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Abstract

The work is devoted to a study of the degenerate quasilinear parabolic-
hyperbolic equation

∂tu + divxa(x, t, u)− divx(A(x, t)∇xb(u)) = 0

such that b(u) is strictly increasing in u, the rank of the nonnegative dif-
fusion d × d-matrix A may vary in x and t, the convection coefficients
a = (a1, . . . , ad) may be non-smooth in x and t, and the genuine non-
linearity condition holds in the sense that the Lebesgue measure of the
intersection of the sets {(x, t, λ) |A(x, t)y · y = 0} and {(x, t, λ) | τ +
(a′λ(x, t, λ) − b′(λ)divxA(x, t)) · y = 0} is equal to zero for any fixed
(y, τ) ∈ Rd × R such that |y|2 + τ2 = 1. The main results of the work
consist in justification that any bounded in L∞ set of entropy solutions of
the equation is relatively compact in L1

loc and that the Cauchy problem
with bounded initial data has an entropy solution. The proofs are based
on the Chen–Perthame-type kinetic formulation of the equation and on
Panov’s theorem on a version of Tartar H-measures.

1 Introduction

We consider the Cauchy problem for a quasilinear diffusion-convection equation
of the form

ut + ∂xiai(x, t, u)− ∂xi(aij(x, t)∂xj b(u)) = 0, x ∈ Rd, t ∈ (0, T ), (1.1a)

endowed with initial data belonging to L∞(Rd),

u|t=0 = u0(x), x ∈ Rd. (1.1b)
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In (1.1), u is the unknown function, the flux a := (ai), the diffusion matrix
A := (aij), and the diffusion function b are given such that

ai, Dxiai ∈ L2
loc(Rd

x × (0, T ); C1
loc(Ru)), aij ∈ C2

loc(Rd
x × [0, T ]), (1.2)

aij = aji, aij(x, t)ξiξj ≥ 0, ∀ ξ, x ∈ Rd, t ∈ [0, T ], (1.3)
b ∈ C2

loc(R), b′(u) > 0, ∀u ∈ R, (1.4)

and such that the maximum principle for (1.1) is a priori guaranteed, for example
[1, chapter I, theorem 2.9] such that the inequality

uDxi
ai(x, t, u) ≥ −c1u

2 − c2, for a.e. x ∈ Rd, t ∈ [0, T ], ∀u ∈ R, (1.5)

holds with some positive constants c1 and c2.
In (1.1)–(1.5) and further in the paper, the conventional summation rule over

repeating indexes is in use. The partial derivative Dxi
is defined by the formula

Dxig(x, t, u) = (∂xig(x, t, λ))|λ=u(x,t), ∀ g ∈ C1(Rd
x × (0, T ) × Rλ). In partic-

ular, the partial derivatives ∂xi
and Dxi

relate via the equality ∂xi
g(x, t, u) =

Dxig(x, t, u) + ∂ug(x, t, u)∂xiu. Also, we denote Π := Rd
x × (0, T ) throughout

the paper.
We assume that, in general, the rank of matrix A varies in x and t. Thus,

(1.1a) is an ultra-parabolic equation. Equations of such type arise in fluid
dynamics, combustion theory and financial mathematics [2]. They describe, in
particular, non-stationary transport of matter or temperature, in cases, when
effects of diffusion in some spatial directions in some subdomains of Rd

x are
negligible, as compared to convection.

Let us notice that, since A is symmetric and nonnegative, there exists a
unique square root A1/2 = {αij}i,j=1,...,d which is a symmetric nonnegative
matrix. We are now in a position to define an entropy solution of (1.1).

Definition 1. Function u = u(x, t) is called an entropy solution of (1.1), if it
satisfies initial data (1.1b), the conditions

u ∈ L∞(Π), αij∂xj u ∈ L2
loc(Π) (1.6)

and the entropy inequality

ϕ(u)t + ∂xiqi(x, t, u) + ϕ′(u)Dxiai(x, t, u)−Dxiqi(x, t, u)

− ∂xi

(
aij(x, t)∂xj w(u)

)
+ ϕ′′(u)b′(u)(αil(x, t)∂xiu)(αjl(x, t)∂xj u) ≤ 0 (1.7)

for all functions ϕ, qi, and w such that

ϕ ∈ C2
loc(R), ϕ′′(u) ≥ 0,

∂uqi(x, t, u) = ϕ′(u)∂uai(x, t, u), w′(u) = ϕ′(u)b′(u). (1.8)

Inequality (1.7) and initial data (1.1b) are understood in the sense of distri-
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butions and therefore can be equivalently collected in the integral formulation

∫

Π

(ζtϕ(u) + ζxi
qi(x, t, u)− ζϕ′(u)Dxi

ai(x, t, u) + ζDxi
qi(x, t, u)

+ w(u)∂xi(aij(x, t)∂xj ζ) −ζϕ′′(u)b′(u)(αil(x, t)∂xiu)(αlj(x, t)∂xj u)
)
dxdt

+
∫

Rd

ϕ(u0)ζ(x, 0)dx ≥ 0, (1.9)

where ζ ∈ C2(Π) is an arbitrary nonnegative function vanishing near the plane
{t = T} and for large |x|.
Definition 2. We say that u is an entropy solution of (1.1a) if it satisfies (1.7)
in the sense of distributions, i.e. if it satisfies (1.9) for all ζ ∈ C2

0 (Π).

Additionally to (1.2)–(1.5), we impose the following demand on ai, aij and
b.

Condition G. (The genuine nonlinearity condition). The functions ai,
aij and b are such that the Lebesgue measure of the intersection of the sets

I1 := {(x, t, λ) ∈ Π× Rλ | aij(x, t)ξiξj = 0}

and

I2 := {(x, t, λ) ∈ Π× Rλ | τ +
(
aiλ(x, t, λ)− b′(λ)aijxj (x, t)

)
ξi = 0}

is equal to zero for any fixed (ξ, τ) ∈ Sd.

Here and further in the paper Sd is a unit sphere in Rd+1, Sd = {(ξ, τ) ∈
Rd+1 | |ξ|2 + τ2 = 1}.

The following theorems are the main results of the article.

Theorem 1. Let equation (1.1a) be genuinely nonlinear in the sense of Condi-
tion G. Then the Cauchy problem (1.1) has an entropy solution for any initial
data u0 ∈ L∞(Rd).

Theorem 2. Any bounded in L∞(Π) family of entropy solutions of genuinely
nonlinear equation (1.1a) is relatively compact in L1

loc(Π).

