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Abstract. We consider doubly nonlinear anisotropic degenerate parabolic
equations, supplemented with an initial condition and a homogeneous Dirichlet

boundary condition. We introduce a notion of entropy solution and prove that
the entropy solution is uniquely determined by its data.

1. Introduction

We introduce a notion of entropy solution and prove a uniqueness result for
doubly nonlinear anisotropic degenerate parabolic equations, supplemented with
an initial condition and a homogeneous Dirichlet boundary condition.

The problems under consideration take the form

(1.1)

∂tu+
d∑
i=1

∂xifi(u) =
d∑
i=1

∂xi

(
|∂xiAi(u)|

pi−2
∂xiAi(u)

)
in QT ,

u|t=0 = u0 in Ω and u = 0 on (0, T )× ∂Ω,

where u(t, x) : QT → R is the unknown function that is sought, QT = (0, T ) × Ω,
T > 0 is a fixed time, Ω ⊂ Rd is a bounded domain with smooth boundary ∂Ω, and
pi > 1 for i = 1, . . . , d. The initial function u0 : Ω → R is assumed to be bounded.

The functions A1, . . . , Ad : R → Rd satisfy

(1.2) Ai ∈ Liploc(R) and Ai(·) is nondecreasing with Ai(0) = 0, i = 1, . . . , d,

while the convective flux function f = (f1, . . . , fd) : R → Rd satisfies

(1.3) f(u) ∈ Liploc(Rd;Rd) and f(0) = 0.

Let us also state a closely related problem, namely the following one containing
an “isotropic” second order operator:

(1.4)

{
∂tu+ divf(u) = div

(
|∇A(u)|p−2∇A(u)

)
, in QT ,

u|t=0 = u0 in Ω and u = 0 on (0, T )× ∂Ω,

where p > 1 and A(·) is a scalar nondecreasing Lipschitz function with A(0) = 0.
Note that even when pi = p 6= 2 and Ai ≡ A for all i, the anisotropic problem (1.1)
does not coincide with (1.4) (but it does when p = 2).

Since the graph of Ai(·) can be flat, solutions to (1.1) will in general develop
discontinuities, even when the initial function u0 is smooth. Hence it becomes
necessary to interpret (1.1) in the weak sense. Moreover, it is well known from
the theory of conservation laws that discontinuous weak solutions are not uniquely
determined by their data and consequently an additional selection criterion, a so-
called entropy condition, is needed to single out a unique weak solution.
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Indeed, the conservation law

∂tu+ divf(u) = 0

is a special case of (1.1). A rather complete L∞ entropy solution theory for the
Cauchy problem for scalar conservation laws was developed by Kružkov [31] and
Vol’pert [44]. A detailed exposition of Kružkov’s theory can be found in, e.g., [33].
We refer to [3, 37, 33, 46] for a corresponding theory for the Dirichlet boundary
value problem.

Many other partial differential equations (usually possessing more regular solu-
tions) are also special cases of (1.1) and (1.4). Let us mention the heat and porous
medium equations

∂tu = ∆u, ∂tu = ∆um, m > 1,
and more generally degenerate convection-diffusion equations of the type

(1.5) ∂tu+
d∑
i=1

∂xi
fi(u) =

d∑
i=1

∂2
xixi

Ai(u) (Ai satisfies (1.2)).

Degenerate parabolic equations like (1.5) occur in theories of flow in porous media
(see discussion and references in [21]) and sedimentation-consolidation processes
[11].

Another famous representative of the class of equations that is considered herein
is the p–Laplace equation

∂tu = div
(
|∇u|p−2∇u

)
, p > 1,

which arises in the theory of non-Newtonian filtration. Also well known is the
doubly nonlinear polytropic filtration equation

(1.6) ∂tu = div
(∣∣∣∇(|u|m−1

u
)∣∣∣p−2

∇
(
|u|m−1

u
))

, m, p > 1.

Degenerate parabolic equations of the type just mentioned have been intensively
studied in recent decades, see the books [19, 48] and the references cited therein
(some recent regularity results for (1.6) can be found in [20]). A related class of
equations consists of the so-called elliptic-parabolic equations

∂tb(u) = div a(u,∇u),
where b : R → R is a continuous nondecreasing function (b can be flat) and
a(r, ξ) : R×RN → RN is continuous, monotone in ξ and satisfies a growth condition
of the type |a(r, ξ)| ≤ C(r)(1 + |ξ|p−1), p > 1. We refer to [1, 7, 38, 14] and the
references cited therein for more information on elliptic-parabolic equations.

In most of the situations mentioned above, solutions possessing some type of
Sobolev regularity in the spatial variable are sought. The problems we have in
mind will in general possess discontinuous solutions. Consequently, it becomes more
challenging to devise reasonable solution concepts and to prove uniqueness/stability
results. In recent years the isotropic problem (1.4) with p = 2 has caught a great
deal of attention. A first study of entropy solutions for such equations is due to
Vol’pert and Hudjaev [45]. For one-dimensional equations, some general uniqueness
results have been proved by Wu and Yin [47] (see also the book [48]) and Bénilan
and Touré [6]. In the multi-dimensional context a general uniqueness result is due
to Carrillo [13, 12]. He was the first to successfully implement Kružkov’s doubling of
the variables device [31] for second order equations. He also developed a powerful
method for handling a homogeneous Dirichlet boundary condition in degenerate
problems. Various extensions of his result can be found in [10, 25, 28, 30, 34, 35, 40],
see also [15] for a different approach and [41] for a uniqueness proof for piecewise
smooth weak solutions. Among the works cited, we mention that [34, 35] analyze the
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problem with a non-homogeneous Dirichlet boundary condition. Explicit estimates
for continuous dependence on the nonlinearities were proved in [18], see also [30, 24].
Several recent studies concerned with the convergence of numerical schemes can be
found in [2, 9, 21, 23, 25, 26, 29, 36].

