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Abstract

We investigate the equation (ut + (f(u))x)x = f ′′(u)(ux)2/2 where f(u)

is a given smooth function. Typically f(u) = u2/2 or u3/3. This equation

models unidirectional and weakly nonlinear waves for the variational wave

equation utt − c(u)(c(u)ux)x = 0 which models some liquid crystals with a

natural sinusoidal c. The equation itself is also the Euler-Lagrange equation

of a variational problem. Two natural classes of solutions can be associated

with this equation. A conservative solution will preserve its energy in time,

while a dissipative weak solution loses energy at the time when singularities

appear. Conservative solutions are globally defined, forward and backward

in time, and preserve interesting geometric features, such as the Hamilto-

nian structure. On the other hand, dissipative solutions appear to be more

natural from the physical point of view.
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We establish the well-posedness of the Cauchy problem within the class

of conservative solutions, for initial data having finite energy and assuming

that the flux function f has Lipschitz continuous second-order derivative.

In the case where f is convex, the Cauchy problem is well-posed also within

the class of dissipative solutions. However, when f is not convex, we show

that the dissipative solutions do not depend continuously on the initial data.

1. Introduction

A nonlinear variational wave equation whose wave speed is a sinusoidal

function of the wave amplitude arises in the study of nematic liquid crystals.

It is given by

∂2
t ψ − c(ψ)∂x(c(ψ)∂xψ) = 0, (1)

with

c2(ψ) = α sin2(ψ) + β cos2(ψ), (2)

where α and β are positive physical constants. We refer the reader to [11],

[12], and [14] for background information on the equation. Glassey, Hunter,

and Zheng [10] have shown that singularities can form from smooth data for

equation (1)-(2). Assuming that the wave speed c(·) is a monotone increas-

ing function, the global existence of (dissipative) weak solutions has been

established in [19], [20], [21], and [23]. The general problem of the global

existence and uniqueness of conservative solutions to the Cauchy problem

of equation (1) will be addressed in a forthcoming paper [3].
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The study of solutions to (1)-(2) consisting of a small-amplitude and

high-frequency perturbation of a constant state has greatly contributed to

the understanding of this equation [10], [19], [20], [21], and [23]. Hunter and

Saxton first studied these waves in [12]. Given a constant state a, these

perturbed solutions take the form

ψ(t, x) = a+ εu(εt, x− c(a)t) +O(ε2).

Hunter and Saxton found that u(·, ·) satisfies

(ut + unux)x =
1
2
nun−1u2

x (3)

up to a scaling and reflection of the independent variables, assuming that

a is such that c(k)(a) = 0, k = 1, 2, . . . n− 1, but c(n)(a) 6= 0, for an integer

n ≥ 1. In connection with our sinusoidal function c modeling nematic liquid

crystals in (2), the relevant approximations in (3) are those with n = 1, 2.

The case n = 1 yields the first-order asymptotic equation

(ut + uux)x =
1
2
u 2
x , (4)

for which existence and uniqueness of admissible conservative and dissipa-

tive weak solutions have both been established, see [13], [16], [17], and [18].

This equation is also an asymptotic equation of the Camassa-Holm equa-

tion [4], describing the motion of solitary waves in shallow water. For recent

literature on the Camassa-Holm equation, we refer the reader to [5], [6], [7],

[8], [9], [15], and in particular [2].

The case n = 2 yields the second-order asymptotic equation

(ut + u2ux)x = uu2
x . (5)
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In [22] Zhang and Zheng established that dissipative solutions exist for (5)

with BV data. In the analysis of (1), a major difficulty is concentration

of energy at points where c′ = 0, as in the example on p. 70 of [10]. We

hope that investigation of singularities of the same type for the second-order

asymptotic equation will be helpful toward the understanding of the original

equation (1).

Rather than (3), in the present paper we study a somewhat more general

class of equations, having the form

(ut + f(u)x)x =
1
2
f ′′(u)u2

x . (6)

Here u = u(t, x) is a scalar function defined for (t, x) ∈ R+ × R+ where

R+
.= [0,∞[ , and f is a C2 function. More restrictions on f will be specified

later. As initial and boundary data we take

u(0, x) = ū(x) , u(t, 0) = 0 . (7)

Integrating equation (6) w.r.t. x, we obtain

ut + f(u)x =
1
2

∫ x

0

f ′′(u)u2
x dx . (8)

It is now clear that, to make sense of this equation, we should require that

the function u(t, ·) be absolutely continuous with derivative ux(t, ·) locally

square integrable, for every fixed time t. Moreover, to satisfy the boundary

condition at x = 0, one needs the nonnegativity of the characteristic speed

at u = 0, namely

f ′(0) ≥ 0. (9)
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The local integrability assumption ux(t, ·) ∈ L2
loc(R+) imposes a certain

degree of regularity on the function u. Therefore, there is no need to consider

weak solutions in distributional sense and a stronger concept of solution can

be adopted.

Definition 1.1 A function u = u(t, x)) defined on [0, T ]× R+ is a solu-

tion of the initial-boundary value problem (7) –(9) if the following holds.

(i) The function u is locally Hölder continuous w.r.t. both variables t, x. The

initial and boundary conditions (7) hold pointwise. For each time t, the map

x 7→ u(t, x) is absolutely continuous with ux(t, ·) ∈ L2
loc(R+).

(ii) For any M > 0, consider the restriction of u to the interval x ∈ [0,M ].

Then the map t 7→ u(t, ·) ∈ L2([0,M ]) is absolutely continuous and satisfies

the equation

d

dt
u(t, ·) = −f ′(u)ux +

1
2

∫ ∗
0

f ′′(u)u2
x dx (10)

for a.e. t ∈ [0, T ]. Here equality is understood in the sense of functions in

L2([0,M ]).

In spite of the regularity assumptions, the requirements contained in the

above definition are still not enough to single out a unique solution. Let us

consider a simple example.

Example 1. Consider the flux f(u) = u2 and choose the initial data

u(0, x) =


−x, 0 ≤ x ≤ 1,

−1, x > 1.
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For t ∈ [0, 1[ , a solution to (8) can be constructed by the method of char-

acteristics, namely

u(t, x) =


−x/(1− t), 0 ≤ x ≤ (1− t)2,

−(1− t), x ≥ (1− t)2.