Genuinely nonlinear equations of the forms similar to (1.1a) are in focus
of many studies. One of the first results for such equations was obtained by
P. D. Lax [3], who proved in 1957 that the Cauchy problem for the equation
ut + a(u)x = 0 has an entropy solution in the case when a(u) is either convex
or concave. Since then, the theory of entropy solutions of genuinely nonlinear
PDEs stepped much forward and it is worth to recall the results by L. Tartar [4],
P. L. Lions, B. Perthame and E. Tadmor [5], and E. Yu. Panov [6], because the
considerations of the present article may be referred to as a continuation of the
works [4, 5, 6]. In [4], it is shown that any bounded set of entropy solutions of
equation ut + ∂xiai(x, t, u) = 0, x ∈ R2 is relatively compact in L1

loc(R2
x ×R+).
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In [6] this result is extended to any space dimension d. The article [5] is devoted
to the equations ut + ∂xiai(u) = 0 and ut + ∂xiai(u) − ∂2

xixj
aij(u) = 0, where

the rank of a nonnegative matrix (a′ij) may vary in u, and the compactness
results in L1

loc are established for the both equations. In [4, 5, 6], the genuine
nonlinearity conditions (that are also called the nondegeneracy conditions) are
analogous to Condition G.

The theory of existence and uniqueness of entropy solutions to the above
mentioned equations from [4, 5, 6] was constructed by S. Kruzhkov [7] and
G.-Q. Chen and B. Perthame [8] without imposing demands like genuine non-
linearity. On the other hand, the observations in [7, 8] do not cover the cases
when the rank of the matrix (aij) varies in x and t and when the flux a is
non-smooth. Therefore Theorem 1 brings a novelty to the existence theory.

The proofs of the present article rely on the method of kinetic equation that
allows to reduce quasilinear equations and systems to linear scalar equations
on ‘distribution’ functions involving additional ‘kinetic’ variables. This method
was created and applied recently to study a wide range of topics, for example
isentropic gas dynamics and p-systems [9], and scalar conservation laws [5, 8, 10,
11, 12]. Along with this method we apply the theory of H-measures that was
constructed originally by L. Tartar [13] and P. Gérard [14] and later developed
by E. Yu. Panov in [6].

2 The kinetic formulation of (1.1a)

We introduce the notion of the kinetic formulation of (1.1a) in the form similar
to [8, Definition 2.2].

Problem K. Find a kinetic function f(x, t, λ) and nonnegative Borel mea-
sures m,n ∈M(Π× Rλ) satisfying the equation

ft +aiλ(x, t, λ)fxi −aixi(x, t, λ)fλ− b′(λ)∂xi(aij(x, t)∂xj f)+(m+ b′(λ)n)λ = 0,
(2.1a)

and the constraints

f(x, t, λ) =
{

1, for λ ≥ u(x, t),
0, for λ < u(x, t), (2.1b)

spt m ⊂ {(x, t, λ) ∈ Π× Rλ : |λ| ≤ ‖u‖L∞}, (2.1c)

and
dn(x, t, λ) = |A1/2∇xu(x, t)|2dγu(x,t)(λ)dxdt (2.1d)

with some function u ∈ L∞(Π) such that A1/2∇xu ∈ L2
loc(Π).

Here and further in the paper, M(X) denotes the Banach space of bounded
Radon measures on a set X. In (2.1d), γu(x,t) denotes the Dirac measure on Rλ

concentrated at the point λ = u(x, t).
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The kinetic equation (2.1a) is understood in the sense of distributions and
therefore is equivalent to the integral formulation

∫

Π×Rλ

(ζt + aiλ(x, t, λ)ζxi
− aixi

(x, t, λ)∂λζ

+b′(λ)∂xi(aij(x, t)∂xj ζ)
)
fdxdtdλ

+
∫

Π×Rλ

ζλb′(λ)dn(x, t, λ) +
∫

Π×Rλ

ζλdm(x, t, λ) = 0, (2.2)

where ζ ∈ C2
0 (Π× Rλ) is an arbitrary test function.

Remark 1. In view of the simple representation

ϕ(u(x, t)) = −
∫

R
ϕ′(λ)f(x, t, λ)dλ, ∀ϕ ∈ C1

0 (R), (2.3)

it is easy to see that the triple (f,m, n) is a solution of Problem K if and only
if the function u that appears in (2.1b)–(2.1d) is an entropy solution of (1.1a).

The rest of the paper is organized as follows. In Section 3, we introduce
the family of H-measures corresponding to a weakly convergent sequence of
solutions of Problem K. In Section 4, we formulate and in Sections 5–7 prove
Theorem 3 on the localization principle for the H-measures. In Section 8, we
apply this localization principle and deduce the assertion of Theorem 2. In
Section 9, we adapt the proof of Theorem 2 for verification of Theorem 1.

3 Notion of H-measures

Let (fk,mk, nk), k ∈ N, be a sequence of solutions of (2.1a)–(2.1d) such that all
the set of functions fk is uniformly supported in some interval [−u∗, u∗], u∗ =
const > 0. This means that the corresponding sequence of entropy solutions
{uk} of (1.1a) is uniformly bounded in L∞(Π) and ‖uk‖L∞(Π) ≤ u∗. Extracting
a proper subsequence from k ∈ R we define weakly* convergent subsequences
{fk} and {uk} and limiting functions f ∈ L∞(Π × Rλ) and u ∈ L∞(Π) such
that

fk → f weakly* in L∞(Π× Rλ), as k ↗∞, (3.1)
uk → u weakly* in L∞(Π), as k ↗∞. (3.2)

It is easy to see that f = 0 for all λ < −u∗ and f = 1 for all λ ≥ u∗. The follow-
ing lemma yields also that f is monotonous nondecreasing and right-continuous
in λ. Such the structure of f allows us to make use of Panov’s theorem on a
version of H-measures [6, Theorem 3] and introduce a family of H-measures
corresponding to fk − f .
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Lemma 1. The limiting function f in (3.1) is the distribution function of the
Young measure νx,t ∈ Prob(Rλ) associated with the subsequence {uk}, i.e.

f(x, t, λ) =
∫

Rs

1λ≥sdνx,t(s). (3.3)

Prob(Rλ) is the subset ofM(Rλ) consisting of all nonnegative measures with
the norms equal to one. The notion of the Young measure will be recalled within
the proof.

