞ solu-

tions when the coefficients are merely L∞. The proof is elementary. In higher
dimension the corresponding uniqueness result is proved false in Theorem 2
below and in an independently discovered example of Depauw [De]. Both
constructions are motivated by an important article of Aizenman [Ai].

For uniqueness we offer a result which is close to the Besov uniqueness
result cited above. The interest of our result is that the regularity of solution
and coefficient are the same and the proof is elementary.

Theorem 1 (Uniqueness) If a, u ∈ (H1/2 ∩ L∞)([0, T ] × Rd) satisfy (1),
then u is a strongly continuous function of time with values in L2(Rd), and
‖u(t)‖L2(Rd) is independent of time. In particular, there is uniqueness in the
Cauchy problem in this regularity class.

A key element in the proof is that (H1/2 ∩L∞)([0, T ]×Rd) is an algebra.
As in the earlier work of [CL2], it is worth noting that while there are good
existence theorems in the framework of Di Perna-Lions and Ambrosio, we do
not know of an existence theorem with regularity corresponding to Theorem
1.
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For nonuniqueness the key reference is the article of Aizenman [Ai] pub-
lished a full ten years before Di Perna-Lions. Aizenman’s motivation was
a question of Nelson concerning the incompressible Euler equations of fluid
dynamics. The natural conservation law for Euler’s equation guarantees that
solutions are square integrable in space. Nelson [Ne] asked about uniqueness
for the transport equation (1) in case that a is independent of time and square
integrable. Aizenman constructed an example of an a ∈ L∞ which generates
several measure preserving flows. However, the construction of Aizenman is
difficult and maybe impossible to follow. We replace an essential step in his
construction by a sequence of four explicit steps and thereby show that his
goal is achievable. We present the example in the language of PDE.

Completely independently and very slightly after us, Depauw constructed
another example with the same scaling properties as ours and that of Aizen-
man but whose basic geometric idea is somewhat simpler and even more
elegant than that of Aizenman. We do not know whether Depauw’s example
achieves Aizenman’s goals concerning flow generation.

Theorem 2 (Nonuniqueness) There is a uniformly bounded divergence
free field a(x) on R3 and a nontrivial L∞([0, T ]×R3) solution of the Cauchy
problem (1) with initial value equal to zero. The field has the additional
regularity that x3∇xa is a finite Borel measure.

Depauw presents a nonautonomous example with d = 2. By suitably trading
x3 for t his example can be made autonomous with d = 3 and ours can be
presented as nonautonomous in dimension 2.

Open question. Is there uniqueness when x3∇xa is an integrable function
or even a smooth integrable function?

Acknowlegements The research of J. Rauch was partially supported by
the U.S. National Science Foundation under grant DMS-0104096. J. Rauch
thanks the Universities of Nice and Pisa, and F. Colombini the University of
Michigan for their hospitality graciously offered during 2002-2003. Moreover
F. Colombini would like to thank his friend and colleague Ludovico Pernazza
for useful discussions and comments.
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2 Uniqueness

Leibniz’ chain rule for derivatives implies that, for smooth a, u and f , from
equation (1) follows

∂tf(u) + a.∂xf(u) = 0 .

The proof of Theorem 1 relies on a justification of this implication for the
non smooth field and solution.

Theorem 3 (Leibniz’ rule) Suppose that a, u satisfy (1) in ]0, T [×Rd and
that a and u belong to (H1/2∩L∞)([0, T ]×Rd). Then for any f ∈ C∞(R) the
function f(u) is also a solution, that is ∂tf(u) + a.∂xf(u) = 0 on ]0, T [×Rd.

