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Abstract

The purpose of this paper is to explore an alternative to the traditional interpolation
based semi-Lagrangian time integrators employed in atmospheric models. A novel
aspect of the present study is that operator splitting is applied to a purely hyperbolic
problem rather than the incompressible Navier-Stokes equations. The underlying
theory of operator integration factor splitting is reviewed and the equivalence with
semi-Lagrangian schemes is established. A nonlinear variant of integration factor
splitting is proposed where the advection operator is expressed in terms of the
relative vorticity and kinetic energy. To preserve stability, a fourth order Runge-
Kutta scheme is applied for sub-stepping. An analysis of splitting errors reveals
that OIFS is compatible with the order conditions for linear multi-step methods.
The new scheme is implemented in a spectral element shallow water model using
an implicit second order backward differentiation formula for Coriolis and gravity
wave terms. Numerical results for standard test problems demonstrate that much
larger time steps are possible.
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1 Introduction

The seminal work of Robert [24] led to a six-fold increase over the explicit
time step for atmospheric general circulation models. To achieve such dra-
matic gains without recourse to a fully implicit integrator, a semi-Lagrangian
treatment of advection was combined with a semi-implicit scheme for the stiff

∗ Corresponding author.
Email addresses: amik@ucar.edu (Amik St-Cyr), thomas@ucar.edu (Stephen J.

Thomas).

Preprint submitted to Elsevier Science 27 February 2004



terms responsible for gravity waves. Initially, semi-implicit semi-Lagrangian
time-stepping was applied to hyperbolic problems, discretized using low-order
finite-differences and finite elements [29]. However, the method was soon ex-
tended to global models based on the spectral transform [23]. The traditional
semi-Lagrangian algorithm implemented in atmospheric models relies on back-
ward trajectory integration and upstream interpolation. In effect, the numeri-
cal domain of dependence is shifted to an upstream grid cell and, for advective
CFL numbers C < 1 with linear interpolation, is equivalent to upwind finite
differencing. Upwind schemes are known to be diffusive and thus cubic inter-
polation has been generally adopted [28]. Indeed, McCalpin [19] has shown
that high-degree polynomials are required in order to mitigate the inherent
numerical dissipation and dispersion errors associated with semi-Lagrangian
advection.

Bartello and Thomas [2] analyzed the cost-effectiveness of the backward semi-
Lagrangian scheme in the context of geophysical flows. Their analysis was
restricted to atmospheric models using low-order finite differences and either
2D or 3D Lagrangian interpolants. In the enstrophy cascade of homogeneous
quasi-geostrophic turbulence, the authors concluded that high efficiency gains
are possible over low-order Eulerian integrators. However, the gains are at
best marginal in the case of a 3D Kolmogorov energy cascade. The cascade
interpolation procedures of Purser and Leslie [21] and Nair et al. [20] reduce
the computational complexity from O(Nd) to O(N) per grid point, where N
is the degree of the interpolating polynomial in d space dimensions . The order
of accuracy of these methods has not been formally established. Nevertheless,
the time scale separation between Lagrangian and Eulerian frames is more
restrictive for small-scale atmospheric dynamics when E(k) ∼ k−5/3 and the
semi-Lagrangian scheme is only cost-effective at very high spatial resolutions.

The combination of the semi-Lagrangian approach together with a high-order
spectral element space discretization, applied to the advection-diffusion equa-
tion, is described in Giraldo [12]. An important result of this study is that
numerical dissipation and dispersion errors for the combined scheme are com-
pletely eliminated for polynomial order N ≥ 4. More recently, Giraldo et
al. [13] reported numerical results for a semi-Lagrangian semi-implicit shallow
water model. Extension of the scheme to the hydrostatic primitive equations
is discussed in Giraldo and Rosmond [14]. Motivated by the efficiency gains for
advection-diffusion, Xiu and Karniadakis [33] applied a semi-Lagrangian spec-
tral element (SESL) method to the incompressible Navier-Stokes equations.
For laminar and transitional flows, they observed efficiency gains ranging from
four to ten times over an Eulerian SE scheme. Xu et al. [35] simulated turbu-
lent channel flow using a mixed spectral discretization. A ten-fold increase in
the time-step was obtained, but only at the break-even point in computational
efficiency due to the use of global interpolants. These results also confirm the
error analysis of Falcone and Ferretti [9], who show that the error can actually
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decrease as the time step increases.

In high-order methods, the computational cost of upstream interpolation for
an N -th order discretization in d space dimensions is O(Nd) per degree of free-
dom. Given a spectral element discretization consisting of K elements of order
N , there are KNd grid points and the total interpolation cost is O(KN2d).
By comparison, the cost of Eulerian operator evaluations scales as O(KNd+1).
For example, advection of a scalar requires dKNd+1 operations [10]. A poten-
tially lower cost alternative to interpolation is the operator integrating factor
splitting (OIFS) method of Maday et al. [18] which relies on Eulerian sub-
stepping of the advection equation. If the total number of sub-steps per time
step is less than Nd−1, then OIFS should be more efficient. Boyd [3] observed
that both semi-Lagrangian and OIFS algorithms are members of a broader
class of integration factor methods.