The anisotropic degenerate parabolic equation (which generalizes (1.5))

(1.7) ∂tu+ divf(u, t, x) = div
(
a(u)∇u

)
, a(u) = σ(u)σ(u)> ≥ 0,

where σ(u) ∈ L∞loc(R;Rd×K), 1 ≤ K ≤ d, was treated very recently by Chen and
Perthame [17] (for the Cauchy problem). They introduced notions of entropy and
kinetic solutions and proved existence and uniqueness results for such solutions.
One key point in their notions of solution is to explicitly include the parabolic
dissipation measure in the entropy inequality. This is different from Carrillo’s ap-
proach, which attempts to recover a particular form of the parabolic dissipation
measure from the Kružkov entropy inequality (this seems to work only for isotropic
equations). Uniqueness was proved in [17] using a kinetic formulation and regular-
ization by convolution. An alternative theory for (1.7) based on Kružkov’s doubling
of the variables device was developed in [4]. The generality in [17, 4] allows for pure
L1 initial data u0, while herein we consider only the case u0 ∈ L∞. Within the
kinetic framework, explicit continuous dependence and error estimates for entropy
solutions of (1.7) were obtained in [16]. In [39], a notion of dissipative solution
for (1.7) and its relation to the notion of entropy solution is studied. Moreover, a
convergence proof is given for certain relaxation approximations.

Despite recent efforts, problems (1.1) and (1.4) are still in general very poorly
investigated. Let A,B : R → R be nondecreasing Lipschitz functions such that
B(±∞) = ±∞. Then some time ago Yin [49] studied the one-dimensional problem

∂tu+ ∂xf(u) = ∂xB(∂xA(u)) on (0, T )× (0, 1), u|t=0 = u0, u|x=0,1 = 0

in a framework of discontinuous entropy solutions having bounded variation (in
both t and x). He proved existence as well as uniqueness and stability results. The
Cauchy problem was studied in [22] via a finite difference approach. When d = 1
and Ω = (0, 1), (1.4) is obtained from Yin’s problem by choosing B(ξ) = |ξ|p−2

ξ.
In the multi-dimensional context, it seems that the only results up to now are

those of Igbida and Urbano [27] (see also previous work by Urbano [42, 43]). They
prove existence and uniqueness results for weak solutions of the isotropic problem
(1.4) under the additional structure condition

(1.8) f(u) = F (A(u)), for some Lipschitz function F : R → Rd, F (0) = 0.

Uniqueness of the weak solution is elegantly obtained by verifying that any weak
solution is also an entropy solution and then using the doubling of the variables
approach developed by Carrillo [13] for entropy solutions.

The aim of this paper is to provide a solution theory that avoids any structure
condition like (1.8) and more importantly is able to encompass the anisotropic
problem (1.1). As already indicated above, Carrillo’s approach is a good one when
the second order differential operator is isotropic. However, it is not applicable to
an anisotropic problem like (1.1). Instead we shall rely on the Kružkov approach
developed in [4]. The paper [4] dealt with the Cauchy problem for (1.7) and L1

initial data u0. Herein we consider an initial-boundary value problem with L∞

initial data. To incorporate the homogeneous Dirichlet boundary condition we
shall borrow some ideas from [13]. Even for (1.5) our results are new, as only the
Cauchy problem was treated in [17, 4].

The remaining part of this paper is organized as follows: We use Section 2
to introduce and discuss our notion of entropy solution for (1.1). We then state
and prove our main uniqueness theorem for these entropy solutions in Section 3.



4 M. BENDAHMANE AND K. H. KARLSEN

Except for Remark 2.4, a complete proof of the existence of an entropy solution
will be postponed to our forthcoming paper [5]. In that paper we also develop a
theory based on a notion of renormalized entropy solution that allows for possibly
unbounded (pure L1) initial data u0. A similar theory for (1.7) can found in [4].

Finally, we mention that future work will be devoted to the convergence analysis
of numerical schemes for (1.1). We refer to [22] for some work in that direction in
the one-dimensional context.

2. Definition of entropy solution

For 1 ≤ i ≤ d, we set

ζi(u) =
∫ u

0

(A′i(ξ))
pi−1

pi dξ, ζ(u) = (ζ1(u), . . . , ζd(u)) ,

and for any ψ ∈ L∞loc(R)

ζψi (u) =
∫ u

0

ψ(ξ)(A′i(ξ))
pi−1

pi dξ, ζψ(u) =
(
ζψ1 (u), . . . , ζψd (u)

)
.

Definition 2.1. We call (η, q), with η : R → R and q = (q1, . . . , qd) : R → Rd,
an entropy-entropy flux pair if

η ∈ C2(R), η′′ ≥ 0, q′ = η′f ′.

If, in addition,
η(0) = 0, η′(0) = 0, q(0) = 0,

we call (η, q) a boundary entropy-entropy flux pair.

Remark 2.1. The terminology “boundary entropy-entropy flux pair” is borrowed
from Otto’s work on scalar conservation laws and boundary conditions, see [33, 37].