Proof. Let ζ ∈ C0(Π; C1
0 (Rλ)) be an arbitrary function. From (3.1) it follows

that ∫

Π×Rλ

fkζλdxdtdλ −→
k↗∞

∫

Π×Rλ

fζλdxdtdλ. (3.4)

Representation (2.3) gives
∫

Π×Rλ

fk(x, t, λ)ζλ(x, t, λ)dxdtdλ = −
∫

Π

ζ(x, t, uk(x, t))dxdt. (3.5)

On the strength of the Tartar theorem on Young measures [4], [15, Ch.3, Theo-
rem 2.3], there exists a bounded weakly measurable mapping (x, t) 7→ νx,t from
Π into Prob(Rλ) such that

spt νx,t ⊂ {λ : |λ| ≤ u∗}, (3.6)

and for any ζ the limiting relation

lim
k↗∞

∫

Π

ζ(x, t, uk(x, t))dxdt =
∫

Π

(∫

Rλ

ζ(x, t, λ)dνx,t(λ)
)

dxdt (3.7)

holds. Using the notion of the Stieltjes integral generated by the distribution
function g(x, t, λ) :=

∫
Rs

1λ≥sdνx,t(λ) of the measure νx,t we can represent the
right hand side of (3.7) in the form

∫

Π

(∫

Rλ

ζ(x, t, λ)dνx,t(λ)
)

dxdt =
∫

Π

(∫

Rλ

ζ(x, t, λ)dλg(x, t, λ)
)

dxdt, (3.8)

where dλg(x, t, ·) is the parametrized Stieltjes measure on Rλ. On the strength
of the theory of the Stieltjes integral, for a.e. (x, t) ∈ Π and for an arbitrary
ψ ∈ C0(Rλ) the equality

∫

Rλ

ψ(λ)dλg(x, t, λ) = −
∫

Rλ

ψ′(λ)g(x, t, λ)dλ,

is valid. Using it we rewrite the right hand side of (3.8) in the form
∫

Π

(∫

Rλ

ζdλg

)
dxdt = −

∫

Π×Rλ

ζλgdxdtdλ. (3.9)

Aggregating (3.5), (3.7)–(3.9) and comparing with (3.4) we conclude that the
functions f and g coincide for a.e. (x, t, λ) ∈ Π × Rλ, which finishes the proof
of the lemma.
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Let us introduce the set

E := {λ0 ∈ R | f(λ) → f(λ0) strongly in L1
loc(Π), as λ → λ0}.

Lemma [6, Lemma 4] and Panov’s theorem on a version of Tartar H-measures
[6, Theorem 3] yield the following.

Lemma 2. The complement of E in R is at most countable, and for any λ ∈ E
the limiting relation fk(·, ·, λ) −→

k↗∞
f(·, ·, λ) weakly* in L∞(Π) holds.

Theorem H. (Existence of H-measures). There exists a family of locally
finite Radon measures {µpq}p,q∈E on Π × Sd and a subsequence from {fk(λ) −
f(λ)}, λ ∈ E, such that for all Φ1, Φ2 ∈ C0(Rd × [0, T ]) and ψ ∈ C(Sd) the
equality

∫

Π×Sd

Φ1(x, t)Φ2(x, t)ψ(y)dµpq(x, t, y) =

lim
k↗∞

∫

Rd+1
F [Φ1{fk(p)− f(p)}](ξ)F [Φ2{fk(q)− f(q)}](ξ)ψ

(
ξ

|ξ|
)

dξ,

∀ p, q ∈ E , (3.10)

holds.

In the formulation of Theorem 3 and further in the paper, ϕ̄ means the
complex conjugate of ϕ. F is the Fourier transform with respect to x and t,

F [ϕ](ξ) =
∫

Rd+1
ϕ(x, t)e2πi(ξ0t+ξ1x1+...+ξdxd)dxdt

for any integrable ϕ. We assume that any function defined merely for t ∈ [0, T ]
is extended outside [0, T ] by zero. Further, sometimes we also denote x0 := t.

Definition 3. The family of measures {µpq}p,q∈E is called the H-measure as-
sociated with the extracted subsequence {fk − f}.

The general theory of H-measures states the following.

Lemma 3.

(1) For any finite set E := {p1, . . . , pn} ⊂ E the measures (µpipj )i,j=1,...,n

are hermitian nonnegative, i.e.

µpipj = µpjpi , 〈µpipj ,ΦiΦjψ〉 ≥ 0 (3.11)

for all Φ1, . . . , Φn ∈ C0(Π) and ψ ∈ C(Sd), ψ ≥ 0 [13, Corollary 1.2].

(2) The mapping (p, q) 7→ µpq is continuous from E × E into M(Π× Sd) [6,
Theorem 3].
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(3) For any p, q ∈ E, measure µpq is absolutely continuous with respect to
the Lebesgue measure on Rd+1. As a functional on C(Ω×Sd), it admits a natu-
ral expansion onto L2(Ω, C(Sd)) and therefore the decomposition dµpq(x, t, y) =
dσpq

x,t(y)dxdt takes place, where the mapping (x, t) 7→ σpq
x,t belongs to L2

w(Π, M(Sd))
and is uniquely defined by µpq [16, Section 1.2].

(4) fk(·, ·, λ) → f(·, ·, λ) strongly in L1
loc(Π) for all λ ∈ E, as k ↗∞, if and

only if µλλ ≡ 0 for all λ ∈ E [13].

In item (3) of this lemma and further in the paper, L2
w(Π,M(Sd)) is the

space of weakly measurable with respect to Lebesgue measure on Π mappings
x 7→ σx from Π into M(Sd) equipped with the norm

‖σ‖L2
w(Π,M(Sd)) =

(∫

Π

‖σx,t‖2M(Sd)dxdt

)1/2

, ∀σ ∈ L2
w(Π,M(Sd)).

4 The formulation of the localization principle
for the H-measures

Theorem 3. H-measure µλλ associated with the extracted subsequence {fk−f}
satisfies the integral equalities

∫

Rλ

(∫

Π×Sd

aij(x, t)yiyjζ(x, t, λ, y)dµλλ(x, t,y)
)

dλ = 0 (4.1)

and
∫

Rλ

(∫

Π×Sd

(y0 + (aiλ(x, t, λ)

−b′(λ)aijxj (x, t, λ)
)
yi

)
β(x, t, λ,y)dµλλ(x, t,y)

)
dλ = 0 (4.2)

for all β, ζ ∈ C0(Π× Rλ × Sd
y).

Remark 2. Theorem 3 amounts to the assertion that the support of the H-
measure µλλ for a.e. λ ∈ R lays entirely in the intersection of the sets

{(x, t, y) ∈ Π× Sd | aij(x, t)yiyj = 0}

and

{(x, t, y) ∈ Π× Sd | y0 +
(
aiλ(x, t, λ)− b′(λ)aijxj (x, t, λ)

)
yi = 0}.
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5 Proof of Theorem 3. Part I: preliminaries

We start the proof by establishing the following auxiliary lemma.

Lemma 4. There exists a Borel measure H ∈M(Π× Rλ) supported in the set
I∗ = {(x, t, λ) ∈ Π× Rλ : |λ| ≤ u∗} such that the limiting relation

mk + b′(λ)nk → H weakly* in M(Π× Rλ), as k ↗∞, (5.1)

holds true.