There are several motivations for our evaluation of integration factor methods
in the context of spectral elements applied to geophysical flows. The advective
CFL number scales as O(N−2) and is more restrictive than a stability condi-
tion derived purely from dimensional analysis would indicate. Removing this
restriction permits a significant increase in the time step. For example, allow-
ing it to match the time scale of sub-grid scale physical parameterizations. In
contrast with semi-Lagrangian advection, there are no dissipation or disper-
sion errors associated with upstream interpolation or trajectory integration
and the scheme maintains the high-order accuracy of the underlying discrete
spatial operators. For spectral elements, and finite elements in general, the
discrete advection operator is skew-symmetric. The stability region of the in-
tegrator should contain part of the imaginary axis and thus a fourth-order
explicit Runge-Kutta (RK-4) method is employed for sub-stepping.

For the incompressible Navier-Stokes equations, the zero divergence constraint
must be maintained. In the linear OIFS scheme, this can be accomplished
by interpolation and extrapolation of the velocity between time levels [6,10].
Fischer notes [10] that for a backward differentiation formula (BDF) with
k time levels, the advection equation is integrated k times, resulting in a
complexity scaling as O(k2). However, the cost can be reduced to O(k) by
exploiting linearity and superposition. For the shallow water equations, the
divergence is non-zero and linearity is not a requirement. Wilhelm and Kleiser
[31] demonstrate that the advective form and rotational form (vorticity and
kinetic energy) of the advection operator are stable under the PN −PN−2 spec-
tral element discretization. The rotational form is better suited to curvilinear
coordinates in cubed-sphere geometry as Christoffel symbols are not present
and the momentum equation can be written in flux form.

For the present study, a novel OIFS method has been implemented in the
spectral element shallow water model developed by Thomas and Loft [30].
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This nonlinear variant of the OIFS method is implemented using a fourth-
order Runge-Kutta (RK-4) scheme for sub-stepping and a second-order BDF-
2 method for the Coriolis and gravity wave terms. Numerical results are pre-
sented for test cases proposed by Williamson et al. [32]. Couzy [6] and Sher-
win [27] observe that sub-stepping can induce an O(∆t) error for steady-state
solutions of the incompressible Navier-Stokes equations. For a steady-state
geostrophic shallow water flow, second order convergence is obtained, with-
out evidence of splitting errors. In all cases, significantly larger time steps are
possible when compared to both a semi-implicit Eulerian formulation and a
linear variant of OIFS. The latter appears to break down due to extrapola-
tion of the velocity. The recent results of Xiu et al. [34] for the incompressible
Navier-Stokes equations appear to substantiate the findings of the present
study. When combined with a conjugate gradient squared (CGS) algorithm,
the model integration rate is accelerated by a factor of four over the explicit
formulation.

2 Operator Integration Factor Splitting

Maday et al. [18] introduced a general splitting technique for systems of ordi-
nary differential equations. To elucidate the operator integration factor split-
ting (OIFS) method, consider the initial value problem

du(t)

dt
= S(u(t)) + F (u(t)), t ∈ [t0, T ], (1)

with initial condition u(t = 0) = u0. u ∈ R
N , t is time and T is the final

time of the integration. S(u) and F (u) are, in general, nonlinear functions.
For example, S(u) could represent the space-discretized advection operator
and F (u) the diffusion operator. Let us assume the existence of an integration
factor Qt∗

S (t) ∈ R
N × R

N , such that

d

dt

[

Qt∗

S (t) · u(t)
]

= Qt∗

S (t) · F (u(t)), (2)

The parameter t∗ is an arbitrary fixed time t∗ ≥ t. Assuming that Qt∗

S (t∗) = I,
where I is the N ×N identity matrix, it is straightforward to show that the
integration factor satisfies the differential equation

d

dt

[

Qt∗

S (t)
]

· u(t) = −Qt∗

S (t) · S(u(t)). (3)
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If S(u(t)) = A(t)u(t), where A(t) is an N × N matrix, and A(t1)A(t2) =
A(t2)A(t1) for any times t1 and t2, then

Qt∗

S (t) = exp

[

∫ t∗

t
A(s) ds

]

.

For matrices which do not commute, this formula does not apply. In particular,
when A is time-independent, Qt∗

S (t) = eA(t∗−t), and integration of (2) over the
interval (t, t∗) yields the well-known variation of constants formula

u(t∗) = eA(t∗−t)u(t) +
∫ t∗

t
eA(t∗−s)F (u(s)) ds.