Proof. Subtracting a linear function from f , it suffices to prove the result
when f(0) = f ′(0) = 0. The Theorem is proved by showing that in the sense
of distributions on ]0, T [×Rd one has

f ′(u)(ut + a.∂xu) = ∂tf(u) + a.∂xf(u) . (3)

Let n := 1+d denote the dimension of space time. The proof relies on two
basic facts about multiplication in Sobolev spaces (see [Be]). The first is that
for s ≥ 0, Xs := (Hs ∩ L∞)([0, T ]×Rd) is invariant under smooth functions
F which vanish at the origin. That is, (a, u) → F (a, u) is continuous from
(Xs)d × Xs → Xs. The second is that for 0 ≤ s < n/2 , multiplication
is a continuous bilinear map from Hs([0, T ] × Rd) × H−s([0, T ] × Rd) to
Hσ([0, T ] × Rd) for all σ < −n/2.

The first step is to show that these facts imply that each of the four
summands appearing in (3) is a well defined element of H−σ([0, T ]×Rd) for
all σ < −n/2 and that the map from (a, u) to each summand is continuous
from (X1/2)d × X1/2 to Hσ([0, T ] × Rd).

For the first term, one has f ′(u) ∈ H1/2 ∩ L∞ and ut ∈ H−1/2, so the
product is continuous because H1/2 × H−1/2 ⊂ Hσ.

For the next term, f ′(u) a ∈ H1/2 ∩L∞ because of the smooth invariance
and ∂xu ∈ H−1/2.

For the third and fourth term, ∂tf(u), ∂xf(u) ∈ H−1/2 and a ∈ H1/2.
Thus both sides of (3) are continuous functions of (a, u) ∈ H1/2 ∩ L∞.

Since one has equality for a and u in the dense set C∞
0 ([0, T ]×Rd), identity

(3) follows in general.
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Since u satisfies (1), the left hand side vanishes and therefore the right
hand side vanishes.

Proof of Theorem 1. First establish weak continuity of u(t) as a function
of time by the following sequence of observations:

u ∈ H1/2([0, T ] × Rd) ⊂ L2([0, T ] ; L2(Rd)) , (4)

u ∈ H1/2([0, T ] × Rd) ⊂ L2([0, T ] ; H1/2(Rd)) ,

∂xu ∈ L2([0, T ] ; H−1/2(Rd)) ,

a ∈ L2([0, T ] ; H1/2(Rd)) ,

ut = −a.∂xu ∈ L1([0, T ] ; Hσ(Rd)) ∀ σ < −d/2 . (5)

Then, (4) and (5) imply that

u ∈ C([0, T ] ; Hσ(Rd)) ∀ σ < −d/2 . (6)

Theorem 3 implies that u2 is a solution of the transport equation. Test
this equation against the function φ(t)χ(εx) with φ ∈ C∞

0 (]0, T [), χ ∈
C∞

0 (Rd), χ(x) = 1 for x near 0, to find

∫ T

0

∫

Rd

(

− φ′(t)χ(εx) − εφ(t)a.∂xχ(εx)
)

u2 dx dt = 0 .

Letting ε → 0 yields

∫ T

0

∫

Rd

−φ′ u2 dx dt = 0 .

Thus the square integrable function
∫

u2(t, x) dx has vanishing distribution
derivative on ]0, T [ proving that the L2(Rd) norm of u(t) is constant.

The fact that this L2(Rd) norm is bounded, together with (6), implies
that t → u(t) is a continuous function of time with values in L2(Rd) endowed
with the weak topology.

This weak L2 continuity together with the fact that ‖u(t)‖L2(Rd) is also
continuous implies that u(t) is strongly continuous with values in L2(Rd) and
the proof of Theorem 1 is complete.
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Figure 1: The basic region

3 The nonuniqueness example

The construction is inspired by Aizenman [Ai]. Our vector field is piecewise
linear.

3.1 The main step

Denote by C the positive cube of side L,

C := {x ∈ R3 : 0 < xi < L} .

Denote by B the box {0 < x1 < L} × {0 < x2 < L} ⊂ R2 which is the base
of the cube C. The size of C will be determined later.