Proof. On the strength of (2.1a), (3.1) and (3.2), the uniform bound

‖mk + b′nk‖(C2(Π×Rλ))∗ ≤ c∗ (5.2)

holds true with a constant c∗ that does not depend on k ∈ N. Since mk +b′nk is
a nonnegative measure for any k ∈ N, we conclude by the standard arguments
that there exists a unique natural continuation of mk + b′nk onto M(Π × Rλ)
and that the family {mk + b′nk}k∈N is bounded uniformly in M(Π × Rλ) by
the constant c∗ [17, Chapter III, §1, Proposition 2]. This bound yields that for
some subsequence from k ∈ N the limiting relation (5.1) holds true.

Finally, we observe that the support of H lays entirely in I∗ because both
the supports of mk and nk lay in I∗ for all k ∈ N.

Besides, in order to prove Theorem 3, we will repeatedly use the notions of
the Riesz potentials and the pseudo-differential operators (henceforth, p.d.o.’s)
of zero order, in particular, the Riesz transforms. Let us recall [18, Chapter 5,
§1] that the Riesz potential Iα (0 < α < d + 1) is defined by the formula

F [Iα[ϕ]](ξ) = (2π|ξ|)−αF [ϕ](ξ)

for any function ϕ ∈ C∞0 (Rd+1). The Hardy–Littlewood–Sobolev theorem [18,
Chapter 5, §1] states that the Riesz potential is well-defined on Lp(Rd+1) for
all p ∈ (1,+∞) and that it is bounded from Lp(Rd+1) into Lq(Rd+1) with
q−1 = p−1 − α(d + 1)−1, i.e.

‖Iα[ϕ]‖Lq(Rd+1) ≤ cp,q‖ϕ‖Lp(Rd+1), ∀ϕ ∈ Lp(Rd+1). (5.3)

The p.d.o. of zero order A with the principal symbol ψ ∈ C(Sd) is defined
by the formula

F [A[ϕ]](ξ) = ψ(ξ/|ξ|)F [ϕ](ξ)

for any ϕ ∈ C∞0 (Rd+1). The p.d.o. of zero order Rj with the principal symbol
−iξj/|ξ| is called the Riesz transform Rj (j = 0, . . . , d) [18, Chapter 3]. The
p.d.o.’s of zero order are well-defined and bounded on Lp(Rd+1) for all p ∈
(1, +∞), and the bound

‖A[ϕ]‖Lp(Rd+1) ≤ cp‖ϕ‖Lp(Rd+1) ∀ϕ ∈ Lp(Rd+1) (5.4)

holds true [18, Chapter 3, Theorem 3].
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On the strength of the calculus of p.d.o.’s, the Riesz potentials and the
p.d.o.’s of zero order commutate with each other and with the partial differ-
entiating, are self-adjoint in L2(Rd+1), and the following identities hold for all
admissible test functions ϕ (for example, for ϕ ∈ C∞0 (Rd+1)):

(Iα ◦ Iβ)[ϕ] = Iα+β [ϕ] ∀α, β, α + β ∈ (1, d + 1), (5.5)
I1[∂xj

ϕ] = Rj [ϕ], j = 0, . . . , d, x0 := t. (5.6)

The Sobolev embedding theorem and the above stated properties of the Riesz
potentials imply the following [18, Chapter 5, Theorem 2].

Lemma 5. If p > d + 1 then the Riesz potential I1 is relatively compact from
Lp

loc(Rd+1) into Cloc(Rd+1). If 1 < p ≤ d + 1, then the Riesz potential I1 is
relatively compact from Lp

loc(Rd+1) into Lq
loc(Rd+1) for any q ∈ [1, p(d + 1)(d +

1− p)−1).

Finishing this review of the calculus of p.d.o.’s, we remark that, applying
Parseval’s theorem to the equality (3.10), we can equivalently define H-measures
by the formula

∫

Π×Sd

Φ1Φ̄2ψdµpq(x, t, y) =

lim
k↗∞

∫

Π

Φ1(fk(p)− f(p))A[Φ2(fk(q)− f(q))]dxdt, (5.7)

where A is the p.d.o. of zero order in Rd+1 with the principal symbol ψ.

6 Proof of Theorem 3. Part II: derivation of
equality (4.1)

We denote Uλ
k (x, t) := fk(x, t, λ)−f(x, t, λ) for simplicity of notations. On the

strength of the limiting relations (3.1), (3.2) and (5.1), we deduce from (2.2)
that

∫

Π×Rλ

(
ζt + aiλ(x, t, λ)ζxi − aixi(x, t, λ)ζλ + b′(λ)∂xi(aij(x, t)ζxj )

)
Uλ

k dxdtdλ

+
∫

Π×Rλ

ζλdHk = 0, (6.1)

where Hk := mk + b′(λ)nk −H and ζ is a test function defined in (2.2).
Let us multiply this integral equality by the factor

∫
Rp

ζ0(p)dp, where ζ0 ∈
C2

0 (R) is arbitrary. Since the linear span of the set {ζ(x, t, λ)ζ0(p)} is dense in
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C2
0 (Π× R2

λ,p), equality (6.1) yields that

∫

Π×R2
λ,p

(ζt + aiλ(x, t, λ)ζxi
− aixi

(x, t, λ)ζλ

+b′(λ)∂xi(aij(x, t)ζxj )
)
Uλ

k dxdtdλdp +
∫

Rp

∫

Π×Rλ

ζλdHkdp = 0, (6.2)

where ζ = ζ(x, t, λ, p) is smooth and finite.
The rest of the proof of validity of (4.1) is based on a special choice of the

test function in (6.2) and on the limiting transition, as k ↗ +∞.
We take ζ in the form

ζ(x, t, λ, p) = ζ1(x, t)ζ2(λ)(I2 ◦ A)[ζ3(·, ·, p)Up
k ](x, t), (6.3)

where ζ1 ∈ C2
0 (Π), ζ2 ∈ C2

0 (R), and ζ3 ∈ C2
0 (Π × Rp) are arbitrary, and A is

the p.d.o. of zero order with an arbitrary principal symbol ψ ∈ C1(Sd). In view
of the properties of pseudo-differential operators, that were stated in Section 5,
this choice of the test function is legal because all the integrals in (6.2) are well
defined.