The latter is useful in the linear stability analysis of (1). Linearization is also
important for determining the order conditions and splitting errors associated
with time discretization schemes which approximate the application of the
matrix exponential eA(t∗−t) or integration factor Qt∗

S (t) to a vector u(t).

In order to simplify the notation and represent the application of the integra-
tion factor to a vector, an auxiliary vector v(t∗,t)(s) ∈ R

N is now introduced
and the following result is established (see Deville et al. [7])

Theorem 1 If v(t∗,t)(s) is the solution of

d

ds
v(t∗,t)(s) = S(v(t∗,t)(s)), 0 ≤ s ≤ t∗ − t (4)

with initial condition v(t∗,t)(0) = u(t), then Qt∗

S (t) · u(t) = v(t∗,t)(t∗ − t).

PROOF. Multiplying (4) by Qt∗

S (t + s), it follows that

Qt∗

S (t + s)
d

ds
v(t∗,t)(s) = Qt∗

S (t + s)S(v(t∗,t)(s)). (5)

By making the change of variables t → t + s in (3), and substituting the
initial condition v(t∗,t)(s) = u(s + t) of the shifted problem (4) on the interval
s ∈ (t, t∗), leads to

d

ds

[

Qt∗

S (t + s)
]

· v(t∗,t)(s) = −Qt∗

S (t + s)S(v(t∗,t)(s)). (6)

Addition of (5) and (6) yields the derivative

d

ds

[

(Qt∗

S )(t + s) · v(t∗,t)(s)
]

= 0.

The latter implies that Qt∗

S (t+s)·v(t∗,t)(s) is constant with respect to s. Setting
s = 0 and exploiting the fact that v(t∗,t)(0) = u(t), the constant is seen to be
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Qt∗

S (t) · u(t). Thus, it follows that

Qt∗

S (t + s) · v(t∗,t)(s) = Qt∗

S (t) · u(t).

Setting t∗ = t+s and applying the relation Qt∗

S (t∗) = I leads to the final result

Qt∗

S (t) · u(t) = v(t∗,t)(t∗ − t).

Now consider the situation where S(u) represents the semi-discrete advection
operator. The parameterized curve X(x, t) represents the Lagrangian trajec-
tory of a fluid particle with velocity u(X(x, t), t), where the material or total
derivative is

d

dt
u(X(x, t), t) =

∂u(x, t)

∂t
− S(u(x, t)) (7)

and X(x, t) satisfies the ordinary differential equation

d

dt
X(x, t) = u(X(x, t), t). (8)

The next theorem establishes that OIFS is equivalent to a semi-Lagrangian
method. However, rather than backward particle tracking followed by inter-
polation, the Eulerian advection equation is integrated forward in time.

Theorem 2 If X(x, tn−q) is the solution to the initial value problem

d

dt
X(x, t) = u(X(x, t), t), t ∈

[

tn−q, tn
]

with X(x, tn) = x and v(tn,tn−q)(s) is the solution of (4) with initial condition
v(tn,tn−q)(0) = u(x, tn−q) then

u(X(x, tn−q), tn−q) = v(tn,tn−q)(tn − tn−q).

PROOF. Integration of (7) on the interval [tn−q, tn] results in

∫ tn

tn−q

d

ds
u(X(x, s), s)ds =

∫ tn

tn−q

{

∂u(x, s)

∂s
− S(u(x, s))

}

ds

u(X(x, tn), tn)−u(X(x, tn−q), tn−q) = u(x, tn)−u(x, tn−q)−
∫ tn

tn−q
S(u(x, s)) ds

where u(X(x, tn), tn) = u(x, tn) because X(x, tn) = x. Thus,

u(X(x, tn−q), tn−q) = u(x, tn−q) +
∫ tn

tn−q
S(u(x, s)) ds. (9)
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Then, for a fixed x the right hand side of (9) is the solution of the initial value
problem

dv

ds
(s) = S(v(s)), tn−q ≤ s ≤ tn (10)

with initial condition v(0) = u(tn−q). The result trivially follows by recognizing
that the problem (10) is the same as (4) on the shifted interval s ∈ [tn−q, tn].
Thus, the left hand side of (9) is equivalent to the solution of problem (4)

u(X(x, tn−q), tn−q) = v(tn,tn−q)(tn − tn−q).

To summarize, given a k level time discretization, the upstream value of
u(X(x, tn−q), tn−q) is obtained by forward in time integration of the homo-
geneous advection equation

∂ũ(x, t)

∂t
− S(ũ(x, t)) = 0, t ∈

[

tn−q, tn
]

for time levels n − q, q = 1, . . . , k, with the initial conditions

ũ(x, tn−q) = u(x, tn−q).

It should be noted that the OIFS scheme is equivalent to semi-Lagrangian
advection only when primitive variables are integrated using (4) and S(u) is
the advection operator.

