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Abstract

There are many open problems on the stability of nonlinear wave patterns to the Boltz-
mann equation even though the corresponding stability theory has been comparatively well-
established for the gas dynamical systems. In this paper, we study the nonlinear stability
of a rarefaction wave profile to the Boltzmann equation with the boundary effect imposed
by specular reflection for both the hard sphere model and the hard potential model with
angular cut-off. The analysis is based on the property of the solution and its derivatives
which are either odd or even functions at the boundary coming from specular reflection, and
the decomposition on both the solution and the Boltzmann equation introduced in [24, 26]
for energy method.
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1 Introduction

The Boltzmann equation was introduced by Ludwig Boltzmann in 1872 through the study in
statistics physics. It is a fundamental equation for rarefied gas in kinetic theory and provides
many challenging mathematical problems. When the Knudsen number tends to zero, the Boltz-
mann equation yields the Euler equations as the first order in the Hilbert expansion, and the
Navier-Stokes equations as the second order in the Chapman-Enskog expansion. Hence, the
Boltzmann equation has close relation to the systems of gas dynamics. As we know, the so-
lutions to the systems of gas dynamics have rich nonlinear wave phenomena and the stability
of these nonlinear wave patterns has been extensively studied. It is natural to work on the
corresponding stability problems to the Boltzmann equation due to their close relation. Some
work has been done in this direction, especially recently, for the hard sphere model, such as the
stability of the shock profile and rarefaction wave in [26] and [25] respectively, and the stability
of shock profile with reflective boundary condition in [21].

In this paper, we consider the one dimensional Boltzmann equation in half space, i.e. > 0
with specular boundary condition given at x = 0. Notice that the problem with specular
reflection has been studied in many mathematical and physical settings, and it could be the
first step to include the boundary effect with physical meaning. One of the reason comes from
its simplicity in mathematical analysis around the boundary because of the non-appearance
of boundary layer without source in the Navier-Stokes equations and the Boltzmann equation.
When the initial data is assumed to be a small perturbation of the local Maxwellian given
by a nonlinear wave pattern containing one rarefaction wave with positive speed to the Euler
equations, we will show that the solution to the Boltzmann equation converges to this local
Maxwellian as time tends to infinity. Thus, this yields the nonlinear time asymptotic stability of
the rarefaction wave to the Boltzmann equation with specular boundary condition. Same as the
case on the Cauchy problem with rarefaction wave profiles considered in [25], the strength of the
rarefaction wave is not particularly small. In fact, the bound on the strength of the rarefaction
wave is required by the variation of the linearized H-theorem which gives the dissipation on the
non-fluid component.

In the analysis, the boundary condition of specular reflection is fully used which give the
even or odd property on the solution and its derivatives at the boundary. These property is
particularly useful for the case of the hard potential with angular cut-off where the convection
has linear growth in £ while the linearized operator has dissipative effect on non-fluid component
only with the weight |£ ]ﬁ , 0 < B < 1. Another technique used in the proof is the micro-macro
decomposition of the solution into local Maxwellian and the non-fluid component. This provides
a way to re-write the Boltzmann equation into a system similar to the gas dynamics coupled
with an equation for the non-fluid component, [24, 26]. Writing the Boltzmann equation in this
form allows the use of energy method in a straightforward way.

Consider the one dimensional Boltzmann equation in half space

fe+&fe=Q(f, f), (f,t,2,6) € R x Ry x Ry x R, (L.1)
with initial data
[(0,2,8) = fo(z,€), (z,€) € Ry x R?, (1.2)
and boundary condition
f(t,0,RE) = f(t,0,8), (t,€) e Ry x R, (1.3)

where R{ = R(£1,62,83) = (—=£1,&2,&3), and f(t,z,&) represents the distributional density of
particles at time-space (t,x) with velocity . Here, Q(f, f) is a bilinear collision operator, cf.
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[4], given by
IPCES A /s (P9 + FEDAE) — F©9(E) — F(E)9(E))a(IV.6) de.ae,

where V' = £ — &, cosf = V", and S2 = {2 € 82 : (£ &) Q > 0}. By conservation of
momentum and energy, the velocities (&, &,) before and (£, &) after collision have the following

relation
{5’25—[(5—5*)-9] Q,

L=&+[E-&)-QQ
Throughout this paper, the collision kernel ¢(|V], ) is assumed to satisfy the following two con-
ditions:

(A1): There is 0 < ¢; < 1 such that
0 < g(V,0) < Cr(|V]+|V]|™)| cosd].
(A2): There are constants 0 < 3 < 1 such that
Co(1+ &) < v(€) < Cs(1 + &), (14)

where v(&) is the collision frequency defined in (1.14), and C; > 0, i = 1,2,3 are positive con-
stants.

Notice that both the hard sphere model and the hard potential model with angular cut-off
satisfy the above two conditions (A1) and (A2).

Now we will introduce some notations to state our main theorem in the paper. First, it
is well known that the equilibrium state, i.e. the Maxwellian M = M, , o9 depending on five
parameters (p,u,0) € Ry x R3 x R, representing the density, velocity and temperature, is the
only function such that Q(M, M) = 0. And there are five collision invariants corresponding to
the five dimensional sub-space of the fluid components, denoted by 1,(§), cf. [4], as

Yo(§) =1
vi(€) = &, for i =1,2,3, (1.5)
Pa(§) = 51¢2%,

satisfying
/ Y (€)Q(h,9)d¢ =0, for j7=0,1,2,3,4.

For a solution f(t,x,&) to the Boltzmann equation, we decompose it into the macroscopic
(fluid) component, i.e., the local Mawellian M = M(t,z,§) = M, (£); and the microscopic
(non-fluid) component, i.e., G = G(t, z,£) as follows, [24]:

ft,x, &) =M(t,z, &) + G(t,x,§).

The local Maxwellian M is naturally defined by the five conserved quantities, that is, the mass
density p(t,z), momentum m(t, z) = p(t,z)u(t,z), and energy e(t,z) + 1|u(t, z)[*:

plt,z) = /R f(t €,
x) = / i (&) f(t,z,&)dE for i =1,2,3, (1.6)
R3
o (e+3P)] )= [ va(©f(t..e)de,
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x —u(t,x)|?
M = Mpat0:) = s o (-0 ). o

Here 0(t,z) is the temperature which is related to the internal energy e by e = %RH with R
being the gas constant, and (¢, x) is the fluid velocity.
The space of function for the solution of the initial boundary value problem (1.1)-(1.3) con-

sidered in this paper is H (L§M> = H} (LE,M (R4 x R3)) for some global or local Maxwellian
M, the inner product is given by:

hg)= [ hOs(€)de

for any functions h, g of £ such that the above integral is well-defined, and ||h||L2 "= (h, h>%

In particular, when M = M, the orthogonal basis for the space spanned by {1, =0,1,---,4}
with respect to the inner product is given by:

XO(fa P, U, 0) = #Ma

x%&pﬂuﬁzziééklﬁﬂ i=1,2,3, 1)

12
X4(€;p7ua 0) = ﬁ <|5R3| - 3) M7
<Xian> = 5@', fOI" i,j = 0, 1,2,3,4.

Therefore, the orthogonal projection Py on the fluid space spanned by {1, = 0,---,4}, and
the corresponding orthogonal projection P71 on its orthogonal complement, i.e. the non-fluid
component can be defined as:

4
Poh = > (b i)\,
0 J§0< Xj) X (1.9)
Plh =h-— Poh.

Notice that the operators Py and P are projections satisfying
PPy = Py, PP, =Py, PoP: =PPy=0.
Under this decomposition, the solution f(t,x,&) of the Boltzmann equation satisfies
Pof =M, P.f=G.
Then by replacing f(t,z,£) by M(¢t,z,§) + G(t, z,§), the Boltzmann equation becomes:
(M+G); +&(M+G), = (2Q(G, M) + Q(G,G)), (1.10)

and the system of conservation laws is obtained by taking the inner product of the Boltzmann
equation with the collision invariants ¥, (§), « = 0,1, -, 4:

pi + (pur)e = 0,

(pus)e+ (o +9), == ( [ s .

() + (). = = ( [ 662Gt i)
() + (puru)s = ([ 6r6aGte)

{p(%\u|2 +e)L + (ul(p (%\uﬁ +e) +p)> =-1 (/Rgglwz(;dg)m_

T
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Here p is the pressure for the monatomic gas:

2
p= gpe = Rpb.

Note that this system is not self-contained and we need one more equation for the non-fluid
component G which can be obtained by applying the projection P; on (1.10):

Gt+P1(§1Gm+flMx) - LMG+Q(GaG)a (112)
ie.,
G = Lnf (61M) + Lyf (Gi +P1(61Ga) ~ Q(G. B)) w13
= Lyt (61M,) + O,

where Ly is the usual linearized operator around the local Maxwellian M given by

Lyg = Lipu09 = Q(M +9,M+ g) —Q(g,9).