We now introduce an appropriate notion of entropy solution:

Definition 2.2 (entropy solution). An entropy solution of (1.1) is a measurable
function u : QT → R satisfying the following conditions:
(D.1) (regularity) u ∈ L∞(QT ) and

∂xiζi(u) ∈ Lpi(QT ), i = 1, . . . , d.

(D.2) (interior entropy condition) For any entropy-entropy flux pair (η, q),

∂tη(u) +
d∑
i=1

∂xiqi(u)−
d∑
i=1

∂xi

(
η′(u) |∂xiAi(u)|

pi−2
∂xiAi(u)

)
≤ −

d∑
i=1

η′′(u) |∂xi
ζi(u)|pi in D′([0, T )× Ω),

that is, for any 0 ≤ φ ∈ D([0, T )× Ω),∫
QT

(
η(u)∂tφ+

d∑
i=1

qi(u)∂xi
φ

−
d∑
i=1

η′(u) |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂xi

φ

)
dx dt

+
∫

Ω

η(u0)φ(0, x) dx ≥
∫
QT

d∑
i=1

η′′(u) |∂xiζi(u)|
pi φdx dt.

(2.1)
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(D.3) (boundary entropy condition) For any boundary entropy-entropy flux pair
(η, q) and for any 0 ≤ φ ∈ D([0, T )× Ω), (2.1) holds.

(D.4) (boundary condition) For any ψ ∈ L∞loc(R),∫
QT

(
divζψ(u)φ+ ζψ(u) · ∇φ

)
dx dt = 0, ∀φ ∈ D((0, T )× Ω).

Remark 2.2. When pi = 2 for all i, the right-hand side of (2.1) contains the
so-called parabolic dissipation measure used in [17, 15, 4]. We term the measure

µηi := −η′′(u) |∂xiζi(u)|
pi ,

the pi–parabolic dissipation measure (associated with the entropy η), i = 1, . . . , d.

Remark 2.3. Let us make some comments about the “boundary condition” (D.4).
Suppose we know that each component of ζ(u) belongs to L1(0, T ;W 1,1(Ω)). Then
we can make trace sense to the statement

(2.2) ζ(u)
∣∣
(0,T )×∂Ω

= 0,

which immediately implies (D.4). Except when all the Ai’s are the same, the
anisotropy in (1.1) prevents us from concluding that each component of ζ(u) belongs
to the space L1(0, T ;W 1,1(Ω)), so we cannot make trace sense to (2.2). Hence
the “integration by parts formula” in (D.4) is introduced into Definition 2.2 as a
convenient “weak reformulation” of (2.2) that circumvents the problem of having to
know the existence of strong traces. When proving existence of an entropy solution,
condition (D.4) must be explicitly checked (see next remark).

Let us also mention that it is possible to obtain (D.4) directly from (D.1) by
properly adapting known results for the space

Lp(0, T ;Lp(div; Ω)) =
{
w = (w1, . . . , wd) ∈ (Lp(QT ))d : divw ∈ Lp(QT )

}
.

It is immediate that the vector field ζ(u) = (ζ1(u), . . . , ζd(u)) belongs to this space
with p = min

i=1,...,d
pi. This approach, which avoids including the integration by parts

formula (D.4) in Definition 2.2, is fully developed in [5].

Remark 2.4. Although the existence proof for (1.1) is postponed to [5], let us
indicate its main steps. For i = 1, . . . , d, let Aρ,i be a strictly increasing function
that converges locally uniformly to Ai as ρ ↓ 0. Existence of an entropy solution
can then be proved (see [5] for details) by passing to the limit ρ ↓ 0 in a sequence

uρ ∈ L∞(QT ) ∩ C(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)), p := min

i=1,...,d
pi > 1,

of solutions to the non-degenerate equations

(2.3) ∂tuρ +
d∑
i=1

∂xifi(uρ) =
d∑
i=1

∂xi

(
|∂xiAρ,i(uρ)|

pi−2
∂xiAρ,i(uρ)

)
.

The proof of existence of such a sequence is classical, see for example [32].
At least formally, multiplying (2.3) by η′(uρ), η ∈ C2, q′ = η′f ′, gives

∂tη(uρ) +
d∑
i=1

∂xi
qi(uρ)−

d∑
i=1

∂xi

(
η′(uρ) |∂xi

Aρ,i(uρ)|pi−2
∂xi

Aρ,i(uρ)
)

≤ −
d∑
i=1

η′′(uρ) |∂xiζρ,i(uρ)|
pi in D′([0, T )× Ω),

(2.4)



6 M. BENDAHMANE AND K. H. KARLSEN

where ζρ,i(z) =
∫ z

0

(A′ρ,i(ξ))
pi−1

pi dξ. Choosing η(z) = 1
2z

2 and using the boundary

condition uρ|(0,T )×∂Ω = 0, it follows from (2.4) that∫
QT

d∑
i=1

|∂xiζρ,i(uρ)|
pi dx dt ≤ 1

2

∫
Ω

u2
0 dx <∞.

It is not hard to derive a uniform BV estimate for uρ(·, t) and prove that uρ
converges to some limit u ∈ L∞(QT ) in L1(QT ) and ∂xi

ζρ,i(uρ) ⇀ ∂xi
ζi(u) in

Lpi(QT ), i = 1, . . . , d, at least along subsequences. These convergences, together
with a version of Minty’s trick, allow us to pass to the limit in (2.4) to obtain that
u satisfies (D.2). In this passage to the limit, we also need to employ a standard
weak lower semicontinuity result to obtain

lim inf
ρ↓0

∫
QT

d∑
i=1

η′′(uρ) |∂xiζρ,i(uρ)|
pi φdx dt ≥

∫
QT

d∑
i=1

η′′(u) |∂xiζi(u)|
pi φdx dt,

for any nonnegative test function φ(t, x). Along the same lines, we can also prove
that u satisfies (D.3).