3 The Shallow Water Equations

The shallow water equations have been used as a vehicle for testing promising
numerical methods for many years by the atmospheric modeling community.
They contain the essential wave propagation mechanisms admitted by the
hydrostatic primitive equations employed in 3D models of the atmospheric
general circulation (for a mathematical introduction to the subject consult
[8]). Specifically, these represent a hyperbolic system of equations, admitting
gravity and Rossby wave solutions. The latter are important for correctly
capturing nonlinear atmospheric dynamics. The governing equations for the
2D inviscid flow of a free surface are the momentum and continuity equations

∂ v

∂t
+ (f + ζ) k × v +

1

2
∇ (v · v) + ∇Φ = 0, (11)

∂ Φ

∂t
+ (v · ∇) Φ + (Φ0 + Φ) ∇ · v = 0. (12)

h is the height above sea level, v is the horizontal velocity and Φ = gh the
geopotential height. f is the Coriolis parameter and k a unit vector in the
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vertical direction. The geopotential height is decomposed into a perturbation
about a constant base state, Φ0.

In the present study, the equations of motion are solved in a cubed-sphere
geometry [26,25,22]. Let a1 and a2 be the covariant base vectors of the trans-
formation between inscribed cube and spherical surface. v = v(λ, θ) is the
horizontal velocity vector on the sphere. Covariant and contravariant com-
ponents are given by u1 = v · a1, u2 = v · a2 and v = u1 a1 + u2 a2. The
metric tensor of the transformation is defined as Gij ≡ ai · aj . Covariant
and contravariant vectors are related through the metric tensor, ui = Giju

j,
ui = Gijuj, where Gij = (Gij)

−1 and G = {det(Gij)}1/2. For equal angular
coordinates, −π/4 ≤ x1, x2 ≤ π/4, the metric tensor is

Gij =
1

r4 cos2 x1 cos2 x2







1 + tan2 x1 − tanx1 tanx2

− tanx1 tan x2 1 + tan2 x2







where r2 = 1 + tan2 x1 + tan2 x2 and G = 1/r3 cos2 x1 cos2 x2. The divergence
and relative vorticity are then given by

∇ · v =
1

G

[

∂

∂x1
( G u1 ) +

∂

∂x2
( G u2 )

]

, ζ =
1

G

[

∂u2

∂x1
−

∂u1

∂x2

]

The equations of motion are discretized in space using the PN −PN−2 spectral
element method as in [30]. The cubed-sphere is partitioned into K elements
Ωk in which the dependent and independent variables are approximated by
tensor-product polynomial expansions. The velocity is expanded in terms of
the N -th degree Lagrangian interpolants hi

vk
h(r1, r2) =

N
∑

i=0

N
∑

j=0

vij hi(r1) hj(r2)

and the geopotential is expanded using the (N − 2)–th degree interpolants h̃i

Φk
h(r1, r2) =

N−1
∑

i=1

N−1
∑

j=1

Φij h̃i(r1) h̃j(r2)

A weak Galerkin formulation results from integration of the equations with
respect to test functions and direct evaluation of inner products using Gauss-
Legendre and Gauss-Lobatto-Legendre quadrature. C0 continuity of the ve-
locity is enforced at inter-element boundaries sharing Gauss-Lobatto-Legendre
points and direct stiffness summation is then applied [7]. The advection op-
erator in the momentum equation is then expressed in terms of the relative
vorticity and kinetic energy, whereas the continuity equation relies on the ve-
locity form. Wilhelm and Kleiser [31] have shown that the rotational form of
the advection operator is stable for the PN −PN−2 spectral element discretiza-
tion.
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4 Time Discretization

In the context of the incompressible Navier-Stokes equations, to integrate
the time-split system (4) for the momentum equation, the OIFS algorithm
described by Fischer [10] and Sherwin [27] employs an approximate linear
advection equation

∂ ṽ

∂s
+ v · ∇ṽ = 0, s ∈

[

tn−q, tn
]

, (13)

with initial condition ṽ(x, tn−q) = v(x, tn−q). To preserve a divergence free
velocity field, v is computed on [tn−q, tn−1] by interpolation of known fields
vn−k,vn−k+1, . . . ,vn−1 and values of v on the interval (tn−1, tn] are extrapo-
lated. Direct stiffness summation is applied every time step. Fischer [10], ob-
serves that the computational cost of an OIFS implementation can be reduced
to O(k) by recognizing that (13) is linear and then exploiting superposition.
In the case of the nonlinear shallow water equations, the flow field is divergent.
Furthermore, our numerical experiments indicate that extrapolation leads di-
rectly to instabilities, thus limiting the maximum allowable time step for the
system of equations (2).