Recall that the linearized collision operator Ly is symmetric:

<h7 LMg> = <LMha g>7

and the null space N of Lys contains only the fluid components spanned by:

Xi» .7:0774

Ly can also be written as, cf. [17, 15],

(Laah) () = — (& pou, O)R(E) + /M(E) Ky ((J’jﬁ) ©). (1.14)

Here Kn(-) = —Kim(-) + Kom(+) is a symmetric compact L2-operator. And v(&;p,u,6) and
Kim(+) have the following estimates, cf. [10],

W& pu,0) = [ Mg )a(IV],0)ds.a

and
Fina(,6.) = ME(©) [ M (€)q(V.0) a0
<O (le =&l +16— &l ™) exp (— Kl - 1),
_ (1612 — 6P)? _ Je — P2
kZM(gag*) - a(f,f*)exp (_8R9 ’é* _ 5‘2 o 8RO ) ’
with

a(f,f*) < C|£* - 5’_15

where kv (&, &) is the kernel of the operator K, ¢ = 1,2, and C' > 0 is a constant. Fur-
thermore, the linearized H-theorem which reveals the dissipative effort of Lys on the non-fluid
component implies that there exists og(p,u,#) > 0 such that for any function h(§) € N,

{h, Lseh) < —=o0(p, u, 0)(h, h),
which yields cf. [15]

(h, Lmh) < —o(p,u,0)(v(&)h, h), (1.15)
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with some constant o(p,u,6) > 0.

To have a clear representation related to fluid dynamics intuitively, by plugging (1.13) into
(1.11), the system of conservation laws (1.11) becomes the Navier-Stokes equations plus some
extra terms involving © which is of high order in some sense:

pt + (pur)z =0,
(un)e+ (o +9), == ([ @1adeMaag) - ([ o) .
(pua)e + (). = = ( [ @&alzfeMaa) = ([ aceie) |
(pus)e + (purs). == ( [ @alzf@Maag) = ([ agaoie) | (110

[pGluf? + o), + (u (¢ (1P +¢) +p)>

_ 1 (/R?,&KPLK/II(&IVL)OZ&)Q: -1 (/R3§1‘§|2@d§>x

Notice that here the first terms on the right hand side of (1.16) not involving © evaluate as
usual the viscosity and thermal conductivity. For the Navier-Stokes equations, the stability of
rarefaction waves with or without boundary effect has been extensively studied, cf. [27, 22, 28,
29, 30, 35]. Moreover, the case for the Broadwell model of a discrete velocity gas was studied
n [31]. And the problem we considered in this paper corresponds to those for Navier-Stokes
equations with ideal gas law when p = Rpf with 6 = %e (For the corresponding study for the
nonisentropic compressible Navier-Stokes equations, see [20, 23, 35] and the references therein.
These results show that, even for general gas, the strength of the rarefaction waves can be
arbitrarily large and for some special case, global stability results can also be obtained, cf. [35].
Note also that in our present paper for the Boltzmann equation, the strength of the rarefaction
wave need not be small and the bound on the strength of the rarefaction wave is required by
the variation of the linearized H-theorem which gives the dissipation on the non-fluid part).
Hence, one can expect that the energy method which works well for the stability problems of
Navier-Stokes equations works also here for the Boltzmann equation.

For later use, notice also that the projections Py and P have the following basic properties:

Po(¢4;M) = ;M, P1(;M) =0, j =0,1,2,3,4,
LyvPy = Py = Lvt, P1(Q(h,h)) = Q(h,h),

LyviPo = PoLn =0, Po(Q(h,h)) =0

(;M, h) = (¥;M, Poh), j=0,1,2,3,4,

(h, Lmg) = (P1h, Lm(P19)),

<h, LK/II(Plg)> = <LK/11(P1h),P19> = <P1h Ly, (P19)>

Now we turn to define the nonlinear time asymptotic rarefaction wave profile to the Botlz-
mann equation. For smooth solution, it is clear from the specular boundary condition that
u(t,0) = 0 for any time ¢ > 0. Assume

— Pr 5 — Up 2
fO(xag) — Mr = M[Pmurﬂr} = Wexp <—|2R0T|> , T — +o00. (117)

Here p,,0, > 0,u, = (u1,,0,0) are constants such that there exists a unique constant state
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(p1,0,60;) with p;,6; > 0, such that the Riemann problem for the compressible Euler equations

pr+ (pu1)z =

pul t + (p ) - 07
+ =0,

(puz2)t + (puiuz) (118)
(pu3z)t + (purusz)z = 0,

pGlul + )], + <u (o (3luf? +¢) +p)> =0,

T

(p1,0,0;), x <0,

(P, 0) (¢, 2) =0 = (. up Op) () = {(phuh 0 e (1.19)

admits a rarefaction wave solution of the third family, denoted by (pR(t, z),uft(t, x), 0% (¢, x)),
ie., (pr,ur,0;) € R3(p1,0,0;). Here

S = ?, Uy — \/ﬁpé exp (g) - _\/ﬁpl% P <§> } (1-20)

upg =uz =0, u;p >0, p<py

R3(pl’0’9l) = {(p,u, 9)

where
S = —% Inp+In(2rRA) +1=—% lnpl + In(27 RO;) +

= —glnpr +In(27RO,) +1 =5,
E— L

27re
Notice that this solution is only Lipschitz continuous at the edge of the wave. Similar
to the corresponding work on the Navier-Stokes equations, cf. [30], we need to construct an
approximate rarefaction wave which is in H (Lg ) space. For this, let w(t,2) be the unique
global smooth solution to the following Cauchy problem of the Burgers’ equation

w + ww, = 0,
) L (1.21)
w(t,z)|t=0 = wo(x) = 5(w, +wy) + 5(w, —wy) tanh(z),
where
—_— l —
wp = A3(/)1707 91) = %kpl3 exp (%) > 07
(1.22)

wy = A3(pry up, 0r) = up, + Y2k exp( ) > 0.

Then, we have the approximation of the rarefaction wave profile (ﬁ, u, @) (t,z) given by
(77,0) (t,2) = (o, u,04) (t + to, @), (1.23)
where tg is a suitably large but fixed positive constant and (pA, ul, HA) (t,x) satisfies
uft (4,2) + % (A (1))
ufl(t, z) — VI5k (pA(t, 7))

0A(t, ) = 3k (pA(t,x))

Wl

exp (g) =w(t,x),
exp (5) = wir — VI5kpi exp (3). (1.24)

W=

W

exp(S), uy = ug = 0.
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As for the nonlinear stability of rarefaction waves for the Boltzmann equation in the whole
space, the strength of the rarefaction wave here need not be small. And both the energy
estimates with respect to the global Maxwellian state M_ and the one with respect to the local
Maxwellian state M are required.

With the above notations, we can now state the main result in this paper as follows.

Theorem 1.1 Under the assumptions (A1) and (A2), let the approximate rarefaction wave
(ﬁ,ﬂ,@) (t,x) be defined in (1.23). If

sup  O(t,z) < inf _O(t,x), (1.25)

6 = max {|p. = pi| +up + |0, = 01 } < mo,
1
2 (t,z)eR4 xR (t,x)eER4 xR

with w, > 0. There exists a global Mazwellian M_ and sufficiently small positive constants
50,t61 such that the following holds. Let the initial data fo(x,€) satisfy

[, fo0.1d€ =0,
R3
and for s > 2,

< &0, (1.26)

fo(z,8) — M[p(o,x),ﬂ(o,x)ﬁ(o,w)}

’ ‘Hg (L?Mi)

then the initial boundary value problem (1.1), (1.2), (1.3) admits a unique global solution
f(t,z,8) satisfying

_1
lft - Mg o <e(wrnt), (1.27)
e (120 )
for some positive constant C, and
tliglo Hf(t’ 2,§) = Mpr ur g7y HLgo (Lg M_) =0 (1.28)

Here the constant ty comes from the definition of the approximate rarefaction wave. M_ =
M,_.__] is a global Mazwellian satisfying 20(t,x) < 0- < O(t,z),u1— = 0, and |p(t,z) —
p—| + |u(t,z) —u_| + |0(t,x) — O0_] < mo for all (t,x) € Ry x R. Here ng > 0 is a constant
defined in Lemma 2.2 for the variation of the microscopic H-theorem.

Remark 1.1 Unlike the Cauchy problem, for the Boltzmann equation with specular reflection
boundary condition, the global Mazwellian M_(§) must be suitably chosen such that it is an even
function of &1.

Besides the study on stability of nonlinear wave profiles for the Boltzmann equation, there
have also been extensive study on the Boltzmann equation in other aspects related to fluid
dynamics, such as the Knudsen layer, ghost effects, incompressible flow limit etc. Since they
are beyond the scope of this paper, we will not refer them here. Before the energy method
based on the decomposition (1.16) is used, the elegant and important analysis using the spectral
properties of the linearized collision operator Lyg has been used to obtained existence and large
time behavior of solutions to the Boltzmann equation, see [19, 34, 37] and references therein.