Define a(x1, x2, x3) = 0 when (x1, x2) /∈ B. Points which do not project
to B are stationary. The field will be divergence free for points which project
to B. To guarantee that a is divergence free in the sense of distributions
on R3 the normal component of a.∂x must be continuous at points which
project to ∂B (see the Gluing Lemma below). This is guaranteed by requiring
systematically that the orbits of points projecting to B remain always in
the set of points which project to B. Therefore the normal component on
the inside vanishes which matches the vanishing normal component in the
exterior.
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The field a.∂x is equal to −∂3 for (x1, x2) ∈ B and x3 > L. The solutions
u will be thought of as density of fluid. With this intuition, fluid above the
cube descends steadily at speed 1. Fluid which does not project to B is
stationary.

The vector field a.∂x is first constructed in the upper half L/2 < x3 < L
of C. In that region it has the following seven properties.

(1) a3 = −1 when x3 = L and when x3 = L/2.
(2) a ∈ L∞(C ∩ {L/2 < x3 < L}).
(3) div(a.∂x) :=

∑3
i=1 ∂jaj = 0 in the sense of distributions.

(4) a3 is either 0 or bounded above by a strictly negative number.
(5) Orbits of a.∂x beginning in the interior of each of the four rectangles

on the top of C in Figure 1 are uniformly Lipschitz and remain in C till they
reach x3 = L/2 in the corresponding little square.

(6) Each of the lines x2 = const on the top which do not bound one of
the thin rectangles is mapped to a line x2 = new const in the corresponding
little square. The map from line segment to line segment is affine preserving
the orientation dx1.

(7) The integral curves of ∂t +a.∂x which start at x3 = L descend in such
a way that they cross each horizontal plane {x3 = const} simultaneously.

Compared to the conditions of Aizenman note that we make explicit the
requirement (6) which is not mentioned by Aizenman but is a key element
of his construction. It is not at all clear to us how this property can be
respected if the field is constructed following Figure 4 in his article.

Property (7) is guaranteed by the property that a3 does not depend on
x1 and x2.

The field for x3 > L/2 is piecewise linear in the sense that the half cube
is decomposed into a finite family of open sets each bounded by a finite
number of analytic hypersurfaces. The domains overlap at most in portions
of hypersurfaces. In each domain the coefficients of the vector field are affine
functions of the coordinates.

Property (1) involves the restriction of the L∞ function a3 to a hypersur-
face x3 = const. The existence of this trace depends on the divergence free
character of a. We need analogous traces associated with the divergence free
field u∂t + ua.∂x on R1+3 when u satisfies the transport equation. The next
Lemma is a classical result covering both cases.
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Lemma 4 (Trace Lemma) Suppose that R ⊂ Rd−1 is an open subset and
v ∈ L∞(R × {a < yd < b}) is divergence free in the sense of distributions.
Then the restriction of vd to yd = δ, δ ∈]a, b[, is a continuous function of
δ with values in L∞(R) endowed with the weak-∗ topology. The continuous
function extends uniquely to [a, b] setting at δ = b

lim
δ→b−

vd(y1, y2, . . . , yd−1, δ) := vd(y1, y2, . . . , yd−1, b−) ,

that turns out to be a well defined element of L∞(R), and doing the same at
δ = a.

Proof. Denote y = (y′, yd). For φ ∈ C∞
0 (R), g(yd) :=

∫

φ(y′)vd(y
′, yd) dy′ is

a well defined distribution on ]a, b[ which satisfies in the sense of distributions,

∂d

(

∫

φ(y′)vd(y
′, yd) dy′

)

=
∑

j<d

∫

vj(y
′, yd) ∂jφ(y′) dy′ .

The right hand side is bounded on ]a, b[ and it follows that g(yd) is uni-
formly Lipschitz on [a, b].

Thus the map
[a, b] 3 δ → vd(·, δ)

is continuous on [a, b] with values in the space of distributions D′(R).
Since v ∈ L∞, the map is bounded with values in L∞(R). The Lemma

follows.