The Courant-Friedrichs-Levy (CFL) number is C = max |λ|∆t and for spec-
tral elements, max |λ| = σ|v|/∆xmin where σ ranges between 1.52 and 1.16 as
the polynomial order N increases. ∆xmin scales as O(N−2) due to the clus-
tering of Gauss-Lobatto-Legendre points at element interfaces. In general, the
eigenvalue spectrum of the discrete advection operator includes some part of
the imaginary axis. For example, in the case of spectral elements, the lin-
ear advection operator is skew-symmetric with purely imaginary eigenvalues.
Therefore, any time integration scheme for sub-stepping (13) should have a
stability region that includes a portion of the imaginary axis. Third and fourth
order explicit Runge-Kutta methods are thus appropriate for sub-stepping.
The CFL number for the third order RK-3 scheme is C = 1.73, representing
the intersection of the stability region with the imaginary axis. Three function
evaluations are required in RK-3, implying an efficiency factor of C/3 = 0.58,
whereas RK-4 requires four function evaluations and C = 2.82, yielding an
efficiency factor of 0.70 (see Durran [8]). For this reason, an RK-4 scheme is
adopted to integrate (13). Long integrations could result in significant phase
and dissipation errors as observed by Hu et al. [15].

To exploit the potential of OIFS for systems of time-dependent partial differ-
ential equations, it is our contention that the fully nonlinear form of the initial
value problem (4) is more appropriate for integration factor splitting. In the
case of the shallow water equations, therefore, sub-stepping is applied to the
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equations

∂ ṽ

∂s
+ ζ̃ k × ṽ +

1

2
∇ (ṽ · ṽ) = 0, (14)

∂ Φ̃

∂s
+ (ṽ · ∇) Φ̃ + Φ̃ ∇ · ṽ = 0. (15)

with initial conditions ṽ(x, tn−q) = v(x, tn−q), Φ̃(x, tn−q) = Φ(x, tn−q). Note
that (15) is in fact the conservative form of the continuity equation

∂ Φ̃

∂s
+ ∇ · (Φ̃ ṽ) = 0. (16)

According to equation (2), the integration factor Qt∗

S (t) is applied to the re-
maining de-coupled system of equations containing the Coriolis and linear
gravity wave terms

d

dt
Qt∗

S (t)







v

Φ





 = −Qt∗

S (t)







f k × v + ∇Φ

Φ0 ∇ · v





 . (17)

An accurate representation of fast-moving gravity waves is not required for
large scale atmospheric dynamics and the corresponding terms can be treated
implicitly. For an implicit second order BDF-2 scheme, sub-stepping of the
right-hand-side terms is not required because Qtn

S (tn) = I. The resulting time
discretization of (17) is given by

3vn − 4ṽn−1 + ṽn−2

2∆t
= − Mfvn −∇Φn (18)

3Φn − 4Φ̃n−1 + Φ̃n−2

2∆t
= − Φ0 ∇ · vn (19)

where the value of the fields ṽ and Φ̃ at time levels n−1 and n−2 are computed
by sub-stepping (14) and (15) on the intervals [tn−1, tn] and [tn−2, tn]. It is then
straightforward to de-couple the above system of equations, yielding

vn +
2

3
∆tN∇Φn =

4

3
Nṽn−1 −

1

3
Nṽn−2 (20)

Φn +
2

3
∆tΦ0∇ · vn =

4

3
Φ̃n−1 −

1

3
Φ̃n−2 (21)

where

N =
(

I +
2

3
∆tfM

)−1

, M =







0 −1

1 0





 (22)

An implicit equation for Φn is obtained after spectral element discretization
and application of block Gaussian elimination, resulting in a reduced Schur
complement system. The coefficient matrix of this linear system of equations
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is non-symmetric due to the implicit treatment of the Coriolis terms and is
solved using an iterative conjugate-gradient squared (CGS) algorithm. Once
Φn has been computed, vn is obtained by back-substitution.

5 Splitting Error Analysis

The general class of linear multistep methods for ordinary differential equa-
tions includes the second order backward differentiation formula employed in
the present study. An analysis of the stability and accuracy of these methods
can be found in the texts [16,4]. The notation adopted here closely follows
[16]. Consider the linear version of the initial value problem (1)

du(t)

dt
= Su(t) + Fu(t). (23)

If the initial condition is specified at tn, then the solution at tn+k is exactly

u(tn+k) = ek∆t(S+F )u(tn). (24)

Solving first for S and then F , the solution is given by

u(tn+k) = ek∆tF ek∆tSu(tn). (25)

Hence the splitting error is the difference between (24) and (25) and the order
of accuracy depends on the commutativity of the matrices S and F . When
these matrices do not commute, the splitting is only first order accurate.

A k-step linear multistep method for integrating (2) is given by

k
∑

j=0

αjQ
tn+k

S (tn+j)un+j = ∆t
k
∑

j=0

βjQ
tn+k

S (tn+j)Fun+j.

The action of the integrating factor in the linear autonomous case is

Qtn+k

S (tn+j)un+j = e∆t(k−j)Sun+j.