This rest of this paper is arranged as follows: The microscopic and a macroscopic H-theorems
with specular boundary condition will be given in Section 2 together with some properties on
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the smooth approximation of the rarefaction wave solution connecting to the boundary. The
energy estimates will be given in Section 3: Section 3.1 is devoted to estimates on the boundary
terms and the lower order energy estimate and the higher order energy estimates are presented in
Section 3.2 and 3.3 respectively. Compared with that of [25], the main differences are two-fold:
The first is due to the occurrance of the boundary terms and the other is that in our present
paper, the assumptions we imposed on the collision kernel ¢(|V|,0) is weaker than that of [25]
which leads to some technical difficulties. The local existence in H} L% M ) space and the proof
of Theorem 1.1 will be given in Section 4 for the case when s = 2. The case when s > 2 can be
discussed similarly. In the sequel, A is used to denote a small positive constant.

2 Preliminaries

In this section, we give some known results concerning the properties on the smooth approxima-
tion of the rarefaction wave solution and the two versions of the H —theorem for the Boltzmann
equation.

First, we list the properties of (ﬁ, ﬂl,g) (t,z) constructed in (1.23) in the following lemma,
cf. [27].

Lemma 2.1 The approzimate rarefaction wave (p,uy,0)(t,z) constructed in (1.23) satisfies
(i). wg(t,z) >0, V(t,z) e Ry xR, i=1,3;
(ii). For any p(1 < p < 00), there exists a constant C(p) > 0, depending only on p, such
that )
(pm1.8), (1), < COIE+10) 5,

2 (pu8) (b)), SCO)E+t0)7! j22

(iii). (p,1,0)(t, ) solves

pr+ (Wl)x =0,

(1), + [Pl + 376) =0,
|

P31 +9)], + [1m (P + 49)], <o

(prr 1,80 (t,2)] < O) |(Pas 1, s ) (8 2)]
(). [u1(t,0)] < O(1) exp (—di(t + to));
(v). hm sup (ﬁ,ﬂl,g) (t,x) — (,0 ,uq ,GR)( )| =

Here and m what follows, O(1) will be used to denote a generic positive constant independent of
t and x and dy = A3 (p1,0,0;) > 0.

Consequently

Now we turn to the H—theorem for the Boltzmann equation. It is based on the special
property of the bilinear structure of Q(f, f) which satisfies

/ Q(f, f)In fde <0,
RS

and the equality holds only when the function f(¢,z,¢) is a Maxwellian. According to the
dissipative effects on the macroscopic and microscopic components, the H-theorem can be viewed
from two aspects. The first one is mainly on the linearized collision operator Ly; acting on the
microscopic components stated in (1.15) called the microscopic H—theorem. The second one
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comes from the nonlinear collision operator which gives dissipation of entropy in the macroscopic
level.

Since the perturbation of a nonlinear wave pattern considered may not be small, a com-
bination of the energy estimates with respect to a global Maxwellian state M _ and the local
Maxwellian state M will be used. For this reason, another form of the microscopic H—theorem
is needed to relate the dissipation estimates with different weights. In fact, motivated by the
proof of Lemma 3.2 in [25], we have the following estimate.

Lemma 2.2 Ifg < 0_ < 0, then there exist two constants ¢ = 7(p,u,0; p_,u_,0_) > 0 and
no = no(p,u,0;p—,u_,0_) > 0 such that if |p — p_| + |u —u_| + |0 — 0_| < ny, we have for
h(€) € N*,

hDmh [ v(€)h?

Lemma 2.2 is proved in [25] for the hard sphere case whose proof is straightforward by using
the Cauchy inequality and an inequality on the collision operator from [13]. We note, however,
that the proof given in [25] can be used to deduce Lemma 2.2 since the above mentioned
inequality on the collision operator established in [13] holds also for the collision kernel ¢(|V], 0)
satisfying (A1) and (Ag), i.e.

Lemma 2.3 Suppose that q(|V|],0) satisfies (A1) and (A2), then there exists a positive constant
Cy > 0 such that

v(©)71Q(f,9)* Cy v(©f? ge lal 2 e v(€)g?
foenguatae < S [ oGfac [ e [ fuac. [ 5]

where M can be any Mazwellian so that the above integrals are well-defined.
The following is a direct corollary of Lemma 2.2 and the Cauchy inequality.

Corollary 2.1 Under the assumptions in Lemma 2.2, we have

v(©) |15 —2 [ v 'h2©
LLﬁM‘LMh‘dféa A; P2 g, -
v(©) |7 -1 |2 _ o [ v©O '
AwNL‘LMh‘dggcr Aﬁ 8 e

holds for each h(¢) € N*.

For study the nonlinear wave behavior of the solutions, the following calculation on the
macroscopic version of the H—theorem reveals the dissipation of entropy, cf. [24]. To be self-
contained, we include it as follows. Set the macroscopic entropy S by

—§pS = / M In Md€. (2.3)
2 R3
Direct calculation yields
3 3 B G& oM
~56S) = oms)+ ([ (@ lnM)Gd£>x = [ e (2.4)

and
S =—ZInp+In(2rR0) + 1,
p=2p0 = kp3 exp(S), (2.5)
E=0, R=2%
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Denote the conservation laws (1.11) by

0
G
i, = | [ G6GkE | (2.6)
| @G
s alePaas |
Here
m = (mo,m1, ma,m3, my)" = (Pa pUL, PUg, PU3, P (%MQ + 9>>t,
n = (ng,n1,n9,n3,ng)’ = (pul,pu% + %p@,puluQ,pulu;g,pul (%|u\2 + %Q)Y.
Then define an entropy-entropy flux pair (7, q) around a Maxwellian M = M 23 (w; =0,i =
2,3) as
{n =7{~2p5+ 355 + 3Vm(pS)lmem(m — M)}, .
q:9{—%pulS+%W1§+%Vm(p5)\m:m(n—ﬁ)}- '
It is easy to see that (cf. [25])
n=§{p9—9p5+p[<5_§)9+|u—2ul2}+§p}, (2.8)

qg=uin+ (u1 —uy) (p@ —ﬁg) .

and for m in any closed bounded region in ¥ = {m : p > 0,0 > 0}, there exists a positive
constant Cs such that

Cs'im —m]® <y < Cs[m—mf*. (2.9)
Since
Mo+ 4= Vs (0.5), + Voaza- (p.75) |
+ [ [er0r (B10) - funsla ] G (2.10)

- (/RS (Ber M — Jefef? - §U1\£1|2)Gd£> )

x
and there exists a positive constant dy > 0 such that (cf. [25])

2
. (2.11)

(p—ﬁ,ul—ﬂl,e—g)

Vems (p55),+ Vasa: (p.5.5), ] < ~dm
we have the entropy estimate:
N+ gz < —daliy (P —pyur — U, 0 — g)lQ
+ [ [rn (Bmm) - funla ] e (2.12)

B (/R3 (@{1 InM — %51’5‘2 — §U1\§1]2)Gd§>

xT
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3 Energy Estimates
In this section, we perform the energy estimates. Our main purpose is to get the following result

Theorem 3.1 Under the assumptions listed in Theorem 1.1, we have that the solution f(t,x,§)
to the initial boundary value problem (1.1)-(1.3) satisfies the following estimates

o] t 00 - ~
| nwae [ ] (Kﬁm,am,em)r?+uu\<ﬁ,a1,e>12+ > \a%pm,um,ex)r?) drdr

al=1

+/ / G2+ p2) (0°MP + [0°G2) + 5 [0°f]2 | dedudr
r3 M la|=2 (3.1)

+// /Rgu(g <G2+ 5 |aag|z> dédudr

|laj=1

<0(1) (t54 + N(0) >

Once we obtained (3.1), Theorem 1.1 follows immediately from it and the local existence
results in H2 (Lz M) given in the next section. Denote 0% the differential operator 0% =

9(@0:21) = 9209 |o| = a4 o, where ag and aq are nonnegative integers. Set

ﬁ(t7 :L’) - p(t, x) - ﬁ(tv x)a

u(t,x) = u(t,x) — u(t, ),

é(t,x) =0(t,x) — 0(t, ),
G(t,z,8) = G(t,z,&) — G(t,z,&)

with
|2

_ . 1 1 ’§ B u(t7 T
G(ta l’,f) - WLM[(;)W,@)U’%)] {Pl [&1 (29@71')

_ _ 2
Here we subtract G(t, z, ) from G(t, z, £) because H (ﬂx, 9x> (t)HL2 is not integrable with respect
to t. To get the desired energy estimates (3.1), all we need is to close the following a priori
assumption

N(t)? = d+/ / > @MITHETGR v G007 ged
©) OSSEI;{ R+77 ) R3 \a| 1 M- |a|22 s (3.3)

< 8.

0.t ) + & .um) M, x)] } (3.2)

Here §p > 0 is a suitably chosen sufficiently small constant.
From (1.11), (3.3) yields the following L,y estimates by Sobolev imbedding theorem.
<0(1) (tgl + 50) :

) } (3.4)
where t( is the constant in the definition of the approximate rarefaction waves.
Under the a priori assumptions (3.3), by choosing dp and t; 1 to be sufficiently small, there
exists a constant state (p—,u_,0_)(p— > 0,6_ > 0) with u;— = 0 such that for all (7,z) €
[O, t] X R+

sup {\(ﬁ,a,éxmh » (raa<p,u,e><m>r+H Zeta |

T€[0,t],z€R+ 0<|al<1

1
50(7_7'7;) << 9(T,$>, ’0(7_737) - 0—‘ + "U,(T, .’E) - u—‘ + \p('r, iL') - p—‘ < T7po. (35)
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Therefore, the microscopic H—theorem, i.e. (2.1) holds for the global Maxwellian M_ =
M[P—,U—ﬂ—]'

In the following three sub-sections, we will give estimates on the boundary terms; the energy
estimates on the entropy and the derivatives with the weight of the local Maxwellian M; and
then the derivatives with the weight of the global Maxwellian M _ respectively.