The field a.∂x in the upper half cube is constructed in five steps. Each
step yields values for a in a slab in the x3 direction.

The construction uses four explicit divergence free vector fields, steady
descent, a compressor, a decompressor, and a shunt or shear. These elements
are combined in a method which is best viewed as the design of fluid carrying
ducts. The fluid starting over B follows a path as if it were guided by a duct.
The guiding is by a.∂x and not by physical boundaries.

The field a.∂x has jump discontinuities accross the surfaces which are to
be thought of as ducts. The normal component is continuous.

The first step is a compression and follows Aizenman exactly. The field
a compresses in the x1 direction and speeds up in the x3 direction. Consider

a.∂x = −x1 ∂1 + (x3 − L − 1)∂3 (7)
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The orbits satisfy

dx1

ds
= −x1 ,

dx2

ds
= 0 ,

dx3

ds
= x3 − L − 1 ,

x1(s) = x1(0) e−s , x2(s) = x2(0) , x3(s) − L − 1 = (x3(0) − L − 1) es .

We follow these orbits for 0 ≤ s ≤ ln 4. At the end, the x1 dimensions are
compressed by a factor of 1/4, and the orbits starting at the top, {x3(0) = L},
satisfy

x3(ln 4) = L − 3 .

Note that the orbits starting at the top arrive at x3 = const at the same
value of s, verifying property (7).

The orbits with largest x1 start at x1(0) = L, x3(0) = L and therefore
lie on the hyperbola with equation

x1 (x3 − L − 1) = −L .

Now we do a little duct work. The orbits starting at the top of C flow in
the region

0 < x2 < L , L − 3 < x3 < L , 0 < x1 (L + 1 − x3) < L . (8)

For (x1, x2) ∈ B and L − 3 < x3 < L the field a is defined by equation
(7) in the region (8) and as 0 outside the region (8). It is as if there were a
duct surrounding the region (8). There is fluid flowing inside and stationary
fluid outside. The region (8) is a tube of orbits. Therefore, the field a.∂x is
tangent to the boundary so has normal component equal to zero so the field
defined by this duct work is divergence free in L − 3 < x3 < L. At the top
of C the vertical component of a.∂x is equal to −1 at x3 = L+ and x3 = L−.
The next lemma implies that the the field is divergence free in L − 3 < x3.

Lemma 5 (Gluing Lemma) Suppose that R ⊂ Rd−1 is an open subset and
v ∈ L∞(R × {a < yd < c}) is divergence free in the sense of distributions in
{a < yd < b} and in {b < yd < c}. Then in the sense of distributions one
has

div v = [vd(y
′, b+) − vd(y

′, b−)] ⊗ δ(yd) .

The field is divergence free if and only if vd is continuous across the interface
{yd = b}.
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1 2 3 4

1 2 3 4

Figure 2: The compressor

Proof. Classic, follows the lines of the proof of the Trace Lemma, and is left
to the reader.

In the first slab, the flow is compressive in x1, so a3 becomes more negative
as x3 decreases and at the exit of the duct

a3 = −4 , when x3 = L − 3 . (9)

The flux through x3 = const is equal 4L2 for L − 3 < x3 < L.
This first stage of duct work is summarized in the Figure 2 which indicates

that the long rectangles are sqeezed by a factor 1/4 in the x1 direction when
they arrive at x3 = L − 3.

In the next slab the particles arriving in the squares 3 and 4 with vertical
velocity equal to −4, will be redirected following the vector field

a.∂x = L∂1 − 4∂3 , (10)

The integral curves satisfy

x1(s) = x1(0) + Ls , x2(s) = x2(0) , x3(s) = x3(0) − 4s. (11)

The flux follows these curves for 0 ≤ s ≤ 1/4 so that at the end the little
squares 3 and 4 have been shunted as in Figure 3. The coordinate x3 has
decreased from L − 3 to L − 4.
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1 2 3 4

1 2 3 4

Figure 3: The shunt

Eliminating s from two equations in (11) we obtain

x1 = x1(0) + (x3(0) − x3)L/4 .