Applying formulas (5.5) and (5.6) we obtain
∫

Π×R2
λ,p

(ζ1tζ2(I2 ◦ A)[ζ3U
p
k ] + ζ1ζ2(I1 ◦ A ◦ R0)[ζ3U

p
k ]

+ aiλ(x, t, λ)ζ1xiζ2(I2 ◦ A)[ζ3U
p
k ] + aiλ(x, t, λ)ζ1ζ2(I1 ◦ A ◦ Ri)[ζ3U

p
k ]

− aixi(x, t, λ)ζ1ζ2λ(I2 ◦ A)[ζ3U
p
k ] + b′(λ)aijxi(x, t)ζ1xj ζ2(I2 ◦ A)[ζ3U

p
k ]

+ b′(λ)aijxi(x, t)ζ1ζ2(I1 ◦ A ◦ Rj)[ζ3U
p
k ] + b′(λ)aij(x, t)ζ1xixj ζ2(I2 ◦ A)[ζ3U

p
k ]

+ 2b′(λ)aij(x, t)ζ1xiζ2(I1 ◦ A ◦ Rj)[ζ3U
p
k ]

+b′(λ)aij(x, t)ζ1ζ2(A ◦Ri ◦ Rj)[ζ3U
p
k ]) Uλ

k dxdtdλdp

+
∫

Rp

∫

Π×Rλ

ζ1ζ2λ(I2 ◦ A)[ζ3U
p
k ]dHk(x, t, λ)dp = 0. (6.4)

On the strength of Lemma 2, Up
k → 0 weakly* in L∞(Π) for any p ∈ E and

for a.e. p ∈ R, as k ↗ +∞. Using this limiting relation, applying Lebesgue’s
dominated convergence theorem, Lemma 4 and Lemma 5, and extracting a
proper subsequence from {k} ⊂ N, if necessary, we arrive at the equality

∫

R2
λ,p

lim
k↗+∞

∫

Π

b′(λ)aij(x, t)ζ1ζ2(A ◦Ri ◦ Rj)[ζ3U
p
k ]Uλ

k dxdtdλdp = 0. (6.5)

Using Theorem H and the fact that A◦Ri ◦Rj is the p.d.o. of zero order with
the principal symbol −ψ(y)yiyj , where y ∈ Sd, we derive from (6.5) that the
equality
∫

R2
λ,p

∫

Π×Sd

b′(λ)aij(x, t)ζ1(x, t)ζ2(λ)ζ3(x, t, p)ψ(y)yiyjdµpλ(x, t,y)dλdp = 0

(6.6)
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holds for all functions ζ1, ζ2, ζ3, and ψ that were defined in (6.3).
Now, we notice that the linear span of the set {ζ2(λ)ζ3(x, t, p)} is dense in

the space {ζ4 ∈ C2
0 (Π× R2

λ,p)} and we take Kruzhkov’s test function [7] for ζ4,

ζε
4(x, t, λ, p) :=

1
ε
ζ5(x, t)ζ6

(
λ− p

ε

)
ζ7

(
λ + p

2

)
, ε > 0, (6.7)

where ζ5 is smooth and finite in Π, ζ6 is nonnegative even infinitely smooth
and has a compact support in [−1, 1] and the mean value equal to one, i.e.∫

ζ6(λ)dλ = 1, and ζ7 is smooth and finite in R.
Changing the variable p by κ = p−λ

ε we deduce from (6.6) that

∫

R2
λ,κ

∫

Π×Sd

b′(λ)aijζ1ζ5ζ6(κ)ζ7

(
2λ + κε

2

)
ψ(y)yiyjdµλ(λ+κε)(x, t, y)dλdκ = 0.

(6.8)
On the strength of the properties of test functions ζ6 and ζ7, Lemma 2, item
2 of Lemma 3, and Lebesgue’s dominated convergence theorem, passing to the
limit as ε ↘ 0 we derive from (6.8) that

∫

Rλ

∫

Π×Sd

b′(λ)aij(x, t)ζ1(x, t)ζ5(x, t)ζ7(λ)ψ(y)yiyjdµλλ(x, t, y)dλ = 0,

which easily yields (4.1) due to arbitrariness of ζ1, ζ5, ζ7, and ψ.

7 Proof of Theorem 3. Part III: derivation of
equality (4.2)

Let us introduce the mollifying kernel ω ∈ C∞0 (R) which has the same proper-
ties, as the function ζ6 that was defined in the previous section. We denote

ωh(x) :=
1
hd

ω
(x1

h

)
. . . ω

(xd

h

)
, (. . .)h := (. . .) ∗ ωh,

Up
k,h(x, t) := (Up

k ∗ ωh)(x, t) =
∫

Rd

ωh(x− x̃)Up
k (x̃, t)dx̃,

and set
ζ(x, t, λ, p) = b′(p)

(
ζ1(I1 ◦ A)[ζ2U

p
k,h]

) ∗ ωh, (7.1)

where ζ1 = ζ1(x, t, p, λ) and ζ2 = ζ2(x, t) are arbitrary finite smooth functions
such that ζ1 is symmetric in λ and p, i.e. ζ1(x, t, λ, p) = ζ1(x, t, p, λ) for all
λ and p, and A is the p.d.o. of zero order with an arbitrary principal symbol
ψ ∈ C1(Sd).

Since Up
k,h is infinitely smooth in x, the defined by (7.1) function ζ is a legal

test function for (6.2). Substituting this function into (6.2) and using (5.5),
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(5.6) and the well known property of mollifying kernels 〈ϕ1h, ϕ2〉 = 〈ϕ1, ϕ2h〉
we deduce from (6.2) that

∫

Π×R2
λ,p

b′(p)
(
Uλ

k,hζ1t(I1 ◦ A)[ζ2U
p
k,h] + Uλ

k,hζ1(A ◦R0)[ζ2U
p
k,h]

+ (Uλ
k aiλ)hζ1xi(I1 ◦ A)[ζ2U

p
k,h] + (Uλ

k aiλ)hζ1(A ◦Ri)[ζ2U
p
k,h]

− (Uλ
k aixi)hζ1λ(I1 ◦ A)[ζ2U

p
k ] + b′(λ)(Uλ

k aijxi
)hζ1xj

(I1 ◦ A)[ζ2U
p
k,h]

+ b′(λ)(Uλ
k aijxi)hζ1(A ◦Rj)[ζ2U

p
k,h]

+ 2b′(λ)(Uλ
k aij)hζ1∂xi

(A ◦Rj)[ζ2U
p
k,h]

+ 2b′(λ)(Uλ
k aij)hζ1xi

(A ◦Rj)[ζ2U
p
k,h]

+b′(λ)(Uλ
k aij)hζ1xixj

(I1 ◦ A)[ζ2U
p
k,h]

)
dxdtdλdp

+
∫

Rp

∫

Π×Rλ

b′(p)
(
ζ1λ(I1 ◦ A)[ζ2U

p
k,h]

)
h

dHk(x, t, λ)dp = 0. (7.2)

Except for the terms involving the derivatives ∂xi(A ◦ Rj)[ζ2U
p
k,h], all the in-

tegrals in (7.2) are well defined, if we substitute Up
k,h by Up

k and (. . .)h by
(. . .) in them. Since Up

k,h(·, t) →
h↘0

Up
k (·, t) strongly in L1

loc(Rd), we conclude

that all these integrals converge to the integrals of the same forms with Up
k on

the places of Up
k,h and (. . .) on the places of (. . .)h. The limiting transition as

h ↘ 0 (and, after that, as k ↗ +∞) in the integrals involving the derivatives
∂xi(A ◦Rj)[ζ2U

p
k,h] are based on three following lemmas.