3.1 Estimates on the Boundary Terms
This subsection is devoted to estimating the boundary terms. Our first result is to show that

at the boundary xz = 0, the solution f(t,z,&) of the initial boundary value problem (1.1)-(1.3)
and its derivatives with respect to t and x are either odd and even functions of &;.

Lemma 3.1 Let f(t,z,&) be a solution of the initial boundary value problem (1.1)-(1.3), then
we have

;0] f(t,0, RE) = (—=1)/0}01 f(£,0,€) (3.6)
and

ui(t,0) = 0. (3.7)

Lemma 3.1 follows directly from the fact that f(¢,x,&) satisfies (1.1)-(1.3), we omit the
details for brevity.

From (3.7) and the fact that u;— = 0, we know that M(¢,0,&) and M_ () are even functions
of & and consequently G(¢,0,€) is also an even function of ;. This together with (3.6) give the
following lemma.

Lemma 3.2 Under the assumptions listed in Lemma 3.1, we have

t £110%f(7,0,6)[? N &110°f(7,0,8)|? _
/0R3 N 0.6 dde—/O R =0 (3.8)

and

t
| [ pe.0amMe,0.6 - Salg? - fm0la1?| 6,0, dedr
0 RS (3.9)

t
= -3 /0 /Rglfnzal(n 0)G(7,0,€)dgdr.

Now we turn to the estimates on the boundary terms arising from the later energy estimates
on the solution.
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Lemma 3.3 Under the a priori assumption (3.3), we have

t
I = / q(7,0)dr < O(1)exp ( - dlto),
0

b= [ [ (n0laPIGe0,9lddr
)i +0(1)/0t /000 /Rg%dgdxdT,
Iy = // { & (-t Gle —ul?) Lyd [Py &0 (55200, + qyun, ) M}}}(T,o,g)dgcﬁé’do)
<o(1 ( //+OO (g 0| )
14_// &GQ TOf)dde<O S Lo // /Rs S dedadr,
15:/0/113 ﬁ{f: 7,0,8)dedr < O(1 // /Rs £ dédadr.

Proof. From (2.8)2, (3.4), (3.7), and (iv) of Lemma 2.1, we have

1| < O(1) /Ot exp (= da(r + to)) ](pe —70)(r, 0)’d7 <O(1)exp (—dito),

and (3.10); is proved.
As to I, we get from (ii) of Lemma 2.1 and (3.4) that

Bl <00 [+ (/R“d£> dr
g0(1)/ (1 + to)~ (/ /WGQdﬁd:r) (/Oo/ Gidgdx>4dr
(1)/0/0 /Rg%dgda:dTJrO(l)/ T tg) S (/ /GQdfd:c> dr
)i +0(1)/0t /OOO Ag%dgdxdr,

from which (3.10)2 follows.
Now we turn to estimate I3. The properties of the operators LR/Il and Py yield

I < 0(1)/;\(21, 0)(r.0)|| (10 82) (7. 0)|dr

< 0(1)/0t(7+t0)—1\(a,é)(7, 0)]dr

*dr

(ﬂxueﬂc)(ﬂ
(1)/0t(7+t0)3d7

).

1
2

< O(l)/ot(7+to)_1 (@, 0)(T)
Staé/ot/ooo’(axaéx) i
< 0(1)155% <1+/Ot/ooo\(ax,§x) i

which is (3.10)s.
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Notice that I5 can be treated similarly. As for I, noting that M(7,0,£) and G(7,0,&) are
even function of &1, we obtain from the fact g < f_ < 0 that

Ii= /Ot /R (W) (7,0,¢)d¢dr

< 0(1)/0t U(le,esr:)(ﬂ 0)‘2 + ‘(ﬂlxﬁx)(ﬂ 0)’ < RSM[pGu(TZdef) ]
50(1)/0t (7 +t0) 2+ (1 + o) </ /R$G2d§dx>4 </OOO/R3§Ed§dx>4] dr

1ty +0(1)/ / /R%Gﬁ?”dfdxdT
+O(1)/ (T +to) 7% (/ /RSG dfdz)
<o)ty +O(1)/0 /0 /RSGﬁidfdxdr,

This gives (3.10)4 and completes the proof of the lemma.

For the boundary terms coming from higher order energy estimates, we have the following
lemma.
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Lemma 3.4 Under the assumptions listed in Lemma 3.3, we have

t
fo= [ [ (M4) (r.0.0)dsar
R3
2 2 _1
<)\// { P Uy, ;,3) —i—/ Md{] dxdr +O(1)t,*?
+T// / GhtC gedudr + O(1) 60+t // / SHCE e dadr,
0 JO R3 R3
t
I = / / (SO (7,0,€)dedr
R3
2 G2+G2
<o t03+>\// + [ SiELae] dwdr
R3
t o0
+T/o/o /RngdgdxerrO(l) (d0 + 5 )/0/0 /Rgigw dedadr,
t
Is = / / (2592 (7,0, ) dedr
R3
2 G2+G2
<o( t03+)\// [ ) +/ Mdé}d:ch
/ / / G} +G”d£dmdr+0( 1) (60 +15") / / / GHGE jedudr,
R3 R3

flMth) (7,0,&)dedr

G2+G?
+/}33Md§:| dl‘dT

+ ’(pzm ul‘I7 gmit)

2

pl‘audfa z + ‘(pxxaummexz)

2
pxauxa a:

+ ‘(Pm, Uga, eazx
(3.11)

Iy = fle z (7,0, €)dédr| +

R3

)\+50 +t0 // [ /?a:,ux, x
40 / / / GhtGie gedudr
R3
+o(1) <5g+tg2>// /%‘*ﬂdfdmm
0 JO R3 -
t
110:// 51(G§+G%) (T>O7£)d£d7
RS
<owit+af [7]
+T// / CitCes jeddr.
0 JO R3 -

Here and in what follows, A > 0 is used to denote a sufficiently small constant.

2
+ ‘(Pm, Ugy, ea:x)

2

2 G24+G
,Om,ua:, x +‘(pxmuwx?9mx) +/R3 2t td£:| dzdr

Proof. Since

2 6
M, = £ yo+ %0

3
zX4 T % E Uiz Xi»
=1 (3.12)

— 3
M, = %XO + —22p9t><4 +/ % Zl Uit Xi,
1=

we have from (1.8) that

M, M i
/R3 ( > t) (1,0,8)d¢ = lpppt 2920 0 + Zumun] 7,0). (3.13)
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Since u1(7,0) =0, (1.11) gives

[pm + 220,60+ £ z uwun} (7,0) = =2|pauirz + furabi (7,0)
(3.14)
+O()| (s, 0.)(7,0)] [ [€1G (7.0, )l de.
Hence
[, (M) (7,0,€)d€ = ~2[pruss + fusat] (0 .
+O() (12, 0.)(7,0)| [ [€P1G (. 0. ).
Similarly, we have
/R3 <§11\1\/I[:%> (1,0,£)d¢ =2 {pmulx + guhﬁx} (1,0), (3.16)
L, (55E) ,0.6)dg = 2 [§ (pawns + ussb:)] (,0) -
FO) (s s 02) (m0)| [ 16PIG (7, 0.)lde.
R
Since
[ (|02 00m.0)| [ JeP1G(r0.9)ae ) dr
< 00 [ (|08 + [0 ([ o ) o
< O) [ [1ar a8 12t B I + O+ 10)7
(3.18)

N

1
o0 GQ 4 o0 GQ
X ~zd&d / / z””dal) d
([ o bacar) " ([ [, Siacar) " ar
<)\// { px,ux, ) 2 2+/ G2+th§] dxdr
R3
o1 / / / Gk dedudr,
R3

(3.11)4 follows directly from (3.11);, (3.15)-(3.18).
For (3.11)1, since M (7,0,&) = (fo — G2)(7,0,£),M(7,0,&) = (fr — G¢)(7,0,¢), and
fo(7,0,€) and fi(7,0,¢) are odd and even functions of &; respectively, we have

16_/ /m (V==Cf=G1)) (7,0, ¢)dgdr

— Mz Gt+Mth+Gm Gt
A /R LGet GG (1,0, ) dédr (3.19)

3 2 2 T % 2 2
<o [ [<pm,uz,ex><f,o>|(A ATeietgae) oy [ (SRS (no,@dg] dr

G2+G2)(70£ G?
/R3M[p Ju_ 29] £<O / /Rg <M[p u_ 20 ](5))
1 1
1 1
<0(1) </O /RgGﬁ\‘Zthfd) (/ / G +Gﬂd£d) ,

+ ’(P:):xv Uga, 911)