Collect the terms at time level n + k on the left-hand side, and substitute for
un+j = e(j−l)∆t(S+F )un+l

(I − ∆tβ̄kF )un+k =
k−1
∑

j=0

e(k−j)∆tS(∆tβ̄jF − ᾱjI)e(j−l)∆t(S+F )un+l.

where (ᾱj, β̄j) = (αj , βj)/αk. Expand the inverse of the matrix appearing on
the left-hand side

(I − ∆tβ̄kF )−1 =
∞
∑

m=0

(∆tβ̄kF )m

11



and it follows that

un+k =
∞
∑

m=0

k−1
∑

j=0

(∆tβ̄kF )me(k−j)∆tS(∆tβ̄jF − ᾱjI)e(j−l)∆t(S+F )un+l. (26)

If the numerical method to compute Qtn+k

S un+j is order p, then the Taylor
series of the matrix exponential e(k−j)∆tS is exact up to the p + 1-st term.
Thus, for a third second accurate scheme, the exponentials can be expanded
up to third order

e(k−j)∆tS = I + (k − j)∆tS +
1

2
(k − j)2∆t2S2

Substitute the above equation into (26) and, for k = 2, retain all terms up
to O(∆t2). Subtract the resulting expression from the Taylor series expan-
sion of the exact solution u(tn+k) = e(k−l)∆t(S+F )u(tn+l). Then the following
conditions must be satisfied.

−ᾱ0 − ᾱ1 = 1 (27)

β̄0 + β̄1 + β̄2 − ᾱ1 = 2 (28)

2β̄2 −
ᾱ1

2
+ β̄1 = 2 (29)

β̄1 + 2β̄0 −
3ᾱ1

2
= 2 (30)

β̄2
2 − (β̄1 + β̄0 + ᾱ1)β̄2 −

ᾱ1

2
+ β̄1 − 2 = 0 (31)

A k-step method is order p if the coefficients satisfy the order conditions

k
∑

j=0

αj = 0,
k
∑

j=0

αjj
i = i

k
∑

j=0

βjj
i−1.

Equations (27), (28) and (29) are none other than these order conditions
and are automatically satisfied. Combining the order conditions (29) and (28)
results in (30). Finally, substituting (29) into the quadratic (31) leads to

β̄2(β̄2 + β̄1 + β̄0 − ᾱ1 − 2) = 0

which is always satisfied due to the order condition (28).

The OIFS method is therefore second order accurate in the linear case, even
when the matrices do not commute. To the best of our knowledge, this is the
first formal proof of second order accuracy. Numerical experiments in the next
section demonstrate that second order accuracy is achieved for the nonlinear
shallow water equations.
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6 Numerical Results

A standard test set for evaluating numerical approximations to the shallow
water equations in spherical geometry was proposed by Williamson et al. [32].
To facilitate the comparison of different numerical methods, the authors pro-
vide definitions of l1, l2 and l∞ relative error metrics and flow invariants. Test
case 2 is a stationary zonal geostrophic flow, representing a balance between
the Coriolis and geopotential gradient forces in the momentum equation. The
velocity field on the sphere is specified initially (and for all time) as

u = u0 ( cos θ cos α + cos λ sin θ sin α )

v = −u0 sin λ sin α .

where (λ, θ) are spherical longitude and latitude coordinates. α is the an-
gle between the axis of solid body rotation and the polar axis. The analytic
geopotential field Φ = gh is specified as

Φ = Φ0 −

(

aΩu0 +
u2

0

2

)

× ( − cos λ cos θ sin α + sin θ cos α )2 .

a is the radius of the earth and Ω is the rotation rate. Parameter values are
specified to be u0 = 2πa/(12 days) and Φ0 = 2.94 × 104 m2/s2. The Coriolis
parameter associated with this solution is

f = 2Ω ( − cos λ cos θ sin α + sin θ cos α ) .

The spectral element shallow water model was integrated for five days us-
ing both the extrapolated and nonlinear OIFS schemes. The total number of
elements was 96, with 14× 14 Gauss-Legendre points per element. A Fischer-
Mullen [11] filter, was applied after every RK-4 time step and at the end of
the BDF-2 time step. The BDF-2 time step was ∆t = 120 sec, corresponding
to twice the explicit CFL number and the filter viscosity factor was µ = 0.01.
Figure 1 is a plot of the geopotential height l2 error for both schemes and they
exhibit comparable errors. The l2 error for the nonlinear scheme oscillates
slightly but is well below the time truncation error.

A second set of five day integrations was performed in order to evaluate the sta-
bility of the two methods and to confirm that the BDF-2/RK-4 time-stepping
scheme is second order. 150 spectral elements and 8× 8 Gauss points per ele-
ment were employed. The filter viscosity factor was set at µ = 0.001 for these
simulations. Here, the time step is varied by two orders of magnitude. Figure 2
is a log-log plot of the geopotential height l2 error versus the time step (scaled
with respect to the explicit CFL number) for a five day integration. The plot
clearly indicates that the extrapolated OIFS scheme becomes unstable at 15
times the explicit CFL number, whereas the nonlinear OIFS scheme remains
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stable out to a time step that is 53 times larger than the explicit time step. The
slope of the error curve in Figure 2 indicates that the nonlinear BDF-2/RK-4
scheme is indeed second order accurate.