The field is given by formula (10) in the tube of orbits starting in little boxes
3 and 4, precisely, a.∂x is given by (10) when

L(L−3−x3) < 4x1 < L(L−2−x3) , L/2 < x2 < L , L−4 < x3 < L−3 .
(12)

This is the duct conducting the fluid starting in 3 and 4. The fluid starting
in 1 and 2 descends steadily, that is

a.∂x = −4∂3 ,

in the vertical duct

0 < x1 < L/4 , 0 < x2 < L/2 , L − 4 < x3 < L − 3 . (13)

At all points in the slab L − 4 < x3 < L − 3 not contained in the ducts
(12), (13), the field is set equal to zero. The resulting field is divergence free
in L − 4 < x3 and verifies also the other properties.

By an entirely analogous construction for L− 5 < x3 < L− 4 the squares
1 and 2 continue their steady descent while the squares 3 and 4 are shunted
left.

When the orbits starting at the top of C cross x3 = L−5 one has achieved
the transformation indicated in Figure 4.

XXII–11



4

21

3 4

1 2

3

Figure 4: The second shunt

In the next stage the points in the four little squares at x3 = L − 5 will
be stretched in the x1 direction till the x1 equals L. This is indicated on the
left hand side of Figure 5.

The stretching is performed with the vector field

a.∂x = x1∂1 − (x3 − (L − 5))∂3 − 4∂3 . (14)

This is essentially the opposite of the compressive step. The orbits satisfy

dx1

ds
= x1 ,

dx2

ds
= 0 ,

dx3

ds
= −x3 + (L − 5) − 4 .

Thus

x1(s) = x1(0) es , x2(s) = x2(0) , −x3(s) + L − 9 = (−x3(0) + L − 9)e−s .

Orbits starting with x3(0) = L−5, satisfy x3(ln 2) = L−7 . In the hyperbolic
duct

0 < x1(x3 − L + 9) < 2L , 0 < x2 < L/2 , L − 7 < x3 < L − 5 ,

the field is defined by (14) and for other points in this slab the field is taken
equal to zero. At the height x3 = L − 7 the four rectangles occupy the left
half of the L × L square as indicated on the left of Figure 5.

Finally inserting one final duct where the field is decompressive in x2

one makes the final transformation achieving the result announced in Figure
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Figure 5: Two decompressions

1. We write the field in the hyperbolic duct starting from the rectangle
0 < x1 < L, 0 < x2 < L/2, x3 = L − 7:

a.∂x = x2∂2 + (−x3 + L − 9)∂3 ,

and we follow the integral curves for 0 ≤ s ≤ ln 2, and so for L − 8 ≤ x3 ≤
L − 7 .

This last decompression in x2 is sketched in the right hand side of Figure 5.
This is obtained when the particles starting at the top arrive at x3 = L−8. At
this point we make the choice of L = 16 and the key step of the construction
is complete.

The total time required for the descent from x3 = L to x3 = L/2 is the
sum of the times for crossing each of the five slabs, so it is equal to

T := ln 4 + L/4 + L/4 + ln 2 + ln 2 . (15)

We remark that a3 is a continuous function across x3 = L−3 , L−4 , L−5,
where it takes the value −4, and across x3 = L − 7, where its value is −2;
moreover x3((L − 8)+) = x3((L/2)+) = −1, as requested by property (1).
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3.2 The iterative step.

Below each of the little boxes at height L/2, one places a scale 1/2 model of
the field in the upper half. By this we mean that only the geometry is scaled.
The length of the vector field is not changed. Thus the vertical components of
the vector fields are equal to −1 on both sides of x3 = L/2 which is required
for the gluing.