Lemma 6. Let A be the p.d.o. of zero order with a principle symbol ψ ∈ C1(Sd),
let B: L2(Rd+1) 7→ L2(Rd+1) be the operator of multiplication on a function
B ∈ C2

0 (Rd+1
x,t ), i.e. B[ϕ](x, t) = B(x, t)ϕ(x, t), ∀ϕ ∈ L2(Rd+1).

Then, the commutator [A,B] := A◦B−B ◦A is a continuous operator from
L2(Rd+1

x,t ) into W 1
2 (Rd+1

x,t ), and the operator ϕ 7→ ∂xi [A,B][ϕ] (i = 0, . . . , d) has
the structure

∂xi [A,B][ϕ] = (Aij ◦ Bj)[ϕ] + Ci[ϕ] ∀ϕ ∈ L2(Rd+1), (7.3)

where the summing over j is fulfilled from j = 0 to j = d, Aij is the p.d.o.
of zero order with the principal symbol ψij ∈ C(Sd), which is defined by the
principal symbol of A via the formula

ψij(ξ/|ξ|) = ξi
∂ψ(ξ/|ξ|)

∂ξj
, ξ ∈ Rd+1, (7.4)

Bj is the operator of multiplication on the function ∂xj B (x0 := t), and Ci:
L2(Rd+1) 7→ L2(Rd+1) is a compact operator.

Remark 3. In terms of variables yi := (ξi/|ξ|) ∈ Sd, the formula (7.4) takes
the shape ψij(y) = yi(δjl + yjyl)∂yl

ψ(y), were the summing over l is fulfilled
from l = 0 to l = d,
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Lemma 6 was proved in [13].

Lemma 7. The identity

2
∫

Π×R2
λ,p

b′(λ)b′(p)Uλ
k,haijζ1∂xi

(A ◦Rj)[ζ2U
p
k,h]dxdtdλdp

=
∫

Π×R2
λ,p

Uλ
k,hb′(λ)

(
aijζ1∂xi

[A ◦Rj ,Z2][b′(p)χUp
k,h]

+ aijζ1ζ2xi
(A ◦Rj)[b′(p)χUp

k,h]− (aijζ1)xi
ζ2(A ◦Rj)[b′(p)χUp

k,h]

−ζ2∂xi
[A ◦Rj ,Z1ij ][b′(p)χUp

k,h]
)

dxdtdλdp (7.5)

holds true for all ζ1, ζ2 and A introduced in (7.1).

In the formulation of Lemma 7, Z1ij and Z2 are the operators of multipli-
cation on the functions aijζ1 and ζ2, respectively, and χ(x, t) = χλ,p(x, t) =
1supp ζ1∩supp ζ2(x, t). Notice that χζ1 = ζ1 and χζ2 = ζ2.

Proof. The following chain of equalities holds true due to the properties of
p.d.o.’s from Section 5.

∫

Π×R2
λ,p

b′(λ)b′(p)Uλ
k,haijζ1∂xi(A ◦Rj)[ζ2U

p
k,h]dxdtdλdp (7.6)

= −
∫

Π×R2
λ,p

∂xi(U
λ
k,hb′(λ)aijζ1)(A ◦Rj)[b′(p)ζ2U

p
k,h]dxdtdλdp

= −
∫

Π×R2
λ,p

∂xi(U
λ
k,hb′(λ)aijζ1)[A ◦Rj ,Z2][b′(p)χUp

k,h]dxdtdλdp

−
∫

Π×R2
λ,p

∂xi(U
λ
k,hb′(λ)aijζ1)ζ2(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

=
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1∂xi [A ◦Rj ,Z2][b′(p)χUp

k,h]dxdtdλdp

−
∫

Π×R2
λ,p

∂xi(U
λ
k,hb′(λ)aijζ1ζ2)(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

+
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1ζ2xi(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

=
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1∂xi [A ◦Rj ,Z2][b′(p)χUp

k,h]dxdtdλdp

+
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1ζ2xi(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijxiζ1ζ2(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp
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−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1xiζ2(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

+
∫

Π×R2
λ,p

∂xi
(Uλ

k,hb′(λ)ζ2)[A ◦Rj ,Z1ij ][b′(p)χUp
k,h]dxdtdλdp

−
∫

Π×R2
λ,p

∂xi
(Uλ

k,hb′(λ)ζ2)(A ◦Rj)[b′(p)aijζ1U
p
k,h]dxdtdλdp

=
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1∂xi

[A ◦Rj ,Z2][b′(p)χUp
k,h]dxdtdλdp

+
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1ζ2xi

(A ◦Rj)[b′(p)χUp
k,h]dxdtdλdp

−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijxiζ1ζ2(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1xiζ2(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp

−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)ζ2∂xi [A ◦Rj ,Z1ij ][b′(p)χUp

k,h]dxdtdλdp

−
(∫

Π×R2
λ,p

Up
k,hb′(p)aijζ1∂xi(A ◦Rj)[b′(λ)ζ2U

λ
k,h]dxdtdλdp

)
. (7.7)

Notice that the integral in the brackets in (7.7) and the integral (7.6) are the
same to the renaming of variables p and λ since ζ1 is symmetric in p and λ.
Thus, the above chain of equalities yields the identity (7.5).

Lemma 8. The limiting relation

∂xi

(
(Uλ

k aij)h − Uλ
k,haij

) −→
h↘0

0 strongly in Lp
loc(Π) (7.8)

holds true for any p < +∞.