It remains to verify (D.4). As uρ|(0,T )×∂Ω = 0 is understood in the classical
trace sense, we clearly have for any ψ ∈ L∞loc(R)

(2.5)
∫
QT

(
divζψ(uρ)φ+ ζψ(uρ) · ∇φ

)
dx dt = 0, ∀φ ∈ D((0, T )× Ω).

Exploiting that uρ → u in L1(QT ) and divζψ(uρ) ⇀ divζψ(u) in, say, L1(QT ), we
can send ρ ↓ 0 in (2.5) to conclude that the limit u satisfies (D.4).

Remark 2.5. For the uniqueness proof given later, we shall need a particular set
of boundary entropy-entropy flux pairs. Let us introduce a C1 approximation of

sign+ (z) =

{
0, z ≤ 0,
1, z > 0.

For ε > 0, set

sign+
ε (ξ) =


0, ξ < 0,
sin
(
π
2εξ
)
, 0 ≤ ξ ≤ ε,

1, ξ > ε,

and

η+
ε (z, c) =

∫ z

c

sign+
ε (ξ − c) dξ, z, c ∈ R.

Then ηε(·, c) belongs to C2(R), is convex, and as ε ↓ 0

η+
ε (z, c) → η+(z, c) := (z − c)+ = max(z − c, 0).

Define the entropy flux function

q+ε (z, c) =
∫ z

c

sign+
ε (ξ − c) f ′(ξ) dξ, z, c ∈ R.

Then as ε ↓ 0

q+ε (z, c) → q+(z, c) := sign+ (z − c) (f(z)− f(c)) .
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Observe that
(
η+
ε (·, c), q+ε (·, c)

)
c≥0

is a family of boundary entropy-entropy flux

pairs. Consequently, using η = η+
ε as an entropy in (2.1) and then sending ε ↓ 0,∫

QT

(
(u− c)+∂tφ+

d∑
i=1

sign+ (u− c) (fi(u)− fi(c)) ∂xiφ

−
d∑
i=1

sign+ (u− c) |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂xi

φ

)
dx dt

+
∫

Ω

(u0 − c)+φ(0, x) dx

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′
(u− c) |∂xi

ζi(u)|pi φdx dt,

(2.6)

for all pairs (φ, c) ∈ D([0, T )×Ω)×R and for all pairs (φ, c) ∈ D([0, T )×Ω)× [0,∞)
(φ is always nonnegative).

Similarly, we introduce the functions

sign−ε (ξ) =


−1, ξ < −ε,
sin
(
π
2εξ
)
, −ε ≤ ξ ≤ 0,

0, ξ > 0,
η−ε (z, c) =

∫ z

c

sign−ε (ξ − c) dξ,

which are approximations of

sign− (z) =

{
−1, z < 0,
0, z ≥ 0,

η−(z, c) = (z − c)− = (−(z − c))+.

For each z, c ∈ R, define the entropy flux

q−ε (z, c) =
∫ z

c

sign−ε (ξ − c) f(ξ) dξ.

Then as ε ↓ 0

q−ε (z, c) → q−(z, c) := sign− (z − c) (f(z)− f(c)) .

Consequently, as
(
η−ε (·, c), q−ε (·, c)

)
c≤0

is a family of boundary entropy-entropy flux

pairs, we can use η = η−ε as an entropy in (2.1) and then send ε ↓ 0 to obtain∫
QT

(
(u− c)−∂tφ+

d∑
i=1

sign− (u− c) (fi(u)− fi(c)) ∂xiφ

−
d∑
i=1

sign− (u− c) |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂xi

φ

)
dx dt

+
∫

Ω

(u0 − c)−φ(0, x) dx

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign−ε

)′
(u− c) |∂xi

ζi(u)|pi φdx dt,

(2.7)

for all (φ, c) ∈ D([0, T )× Ω)×R and for all (φ, c) ∈ D([0, T )× Ω)× (−∞, 0] (φ is
always nonnegative).

Since

sign− (z − c) = −sign+ (c− z) , (z − c)− = (c− z)+, q−(z, c) = q+(c, z),
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and (
sign−ε

)′
(z − c) =

(
sign+

ε

)′
(c− z) ,

we may replace (2.7) by∫
QT

(
(c− u)+∂tφ+

d∑
i=1

sign+ (c− u) (fi(c)− fi(u)) ∂xi
φ

+
d∑
i=1

sign+ (c− u) |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂xi

φ

)
dx dt

+
∫

Ω

(c− u0)+φ(0, x) dx

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′
(c− u) |∂xi

ζi(u)|pi φdx dt,

(2.8)

for the same pairs of (φ, c) as before.

3. Uniqueness of entropy solution

Our main result is the following theorem:

Theorem 3.1. Suppose (1.2) and (1.3) hold. Let u and v be two entropy solutions
of (1.1) with initial data u|t=0 = u0 ∈ L∞(Ω) and v|t=0 = v0 ∈ L∞(Ω). Then for
a.e. t ∈ (0, T )

(3.1)
∫

Ω

(u(t, x)− v(t, x))+ dx ≤
∫

Ω

(u0 − v0)+ dx.