Notice that the norm of the gradient ‖ux(t)‖L∞ blows up as t → 1. For

t = 1 we have u(1, x) = 0 for all x ≥ 0. At this stage, there are infinitely

many ways to further prolong the solution. For example, we could set

u(t, x) ≡ 0 , t ≥ 1 , x ≥ 0 . (11)

Or else we could choose an arbitrary point b ≥ 0, an arbitrary amount of

energy k > 0 and a time τ ≥ 1 and define

u(t, x) = 0 for 1 ≤ t ≤ τ ,

while for t > τ ,

u(t, x) =


0 , 0 ≤ x ≤ b,

(x− b)/(t− τ) , b ≤ x ≤ k(t− τ)2 + b,

k(t− τ) , x > b+ k(t− τ)2.

Among all these solutions, two in particular can be singled out. If we insist

that the future configurations u(t, ·) for t > 1 should be entirely determined

only by the present configuration u(1, ·), then the only reasonable choice is

(11). On the other hand, if we look for solutions that satisfy the additional

conservation equation

(u2
x)t + (2uu2

x)x = 0 ,
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the natural choice should be

u(t, x) =


x/(t− 1), 0 ≤ x ≤ (t− 1)2 ,

t− 1, x ≥ (t− 1)2 ,

t > 1 .

To express the fact that at time t = 1 this solution is different from the null

solution, in some way we should think its derivative ux as being not the

zero function but the square root of a Dirac distribution at the origin. �

In the following, we say that a solution u = u(t, x) is dissipative if

the family of absolutely continuous measures {µ(t) ; t ≥ 0} defined by

dµ(t) = u2
x(t) dx provides a measure-valued solution to

wt + (f ′(u)w)x ≤ 0. (12)

More precisely, we require that

∫
φ(t, ·) dµ(t)

∣∣∣t2
t1
≤
∫ t2

t1

[∫
[φt(t, ·) + φx(t, ·) f ′(u(t, ·))] dµ(t)

]
dt (13)

for every t2 > t1 ≥ 0 and any function φ ∈ C1
c , φ ≥ 0.

On the other hand, to define a semigroup of conservative solutions we

need to consider a domain D of couples (u, µ) where u : R+ 7→ R is an

absolutely continuous function with square integrable derivative and µ is

a nonnegative measure on R+. Decomposing µ = µa + µs as a sum of an

absolutely continuous and a singular part (w.r.t. Lebesgue measure), we

shall require that dµa = u2
x dx. We say that a map t 7→ (u(t), µ(t)) ∈ D is a

conservative solution of (7)-(9) if u is a solution according to Definition

1.1 and (13) is satisfied as an equality for all t2 > t1 ≥ 0 and φ ∈ C1
c .
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As mentioned earlier, Zhang and Zheng have established in [22] the

finite-time singularity formation in smooth solutions and the global exis-

tence of a dissipative weak solution to (7)–(9) with initial data ū(x) whose

derivative is in BV , for f(u) = u3/3.

In the present paper, we consider a general flux f with Lipschitz con-

tinuous second-order derivative such that f ′(0) ≥ 0. The initial data are

chosen in the set of absolutely continuous functions ū with ū(0) = 0 and

ūx ∈ L2(R+). Our main results can be summarized as follows.

1. A flow of conservative solutions can be globally defined, forward and

backward in time (Theorem 3.1). The conservative solution of the initial-

boundary value problem (7)–(9) is unique, provided that a suitable non-

degeneracy condition is satisfied (Theorem 4.1).

2. Assuming, in addition, that the flux f is convex, then there also exists

a continuous semigroup of dissipative solutions. The dissipative solution of

the initial-boundary value problem (7)–(9) is unique (Theorem 5.1).

3. If the flux f is not convex, the dissipative solutions do not depend con-

tinuously on the initial data, in general (see Example 2 in Section 6).

Before proving the main results in Section 3, we briefly discuss the ac-

tion principle and some admissibility conditions, whose aim is to identify a

unique physically relevant solution to equations (7)–(9).
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2. Remarks on admissibility conditions

The decay estimate

ux(t, x) ≤ 2/t

was used as an admissibility criterion for dissipative solutions of the first-

order asymptotic equation in [13], [16], [17], and [18]. We remark, however,

that this is not appropriate in connection with dissipative solutions of (6).

Indeed, for a solution of the second-order asymptotic equation, the gradient

ux can approach +∞ as well as −∞.

Another common criteria for selecting physically admissible solutions is

by vanishing viscosity. One might conjecture that dissipative solutions are

precisely the limits of vanishing viscosity approximations. We believe this

is indeed the case when the flux function f is convex, see some proofs in

[13] and [15] for f = u2/2. On the other hand, when f is not convex, the

dissipative solutions do not depend continuously on the initial data (see

Section 6). We observe that the set of vanishing viscosity limits is closed,

connected, and depends on the initial data in an upper semicontinuous

way. Therefore, by a topological argument, the vanishing viscosity criterion

cannot single out a unique limit, in general.

Concerning the vanishing dispersion limit, numerical experiments per-

formed with a convex f seem to indicate that vanishing dispersion selects

the conservative solutions, see [13].
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Next, we discuss the admissibility of solutions in terms of a variational

principle. For all asymptotic equations (3) we have the action functionals

An
.=
∫ t2

t1

∫
[uxut + un(ux)2] dx dt . (14)

In other words, the Euler-Lagrange equations satisfied by functions u that

render stationary the action An are precisely the asymptotic equations (3).

These can be derived from the nonlinear variational wave equation (1)

ψtt − c(ψ)(c(ψ)ψx)x = 0 (15)

by a perturbation argument. Notice that (15) is the Euler-Lagrange equation

corresponding to the Lagrangean

L = ψ2
t − c2(ψ)ψ2

x. (16)

This arises often in physical models. For weakly nonlinear waves of the form

ψ = ψ0 + εu(τ, θ) + ε2v(τ, θ) +O(ε3)

with

τ = εt , θ = x− c0t , c0
.= c(ψ0) ,

assuming that c′0
.= c′(ψ0) 6= 0 we have

ψtt − c(ψ)(c(ψ)ψx)x = −2c0ε2
{

(uτ + c′0uuθ)θ −
1
2
c′0u

2
θ

}
+O(ε3) .