Fluid flowing through the ducts starting in each of the squares at height
L/2 will be cut into four narrow rectangles which upon flowing downward a
distance L/4 (since the vector field has the same length, we need to follow it
for half as long) will be reassembled as four smaller squares.

One continues like this. In this way one obtains a divergence free bounded
field in x3 > 0 which has properties (1)-(7) suitably reproduced at each scale.

The time of descent from x3 = L to x3 = 0 is equal to 2T with T from
equation (15).

The field in x3 < 0 will be obtained from that in x3 > 0 by a reflection
argument. Before doing that we perform the heart of the analysis which
takes place entirely in x3 > 0.

3.3 Transport in x3 > 0

Consider the solution u satisfying

u(t, x1, x2, x3) = χ(x1, x2, x3 + t) , for t < 0

where χ is the characteristic function of the L/2 × L × 1 - box

R := {0 < x1 < L/2} × {0 < x2 < L} × {L < x3 < L + 1} . (16)

For t < 0 the fluid is a block which descends vertically towards the half
of the upper face of the cube C on which x1 < L/2. The descent is at speed
1.

For 0 ≤ t < 2T (T from (15)), fluid passes through the ducts we have
constructed and at time 2T the first fluid particles arrive at x3 = 0. The last
fluid arriving from the top of R arrives at time t = 2T + 1.

On {t < 2T + 1} ∩ {x3 > 0}, the solution is defined as being constantly
1 on the orbits with feet in the far past lying in R and 0 otherwise. For
t > 2T + 1 the function u is taken equal to zero in the whole {x3 > 0}.
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The function u so defined on {x3 > 0} takes only values 0 and 1. It is the
characteristic function of the set of points belonging to the orbits launched
from R in the distant past. The next lemma shows that u is a weak solution
of the transport equation.

Lemma 6 In order that u defined in x3 > 0 satisfy the transport equation (1)
it is sufficient that u be piecewise smooth, satisfy the equation in the classical
sense on each of the open sets bounded by the ducts, and have normal velocity
continuous accross all two dimensional parts of the ducts.

Outline of proof. For a test function φ in x3 > 0 the integral
∫

(−φt −
a.∂xφ) u dx dt is written as a sum over the finite number of open ducts which
meet the support of φ. In each open set one integrates by parts using the
fact that u, a, and φ are smooth.

Since u satisfies the transport equation, only the boundary terms remain.
The boundary terms from the two sides of each open piece of boundary
cancel.

Lemma 7 (Flux at x3 = 0) The flux arriving at x3 = 0 from above is given
by the formula

lim
δ→0+

(a3u)(t, x1, x2, δ) =

{

−1/2 on {2T < t < 2T + 1} × B
0 otherwise

. (17)

Proof. The limit on the left exists thanks to the Trace Lemma applied
to the divergence free field u∂t + ua.∂x. Thus, it suffices to show that the
distribution limit as n → ∞ of (a3u)(t, x1, x2, L/2n) is equal to the right
hand side of (17).

Particles starting at the top of the cube C reach x3 = L/2 at time T .
Those starting at height x3 = L + ρ arrive at x3 = L/2 at time T + ρ. The
restriction of u to x3 = L/2 is therefore supported in {T ≤ t ≤ T + 1} × B.

The first of the seven properties of a shows that a3(x1, x2, L/2) = −1 for
(x1, x2) ∈ B and x3 = L/2.

The values u = 1 of our solution are transported by the particles starting
in L ≤ x3 ≤ L + 1. They pass the top of C in the lower half, {x1 < L/2},
of the four thin rectangles on the top of C in Figure 1. From property (6) of
the vector field one sees that at x3 = L/2 they pass through the lower half
of the four little squares sketched in Figure 1.

XXII–15



Thus for T < t < T +1, (a3u)(t, x1, x2, L/2) = −1 if and only if (x1, x2)
belongs to one of the four bottom halves of the four small squares in x3 = L/2
in Figure 1. Otherwise, a3u(t, x1, x2, L/2) = 0.