Proof. This lemma immediately follows from [19, Lemma II.1].
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Now, let us turn back to the limiting transition in (7.2), as h ↘ 0. We have
∫

Π×R2
λ,p

2b′(p)b′(λ)(Uλ
k aij)hζ1∂xi(A ◦Rj)[ζ2U

p
k,h]dxdtdλdp

= −
∫

Π×R2
λ,p

2b′(p)b′(λ)∂xi

(
(Uλ

k aij)h − Uλ
k,haij

)
ζ1(A ◦Rj)[ζ2U

p
k,h]dxdtdλdp

+
∫

Π×R2
λ,p

2b′(p)b′(λ)Uλ
k,haijζ1∂xi

(A ◦Rj)[ζ2U
p
k,h]dxdtdλdp (7.9)

= −
∫

Π×R2
λ,p

2b′(p)b′(λ)∂xi

(
(Uλ

k aij)h − Uλ
k,haij

)
ζ1(A ◦Rj)[ζ2U

p
k,h]dxdtdλdp

(7.10)

+
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1∂xi [A ◦Rj ,Z2][b′(p)χUp

k,h]dxdtdλdp (7.11)

+
∫

Π×R2
λ,p

Uλ
k,hb′(λ)aijζ1ζ2xi(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp (7.12)

−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)(aijζ1)xiζ2(A ◦Rj)[b′(p)χUp

k,h]dxdtdλdp (7.13)

−
∫

Π×R2
λ,p

Uλ
k,hb′(λ)ζ2∂xi [A ◦Rj ,Z1ij ][b′(p)χUp

k,h]dxdtdλdp (7.14)

−→
h↘0∫

Π×R2
λ,p

Uλ
k b′(λ)aijζ1∂xi [A ◦Rj ,Z2][b′(p)χUp

k ]dxdtdλdp (7.15)

+
∫

Π×R2
λ,p

Uλ
k b′(λ)aijζ1ζ2xi(A ◦Rj)[b′(p)χUp

k ]dxdtdλdp (7.16)

−
∫

Π×R2
λ,p

Uλ
k b′(λ)(aijζ1)xiζ2(A ◦Rj)[b′(p)χUp

k ]dxdtdλdp (7.17)

−
∫

Π×R2
λ,p

Uλ
k b′(λ)ζ2∂xi [A ◦Rj ,Z1ij ][b′(p)χUp

k ]dxdtdλdp (7.18)

On the strength of Lemma 8, the integral (7.10) vanishes, as h ↘ 0. On the
strength of Lemmas 6 and 7, (7.9) has the representation (7.11)–(7.14) and
tends to the sum (7.15)–(7.18), as h ↘ 0. Aggregating all the above established
limiting relations, we deduce from (7.2) that the following integral equality holds
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true, as h ↘ 0:
∫

Π×R2
λ,p

b′(p)
(
Uλ

k ζ1t(I1 ◦ A)[ζ2U
p
k ] + Uλ

k ζ1(A ◦R0)[ζ2U
p
k ]

+ Uλ
k aiλζ1xi

(I1 ◦ A)[ζ2U
p
k ] + Uλ

k aiλζ1(A ◦Ri)[ζ2U
p
k ]

− Uλ
k aixi

ζ1λ(I1 ◦ A)[ζ2U
p
k ] + b′(λ)Uλ

k aijxiζ1xj (I1 ◦ A)[ζ2U
p
k ]

+ b′(λ)Uλ
k aijxi

ζ1(A ◦Rj)[ζ2U
p
k ] + b′(λ)Uλ

k aijζ1∂xi
[A ◦Rj ,Z2][χUp

k ]

+ b′(λ)Uλ
k aijζ1ζ2xi

(A ◦Rj)[χUp
k ]− b′(λ)Uλ

k (aijζ1)xi
ζ2(A ◦Rj)[χUp

k ]

− b′(λ)Uλ
k ζ2∂xi

[A ◦Rj ,Z1ij ][χUp
k ] + 2b′(λ)Uλ

k aijζ1xi
(A ◦Rj)[ζ2U

p
k ]

+b′(λ)Uλ
k aijζ1xixj (I1 ◦ A)[ζ2U

p
k ]

)
dxdtdλdp

+
∫

Rp

∫

Π×Rλ

b′(p)ζ1λ(I1 ◦ A)[ζ2U
p
k ]dHk(x, t, λ)dp = 0. (7.19)

Using Theorem H, Lemmas 4, 5 and 6, and Lebesgue’s theorem on dominated
convergence, we pass to the limit in (7.19), as k ↗ +∞, (extracting a proper
subsequence {k} ⊂ N, if necessary):

∫

Π×Sd×R2
λ,p

b′(p) (ζ1(x, t, λ, p)ζ2(x, t)ψ(y)y0

+ aiλ(x, t, λ)ζ1(x, t, λ, p)ζ2(x, t)ψ(y)yi

+ b′(λ)aij(x, t)ζ1(x, t, λ, p) (ψyr (y) + yrylψyl
(y) + yrψ(y)) yiyjζ2xr (x, t)

+ 2b′(λ)aij(x, t)ζ1(x, t, λ, p)ζ2xi(x, t)ψ(y)yj

− b′(λ)aijxr (x, t)ζ1(x, t, λ, p) (ψyr (y) + yrylψyl
(y) + yrψ(y)) yiyjζ2(x, t)

− b′(λ)aij(x, t)ζ1xr (x, t, λ, p) (ψyr (y) + yrylψyl
(y) + yrψ(y)) yiyjζ2(x, t)

−b′(λ)aijxj (x, t)ζ1(x, t, λ, p)ζ2(x, t)ψ(y)yi

)
dµλp(x, t, y)dλdp = 0. (7.20)

Choosing the test function ζ2 = ζ2N such that ‖ζ2N‖C1(Π) ≤ c and ζ2N → 1
pointwise in Π, as N ↗ +∞, on the strength of Lebesgue’s dominated conver-
gence theorem, we easily conclude that ζ2 ≡ 1 is a valid test function for (7.20).
In turn, we take the test function ζ1 in the form (6.7) which is a valid choice.
Passing to the limit, as ε ↘ 0, and using the same arguments, as in Section 6,
we derive from (7.20) that the equality

∫

Π×Sd×Rλ

(b′(λ))2ζ5ζ7(λ)ψ(y)
(
y0 + (aiλ − aijxj yi

)
dµλλ(x, t, y)dλ

−
∫

Π×Sd×Rλ

(b′(λ))2ζ5xrζ7(λ)aij (ψyr (y)

+yrylψyl
(y) + yrψ(y)) yiyjdµλλ(x, t, y)dλ

−
∫

Π×Sd×Rλ

(b′(λ))2ζ5ζ7(λ)aijxr (ψyr (y)

+yrylψyl
(y) + yrψ(y)) yiyjdµλλ(x, t, y)dλ = 0 (7.21)
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holds for arbitrary functions ζ5 ∈ C1
0 (Π) and ζ7 ∈ C0(R).