Moreover

ψ2
t − c2(ψ)ψ2

x = −2c0ε3[uτuθ + c′0uu
2
θ] +O(ε4).

Therefore, u satisfies the first order asymptotic equation. The corresponding

Lagrangean, approximated to order O(ε3), is −(uτuθ + c′0uu
2
θ).
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At first sight, one might hope that the physically relevant solutions to

the equations (3) are those which maximize (or minimize) the action in (14).

Unfortunately this is not the case, because the action An is not coercive.

For any smooth solution u of (3) one can find compactly supported pertur-

bations u+ εv which increase the value of An, and others which decrease it.

The extremality of the action thus cannot be used as a selective criterion.

3. Conservative solutions

We consider the evolution problem described by the equation

ut + f(u)x =
1
2

∫ x

0

f ′′(u)u2
x dx for all t ≥ 0 , x ≥ 0, (17)

together with the boundary conditions

u(t, 0) = 0 for all t ≥ 0 . (18)

We assume that f ∈ C2(R) and

f ′(0) ≥ 0, |f ′′(u)− f ′′(v)| ≤ L|u− v|, ∀u, v ∈ R (19)

for a constant L.

One easily checks that every smooth solution satisfies the additional

conservation law for the “energy” u2
x, namely

(u2
x)t +

[
f ′(u)(u2

x)
]
x

= 0 . (20)

It is therefore natural to seek a continuous flow associated with (17)-(18)

which preserves the energy
∫∞

0
u2
x(t, x) dx. However, Example 1 in the In-

troduction already pointed out a basic difficulty which one encounters while
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constructing a semigroup in the space H1
loc . Indeed, when the gradient ux

blows up, all the energy is concentrated at a single point, so that the measure

u2
x dx approaches a Dirac mass.

Motivated by this example, to the equations (17)-(18) we will associate

an evolution semigroup on a domain D defined as follows. An element of D

is a couple (u, µ), where u : R+ 7→ R is a continuous function with u(0) = 0

and whose distributional derivative ux lies in L2, while µ = µa + µs is a

bounded nonnegative Radon measure on R+ , whose absolutely continuous

part (w.r.t. Lebesgue measure) satisfies

dµa = u2
x dx . (21)

In the following, on the family of Radon measures on R+ we consider the

distance

d(µ, µ̃) .= sup
ϕ

∣∣∣∣∫ ϕdµ−
∫
ϕdµ̃

∣∣∣∣ , (22)

where the supremum is taken over all smooth functions ϕ with |ϕ| ≤ 1,

|ϕx| ≤ 1.

We recall that a semigroup S on a domain D is a map S : D×[0,∞[ 7→ D

such that S0w = w and Ss(Stw) = Ss+tw for every s, t ≥ 0 and w ∈ D.

Theorem 3.1 Assume that the flux function f satisfies condition (19).

Then there exists a semigroup S : D × [0,∞[ 7→ D with the following prop-

erties. Calling t 7→ St(ū, µ̄) = (u(t), µ(t)) the trajectory corresponding to an

initial data (ū, µ̄) ∈ D, one has:
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(i) The function u = u(t, x) is locally Hölder continuous in R+ × R+.

It provides a solution of (17)-(18) in the sense of Definition 1.1 with initial

condition

u(0, x) = ū(x) . (23)

(ii) The assignment t 7→ µ(t) provides a measure valued solution to the

linear transport equation

wt +
[
f ′(u)w

]
x

= 0 , w(0) = µ̄ . (24)

Moreover, the singular part of the measure f ′′(u(t)) ·µ(t) vanishes at almost

every time t ≥ 0:

f ′′(u(t))µs(t) = 0, a. e. t. (25)

(iii) (Temporal continuity) For every M > 0, the above solution u and

the corresponding measure µ satisfy the Lipschitz continuity property:∫ M

0

|u(t, x)− u(s, x)| dx ≤ C|t− s|, (26)

d(µ(t) , µ(s)) ≤ C|t− s|,

where the constant C depends only on M , the flux f , and the total energy

µ̄(R+) <∞.

(iv) (Continuous dependence on the initial data) Finally, consider a se-

quence of initial conditions (ūn, µ̄n) ∈ D with ūn → ū uniformly on bounded

sets and d(µ̄n, µ̄)→ 0 as n→∞, for some (ū, µ̄) ∈ D. Then the correspond-

ing solutions satisfy

un(t, x)→ u(t, x) (27)
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uniformly for t, x in bounded sets, while

d(µn(t), µ(t))→ 0 (28)

for every t > 0.

Proof. We treat here the case where µ̄ has compact support, say contained

in the interval [0, R], so that ū is constant for x > R. The general case

follows by an easy approximation argument. The proof will be given in

several steps.

1. Construction of the solution. Let an initial data (ū, µ̄) ∈ D be given.

Set ξ̄ .= µ̄(R+) < ∞. On the semi-infinite strip
{
t ≥ 0 , ξ ∈ [0, ξ̄]

}
we con-

struct a function U = U(t, ξ) by first setting

U(0, ξ) = U(ξ) .= ū (ȳ(ξ)) , (29)

where

ȳ(ξ) .= inf
{
x ≥ 0 ; µ̄ ([0, x]) ≥ ξ

}
(30)

for 0 < ξ ≤ ξ̄, while

ȳ(0) = sup{x ; µ̄ ([0, x]) = 0} . (31)

Observe that the map ξ 7→ ȳ(ξ) is nondecreasing and left continuous, but

it may well have upward jumps. The provision (31) makes it continuous at

the point ξ = 0. In any case, the composed function ξ 7→ ū(ȳ(ξ)) is always

continuous. For positive times, the function U is then defined to be the

solution of

∂U

∂t
(t, ξ) =

1
2

∫ ξ

0

f ′′(U(t, η)) dη (32)
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with initial data (29). By the assumption of Lipschitz continuity of f ′′,

the function U can be obtained as the unique fixed point of a contractive

transformation. Details will be given at the next step.