Since
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and

) ‘dfdm

/(GJAG)(Tog)dg<O //
<00 //Rs

< 0(1)(do + 15! /0 /Rs%dgdx

([ St ([ o)

s < 0(1) / (s s O NP s ) 1+ (7 4 £0) )

1
o 2 2 1
[ [ )" ([ e
_ G21+G2
+(d0 + " /0 /Rgfvli_d{dx
1 0o 1
+ </ / 3 G?"FG{% dfd.%’) 2 (/ / ) G?gtl‘\f'/[ngcx dfd.%’) 2 ]d’]’ (320)
R 0 R

2
<)\// {pm,u% . ) —i—/ C;'?”I\J;[G?dé]da:dT
R3
(1 5+ 20 [

+0(1)t,®

we get

’ (px:m ul‘aﬂ 9;1,‘.7}

GletCis gedpdr

)
0 A o Jo
t o]
1) (50+t—1)// /%dfd:cch
0 0 Jo R3 M- ’

ie., (3.11);.
For Ig, we have

t
_ (Sucpred
_/ [RS D) (r,0,0)dedr

& G2+G2)(705) (G§+G?)(T’O’RE)1

(3.21)

and

{ G (7,0, RE) + Go(7,0,€) = — [MLy(7,0,€) + ML (7,0, RE)]
Gt(T,O,Rf) — Gt(’i',o,f) = Mt(T,O,f) — Mt(T,O, Rg)

Hence

I| < 0(1)/0t /R3 (ll0M:L MGG (7, 0, g
<o | t(|<pm,um,am><f, 0)| + I(pu, e, 60)(, o>\> ([, (S <T,o,s>)5df
SMDE(@m%ﬁmnw+(AJ )h&@%f)
([ () r0.0) o
SV AT

t roo t roo
o) G}, +G2, 1 // / G} +G2
+ /0/0 /RJ w2z dgdzdr +0(1) (% + 1) | S deduar,

=18

(3.22)

2 _1
) +/3G%\+4G?d§] dwdr + O(1)ty
R

+ ’(pa::m u$:v7 93,‘.1‘
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Which gives (3.11)3. Note that (3.11)4 and (3.11)5 can be proved similarly. This completes the
proof of lemma.

3.2 Lower Order Estimate

In this subsection, we will give the energy estimates on the entropy and the non-fluid component
G(t,z,§) and we have

Lemma 3.5 Under the a priori assumption (3.3), we have

/n d:r—l—// dgdx

0

+// [ulx (oitn, )] + (i 02| ]dwdT )
<0 (/ n(0)dz + tg * >+0 ) (50 + 15" // /RSGQdfdxdT
+0(1)/0/0 /m%dgdxdwrou)tgl/o/o 5| dwdr
and
/0 da:—i—/ / Gdgdx
+ / / {ulx p i, )‘ ux,; dg} dwdr o
gou)(/ n(0)da + £ 1 >+o to// 7| dwdr

+0(1 // /G+th§dxd7-

Proof. First from (2.12), (3.10)1-(3.10)3, by similar argument on entropy to the one in [25],

we have
(o) t poo ~ ~
/ n(t)dx +/ / (le’ (p,a1,0)* + ](ﬁx,ﬁm)P) dxdr
0 (3.25)

<o (/ n(0)dz +t, * >+O // /G2+G2+”()1Q<GG) dedzdr.
R3

As for the microscopic part G which solves

B P
Gi— LG = —— P, [& <’§ ul 9x+§-ax> M] ~Pi(6G.) + Q(G,G) — Gy, (3.26)

RO 20

by multiplying (3.26) by % and integrating over [0,t] x Ry x R3, we have from (1.15) that

% // |, A8 dedadr
// /%% (5020, + ¢ - 1,) M| dedudr

/ OO/ §dxd7—/ / /R;Pl &G, )dédudr (3.27)
s
)

Qz

(dédzdr + / / / S Q(G, G)dededr

\ \
Z\O*

I
) Mm
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(3.28)

5 mdﬁdl’dT

(3.30)

Similar to the case of the Cauchy problem for hard sphere model considered in [25], I;(j
(3.29)
dédxdr,

o <om(o+at) [ [7 [
dﬁd:cd +O(1 // ux, )
1QGG)

20
11,12,14,15) can be estimated as follows
(3.31)

d{dazdr—i—O // Ag

uf < 5/ / /R3

YOS jedrdr + O(1)ty

3] < 5/ / /R3
=i s
R3
1t—1/ / ( T 2+/ Gwd)d d
)0 o Jo Pz, U )| R3M f xraT
The estimate on [;3 is different because we only assume that ¢(V, ) satisfies (A1) and (A2)
For this, first notice that
P (6G.) = &G, - Z (€1Ga, Xa)Xa = &G — Z (61Gus Xa) Xa + E1Go
a=0
We have
t roo G 4 —
o= [7 ] § 66 - % (€Guxa)xa + &G, | dedadr
0 Jo R3 a=0
t _
— £6G?
_/ /Rs( M )(T’O’g)d&” (3.32)
4 N .
+/ L7 (S @Gvain - 66 § - §8 M, dgdor
R a=0
= Jig + Jis.
Since )
G2 2
(€1Ge, ) < O() ( |3 d§> ,
we get,
73| < 10/ / / UIS dgdudr + O(1) (J + 15" / / / &2 e dudr
R3 R3
+o( )t51+0(1)t51// (o it )| dzdr (3.33)
0
t roo
G2
Seddxdr.
oy S
(3.34)
dde—i-O 1)/ / / zalfdxdT
0oJo Jms

+
Plugging (3.10)4 and (3.33) into (3.32) yields
1s| < 10/ / /Rg”@)G dedzdr + O(1) (6 + 5" / / /RsG dedudr
(P g, O

+0( )tgZ +O(1)t51/0 / P g, 02
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Substituting (3.28)-(3.31) and (3.34) into (3.27), we obtain

/ / +/ / /R3 dfdde
<01 50 +ty // /R3 —dédxdr + O(1)t, * (3.35)
1)t5// dxd¢+0(1)// [|(ax,éz)2+/mfjvd§} drdr
/ / [R 5”@ QGG 1 drdr.

Similarly, using the weight M_ instead of M, we have

| // |, dedadr

<o / / { iy 0 / S0 9GOy dg} dvdr (3.36)

Lot T 4+ 01 to//

Since for M; = M_ or M, Lemma 2.3 and (3.3) give

| HO—gES g < 0(1)43%542%/1{3%%
o G ] s [ A o0 [ 4]

<om(n+13") [ SVTd&O(l)\(ﬂu, 0.)(r.a)|'

G2 S déd

Px

dxdT

Pz

(3.37)

9

(3.23) and (3.24) follow immediately from (3.25), (3.35)-(3.37) and this completes the proof of
Lemma 3.5.

Notice that in the above two estimates (3.23) and (3.24), the double integral of j2 and j?
are not included. In the following, we will show that they can be recovered from the system of
conservation laws. For results in this direction, we have

Lemma 3.6 Under the a priori assumption (3.3), we have

t

/Ot /Ooo|l3m|2d3:d7 < O(1)exp ( — d1t0> +0(1) /OOO (ﬁgﬂh) (t)dx 0

o[ [ R+ [ Sae avar (3.39
t [e'e)
1)7:51/0/0 Tl (5, i) [2dadr

and

t [e%s) t [e%s) t [e%s)
// \ﬁt\Qd:EdTgO(l)// |(ﬁz,a1x)|2dacdr—|—0(l)tal// el (5, i) [2dzdr. (3.39)
0 JO 0 JO 0 JO
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Proof. From (1.11) and (iii) of Lemma 2.1, (ﬁ,ﬂ,, 9~) (t, ) solves
pt + (pin)e = —Hi,

~ - 25 20~ _ €&11°Ga
Uy + Urlig + 302 + 5,0 = —/Rngdf — Hy,

Ut + Uy U2y = _/R3 75152% d§ — Uy Uy, (3.40)
Uge + U Uze = —/ %df — U U3y,
R3
S & (cu-3le)
Ot nf, + 3, = [ SN Gdg — Hy,
R3
Here
H{ = (pu ULp
1 (Pul + ulp)a:,
Hy = U1, + Uitz + %wp_pﬁeﬁza (3.41)

Hjs = %(ﬂlzé + ﬁua) + (ﬁlgx + ﬂléx)-
Multiplying (3.40)2 by p, and integrating with respect to ¢ and = over [0,¢] x R, we have
t 0029 2 t oo o o 9. &
/ / 3 dxdr = _/ / [Ultpx + PzU1UIz + gpxex} dxdr
0 Jo 0 Jo
t [e’e) . t [e¢) _5
_ / / / 2ol G e gy — / / poliTne + min, + 2B ot (3.42
0oJo Jrz ° 0 Jo e
18
I.

=3 I.

=16

Pz

For this, we have

t oo 9 t oo Gi
‘117\ < )\/O /O d:cd7+0(1)/0 /0 [m oy dedadr, (3.43)

t o0 t ')
‘hs‘ < )\/0 /0 dedT—l—O(l)/O /0

t roo ~ 12
+0(1)t51/0/0 1 |(p, in, 0)| dadr.