Test case 5 is a zonal flow impinging on a mountain. The mean equiva-
lent depth of the atmosphere is set to h0 = 5960 meters. The mountain
height is given by hs = hs0

(1 − r/R), where hs0
= 2000 m, R = π/9, and

r2 = min[R2, (λ − λc)
2 + (θ − θc)

2]. The center of the mountain is located at
λc = 3π/2 and θc = π/6 in spherical coordinates. An exact solution is not
known and relative error metrics are computed by comparing against a T213
spectral transform reference solution. Numerical results are reported for the
BDF-2/RK-4 integrator based on the nonlinear OIFS scheme and the Crank-
Nicholson/leap-frog (CNLF) semi-implicit scheme described in Thomas and
Loft [30]. A total of 150 spectral elements containing 8 × 8 Gauss-Legendre
points are employed. The Fischer-Mullen filter was applied again with viscos-
ity factor µ = 0.01. The geopotential height l2 error is plotted in Figure 3 for
a fifteen day integration. The stable explicit time step is ∆t = 90 sec and the
CNLF scheme increases this by a factor of four. The BDF-2/RK-4 scheme fur-
ther increases the explicit time step by a factor of 160. The l2 errors for both
models are comparable at ∆t = 360 sec. When the BDF-2/RK-4 integrates
at twenty times the effective CFL limit of the CNLF scheme, the l2 error is
slightly less than two times larger. For ∆t = 14400 sec (not shown), the l2
error at 15 days is approximately seven times larger.

In the presence of stationary forcing due to mountains, the traditional CNLF
semi-implicit semi-Lagrangian scheme exhibits a resonance phenomena. Off-
centering the Crank-Nicholson scheme introduces dissipation and thus miti-
gates the resonance problem. However, the resulting scheme is only first order
accurate in time. Côté et al. [5] analyzed the linear stability of a family of sec-
ond order integrators including BDF-2, which the authors refer to as ‘backward
implicit’. They illustrate how the numerical dissipation of the BDF-2 scheme
increases with the time step. The relative mass loss for the CNLF and BDF-
2/RK-4 schemes is plotted in Figure 4 for different time steps and is observed
to be of the same order of magnitude. Figure 5 contains polar cylindrical plots
of the geopotential height field after 15 days of integration using ∆t = 480
sec and ∆t = 7200 sec. The effect of increased dissipation can be observed
where the two separate 5900 meter isolines in the top panel have merged into
a single isoline in the bottom panel.

The initial condition for test case 6 is a wavenumber four Rossby-Haurwitz
wave. These waves are an ideal test because they represent exact analytic so-
lutions to the nonlinear non-divergent barotropic vorticity equation. Rossby-
Haurwitz waves are not closed-form solutions of the barotropic shallow water
equations. A 1734 × 8 × 8 spectral element grid was chosen in order to com-
pare against the simulation results reported by Thomas and Loft in [30]. The
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Fischer-Mullen filter viscosity factor was again set to µ = 0.01. Because the
advecting wind speed exceeds 50 ms−1, the efficiency gains possible with the
BDF-2/RK-4 scheme are somewhat diminished. BDF-2/RK-4 is only capable
of taking time steps which are four times larger than the CNLF scheme, or
32 times larger than the explicit CFL. The geopotential height l2 errors for a
14 day integration are plotted in Figure 6. Figure 7 contains polar cylindrical
plots of the geopotential height field after 14 days using ∆t = 120 sec and
∆t = 360 sec. The increased dissipation of the BDF-2 scheme is evident at
the larger time step.

Although the implementation of the BDF-2/RK-4 scheme is still at an exper-
imental stage, it leads to a significant increase in the model integration rate.
Figure 8 is a plot of the ratio of CNLF and BDF-2/RK-4 execution times
for test case 5. The efficiency gain of BDF-2/RK-4 over the CNLF scheme
is close to a factor of two. Thomas and Loft [30] observed that the CNLF
scheme integrated twice as fast as an explicit spectral element shallow water
model. Therefore, the total increase in the model integration rate, when com-
pared to the explicit model, is a factor of four. The plateau in the efficiency
curve is due to a growing number of CGS iterations as the time step increases.
Thus, computational cost of the time step is dominated by the Krylov solver.
For the Rossby-Haurwitz test case 6, the computational efficiency is currently
equivalent to the CNLF scheme (i.e. the efficiency ratio is close to 1). Further
optimization of the nonsymmetric Krylov solver is possible. For example, a bi-
conjugate gradient (BCG) algorithm [1] could lead to further improvements
in computational efficiency.