Having constructed U(t, ξ), the characteristic curves are obtained by

solving the equation

y(0, ξ) = ȳ(ξ) ,
∂y

∂t
(t, ξ) = f ′(U(t, ξ)) . (33)

Explicitly:

y(t, ξ) = ȳ(ξ) +
∫ t

0

f ′(U(τ, ξ)) dτ. (34)

Notice that t 7→ U(t, ξ) yields the values of our solution u along the char-

acteristic curve t 7→ y(t, ξ) starting at ȳ(ξ). A remarkable feature of equation

(17) is that, if the energy is conserved, then these values can be determined

in advance, before computing the actual position of the characteristic curve.

The image of the mapping

ξ → (y(t, ξ), U(t, ξ))

is now contained inside the graph of the desired solution u(t, ·). More pre-

cisely, for any given (t, x) we define

u(t, x) = U(t, ξ(t, x)), (35)

where

ξ(t, x) .= sup {ξ ; y(t, ξ) ≤ x} .

Finally, at time t the corresponding measure µ(t) is defined as the push-

forward of the Lebesgue measure on [0, ξ̄ ] through the mapping ξ 7→ y(t, ξ).
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For each Borel set J ⊂ R+ we thus define

µ(t)(J) .= meas
{
ξ ∈ [0, ξ̄ ] ; y(t, ξ) ∈ J

}
. (36)

2. A contractive transformation. Consider the space of continuous func-

tions C([0,∞[×[0, ξ̄ ]), with the equivalent weighted norm

‖U‖∗
.= sup
t≥0, ξ∈[0,ξ̄ ]

e−Lξ̄t |U(t, ξ)| , (37)

where L is a Lipschitz constant for the function f ′′. The transformation

U 7→ T U is defined as

T U (t, ξ) .= ū(ȳ(ξ)) +
1
2

∫ t

0

∫ ξ

0

f ′′(U(s, η)) dη ds . (38)

If now ‖U − V ‖∗ = δ, then

∣∣∣f ′′(U(τ, η))− f ′′(V (τ, η))
∣∣∣ ≤ L|U(τ, η)− V (τ, η)| ≤ LeLξ̄τδ .

For every t ≥ 0 and ξ ∈ [0, ξ̄ ] we thus have

|(T U − T V )(t, ξ)| ≤ 1
2

∫ t

0

[∫ ξ

0

LeLξ̄τ δ dη

]
dτ ≤ 1

2

∫ t

0

Lξ eLξ̄τ δ dτ <
1
2
eLξ̄t δ .

By the above inequality we conclude

‖T U − T V ‖∗ ≤
1
2
‖U − V ‖∗ ,

proving the contractivity of the map T . By the contraction mapping the-

orem, it admits a unique fixed point U = U(t, ξ), defined on R+ × [0, ξ̄ ] .

In turn, the function u = u(t, x) and the measures µ(t) are well defined by

(35)-(36).
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3. Absolute continuity. We prove here that the map ξ 7→ U(t, ξ) is abso-

lutely continuous, for each t ≥ 0. Indeed, consider first the case t = 0. Let

[ξk, ξ′k], with k = 1, . . . , N , be disjoint intervals contained in [0, ξ̄ ]. Assume

that ∑
k

|ξ′k − ξk| ≤ ε .

Call I1 the set of indices k such that

|U(ξ′k)− U(ξk)|
y(ξ′k)− y(ξk)

≤
√
ε

and let I2 be the set of indices where the above quantity is >
√
ε. Then

∑
k∈I1

|U(ξ′k)− U(ξk)| ≤
√
ε ·
∑
k∈I1

|y(ξ′k)− y(ξk)| ≤
√
εR ,

while

∑
k∈I2

|U(ξ′k)− U(ξk)| ≤ 1√
ε

∑
k∈I2

|U(ξ′k)− U(ξk)|2

y(ξ′k)− y(ξk)
≤ 1√

ε
·
∑
k∈I2

∫ y(ξ′k)

y(ξk)

u2
x dx

≤ 1√
ε

∑
k∈I2

|ξ′k − ξk| ≤
√
ε .

Together, the two above inequalities yield

N∑
k=1

|U(ξ′k)− U(ξk)| ≤ (1 +R)
√
ε ,

proving the absolute continuity of the map ξ 7→ U(0, ξ).

For t > 0, the absolute continuity of U(t, ·) follows from the absolute

continuity of U(0, ·) together with (32). Indeed,

|U(t, ξ′)− U(t, ξ)| ≤ |U(0, ξ′)− U(0, ξ)|+ |ξ′ − ξ| · t
2

sup
u
|f ′′(u)| .
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As a consequence, the partial derivative Uξ exists at a.e. (t, ξ). By (32),

it satisfies the evolution equation

∂

∂t
Uξ(t, ξ) =

1
2
f ′′(U(t, ξ)) . (39)

On the other hand, the map ξ 7→ y(t, ξ) can be discontinuous. However,

if

lim
ξ→ξ∗−

y(t, ξ) = y1 < y2 = lim
ξ→ξ∗+

y(t, ξ) ,

then the function u(t, ·) must be constant on the interval [y1, y2].

4. Measure transformations. To proceed, we first need to analyse the

regular and the singular part of the push-forward of Lebesgue measure,

under a continuous non-decreasing transformation.

Lemma 1. Let U : [0, ξ̄] 7→ R be absolutely continuous with square integrable

derivative. Let ξ 7→ y(ξ) be such that

y(ξ) = y(0) +
∫ ξ

0

U2
ξ (ζ) dζ . (40)

For x ∈ [y(0), y(ξ̄)] define the function u = u(x) implicitly by

u(y(ξ)) .= U(ξ) . (41)

Let µ be the push-forward of Lebesgue measure on [0, ξ̄] through the map y,

i.e.