P

2
dxdT

Pz Uy

(3.44)

As to I14, since

WPy + i ling + %ﬁxéx = [wp.], + {m (pin +u1p) —in(pin)e}

2 2~ 5 s .
+ gpxex — Ulx (Pul + Pul)za

—p

Ulx

we have
¢

I = — /000 (puiir ) (B)dt| + /Ot w1 (pis + pm)_— i (pin) | (7, 0)dr
0
+/0t /O‘X’{ﬁ!almp — 3pu0; + e (pins + p1)_}dadr (3.45)

3.
= X He
J=1
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For J3, we have

t roo t proo ~
‘J{%‘g)\/o/o \ﬁx\2dwdr+0(1)/0/0 (i, 0,) [2dadr

. (3.46)
1)t51/0/0 @1l (5, i) [2dadr.
As for Ji;, since
[ (pin + ) — i (pin) |(r,0) = [W (pwre = 7ot — p1a )| (7,0)
<O(1)exp (= di(r +10)),
we set
%] <o) /t exp (= di(r +to) )dr < O(1)exp  — dato). (3.47)
0

Combining (3.45), (3.46) and (3.47) gives

t
0 t [e%s)
/ (peitn ) (t)da +)\/ / o |2dzdr
0 0 0 JoO

+O()exp (= dito) + 015" | t [ el 3 )P (3.48)

t o] -
1)/ / (i, 6, [2dzdr.
0 Jo

By putting (3.43),(3.44) and (3.48) into (3.42), we can deduce (3.38) immediately and (3.39)
can be proved similarly. This completes the proof of Lemma 3.6.
(3.23)-(3.24) and (3.38)-(3.39) give the complete lower order estimates.

1| < 001)

3.3 Higher Order Estimates

In this subsection, we will consider the higher order energy estimates of 9“M, 9*G, and 9% f
for |a] = 1,[8| = 2 with respect to both the local Maxwellian M = M, 2 u(t,2),0(t,)] and the
global Maxwellian M_ = M, ,_g_j.
For estimates on 0°M with a = (1,0) or a = (0, 1), applying Py to (1.10) gives
M +Po(&M,) + Po(6Gs ) =0 (3.49)

and we can get that

Lemma 3.7 Under the a priori assumption (3.3), we have for |a| =1 that

t
o0 « t [e'e) 1
/ /Rg%dé’dw —1—/ / |8‘1(uz70$)‘2dwd7 < O(l)to 1

0<>(A+60+t0 )// 10 (5,0 |2+ram<p,ue|2+/ G B CD g¢ | ad )

(1+4 // |, S dgawir + 00 (55 +1,° // | St dedaar.
R3 R3
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Proof. Applying 0% to (3.49) and integrating its product with ‘WTM over [0,t] x Ry x R? give

s [
/ / /RSaaMm Po(61M, )}dgdxch_/ / /RgaaMaa[pO(glG )] dedzdr (3.51)
- S

7j=19

dédvdr

Now we estimate [;(j = 19,20,21) term by term as follows. First, we have
t roo
s <01 / 10%(0,10,0) P (pus s, )|

<Oty +0(1) (5 + 15" // U G20 + | (s Tl 00) 2] dardr

As to Iy, noticing that 9“M € N for |a| = 1, we have from (3.11)2 and (3.3) that

t o)
=— / / / IM €10°M, dédadr
0 JO R3
[ £1|8°‘M|2 Vi &il0°M|?
_5// St U (T,o,g)dgdf—f// /172M$d§da:d7'
R3 R3

()\+52+t0 // [|a (5., 9)\2+\am(p,u9|2+/ +th£]d:cd7' (3.53)

LOMIET 4 %// /%ddmf
()0 pY o Jo R3 ™M 5

1 _1 t poo
+0(1)(5§+t02)/0/0 /Rg%dgdmdf.

Similarly

t 0
121:—// /9“1\4518&(; dédzdr

—/ / (883C) (,0,8) d{dT—/ / Q00" G M, dédwdr
R3 R3

+ /0 /0 Rgifla MG gedadr

3.
=2 Jh
=1

(3.52)

(3.54)

(3.11)4 implies that
1 _1 t poo -
il = (v as+6%) [ [T [10:06. 008 + foratp )P + [ SiiSae| duar
0 JO R
t o) 2 2
(R ) A A s (3.55)
1 _1 t oo 2.4 G2
+O(1) (62 +1, 2 // /bddmr.
W5 +t) [ S

Moreover, we have

2 b " ERTAE:
| <O [ ] (e e, 62)]10% (0, )| [ PxFEdE ) dudr 50
_1 t poo ~ 2 '
<O()ty * +0(1)(50+t51)/() /0 D(,az,am,ex)yu/w%dg] dzdr.
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Now we turn to estimate J3;. Noticing (1.13), we have

t 0
= [ [ [ S50 [Lad €M) + Lk (Gu + Pu(61G) = QG G) | dedadr

t 0 o
= [ [T PN L ML) + Ly (G + Pr(61Ga) — QG G) | dedadr

9 t oo 5 t roo G2 4+G2 (357)
< —ga/ / 16°(ug, 6,)] dmd¢+0(1)/ / / GE:t Gl g dudr

0 JO 0 R3
+O(M)ty * +0(1 (60 + 17 // [px,ax,éx)\%r/mcﬁwdg] dudr.

Substituting (3.55)-(3.57) into (3.54) deduce

In
t o)
<30 [ [T10%(us0.)Pdndr + Ot +0(1) (14 % // |, S dgdadr
R

(3.58)
R A A R e O e L

+o(1 52+t0 // /G+th§dxd7
R3 N

Putting (3.51), (3.52), (3.53) and (3.58) together, we can get (3.50) immediately and this
completes the proof of Lemma 3.7.

For the corresponding estimates on 90*G with a = (1,0) or (0, 1), compared with the Cauchy
problem for the hard sphere model considered in [25], the main difference is on the estimate on
the following term coming from the assumption on ¢(V,8).

_ [P [ 9GO [P1(6Ga)]
Iy = /0 /O /R ) o d¢dadr. (3.59)

To deal with (3.59), noticing

4
0% (P1h) = P1(0%h) = 3 [(h, "X + (h x) 0%,
7=0
we have from (3.11)3 that

4

¢ oo B“G{fla(‘Gx—Z [(51Gx,3(‘Xj>Xj+(§1Gx7Xj>3an}}
w=
0 JO R3

- dedudr

t t roo
—_1 aloeGP 1 aloeGP
2/0 ~/]R,3 ( M ) (T7 07 g)didT + QA A /113 M2 Mtdgdde
4 t oo ‘90‘G[<§1Gm’aaXﬁXj+<§1G1,Xj>8"‘xj}
_]ZO/ / /R3 Wi dédxdr (3.60)

<A / / / G gedadr + O(1 / / / Gt Gl dedudr
R3 R3

(A7 +17) // {yax(ﬁ,a,enu|am(p,u,9)y2+/ ﬁ(}fdf} dadr
0 JO R3

1 _1 t poo
+O(1)<6§+t02)/0/0 /Rs%dgdmf.

Thus, we can deduce that
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Lemma 3.8 Under the a priori assumption (3.3), we have for |a| =1 that

t
00 o t oo o 1
/ AS—‘aﬁ'gdﬁda@ +/ / /Rsi”@)‘& SE gedrdr < O(1)t; *

5.7, 0)2 5 (G2+G§+G§)
()\+52+t0 // (5,11, 0)[2 + |0ue (9, 1, 6)| +/ - d¢| dzdr

(3.61)
// (g, 0z) 1—|— // / Gzz+G“d£dazd7‘
R3
+OM)(8F +1,?) // /%dfdmr.
0 JO R3 -

To obtain the 2-th order derivatives with respect to = and/or t on G, we need to work on the
original Boltzmann equation (1.1) to avoid the appearance of the 3-th oeder derivatives. This
can be summarized in the following lemma.

Lemma 3.9 Under the a priori assumption (3.3), we have for each || = 2 that

/OOO Agmdgd / / /R3 YOIIGE ey

<o)ty +0()50+t0 // /R3|af|d£d:cd7

3.62
50—|—t0 // [ px’um | + |aa(px’um’gm)|2 ( )

|laj=1

la|=1

v(§) |F12+ > dO‘G|2]
+ N df] dxdr.