Consequently, ‖u(·, t)− v(·, t)‖L1(Ω) ≤ ‖u0 − v0‖L1(Ω). If u0 ≤ v0 a.e. in Ω, then
u ≤ v a.e. in QT . Finally, if u0 = v0 a.e. in Ω, then u = v a.e. in QT .

Remark 3.1. A definition similar to Definition 2.2 can be used for the simpler
isotropic problem (1.4). For this problem we can replace (D.4) by the requirement
that ζ(u) ∈ Lp(0, T ;W 1,p

0 (Ω)), where

ζ(u) =
∫ u

0

(A(ξ))
p−1

p dξ.

The conclusions of Theorem 3.1 remain valid for (1.4). Since the proofs are similar,
we only prove Theorem 3.1.

We will make repeated use of the following chain rule property.

Lemma 3.1. Let 0 ≤ σ ∈ L∞loc(R), ψ ∈ L∞loc(R) be given, and define two functions
β, βψ : R → R by

β(z) =
∫ z

0

σ(ξ) dξ, βψ(z) =
∫ z

0

ψ(ξ)σ(ξ) dξ.

With 1 ≤ p <∞ and 1 ≤ i ≤ d fixed, suppose

u ∈ L∞(Ω), ∂xiβ(u) ∈ Lp(Ω).

Then, for any Borel set B ⊂ R with |B| = 0,

(3.2) |{x ∈ Ω : u(x) ∈ B and ∂xi
β(u) 6= 0}| = 0,

and

(3.3) ∂xi
βψ(u(x)) = ψ(u(x))∂xi

β(u(x)),

for a.e. x ∈ Ω and in Lp(Ω).
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Proof. The proof is similar to that in [17]. First of all, the “inverse Sard” property
(3.2) is a consequence of [8, Theorem 3.1]. Next suppose that u takes values in a
closed interval I ⊂ R, and introduce the lower semicontinuous function

β−1 : R → R, β−1(v) := inf {ξ ∈ I | β(ξ) = v} .

Denote by E ⊂ R the set of v ∈ R at which β−1(·) is discontinuous. Since β(·) is
nondecreasing, E is at most countable.

Introduce v := β(u) ∈ L∞(Ω) ⊂ L1(Ω), and note that ∂xi
v ∈ L1(Ω). Let

Ψ(v) =
∫ v
0
ψ(β−1(w)) dw. It is clear that Ψ ∈ Liploc(R), so that we may use the

chain rule (see [8, Theorem 3.1]) to obtain

∂xi
Ψ(v(x)) = Ψ′(v(x))∂xi

v(x) = ψ(β−1(v(x)))∂xi
v(x), for a.e. x ∈ Rd.

This implies that (3.3) holds a.e. on Ω \ E , where E := {x ∈ Ω : v(x) ∈ E}. On the
other hand, since |E| = 0, we have ∂xi

v = 0 a.e. on E . �

As an easy application of Lemma 3.1, we have a chain rule property for entropy
solutions.

Lemma 3.2. Let u be an entropy solution to (1.1) and fix ψ ∈ L∞loc(R). We have,
for any Borel set B ⊂ R with |B| = 0,

(3.4) |{(t, x) ∈ QT : u(t, x) ∈ B and ∂xi
ζ(u(t, x)) 6= 0}| = 0, 1 ≤ i ≤ d,

and

(3.5) ∂xi
ζψ(u(t, x)) = ψ(u(t, x))∂xi

ζ(u(t, x)),

for a.e. (t, x) ∈ QT and in Lpi(QT ), i = 1, . . . , d.

Remark 3.2. Let u be an entropy solution. By the chain rule (3.5)

∂xiAi(u) = (A′i(u))
1

pi ∂xi
ζi(u),

so that by (D.1) there holds ∂xi
Ai(u) ∈ Lpi(QT ), i = 1, . . . , d. This also implies

|∂xi
Ai(u)|pi−2

∂xi
Ai(u) ∈ Lp

′
i(QT ) ∩ L1(QT ), p′i =

pi
pi − 1

,

for i = 1, . . . , d, and thus (2.1) makes sense.

We are now ready to embark on the proof of Theorem 3.1, which roughly speaking
is divided into two lemmas (Lemma 3.3 and Lemma 3.5).

Lemma 3.3. Let u, v be entropy solutions of (1.1) with initial data u0, v0 ∈ L∞(Ω),
respectively. Then, for any nonnegative function φ ∈ D([0, T )× Ω),∫

QT

(
(u− v)+∂tφ+

d∑
i=1

sign+ (u− v)
[
fi(u)− fi(v)

−
(
|∂xi

Ai(u)|pi−2
∂xi

Ai(u)− |∂xi
Ai(v)|pi−2

∂xi
Ai(v)

)]
∂xi

φdx dt

+
∫

Ω

(u0 − v0)+ dx ≥ 0.