This computation repeats rescaled in the next interval L/2 > x3 > L/22.
At x3 = L/22 the square B is decomposed into 42 little squares and fluid
passes through the bottom half of each of these squares during the interval
of time 3(2T )/4 < t < 3(2T )/4 + 1.

Continuing one sees that at x3 = L/2n the square B is decomposed into
4n squares and that fluid flows accross the bottom halves of these squares for
(2n − 1)2T/2n < t < (2n − 1)2T/2n + 1.

For large n these half squares become equidistributed in B, with density
equal to 1/2. And the time interval for the passages converges to 2T < t <
2T + 1. Formula (17) follows.

3.4 Three solutions in x3 > 0 with the same flux

Denote by u1 the solution in x3 > 0 which has just been constructed.
Denote by u2 the entirely analogous solution which for t < 0 consists of

a block of fluid descending vertically with speed one towards the half of the
upper face of the cube C on which x1 > L/2. Precisely for t < 0,

u2(t, x1, x2, x3) := χ{L/2<x1<L}×{0<x2<L}×{L<x3<L+1}(x1, x2, x3 + t) . (18)

Denote by u3 the solution in x3 > 0 which for t < 0 represents a density
u = 1/2 descending in a slab of thickness equal to 1 over B, precisely for
t < 0,

u3(t, x1, x2, x3) :=
1

2
χ{0<x1<L}×{0<x2<L}×{L<x3<L+1}(x1, x2, x3 + t) . (19)

These solutions are then extended to be defined in all of Rt×{x : x3 > 0}
as being constant on orbits of ∂t + a.∂x.

Computations nearly identical to the proof of the preceding lemma prove
the following.

Lemma 8 For j = 1, 2, 3

lim
δ→0+

(a3uj)(t, x1, x2, δ) =

{

−1/2 on {2T < t < 2T + 1} × B
0 otherwise

. (20)
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This is the heart of the nonuniqueness. We have three solutions in x3 > 0
which have exactly the same flux at x3 = 0+.

3.5 Reflection

For x3 < 0 define the field a by symmetry

(

a1(x1 , x2 , x3) , a2(x1 , x2 , x3) , a3(x1 , x2 , x3)
)

=
(

− a1(x1 , x2 , −x3) , −a2(x1 , x2 , −x3) , a3(x1 , x2 , −x3)
)

.

Lemma 9 The field a.∂x is divergence free on R3.

Proof. By the Gluing Lemma, it suffices to show that

lim
ε→0+

(

a3(x1, x2, ε) − a3(x1, x2,−ε)
)

= 0 .

The definition of a guarantees that the quantity in parentheses is identically
equal to zero.

The next lemma is a straight forward computation.

Lemma 10 (Reflection Lemma) i. The x3 reflection of orbits in x3 > 0
are time reversed orbits in x3 < 0. Precisely, x(s) := (x1(s), x2(s), x3(s))
with x3 > 0 satisfies dx/ds = a(x(s)), if and only if for the reflected set of s,
X(s) := (x1(−s), x2(−s),−x3(−s)) satisfies dX/ds = a(X(s)).

ii. The function u ∈ L∞({x3 > 0}) is a weak solution of ∂tu+a.∂xu = 0,
if and only if

U(t, x1, x2, x3) := u(−t, x1, x2,−x3)

satisfies ∂tU + a.∂xU = 0 in {x3 < 0}.

Starting with our three solutions uj in x3 > 0, this reflection generates
three solutions Uj in x3 < 0.