R3

Proof. Applying 9° with |3| = 2 to (1.1) and integrating its product with % over [0,t] x
R x R, we have from (3.8) that

/ /R3 \dﬁf|2d5d = / / /R3 |aﬁf\2 Mt“rfle}dfdxdT

85f85 L G 85f85 (G,G)
+ / / / Z AN Gedadr + / / / }dfdxdT (3.63)
R3 R3
I

:Z

=23

First,

13| < 0(1) (80 + 1) /Ot /OOO /RS ’?\Z{Pdgd dr. (3.64)

As to Ioy4, since

I /t /OO/ Pl(aﬁM)8ﬁ<LMG>d dnd t poo aﬁGaﬁ(LMG)d drd

: )

7l Jo Jrs M Sdedr 0 Jo Jms M Sdwdr (3.65)
= J214 + J2247
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we have
Ty = 0yt +om(a+ig) [ [la (52, 0) 2 + |02, ., 0) 2
(3.66)
v(€) [GQ—&—G%—&-G?-FG%Q—&-G%J
/ d€ | dxdr,
R3
and
9 t oo 8ﬁGLM<8'BG>
J2, = / / /R L dedudr
10°GI]|Q(8%G,0°~*M)[+|Q(G,0° M)
/ / / { Wi ]dfdl‘dT
\a| 1 R3
o v(€)|08PG|?
<-Z VWG gedqq
: 2/0 A
O T @@ oM@ M)
+O(1)/t /oo/ o= d¢dudr (3.67)
0oJo Jms M
t 0 1
—g v(©I°G]2 -3
< 2/ / /R G jedvdr + O(1)1
+0 5O+t // [ vau:m | +|(vaum, :p:v)‘ +|(th>uxt7u:pt)|2
v(¢ )[Gl2+ > IaaGQ]
|a|=1
+ - i df] dxdr.
Consequently
t e’} 1
o v(€)|0°P G2 -7
Iy < —5/ / /Rs%dgdxd7+0(1)to4
5 + 1ty // maum + 0Pz Uz, O 2
0 0 [ p 2)[? Z 10%(p )| (3.68)

la|=1

N ] dgl dxdr.

v(€ )[Gl2+ > 107G
+

R3
Finally, we estimate I5 by first rewriting it as

¢ oo pl(aﬁM)aﬁ[Q(G,G)] L [ 95Go°[Q(G.G)]
25_/0/0 /RS . dgdxd7'+/0/0 /RSTCWMT (3.69)
= Jos + JZ.

Since

°1Q(G, G)] = 2Q(9°G,G) + O(1 Z (60‘G,85*QG>,

aB
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we have

t roo
35| <o) /O /0 /R R A

t [e'e] o —a
+0(1) % / / / P (O"MQENGI G e s i
0<a<pJ0 JO R3

v~ {|Q(85G,G)|2+ > Q%G00 2G)?

/ / (a%’aa p,ue)y> /R3 M de | dwdr.

. (3.70)

Since

1% 32 > 12 (22
/Rgi(ﬁ\)f de < 0(1)/0 /RS {(ﬁ\)f ] dédz

% , cTel 0 y .
< 0(1)/0 A{Si@ﬁc ‘dfdw+0(1)/0 /Rsi(ﬂf’ 1,

<o) +0(1)(50+t51)/0 /Rs%dgdxjtou)/o /stczgdx

and

0°G?
su —d¢ | <0O(1)dg,
g(%/R e ) < o

we deduce that

[ v©"1Q@0°G.G)12
/0 /R i it dedx
§01/°°{/ v(f)\aﬂGPd/ ey +/ u(g)G?d/ 0°GL2 }d
()0 RS M ngMg R3M £R3M f.’E
[ vEleta)? > v(6)G? V(&G / 9°G[?
<oWa [ [ MO dcan o) [ {[/R W+ [ df] [ % dg}dx

< 0(1) (0 + 1" / /ngdfd:p—kO(l) sup Mg'@@dq/ /Rg'f"’TG'ngdx (3.71)

reR

GQ+G2
)(J0+151) / /R OISR geqr 4 0(1)6, / / dgdxdT

G2+ Z |0°G|2

@[ ]
60+t / / S dé¢dxdr,
RS

and

A
R3

G2+ Z |0>G|?

oo
50+t—1/ / o dédz.
R3

(3.72)
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Hence

7| < o / / 10°(p, u, 0)|*dudr
\a| 1

. V(f)l{lQ(aﬁGvG)ler > Q(aacyaﬁacﬂ
n / / / 0<a<p d¢dadr
oJo JR3 (3.73)

0 [é% > aaGP]
<Oty * +0(1) (5 + 15" // ,5&5\2+/ o= d¢ | dadr.
R3

Similarly, we have

FAES / / / 27 dededr
R3
2 2 (3.74)
Lo v(€)| G2+ Y |oeG
+0(1) (50 + £ / / ot dédud
Wo+at) [ ) M Edrdr
Hence
‘125‘ <O(1 + )\/ / / |BﬁG|2 d¢dadr
R3
(3.75)

[G2+ > |B“G|Q]
+0 50+t // / e dédvdr.
Rd

Substituting (3.64), (3.65), (3.75) into (3.63) yields (3.62) and the proof of Lemma 3.9 is
completed.

By suitably linearly combining (3.50), (3.61), and (3.62), we have by choosing A and d
sufficiently small and t( sufficiently large that

Corollary 3.1 Under the a priori assumption (3.3), we have

/ / 8°‘M\2+|8“G|2d£d$ S / / aﬂf\ ‘dfd
laf=1 R? 18l= 2 R?
t roo v(€) E |8&G‘2
+// S 10%(ug, 0 |2+/ e de| dadr
0 JO lal=1

0°G|?

<Oty +0(1)(5 +1,* //[RJ 'gl dédadr

+oM)(A+ 55 +1,7) / /. (z 002 + (5o, s, 0 + [ “‘Rf‘) dds.

|a|=1

0

(3.76)

To recover the estimate on |0%p,|? with |a| = 1 in (3.76), similar to that of Lemma 3.6, we
need to use the system of conservation law (1.11) again, cf [18] where the same technique was
used. For results in this direction, we have
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Lemma 3.10 Under the a priori assumption (3.3), we have

/ / p2 . drdr < O(1 +O / / < um,umtﬁmﬂz—i—/ ?éf”d&) dxdr
R3

2 (3.77)
+0 5o+t // (pm,ﬂm,ex)2+/ %d&)dwdT
R3
and
t o) t o] _1
//‘@mmgom//’WMhmmmmm+mm¢
070 070 f e (3.78)
1)(50—%t54>u/‘J/ (P, i) [2dxdr.
0 JO
Proof. Since
pt + (pu1)e =0,
(3.79)

£ Ga
ult—i-ululx—i— 9 +3ppx+ 7d€:0,
R 7

differentiating (3.79)s with respect to z and multiplying the resulting identity by pg., we have
by integrating the final result with respect to t and z over [0,¢] x Ry that

t t 0
/ / gngsxdxdT = _/ / an:’U«lxt + pxx(uluhc)g;]dxdT
0 Jo
_ glc}i”C _ ‘£1|2szz
/0 /0 /R Spm = 182 dgdadr

28
= > 1

=26

(3.80)

From the Cauchy-Schwarz’s inequality, we have

t oo t oo t oo
| 2| g)\/o /0 pixdxdT—FO(l)/O /O ](uxt,um)\Qdasz+O(1)/0 /0 |y |*dzdr
t roo t proo
/4+)\/ / pixdasz-i-O(l)/ / |(Uat, gy )| drdT
0 Jo 0 Jo

t (o)
+mn@+gy//|@Wmﬂ
|Io7] < )\/ / P2 dzdr + O(1 / / b pw,ux,ﬁx)|4}dxd7

0 +/\// p2dxdr
0 JoO
t oo - t oo
D@+QQ// WM%%Wmm+mn// 10,0 [2dudr,
0 Jo

VM<A// mﬂmm+//’4§xwwwmu) (d0+ 1t // A G4 ddzar.

Substituting the above inequalities into (3.80), we can deduce (3.77) immediately.
As for p,¢, since

Pat = —UPxx — PUzx — 2p1’ux7

(3.80) follows immediately from (3.77). This completes the proof of Lemma 3.10.
Based on (3.23), (3.38), (3.39), (3.76), (3.77), and (3.78), we have, cf. [25], that
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Corollary 3.2 Under the a priori assumption (3.3), we have

/ n(t dw+// 02 (5. . 0) 2 + sl (510, O)F + 5 10°(pa s, 0)|?) daclr

laf=1
+/ /RE}G%FQ;1 |aaMl2+1|\iaG| +|a22|aaf2d£dx+// /Rgu(g G2+|§13ac|z] dgdég%m)
<o it o o) o) [ [, (5 » 2, 562) s

A direct consequence of (3.81) is

/ot/oo<|(ﬁw’@w75x>l2+ ) |8Q(vaux79x)\2>dxd7'
la|=1
<ow (i* +v02) +o (") [ [ /Rg<Gi al18G|>d€d:ndT.

Now we consider the energy estimates with respect to the global Maxwellian M_ and com-
plete the proof of Theorem 3.1. The main difference here is that the fluid part Po(0“M) and
the non-fluid part G are no longer orthogonal with respect to M_, i.e

/R3 PO(i/[M)

(3.82)

d¢ # 0.
As a result, there is an extra error term in the form of
t [e'e) _
1)/ / ('(ﬁwvﬂx’ 0a)* + > 10%(pe, o, M?) dxdr.
0 Jo
la|=1

However, due to (3.82), this term can be suitably controlled. Hence from (3.11)5, we can deduce
that (3.1) holds provided that the a priori assumption (3.3) is satisfied.

Based on (3.1), we can close the a priori estimate (3.3) by choosing §y > 0 sufficiently small
and tp > 0 sufficiently large such that

N(O) <é&o
_1
O()(to* +23) < &3

and this completes the proof of Theorem 3.1.