7 Conclusions

A nonlinear variant of the OIFS method has been developed and applied to a
hyperbolic system of partial differential equations. The advocated approach of-
fers several advantages but some open questions remain. For example, it is not
obvious how to group terms together at the same time level for sub-stepping as
in the traditional semi-Lagrangian method. Unlike primitive variables, nonlin-
ear forcing results in cross terms. Without the superposition principle, the op-
timizations proposed by Fischer [10] are not applicable. However, sub-stepping
a nonlinear system permits much larger time steps. For extrapolated velocity
fields, the time step is severely constrained in the case of the shallow water
equations. The time step is also restricted in the case of the incompressible
Navier-Stokes equations, as observed by Xiu et al. [34]

The splitting error analysis presented in this paper is restricted to linear non-
commutative operators. However, our numerical results indicate that the BDF-
2/RK-4 time stepping scheme is second order accurate. It should be noted that

15



for OIFS, steady state solutions are problematic. The difficulty stems from the
fact that a fixed point solution of the full system might not be a steady state
solution when operators are split (see locally one dimensional methods in
Hundsdorfer and Verwer [16]). However, in the linear non-commutative case,
a simple analysis shows that the fixed points of the global operator are the
same as the two split ones. This result is confirmed by Krogstag [17] where
the link between OIFS and exponential time differencing methods is made and
numerically by Couzy [6] and, independently, by Sherwin [27]. To the best of
our knowledge, a proof is not available in the nonlinear case.

The goal of our work is to develop a time-stepping scheme that is compati-
ble with adaptive mesh refinement (AMR) for the 3D hydrostatic primitive
equations employed in atmospheric general circulation models. Because these
equations are ill-posed for any specification of point-wise boundary conditions,
local time-stepping in refined regions should be avoided. One possible strategy
is to apply the nonlinear OIFS scheme and sub-step based on the most restric-
tive CFL number. The observed computational efficiency is dominated by the
cost of the Krylov iterative solver and thus additional sub-stepping does not
add a significant computational overhead.
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Fig. 1. Shallow water test case 2: Steady-state geostrophic flow. Geopotential height
l2 errors for extrapolated (solid red) and nonlinear (dashed green) OIFS schemes for
a five day integration, ∆t = 120 sec. Fischer-Mullen filter viscosity factor µ = 0.01.
K = 96 spectral elements, 14 × 14 Gauss-Legendre points per element.
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Fig. 2. Shallow water test case 2: Steady-state geostrophic flow. Geopotential height
l2 errors for extrapolated (solid red) and nonlinear (dashed green) OIFS schemes ver-
sus time step (scaled by the explicit CFL) for a five day integration Fischer-Mullen
filter viscosity factor µ = 0.001. K = 150 spectral elements, 8 × 8 Gauss-Legendre
points per element.
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Fig. 3. Shallow water test case 5: Flow impinging on a mountain. Geopotential
height l2 errors for a 15 day integration using the the nonlinear OIFS scheme.
Crank-Nicholson/leap-frog (CNLF) semi-implicit and BDF-2/RK-4 schemes are
compared for various time steps. Fischer-Mullen filter viscosity factor µ = 0.01.
K = 150 spectral elements, 8 × 8 Gauss-Legendre points per element.
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Fig. 4. Shallow water test case 5: Flow impinging on a mountain. Relative mass
loss for a 15 day integration. Comparison of Crank-Nicholson/leap-frog (CNLF)
and BDF-2/RK-4 schemes. Fischer-Mullen filter viscosity factor µ = 0.01. K = 150
spectral elements, 8 × 8 Gauss-Legendre points per element.
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Fig. 5. Shallow water test case 5: Flow impinging on a mountain. Geopotential height
field h at fifteen days produced by BDF-2/RK-4 scheme. Time steps ∆t = 480 sec
(top panel) and ∆t = 7200 sec (bottom panel). Fischer-Mullen filter viscosity factor
µ = 0.01. K = 150 spectral elements, 8 × 8 Gauss-Legendre points per element.
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Fig. 6. Shallow-water test case 6: Rossby-Haurwitz wave. Geopotential height l2
errors for a 14 day integration. Comparison of CNLF and BDF-2/RK-4 integration
schemes. Fischer-Mullen filter viscosity factor µ = 0.01. K = 1734 spectral elements,
8 × 8 Gauss-Legendre points per element.
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Fig. 7. Shallow-water test case 6: Rossby-Haurwitz wave. Geopotential height field
after 14 day integration. Top panel: ∆t = 120 sec. Bottom panel: ∆t = 360 sec.
K = 1734 spectral elements, 8 × 8 Gauss-Legendre points per element.
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Fig. 8. Shallow water test case 5: Flow impinging on a mountain. Computational effi-
ciency. Ratio of the CNLF and BDF-2/RK-4 model execution times. Fischer-Mullen
filter viscosity factor µ = 0.01. K = 150 spectral elements, 8 × 8 Gauss-Legendre
points per element.
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