(3.6)

Proof. The proof borrows ideas from [4]. In what follows, we let u depend on
(t, x) ∈ QT and v depend on (s, y) ∈ QT .
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Since u = u(t, x) is an entropy solution, (2.6) holds. By choosing c = v(s, y) in
(2.6) and then integrating over (s, y), we get∫

QT×QT

(
(u− v)+∂tφ+

d∑
i=1

sign+ (u− v) (fi(u)− fi(v)) ∂xiφ

−
d∑
i=1

sign+ (u− v) |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂xi

φ

)
dx dt dy ds

+
∫
QT×({0}×Ω)

(u0 − v)+φdx dy ds

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′
(u− v) |∂xiζi(u)|

pi φdx dt dy ds,

(3.7)

for any 0 ≤ φ = φ(t, x, s, y) ∈ D(([0, T )× Ω)× ([0, T )× Ω)).
Since v = v(y, s) is an entropy solution, (2.8) holds. By choosing c = u(t, x) in

(2.8) and integrating over (t, x), we get∫
QT×QT

(
(u− v)+∂sφ+

d∑
i=1

sign+ (u− v) (fi(u)− fi(v)) ∂yiφ

+
d∑
i=1

sign+ (u− v) |∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂yi

φ

)
dx dt dy ds

+
∫

({0}×Ω)×QT

(u− v0)+φdx dt dy

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′
(u− v) |∂yi

ζi(v)|pi φdx dt dy ds,

(3.8)

for any 0 ≤ φ = φ(t, x, s, y) ∈ D(([0, T )× Ω)× ([0, T )× Ω)).
Adding (3.7) and (3.8) yields

∫
QT×QT

(
(u− v)+(∂t + ∂s)φ+

d∑
i=1

sign+ (u− v) (fi(u)− fi(v)) (∂xi
+ ∂yi

)φ

−
d∑
i=1

sign+ (u− v)
(
|∂xi

Ai(u)|pi−2
∂xi

Ai(u)∂xi
φ

− |∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂yi

φ
))

dx dt dy ds

+
∫
QT×({0}×Ω)

(u0 − v)+φdx dy ds+
∫

({0}×Ω)×QT

(u− v0)+φdx dt dy

≥ lim inf
ε↓0

∫
QT×QT

d∑
i=1

(
sign+

ε

)′
(u− v)

(
|∂xi

ζi(u)|pi + |∂yi
ζi(v)|pi

)
φdx dt dy ds.

(3.9)

Let us now specify the test function. To this end, let

ωn : Rd → R, ωl : R → R, n, l ≥ 1,

be standard mollifier sequences. Then we take our test function to be

φn,l(t, x, s, y) = φ
(
x+y

2 , t+s2

)
ωn
(
x−y

2

)
ωl
(
t−s
2

)
≡ φωnωl,
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where 0 ≤ φ ∈ D([0, T ) × Ω). With this choice, we have the following properties
that will be used repeatedly:

(3.10) (∂t + ∂s)φn,l = (∂t + ∂s)φωnωl

and for i = 1, . . . , d

(3.11) (∂xi
+ ∂yi

)φn,l = (∂xi
+ ∂yi

)φωnωl.

For i = 1, . . . , d, let us write

|∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂xi

φn,l − |∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂yi

φn,l

=
(
|∂xi

Ai(u)|pi−2
∂xi

Ai(u)− |∂yi
Ai(v)|pi−2

∂yi
Ai(v)

)
(∂xi

+ ∂yi
)φn,l

− |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂yi

φn,l + |∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂xi

φn,l.

(3.12)

Insertion of (3.10), (3.11), and (3.12) into (3.9) yields

∫
QT×QT

(
(u− v)+(∂t + ∂s)φ+

d∑
i=1

sign+ (u− v)
[
fi(u)− fi(v)

−
(
|∂xi

Ai(u)|pi−2
∂xi

Ai(u)

− |∂yi
Ai(v)|pi−2

∂yi
Ai(v)

)]
(∂xi

+ ∂yi
)φ

)
ωnωl dx dt dy ds

+
∫
QT×({0}×Ω)

(u0 − v)+φn,l dx dy ds

+
∫

({0}×Ω)×QT

(u− v0)+φn,l dx dt dy ≥ lim inf
ε↓0

E1 + E2,

(3.13)

where

E1 =
∫
QT×QT

d∑
i=1

(
sign+

ε

)′
(u− v)

(
|∂xi

ζ(u)|pi + |∂yi
ζ(v)|pi

)
φn,l dx dt dy ds,

E2 = −
∫
QT×QT

d∑
i=1

sign+ (u− v) |∂xiAi(u)|
pi−2

∂xiAi(u)∂yiφn,l dx dt dy ds

+
∫
QT×QT

d∑
i=1

sign+ (u− v) |∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂xi

φn,l

)
dx dt dy ds.

Our goal now is to show that lim infε↓0E1 +E2 ≥ 0. Let us recall the following
well known inequalities, which hold for any two real numbers a, b and p > 1:

(3.14)
(
a |a|p−2 − b |b|p−2

)
(a− b) ≥ c(p)


|a− b|p , if p ≥ 2

|a− b|2

(|a|+ |b|)2−p
, if 1 < p < 2

 ≥ 0,

where c(p) = 22−p when p ≥ 2 and c(p) = p− 1 when 1 < p < 2. Using first (3.14),
then the chain rule (see Lemma 3.2), and finally integration by parts (there are no
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boundary terms since φn,l vanishes on the boundary), we get

E1

≥
∫
QT×QT

d∑
i=1

(
sign+

ε

)′
(u− v)

(
|∂xi

ζi(u)|pi−2
∂xi

ζi(u)∂yi
ζi(v)