The normal component at x3 = 0 of the divergence free field Uj∂t+Uja.∂x

defined in {x3 < 0} is given by

(uj a3)(−t, x1, x2, 0+) = −
1

2
χ[−2T−1,−2T ](t) χB(x1, x2) .
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Thus, for j = 1, 2, 3, the functions

vj(t, x1, x2, x3) := Uj(t − (4T + 1), x1, x2, x3)

are solutions of ∂tv +a.∂xv = 0 in x3 < 0 and their fluxes at x3 = 0− exactly
match the fluxes at x3 = 0+ of the uj.

Gluing each solution ui for x3 > 0 with any vj for x3 < 0 we get nine
solutions of the transport equation in R1+3. Two particular choices yield the
following, which proves Theorem 2.

Proof of Theorem 2. The solutions which are equal to u1 in x3 > 0 and
equal to v1 (resp. v2) in x3 < 0 are both nonnegative bounded entropy
solutions. They are identically equal for t < 0 and have disjoint supports for
t > 4T + 2. Nonlinear functions of these solutions are solutions.

Remark. If w is the difference of these two solutions it follows that w2 does
NOT satisfy (w2)t +a.∂x(w

2) = 0. If it were, it would follow that w = 0 as in
the proof of Theorem 1. Thus the nonuniqueness example is also an example
of the failure of Leibniz’ rule. The failure of Leibniz’ rule shows that there
is more to being a solution than constancy on integral curves of the vector
field, since that property is invariant under nonlinear functions.

3.6 Appendix. The space filling curve

This section is not needed to understand the examples, but too interesting to
be omitted. It is also important for Aizenman’s examples of the generation
distinct measure preserving flows by a∂x.

Consider the line segments

`(x2) := {0 < x1 < L , x2 6= 0,
L

4
,
2L

4

3L

4
, L , x3 = L}

on the top of C. These are the segments parallel to those defining the long
rectangles in Figure 1, with the bounding segments of those rectangles ex-
cluded.

The flow starting at any one of these segments arrives at x3 = L/2 in a
segment parallel to the original, half as long, i.e. of length L/2, and spanning
one of the four small squares at the bottom of Figure 1.

Provided that x2 is not an integer multiple of L/42, this argument can be
repeated showing that the segment arrives at x3 = L/4 in a parallel segment
again halved in length, and so on.
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Thus, if x2 is not an integer multiple of L/4p for any integer power p,
the segment `(x2) is compressed to a segment of length L/2p when it reaches
x3 = L/2p. Passing to the limit, it is compressed to a single point α(x2) =
(α1(x2), α2(x2)) ∈ B when the flow arrives at the bottom of the cube C.

Denote by E the countable set of exceptional x2, so

α : [0, L] \ E → B .

The binary expansion of α(x2)/L has a simple description in terms of the
expansions base 4 of x2/L. The exceptional set of points x2 are exactly those
whose expansion in base 4 of x2/L,

x2/L = .q1 q2 q3 q4 . . . qj ∈ {0, 1, 2, 3}

end in an infinite string of solely 0’s or of solely 3’s.
The first digit, q1, determines the membership in the rectangles on the

top of C and therefore the image square at x3 = L/2. The first binary digits
satisfy

b1(α1(x2)) =

{

0 if q1 ∈ {0, 2}
1 if q1 ∈ {1, 3}

,

b1(α2(x2)) =

{

0 if q1 ∈ {0, 1}
1 if q1 ∈ {2, 3}

.

The next binary digits bj(α) are determined from the base four digits qj(x2)
following the same rule.

Reading backwards, one sees that α is a bijection from [0, L[\E to B \ F
where F is a countable set.

Considering two sequences of points of the type

x2/L = .1000 . . . 0000111111 . . . and x′
2/L = .0333 . . . 3333111111 . . . ,

one sees that α2 is discontinuous at x2 = L/4. Similarly the map α is
discontinuous at all points of E . It is continuous from [0, L[\E to B.

The image by α of any base four interval

{ q

4p
< x2 <

q + 1

4p

}

\ E

maps essentially one to one and onto a square whose area is equal to the
length of the interval. Thus α is a measure preserving map of [0, L] to B.
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