µ(J) .= meas {ξ ∈ [0, ξ̄] ; y(ξ) ∈ J} . (42)

Then the absolutely continuous and the singular part of µ w.r.t. Lebesgue

measure are respectively given by

µa(A) = meas {ξ ∈ [0, ξ̄] ; y(ξ) ∈ A , Uξ(ξ) 6= 0} . (43)
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µs(A) = meas {ξ ∈ [0, ξ̄] ; y(ξ) ∈ A , Uξ(ξ) = 0} . (44)

In addition, on the set [y(0), y(ξ̄)] one has

dµa = u2
x dx . (45)

Viceversa, if both U and the map y are absolutely continuous and (41), (42),

(45) are valid, then (40) must hold.

Proof. By (40), the image of a set I ⊆ [0, ξ̄]

Iε
.= {ξ ∈ [0, ξ̄ ] ; |Uξ(ξ)| ≤ ε}

under the mapping ξ 7→ y(ξ) has Lebesgue measure

meas (y(I)) =
∫
I

U2
ξ (ξ) dξ .

It is thus clear that the singular part of µ is the push-forward of Lebesgue

measure on the set

I0
.= {ξ ∈ [0, ξ̄ ] ; Uξ(ξ) = 0}

Next, for any fixed ε > 0 take a measurable set J ⊂ [0, ξ̄ ] such that

U2
ξ (ξ) ≥ ε for all ξ ∈ J .

Then∫
y(J)

u2
x(x) dx =

∫
J

[
Uξ

dξ

dy

]2
dy

dξ
· dξ =

∫
J

[
Uξ U

−2
ξ

]2
U2
ξ · dξ = meas (J) .

Since ε > 0 was arbitrary, this proves (43) and (45). To prove the last

statement, assume (41), (42) and (45). Call

Jε
.= {ξ ∈ [0, ξ̄ ] ; yξ(ξ) ≥ ε} .
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Observe that, for ξ ∈ Jε. the chain rule yields

ux(y(ξ)) yξ(ξ) = Uξ(ξ) . (46)

For 0 < a < b < ξ̄ we now obtain

∫
[y(a),y(b)]∩y(Jε)

u2
x(x) dx =

∫
[a,b]∩Jε

u2
x(y(ξ)) yξ(ξ) dξ = meas ([a, b] ∩ Jε)

(47)

Since a, b were arbitrary, this implies

yξ(ξ) = [u2
x(y(ξ))]−1 (48)

for ξ ∈ Jε. Together with (46) this yields

ux(y(ξ)) = U−1
ξ (ξ) , yξ(ξ) = U2

ξ (ξ) (49)

for all ξ ∈ Jε. Since ε > 0 is arbitrary, we conclude

y(ξ) = y(0)+
∫ ξ

0

yξ(ζ) dζ = y(0)+lim
ε→0

∫
[0,ξ]∩Jε

yξ(ζ) dζ = y(0)+
∫ ξ

0

U2
ξ (ζ) dζ ,

proving (40).

5. A class of regular solutions. Having constructed the trajectory t 7→

(u(t, ·), µ(t)), we still need to prove that it satisfies equation (17), coupled

with the initial and boundary conditions (23) and (18). We carry out the

analysis first assuming that the map ξ 7→ ȳ(ξ) is absolutely continuous. At

the end, this assumption will be removed.

For each t ≥ 0 and ξ ∈ [0, ξ̄ ] define

y(t, 0) = ȳ(0) + t f ′(0) , y(t, ξ) = y(t, 0) +
∫ ξ

0

U2
ξ (t, ζ) dζ . (50)
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By (39) this implies

∂

∂t
yξ(t, ξ) =

∂

∂t
U2
ξ (t, ξ) = f ′′(U(t, ξ))Uξ(t, ξ) . (51)

We now check that the function y = y(t, ξ) defined at (50) coincides with the

one defined at (34). Indeed, by the second part of Lemma 1, their derivatives

yξ coincide at time t = 0 and satisfy the same equation (51). In particular,

from (50) it is clear that the map t 7→ y(t, ξ) is non-decreasing. In particular,

characteristics never cross each other.

We begin by observing that the boundary condition (18) is clearly sat-

isfied, because

u(t, 0) = U(t, 0) = U(0, 0) +
∫ t

0

Ut(τ, 0) dτ = 0 .

Moreover, the initial condition (23) holds because of the definitions (29)-

(30).

To check that the limit function u satisfies (17), fix a time t > 0. Since

u(t, x) ≡ 0 for x ∈ [0, y(t, 0)], in this region the equation (17) trivially holds.

For almost every x ∈ [y(t, 0), y(t, ξ̄)], there exists a unique ξ ∈ [0, ξ̄ ] such

that x = y(t, ξ). In this case, our construction yields

ut + f ′(u)ux = Ut(t, ξ) =
1
2

∫ ξ

0

f ′′(U(t, ζ)) dζ =
1
2

∫ y(t,ξ)

0

f ′′(u(t, ·)) dµ(t) .

This implies (17), provided that we can show the identity of measures

f ′′(u)u2
x dx = f ′′(u) dµ(t) (52)

for almost every time t ≥ 0. We shall now work toward a proof of (52).
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Since the function u is continuous, by covering the open region

{
(t, x) ∈ R+ × R+ ; f ′′(u(t, x)) 6= 0

}
with countably many sets of the form

Γ
.=
{

(t, x) ; t ∈ [t1, t2] , x ∈ [y(t, a), y(t, b)]
}

it suffices to prove the following statement.

Assume that

f ′′(u(t, x)) > δ > 0 , (t, x) ∈ Γ .

Then, for a.e. t ∈ [t1, t2], the restriction of the measure µ(t) to the inter-

val [y(t, a), y(t, b)] is absolutely continuous w.r.t. Lebesgue measure and

satisfies dµ(t) = u2
x dx.

By construction, as long as U ranges in a region where f ′′ > δ we have

∂

∂t
Uξ(t, ξ) >

δ

2
. (53)

Hence, for any ε > 0,

meas
(
{(t, ξ) ∈ Γ ; |Uξ(t, ξ)| < ε}

)
<

4ξ̄
δ
ε .