+ |∂yi
ζi(v)|pi−2

∂yi
ζi(v)∂xi

ζi(u)
)
φn,l dx dt dy ds

=
∫
QT×QT

d∑
i=1

∂yi

∫ v

u

(
sign+

ε

)′
(u− ξ) (A′i(ξ))

pi−1
pi dξ

× |∂xi
ζi(u)|pi−2

∂xi
ζi(u)φn,l dx dt dy ds

+
∫
QT×QT

d∑
i=1

∂xi

∫ u

v

(
sign+

ε

)′
(ξ − v) (A′i(ξ))

pi−1
pi dξ

× |∂yi
ζi(v)|pi−2

∂yi
ζi(v)φn,l dx dt dy ds

= −
∫
QT×QT

d∑
i=1

∫ v

u

(
sign+

ε

)′
(u− ξ) (A′i(ξ))

pi−1
pi dξ

× |∂xi
ζi(u)|pi−2

∂xi
ζi(u)∂yi

φn,l dx dt dy ds

−
∫
QT×QT

d∑
i=1

∫ u

v

(
sign+

ε

)′
(ξ − v) (A′i(ξ))

pi−1
pi dξ

× |∂yi
ζi(v)|pi−2

∂yi
ζi(v)∂xi

φn,l dx dt dy ds.

(3.15)

To continue we need a technical lemma.

Lemma 3.4. Suppose h ∈ L∞loc(R).
(i) Let b ∈ R be arbitrary but fixed. For a.e. a ∈ R,

lim
ε↓0

∫ b

a

(
sign+

ε

)′
(a− ξ)h(ξ) dξ = −sign+ (a− b)h(a).

(ii) Let a ∈ R be arbitrary but fixed. For a.e. b ∈ R,

lim
ε↓0

∫ a

b

(
sign+

ε

)′
(ξ − b)h(ξ) dξ = sign+ (a− b)h(b).

Proof. (i) Let ξ = a be a Lebesgue point of h and suppose b < a (if b > a there is
nothing to prove). For any sufficiently small ε, it follows that∫ b

a

(
sign+

ε

)′
(a− ξ)h(ξ) dξ =

= −
∫ a

a−ε

π

2ε
cos
( π

2ε
(a− ξ)

)
h(ξ) dξ = −

∫ ε

0

π

2ε
cos
( π

2ε
ξ
)
h(a− ξ) dξ

= −h(a) +
∫ ε

0

π

2ε
cos
( π

2ε
ξ
)

(h(a)− h(a− ξ)) dξ,

where we have used that ∫ ε

0

π

2ε
cos
( π

2ε
ξ
)
dξ = 1.
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This proves (i), since∣∣∣∣∫ ε

0

π

2ε
cos
( π

2ε
ξ
)

(h(a)− h(a− ξ)) dξ
∣∣∣∣

≤ C
1
ε

∫ ε

0

|h(a)− h(a− ξ)| dξ → 0 as ε ↓ 0.

(ii) Let ξ = b be a Lebesgue point of h and suppose b < a. As above, we find for
any sufficiently small ε that∫ a

b

(
sign+

ε

)′
(ξ − b)h(ξ) dξ

= h(b) +
∫ ε

0

π

2ε
cos
( π

2ε
ξ
)

(h(b+ ξ)− h(b)) dξ,

and (ii) follows by sending ε ↓ 0. �

As pi > 1 and thus h(ξ) := (A′i(ξ))
pi−1

pi is a locally bounded function, we can
use Lemma 3.4 and (3.4) when taking the limit ε ↓ 0 in (3.15). The result is

lim inf
ε↓0

E1

≥
∫
QT×QT

d∑
i=1

sign+ (u− v) (A′i(u))
pi−1

pi |∂xi
ζi(u)|pi−2

∂xi
ζi(u)

× ∂yi
φn,l dx dt dy ds

−
∫
QT×QT

d∑
i=1

sign+ (u− v) (A′i(v))
pi−1

pi |∂yiζi(v)|
pi−2

∂yiζi(v)

× ∂xi
φn,l dx dt dy ds.

(3.16)

By the chain rule in Lemma 3.2,

(A′i(u))
pi−1

pi |∂xiζi(u)|
pi−2

∂xiζi(u)

=
∣∣∣(A′i(u)) 1

pi ∂xiζi(u)
∣∣∣pi−2

(A′i(u))
1

pi ∂xiζi(u)

=
∣∣∣∣∂xiζ

(A′i(·))
1

pi

i (u)
∣∣∣∣pi−2

∂xiζ
(A′i(·))

1
pi

i (u)

= |∂xiAi(u)|
pi−2

∂xiAi(u),

which holds a.e. in QT and in Lp
′
i(QT ) ∩ L1(QT ), p′i = pi/(pi − 1). Similarly,

(A′i(v))
pi−1

pi |∂yiζi(v)|
pi−2

∂yiζi(v) = |∂yiAi(v)|
pi−2

∂yiAi(v).

Hence, using this in (3.16), we finally obtain

lim inf
ε↓0

E1

≥
∫
QT×QT

d∑
i=1

sign+ (u− v) |∂xi
Ai(u)|pi−2

∂xi
Ai(u)∂yi

φn,l dx dt dy ds

−
∫
QT×QT

d∑
i=1

sign+ (u− v) |∂yiAi(v)|
pi−2

∂yiAi(v)∂xiφn,l dx dt dy ds,

and it follows that lim infε↓0E1 + E2 ≥ 0.
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Summarizing, from (3.13) we get∫
QT×QT

(
Itime + Iconv + Idiff

)
ωnωl dx dt dy ds

+
∫
QT×({0}×Ω)

(u0 − v)+φωnωl dx dy ds

+
∫

({0}×Ω)×QT

(u− v0)+φωnωl dx dt dy ≥ 0,

(3.17)

where

Itime = (u− v)+ (∂t + ∂s)φ,

Iconv =
d∑
i=1

sign+ (u− v) (fi(u)− fi(v)) (∂xi
+ ∂yi

)φ,

Idiff = −
d∑
i=1

sign+ (u− v)
(
|∂xiAi(u)|

pi−2
∂xiAi(u)

− |∂yiAi(v)|
pi−2

∂yiAi(v)
)
(∂xi + ∂yi)φ.