4 The Proof of Theorem 1.1
4.1 Local Existence in H? <L§7M)

In this subsection, we show how to construct local solution in the energy space H> (L27M7) to
the initial boundary value problem (1.1)-(1.3). First, set

M(¢) M_ (&)
M. (&) M(E)

By using the explicit expression of k;(£,&.)(i = 1,2), we have the following lemma. Thus,
we omit the proof for brevity.
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Lemma 4.1 If0_ > g >0, then fori=1,2

sup { [ IKite.€2lde. | < o)

£ER3

sup { [ Ki6.61de ) < 001,

£«€R3

(4.2)

To construct the local solution in H?2 (LE,M,) to the initial boundary value problem (1.1)-

(1.3), for each (t,z,§) with ¢ > 0,2 > 0, as in [2], we first construct the backward characteristic
line (X (s;t,2,€), E(s;t,z,£)) passing through (¢, z, &), i.e.

dX(‘il;?m’g) - El(S;t,LU,é),
dE(sit,2,) (43)
Bl g,

(X(s3t,2,8), E(s;t,2,8))|s=t = (2,6). (4.4)

As in [2], if the characteristic line (X (s;¢,x, &), E(s;t, x,€)) intersects with the boundary z =
0 at s = s9 € (0,t), then we construct the backward characteristic line (X (s;¢,z,§), E(s;t,x,§))
for s < s¢ by solving (4.3) with

(X(s:t,2,8), E(s;t,2,6))|s=s0 = (0, RE(s0; 1, ,¢)). (4.5)
It is easy to show that

r+(s—1)&, if x—&t>0,0<s<t,xz>0,t>0,

X(s;t,z,&) = x4+ (s —t)&, if x—§1t<0,t—§§s§t,x>0,t>0, (4.6)
—x — (s —t)&, if :r—§1t<0,O§s§t—££l,x>0,t>0,

and

& x—&6t>0,0<s<t,z>0,t>0,

E(sit,z,§) =& -6t <0,0<t—F <s<txz>0,t>0, (4.7)
RE, x—§1t<0,0§sgsozt—é,x>0,t>0.

Notice that (X(s;t, xz,&), E(s;t,z,£)) has the following properties:

(i) (X, E)(s;t,x,&) is piecewise Lipschitz continuous, X (s;t,x,&) > 0,|E(s;t,z,€)| = [£];

(ii) The Jacobian determinant of 88(()5’]5)) equals to 1.

Now for any function F'(t,x, &), define the micro-macro decomposition as before and denoted
by:
F(t, é) =Mp(t,2,§) + Grp(t,z,§) = M[pF(t,;v),uF(t,x),GF(t,;v)] + GF(tv €, 5)7

where (pF(t, x),ul (¢, ), 0F (¢, x)) and Gp(t,z,§) are the corresponding fluid and non-fluid com-
ponents of F.
Define a set of functions:

X ={F(t,z,€) € H? (Lin_ )t F(t,0,RE) = F(£,0,€), |[[F||| <201,0- < 0p <20},
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where d; > 0 is a small constant and the norm ||| - ||| is defined as:
00 _ 2 t roo _
WENE = [ 0" =g =07 =) da+ [ [ (0a(0" = . — 7,07 = 0)P

0

1o |(pF = p,ut —u, 0" — _)’ + X ’8“ (px,ef, 5) >dxdT
=1 (4.8)
[T e |GF—G|2+ T (0°Mp 4 |9°Ge ) + 3 [0°F ) deddr
|a|=2

+// /R3 ‘GF—G!2+ Z 0°G| )d{dmdr

laf=1

Here (ﬁ, u, @) and G are the fluid and non-fluid components of M_.
For F' € X, consider the linear equation

Ji+&1fe = In, G + Q(GF, Gp), (4.9)

{ f(ta w,f)’t:O = f0($7£)>
(4.10)
f(t7 07 R&) = f(t7 07 g)’
with Mg, = M, .6, Satisfying 6 < irxlf Oo(x) < supfby(x) < 260_.
Let f=M+G and f = f — M. SinceG:f—M:f—i—(M—M),Wehave
ft&fotv(©)f = —[(M, + &M,) + (&) (M - M) i

VMK, (8 = VMrk: (&) + Q(Gr, Gr).
Noticing v(¢) = v(|¢]) and |E(s; t,z,€)| = €], f has the following expression:
F(t,2,€) = exp ( —u(&)t) fo (X<o, t2,€), E(0;t,2,€))

—/Otexp(— ) (Vs + VL) + (€)M~ M) (o, X (5., €), B 1,2,6) )y
t 4.12
o exp( )[FKQ( ) N ()] (1 X009, Bt € )l
)= )

+/ exp —u

Since M_(§) = M_(E(s;t,x,£)), we can easily deduce from (4.2) that if g <6_<6,0_>

,%’ <0_<0p
2 0o £2
/ / ‘129| dfd:c < 0(1)/ / @dgdx, (4.13)
R3 0 R3 M_

2 t 00 nNT 2
'130' deds < O(1) / / [pr,ux,ex)r% / 'MM'ds] dudr,  (4.14)
o Jo R3 M_

[@(Gr. Gr)] (1. X(r:t,2.). Bl t.2.))dn = 3 I
=29

0
2

s

[ L |
< / L, M@&ﬁ% ] / ( (ka(;€2) —kl(f;f*))\/‘%da)(, (7). E(r))dr dédm(4.15)
<om [ [ /R( sl elds. ) ([ S 1Gie &)1 ds. ) dedads

/Ot[/ooo 5 dgdx]dT
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For I39, since

N

| < ([ e (~ 260t - n))u@dn)é ([ s@Gr G X0, Bw)an)

[SIE

<o) ([ 110G, G0 X ) Bonan)

(€)
we have
/ /RS ol ded < O(1 // /11st ACPCeP” gty
con [ [,k [ e
O(1)683

Combining (4.13)-(4.16), we have the L2 (LgyMi)—norm estimate on the solution f(t,z,¢)
to the linear problem (4.9) and (4.10) when the initial data fo(z,¢) € L2 (LE,M,)’ A similar

argument holds for the H2 (LgM_)—norm estimates.
Define a solutions operator 7 for the problem (4.9)-(4.10) by:

f=1T(F). (4.17)

The above estimates imply that if Hfg(a:, §)—M

[p(0.2).1(0,2),6(0,)] || 12 (Li N < 4 for some small

positive constant d1, there exists a t; > 0 such that the operator 7 defined by (4.17) maps X

to X. Similar argument shows that it is contractive. Therefore, we have the following local
existence result.

Theorem 4.1 For each multi-indexr o = (a1, 0) with 1 < |a| < 3, suppose that |£|0°M €
L? (L%M_). If the initial data fo(x,&) satisfy fo(x,&) — M[ﬁ(O,x),ﬂ(O,w),?(O,a:)] € H? (LgM_) with
its H? (LéM_)—norm sufficiently small and 0_ < ir%f Oo(x) < supbp(z) < 20_, then the initial
boundary value problem (1.1)-(1.8) admits a unique solution f(t,x) = M, .2)u(t2)00te)](§) +
G(t,z,&) on [0,t1] x Ry satisfying 2 Ita) g < O(t,x) for all (t,x) € [0,t1] x Ry. Here t;
depending only on Hfo r,§) — [ﬁ(O,x),ﬂ(O,x),g(O,x)}HH:% (LE,M,)

4.2 The Proof of Theorem 1.1

We now finish the prrof of the main result. The global existence result follows immediately from
Theorem 3.1 and Theorem 4.1. To complete the proof of Theorem 1.1, we only need to give the
time asymptotic estimate (1.28). For this purpose, notice from (3.1) that

/ / / G gedrdr < O(1),
R3
di/ CE deda| dr g/ / /Rs%dgdxdf <o(1),

.
///R MV“)'ngdxdT<0()
T

(M — M Oz (M—M _ _ =)|2+|0z M,,f
el Sl dT</ / / oMM ) HO MMz e gt
R3

.

&.‘Q‘
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Consequently

lim /Oo/ G +10:(M M[ﬁ’ﬁﬁ]mdgdx —0 (4.18)
t—o0 Jp R3 M_ e )

Since

G24|M— M GGa|+M-M 2 510 7M,,7
/ +| . d£<O / / | [+] || (M pug d{dm
R3 R3

g </ /Rgﬁidedx> < / [ dm) |
(/ /RSM MP“ePdgd/ As oMM ) dfdx>’

we have from (3.1) and (4.18) that

G?+ M~ M5/ B
lim sup \ (t,x,£)dE = 0.
R

tHOOCBER_;_ M-
Thus
lim sup / (W> (t,x,&)dE < hm sup / (GQJFM_MW’“’G]P) (t,x,&)dE

tHOO$€R+ R3 M- Hoo.’bGR_Q_ R3 M- Y (419)

=0.

Moreover,
M R R QR _Mfff

lim sup / ’ PPt 0] [p’u’g]‘ (t,z,&)dé = 0, (4.20)

t—>°oac€R+ R3 M_

we have from (4.19) and (4.20) that

‘2
lim sup

t—00 zeR

_M R ., R OR
/ = Mgt (t, 2, €)dE = 0, (4.21)
R3

M_

which is (1.28). And this completes the proof of Theorem 1.1.
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