Since ε > 0 here is arbitrary, we conclude that there exists a set of times N

of measure zero such that

meas
(
{ξ ∈ [a, b] ; Uξ(t, ξ) = 0}

)
= 0

for all times t /∈ N . By Lemma 1, t /∈ N thus implies that the restriction of

µ(t) to the interval [y(t, a), y(t, b)] is absolutely continuous w.r.t. Lebesgue
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measure. Furthermore, by (50), Lemma 1 shows that its density is dµ(t) =

u2
x(t) dx. This concludes the proof of (i) and (ii) in Theorem 3.1, at least in

the case where the function ξ 7→ ȳ(ξ) is absolutely continuous.

6. General initial data. We now consider a more general initial data

(ū, µ̄) ∈ D. In this case, the map ξ 7→ ȳ(ξ) is non-decreasing, left continuous

but not necessarily continuous. Its distributional derivative is thus a mea-

sure, say Dξ ȳ = σ = σa+σs. By the assumptions, the absolutely continuous

part satisfies

dσa = U
2

ξ dξ ,

so that

ȳ(ξ) = ȳ(0) +
∫ ξ

0

U
2

ξ(ζ) dζ + σs([0, ξ[ ) .

Consider a new initial condition (ū∗, µ̄∗) defined by setting

ȳ∗(ξ) = ȳ(0) +
∫ ξ

0

U
2

ξ(ζ) dζ , ū∗(ȳ∗(ξ)) = U(ξ)

µ̄∗(J) = meas {ξ ; ȳ∗(ξ) ∈ J} .

By construction, for this new initial data the function ξ 7→ y∗(0, ξ) = ȳ∗(ξ)

is absolutely continuous. Hence, by the previous analysis, the corresponding

function u∗(t, x) provides a solution to the initial-boundary value problem

(17)-(18) with initial data (ū∗, µ̄∗). It is now easy to check that the function

constructed in (32)–(35) for the original initial data ū satisfies

u
(
t, y(t, ξ) + σs([0, ξ[)

)
= U(t, ξ) .
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More precisely,

u(t, x) = U(t, ξ) where ξ = inf {ζ ; y(t, ζ) + σs([0, ζ]) ≥ x} .

By the previous analysis, u∗ provides a solution. Hence the same is true of

u.

7. Continuity properties. Recall that ξ̄ = µ̄(R+) < ∞ is the total mass

of each of the measures µ(t). We have

Tot.Var.{u(t, ·) ; [0,M ] } ≤
√
ξ̄M .

Since u(t, 0) = 0, for any x ∈ [0,M ] we have

|u(t, x)| ≤
√
ξ̄M .

This implies the Lipschitz continuity property w.r.t. time:

∫ M

0

|u(t, x)−u(s, x)| dx ≤ |t− s| ·
{

sup
ω
|f ′(ω)| ·

√
ξ̄M +

ξ̄M

2
· sup
ω
|f ′′(ω)|

}
(54)

where both sup are taken over |ω| ≤
√
ξ̄M .

Next, consider a convergent sequence of initial data (ūm, µ̄m)m≥0. The

assumption of Theorem 3.1 implies that the corresponding functions Ūn

satisfy

U
m

(ξ)→ Ū(ξ)

uniformly on [0, ξ̄]. Therefore Um(t, ξ) → U(t, ξ) uniformly on the domain

[0, T ]× [0, ξ̄ ] , for any T > 0. In turn, this implies the convergence (27)-(28).
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8. Hölder continuity. We show that u(t, x) is Hölder continuous locally

in (t, x). First we know by Sobolev embedding that u is Hölder continuous

in x for each fixed time t with exponent α = 1/2. In the time direction, we

know that the derivative of u along a characteristic is bounded, thus u is

Lipschitz continuous in time along a characteristic. The characteristic speed

is u which is locally bounded, thus the distance traveled in the x direction

is order one of time. Combining the two parts, we conclude that u is Hölder

continuous locally in both space and time.

This completes the proof of Theorem 3.1.

Remark. The previous construction of solutions to (17)-(18) works equally

well for negative times. The semigroup S can thus be extended to a group

Ψ : D × R 7→ D.

4. Characterization of semigroup trajectories

In the previous section, a solution u to the initial-boundary value prob-

lem (17)-(18), (23), was obtained as the fixed point of a contractive transfor-

mation. Hence, any other solution which provides a fixed point to the same

transformation necessarily coincides with u. A straightforward uniqueness

result can be stated as follows.

Theorem 4.1 Assume that f satisfies (19). Consider a function u =

u(t, x) and a family of measures µ(t) satisfying (i) and (ii) in Theorem 3.1.
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Moreover, calling

y(t, ξ) .= inf
{
x ≥ 0 ; µ(t) ([0, x]) ≥ ξ

}
, (55)

U(t, ξ) .= u(t, y(t, ξ)), (56)

assume that for a.e. ξ the map t 7→ U(t, ξ) is absolutely continuous and

satisfies the differential equation (32). Then one has the identity

(u(t), µ(t)) = St(ū, µ̄). (57)

In particular, the solution which satisfies the above conditions is unique.

We conjecture that a uniqueness result remains valid even without the

assumption (32) on the corresponding function U . The basic ingredient to-

ward a uniqueness result is the assumption

f ′′(u) dµa(t) = f ′′(u)u2
x(t) dx . (58)

for a.e. t. We now show that this is indeed the case under the additional

condition f ′′ > 0.

Theorem 4.2 In addition to assumption (19), let f ′′(·) > 0. Consider a

function u = u(t, x) and a family of measures µ(t) satisfying (i) and (ii) in

Theorem 3.1. Then identity (57) holds.

Indeed, observe that the flow on L1([0, ξ̄]) generated by the evolution

equation (32) is Lipschitz continuous w.r.t. time and to the initial data.

Adopting a semigroup notation, call t 7→ V (t) = §tV the trajectory cor-

responding to the initial data V ∈ L1([0, ξ̄]). Since the couple (u(t), µ(t))
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can be entirely recovered from the function U(t, ·) and the initial mapping

ξ 7→ ȳ(ξ), to prove uniqueness, it thus suffices to show that

lim
h→0+

1
h

∫ ξ̄

0

∣∣∣U(t+ h, ξ)− (§hU(t))(ξ)
∣∣∣ dξ = 0 (59)

for almost every time t > 0 (see Theorem 2.9 in [1]). Since f ′′ > 0, our

assumption implies that the singular part of µ(t) vanishes at a.e. t. Choose

a time t where µs(t) = 0. Then

Uξ(t, ξ) 6= 0 for a.e. ξ ∈ [0, ξ̄ ] . (60)

Consider the map ξ 7→ y(t, ξ). Since

u2
x dy = dξ , Uξ = ux ·

dy

dξ
=

1
ux

,

by (60) the pre-image of a set of measure zero through the map ξ 7→ y(t, ξ)

has measure zero.