The second integral in (7.21) vanishes due to equality (4.1). The third
integral in (7.21) has the representation

∫

Π×Sd×Rλ

(b′(λ))2ζ5(x, t)ζ7(λ)aijxr
(x, t) (ψyr

(y)

+yrylψyl
(y) + yrψ(y)) yiyjdµλλ(x, t, y)dλ

=
∫

Rλ

(b′(λ))2ζ7(λ)
∫

Π

ζ5(x, t)
∫

Sd

aijxr
(x, t) (ψyr

(y)

+yrylψyl
(y) + yrψ(y)) yiyjdσλλ

x,t(y)dxdtdλ (7.22)

on the strength of item 4 of Lemma 3. On the strength of item 4 of Lemma 3
and equality (4.1), we have that the support of the measure σλλ

x,t lays entirely
in the set {y ∈ Sd : aij(x, t)yiyj = 0} for a.e. (x, t) ∈ Π. On the other hand,
for any y ∈ Sd, the intersection of the sets {(x, t) ∈ Π : aij(x, t)yiyj = 0} and
{(x, t) ∈ Π : aijxr (x, t)yiyj 6= 0} has zero Lebesgue measure. This observation
and the fact that σλλ ∈ L2

w(Π,M(Sd)) imply that the function

(x, t) 7→
∫

Sd

aijxr (x, t) (ψyr (y) + yrylψyl
(y) + yrψ(y)) yiyjdσλλ

x,t(y)

vanishes for a.e. (x, t) ∈ Π. Thus, the third integral in (7.21) vanishes. Hence,
(7.21) yields that

∫

Π×Sd×Rλ

(b′(λ))2ζ5ζ7ψ
(
y0 + (aiλ(x, t, λ)− aijxj (x, t))yi

)
dµλλdλ = 0 (7.23)

which, in turn, easily yields (4.2) due to arbitrariness of ζ5, ζ7 and ψ.

8 Proof of Theorem 2

Condition G and Theorem 3 imply that the H-measure µλλ is zero measure for
a.e. λ ∈ R. This fact and item 4 of Lemma 3 yield that fk(·, ·, λ) −→

k↗+∞
f(·, ·, λ)

strongly in L1
loc(Π) for a.e. λ ∈ R and therefore pointwise in Π× Rλ. Since fk

takes only two values, 0 and 1, and f is monotonous nondecreasing and right
continuous in λ for a.e. (x, t), and f ≡ 0 for λ < −u∗ and f ≡ 1 for λ ≥ u∗,
this means that f has the form

f(x, t, λ) =
{

1, for λ ≥ ũ(x, t),
0, for λ < ũ(x, t), (8.1)

with some function ũ ∈ L∞(Π), ‖ũ‖L∞ ≤ u∗. Formula (2.3) and the limiting
relations (3.1) and (3.2) yield that ũ coincide with u = w- lim

k↗+∞
uk and that

‖uk‖L2(Q) −→
k↗+∞

‖u‖L2(Q) for any bounded measurable set Q ∈ Π. In turn, this

yields that uk −→
k↗+∞

u strongly in L2
loc(Π) and thus in L1

loc(Π). Theorem 2 is

proved.
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9 Proof of Theorem 1

We introduce the parabolic approximation of (1.1)

ut + ∂xiai(x, t, u)− ∂xi(aij(x, t)∂xj b(u))− ε∂2
xixi

u = 0, ε > 0, (9.1)

endowed with initial data (1.1b).
It follows from the general theory of the second order parabolic equations

[1] that the problem (9.1), (1.1b) has a unique smooth solution uε for any
fixed ε > 0. The maximum principle and the first energy estimate imply the
inequalities

−u∗ ≤ uε ≤ u∗ a.e. in Π, (9.2)
‖αij∇xuε‖2L2(Q) + ε‖∇xuε‖2L2(Q) ≤ c(Q), (9.3)

where Q ⊂ Π is a bounded domain with sufficiently smooth boundary and the
constant c(Q) does not depend on ε.

We observe that (9.1) admits the kinetic formulation (2.1) with

dmε(x, t, λ) = ε∂xiuε∂xiuεdγuε(x,t)(λ)dxdt (9.4)

and that it is possible to choose a subsequence ε = εk such that the weak limiting
relations (3.1) and (3.2) hold true for uεk

and fεk
. Using the same arguments,

as in Sections 4–8, we prove that

uεk
−→

k↗+∞
u strongly in L1

loc(Π) (9.5)

after extracting one more subsequence εk (if necessary).
Multiplying the both sides of (9.1) on ζϕ′(u), where ζ ∈ C2(Π) is an arbi-

trary nonnegative function vanishing near the plane {t = T} and finite in x and
ϕ ∈ C2

loc(R) is an arbitrary convex function, and integrating on Π, we arrive at
the equality

∫

Π

(ζtϕ(uε) + ζxiqi(x, t, uε)− ζϕ′(uε)Dxiai(x, t, uε)

+ ζDxiqi(x, t, uε) + w(uε)∂xi(aij(x, t)∂xj ζ)
− ζϕ′′(uε)b′(uε)(αil(x, t)∂xiuε)(αlj(x, t)∂xj uε)

+εϕ(uε)∂2
xixi

ζ − εζϕ′′(uε)∂xiuε∂xiuε

)
dxdt

+
∫

Rd

ϕ(u0)ζ(x, 0)dx ≥ 0. (9.6)

On the strength of the limiting relation (9.5), the inequality
∫

Π

εζϕ′′(uε)∂xiuε∂xiuεdxdt ≥ 0,
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and the lower semicontinuity property (see, for example, [20, Chapter 1, §1.1.3,
Definition; Chapter 2, §2.3, Proposition 2.3.2])

lim inf
ε↘0

∫

Π

ζϕ′′(uε)b′(uε)(αil(x, t)∂xi
uε)(αlj(x, t)∂xj

uε)dxdt

≥
∫

Π

ζϕ′′(u)b′(u)(αil(x, t)∂xiu)(αlj(x, t)∂xj u)dxdt,

as εk ↘ 0, we derive the inequality (1.9) from the equality (9.6), which completes
the proof of Theorem 1.

A On the generalization to the case b′(u) ≥ 0

The restriction to the case when b′(u) > 0 is not fundamental, i.e. arguments
in the paper can be generalized (in a natural way) to the case when b′(u) may
vanish in some points or on some intervals, i.e. when the condition (1.4) is
substituted by the condition

b ∈ C2
loc(R), b′(u) ≥ 0, ∀u ∈ R. (A.1)

Consequently, Theorems 1 and 2 hold true for this case as well and the corre-
sponding genuine nonlinearity condition has the following shape.

Condition G2. The functions ai, aij and b are such that the Lebesgue measure
of the intersection of the sets

I1 := {(x, t, λ) ∈ Π× Rλ | b′(λ)aij(x, t)ξiξj = 0}

and

I2 := {(x, t, λ) ∈ Π× Rλ | τ +
(
aiλ(x, t, λ) + b′(λ)aijxj (x, t)

)
ξi = 0}

is equal to zero for any fixed (ξ, τ) ∈ Sd.
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