If now u = u(t, x) is differentiable at the point (t, y(t, ξ)), we have the

identity

∂
∂tU(t, ξ) =

[
ut + f ′(u)ux

]
(t, y(t, ξ))

= 1
2

∫ y(t,ξ)

0
f ′′(u)u2

x(t, x) dx = 1
2

∫ ξ
0
f ′′(U(t, η)) dη .

(61)

Observing that u(t, ·) is differentiable at a.e. x, we conclude that (61)

holds at a.e. ξ ∈ [0, ξ̄ ]. In turn, this implies (59), proving the theorem.

Notice how the condition on the vanishing of the singular part is essential

to ensure uniqueness. Otherwise, in Example 1 the solution u(t, x) ≡ 0 for

t ≥ 1, with µ(t) containing a unit mass at the origin, would satisfy all the

other requirements of the theorem.
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5. A semigroup of dissipative solutions

Next, we examine dissipative solutions. A major difference with the con-

servative case is that here the Cauchy problem is well-posed if the flux

function f is strictly convex, but ill posed otherwise, as shown in the next

section.

In this section, our main concern will be the construction of a semigroup

of dissipative solutions under the additional assumption that f ′′ ≥ 0. As

domain D of our semigroup we choose the space

D .=
{
u : R+ 7→ R , u is absolutely continuous, u(0) = 0 , ux ∈ L2

}
.

Theorem 5.1 Assume that the flux function f satisfies (19) and f ′′ ≥

0. Then there exists a semigroup S : D × [0,∞[ 7→ D with the following

properties. Calling t 7→ u(t) = Stū the trajectory corresponding to an initial

data ū ∈ D, one has:

(i) The function u = u(t, x) is Hölder continuous. It provides a solution

of (17)-(18) with initial condition u(0, x) = ū(x).

(ii) For every M > 0, the above solution u satisfies the Lipschitz conti-

nuity property in time:

∫ M

0

|u(t, x)− u(s, x)| dx ≤ C|t− s|, (62)

(iii) Given a sequence of initial conditions ūn ∈ D, assume that

‖ūnx − ūx‖L2([0,M ]) → 0
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for every M > 0. Then the corresponding solutions satisfy

un(t, x)→ u(t, x) (63)

uniformly for t, x in bounded sets.

Proof. Consider an initial condition ū ∈ D. For simplicity, we again assume

that ū is constant outside a bounded interval, say [0, R]. The general case

follows from an approximation argument.

To construct the corresponding trajectory we begin by setting

ξ̄
.=
∫ R

0

|u2
x(x)| dx .

Then we define the initial data

U(ξ) .= ū(ȳ(ξ)) ,

where

ȳ(ξ) .= inf
{
x ≥ 0 ;

∫ x

0

u2
x(x) dx ≥ ξ

}
. (64)

By the analysis in Section 3, the map ξ 7→ U(ξ) is absolutely continuous,

hence its derivative

Z(ξ) =
∂

∂ξ
U(ξ)

is a well defined function in L1([0, ξ̄ ]).

Define the subset

J−
.=
{
ξ ∈ [0, ξ̄ ] ; Z(ξ) ≤ 0

}
.

Let L be a Lipschitz constant for f ′′. On the space of continuous functions

Y : R+ 7→ L1([0, ξ̄ ]) with weighted norm

‖Y ‖∗
.= sup

t
e−Lξ̄t‖Y (t)‖L1 ,
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we now define a continuous transformation Y 7→ T Y as follows.

T Y (t, ξ) .= Z(ξ) +
∫ t

0

1
2
f ′′

(∫ ξ

0

Φ(η, Y (s, η)) dη

)
ds , (65)

where

Φ(η, Y ) = min{Y, 0} if η ∈ J− ,

Φ(η, Y ) = Y if η ∈ [0, ξ̄ ] \ J− .

To check that T is a strict contraction, assume that ‖Y − Ỹ ‖∗ = κ, so that∫ ξ̄

0

|Y (t, ξ)− Ỹ (t, ξ)| dξ ≤ κ eLξ̄t

for all t ≥ 0. Then for every s ≥ 0∫ ξ

0

∣∣∣Φ(η, Y (s, η))− Φ(η, Ỹ (s, η))
∣∣∣ dη ≤ κ eLξ̄s,

and therefore∫ ξ̄

0

|(T Y − T Ỹ )(t, ξ)|dξ ≤
∫ ξ̄

0

∫ t

0

Lκ

2
eLξ̄s ds dξ ≤ κ

2
eLξ̄t.

By the definition of our weighted norm, this implies

‖T Y − T Ỹ ‖∗ ≤
1
2
‖Y − Ỹ ‖∗ .

Let now Y = Y (t, ξ) be the unique fixed point of the transformation T .

Then one easily checks that the function

Z(t, ξ) .= Y (t, ξ) if ξ /∈ J− ,

Z(t, ξ) .= min{Y (t, ξ), 0} if ξ ∈ J− ,

provides a solution to the equations

Z(0, ξ) = Z(ξ) ,
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∂Z

∂t
(t, ξ) =

1
2
f ′′

(∫ ξ

0

Z(t, η) dη

)
if Z(s, ξ) 6= 0 for all s ∈ [0, t] ,

∂Z

∂t
(t, ξ) = 0 if Z(s, ξ) = 0 for some s ∈ [0, t] .

In turn, we can now define

U(t, ξ) .=
∫ ξ

0

Z(t, η) dη

and the characteristic curves

y(t, ξ) .= ȳ(ξ) +
∫ t

0

f ′(U(s, ξ)) ds .

In a similar way as in Section 3, the dissipative solution u can now be

obtained by setting

u(t, x) = U(t, ξ(t, x)),

where

ξ(t, x) .= sup {ξ ; y(t, ξ) ≤ x} .

To see why this construction actually yields a solution to (17), con-

sider first the case where the map ξ 7→ ȳ(ξ) is absolutely continuous. Then

yξ(0, ξ) = U
2

ξ(0, ξ) = Z2(0, ξ). Since

∂

∂t
yξ = f ′′(U)Uξ = f ′′(U)Z =

∂

∂t
Z2

for all t, ξ we deduce the identity

yξ(t, ξ) = Z2(t, ξ) = U2
ξ (t, ξ).

Moreover, (50) again holds. As in the proof of Theorem 3.1, we obtain the

relations

Z(t, ξ) =
1

ux(t, y(t, ξ))
, [yξ(t, ξ)]−1 = u2

x(t, y(t, ξ)). (66)
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For almost every x ∈ [y(t, 0) , y(t, ξ̄)] , if x = y(t, ξ), then

[ut + f ′(u)ux](t, x) =
d

dt
u(t, y(t, ξ)) =

∂

∂t
U(t, ξ) =

∫ ξ

0

∂

∂t
Z(t, η) dη

=
1
2

∫ ξ

0

f ′′(U(t, η)) dη =
1
2

∫ x

0

f ′′(u(t, y))u2
x(t, y) dy .

The second identity in (66) was used here to change the variable of integra-

tion.

The extension to the case of general initial data, where the map ξ 7→

y(t, ξ) is not necessarily absolutely continuous, is carried out as in the earlier

proof of Theorem 3.1. We skip the details.

6. Instability of dissipative solutions for non-convex flux

In this section, we show that if the convexity assumption f ′′ ≥ 0 is

dropped, then the Cauchy problem for the equation (17)-(18) is ill posed,

in general.

Example 2. Consider the flux function f(u) = u3. Let U = U(t, ξ) be a

solution of (32), with ξ ∈ [0, 3], such that at some time t0 > 0 there holds

U(t0, ξ) =


ξ, ξ ∈ [0, 1] ,

2− ξ, ξ ∈ [1, 2] ,

0, ξ ∈ [2, 3] .
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Consider first the conservative solution u = u(t, x). This is well defined

forward and backward in time. At time t = t0, its explicit values are

u(t0, x) =


x , x ∈ [0, 1] ,

2− x , x ∈ [1, 2] ,

0 , x > 2

while a unit mass is concentrated at the point x = 2. Assuming t0 sufficiently

small, we have

Ut(t, ξ) =
∫ ξ

0

3U(t, η) dη > 0

for all t ∈ [0, t0] and ξ ∈ ]0, 3]. Hence

∂

∂t
Uξ(t, ξ) = 3U < 0, Uξ(t, ξ) < 0 for t ∈ [0, t0[ , 2 < ξ < 3 .

Next, consider a dissipative solution v coinciding with u at time t = 0.

This means

v(0, x) = u(0, x) = U(0, ξ) for x = y(0, ξ) . (67)

We recall that

y(t, ξ) =
∫ ξ

0

U2
ξ (t, η) dη .

Clearly, v will still coincide with u as long as its gradient remains bounded

(equivalently, as long as Uξ remains bounded away from zero). On the other

hand, for t > t0, the dissipative solution v = v(t, x) coincides with the

conservative one only on the interval where x ≤ y(t, 2), while v is constant

for x ≥ y(t, 2). In other words,

v(t, x) = u(t, x) if t ∈ [0, t0] ,
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v(t, x) =


u(t, x) , 0 ≤ x ≤ y(t, 2) ,

u(t, y(t, 2)) , x > y(t, 2) ,
if t ∈ [t0, 2t0] .

Energy dissipation occurs at time t = t0, namely

∫ ∞
0

v2
x(t, x) dx =


3 , t ∈ [0, t0[,

2 , t ≥ t0.

Next, consider a family of perturbed initial conditions, say

Uε(0, ξ) = U(0, ξ) + εφ(ξ) ,

where φ is a non-negative smooth function, whose support is contained in

[0, 1]. Since U 7→ f ′′(U) = 6U is a monotone increasing function, by a

comparison argument from (32) we deduce

Uε(t, ξ) ≥ U(t, ξ)

for all ε, t > 0, ξ ∈ [0, 3]. In fact, for a nontrivial φ we can assume a strict

inequality:

Uε(t, ξ) > U(t, ξ) , t > 0 , ξ ∈ [2, 3] .

For 2 < ξ < 3 we now use the relations

∂

∂t
Uεξ (t, ξ) = 3Uε(t, ξ) > 3U(t, ξ) =

∂

∂t
Uξ(t, ξ) , Uεξ (0, ξ) = Uξ(0, ξ) ,

and deduce

Uεξ (t, ξ) > Uξ(t, ξ) ≥ 0 , t ∈ [0, t0] .

Moreover, for t ≥ t0 and 2 < ξ < 3 one has

∂

∂t
Uεξ (t, ξ) = 3Uε(t, ξ) > 3U(t, ξ) ≥ 0 .
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Therefore, for each ε > 0, the quantity Uεξ (t, ξ) is still strictly positive at

time t = t0 and increases afterwards. It thus remains uniformly bounded

away from zero.

Since ux = U−1
ξ , the above implies that, for any fixed ε > 0, the cor-

responding conservative solution uε = uε(t, x) has a uniformly bounded

gradient. The dissipative solution thus coincides with the conservative one.

As ε→ 0, at time t = 0 our construction yields

‖uε(0)− u(0)‖C0 → 0 , ‖uεx(0)− ux(0)‖L2 → 0 .

However, when t > t0 and x > y(t, 2) the previous analysis yields

lim
ε→0+

uε(t, x) = u(t, x) 6= v(t, x) ,

where u, v are respectively the conservative and the dissipative solutions of

(17)-(18) with the same initial data (67). The example proves that dissipa-

tive solutions do not depend continuously on the initial data.

Remark. The previous example also shows that the family of dissipative

solutions may not be closed. Since the set of solutions which are limits of

vanishing viscosity approximations is closed and connected, we see that this

set cannot coincide with the set of dissipative solutions.
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