It takes a standard argument to send n, l ↑ ∞ in the first integral in (3.17), see
[31, 13]. However, we have to be more careful with the remaining two integrals,
since the entropy solutions are not assumed to be continuous in time with values in
L1(Ω). We shall proceed as in [13], but see also [46, 35] and the references therein.

Let us denote the second and third integrals in (3.17) by Iu0,v(l, n) and Iu,v0(l, n),
respectively. To handle Iu0,v(l, n), introduce the function

φl(s, x, y) =
∫ T

s

φ
(
τ
2 ,

x+y
2

)
ωl
(
− τ

2

)
dτ.

Since ∂sφl = −φ
(
s
2 ,

x+y
2

)
ωl
(
− s

2

)
, we may write

Iu0,v(l, n) := −
∫
QT×({0}×Ω)

(u0 − v)+∂s(φlωn) dx dy ds,

which enables us to use the entropy inequality for v(s, y) to obtain an upper bound
on Iu0,v(l, n) of the form

Iu0,v(l, n)

≤
∫

((0,2/l)×Ω)×({0}×Ω)

Hn dx dy ds+
∫

({0}×Ω)×({0}×Ω)

(u0 − v0)+φlωn dx dy,

for some integrable function Hn (independent of l). Here we have also used the fact
that φl ≡ 0 if s > 2/l

Sending l ↑ ∞, the first term on the right-hand side tends to zero and regarding
the second term observe that φl(0, x, y) → 1

2φ
(
0, x+y2

)
. Hence

lim sup
n↑∞

lim sup
l↑∞

Iu0,v(l, n) ≤ 1
2

lim
n↑∞

∫
({0}×Ω)×({0}×Ω)

(u0 − v0)+φωn dx dy

=
1
2

∫
({0}×Ω)×({0}×Ω)

(u0 − v0)+φdx,

where (after the last equality sign) u0, v0 depend only on x.
Similarly, to handle Iu,v0 , we introduce the function

φl(t, x, y) =
∫ T

t

φ
(
τ
2 ,

x+y
2

)
ωl
(
τ
2

)
dτ,
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and proceed as before using the entropy inequality for u(t, x). The result is

lim sup
n↑∞

lim sup
l↑∞

Iu,v0(l, n) ≤ 1
2

∫
({0}×Ω)×({0}×Ω)

(u0 − v0)+φdx,

where u0, v0, φ depend only on x. This concludes the proof of Lemma 3.3. �

We prove next that the conclusion of Lemma 3.3 continues to hold for test
functions φ that do not vanish on the boundary.

Lemma 3.5. Let u, v be entropy solutions of (1.1) with initial data u0, v0 ∈ L∞(Ω),
respectively. Then, for any 0 ≤ φ ∈ D([0, T )× Ω), (3.6) holds.

Proof. We combine ideas from the proof of the previous lemma and Carrillo’s
method for handling Dirichlet boundary conditions [13].

Let φ = φ(t, x, s, y) be any nonnegative function such that

(t, x) 7→ φ(t, x, s, y) ∈ D((0, T )× Ω) for any (s, y) ∈ QT ,
(s, y) 7→ φ(t, x, s, y) ∈ D([0, T )× Ω) for any (t, x) ∈ QT .

(3.18)

We will start as in the proof of Lemma 3.3. However, since φ(·, ·, s, y) does not
vanish on the boundary, we have restrictions on the choice of c in (2.6). Where
we in the proof of Lemma 3.3 chose c = v(s, y), we now choose c = v+(s, y). The
result is (compare with (3.7))

∫
QT×QT

(
(u− v+)+∂tφ+

d∑
i=1

sign+
(
u− v+

) (
fi(u)− fi(v+)

)
∂xi

φ

−
d∑
i=1

sign+
(
u− v+

)
|∂xiAi(u)|

pi−2
∂xiAi(u)∂xiφ

)
dx dt dy ds

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′(
u− v+

)
|∂xi

ζi(u)|pi φdx dt dy ds.

(3.19)

As sign+ (u− v+) = 0 for u ≤ 0, we deduce from (3.19) that

∫
QT×QT

(
(u+ − v+)+∂tφ+

d∑
i=1

sign+
(
u+ − v+

) (
fi(u+)− fi(v+)

)
∂xiφ

−
d∑
i=1

sign+
(
u+ − v+

) ∣∣∂xi
Ai(u+)

∣∣pi−2
∂xi

Ai(u+)∂xi
φ

)
dx dt dy ds

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′(
u+ − v+

) ∣∣∂xiζi(u
+)
∣∣pi
φdx dt dy ds.

(3.20)
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Next, where we in the proof of Lemma 3.3 chose c = u(t, x), we now choose
c = u+(t, x). The result is (compare with (3.8))

∫
QT×QT

(
(u+ − v)+∂sφ+

d∑
i=1

sign+
(
u+ − v

) (
fi(u+)− fi(v)

)
∂yi

φ

+
d∑
i=1

sign+
(
u+ − v

)
|∂yi

Ai(v)|pi−2
∂yi

Ai(v)∂yi
φ

)
dx dt dy ds

+
∫

({0}×Ω)×QT

(u+ − v0)+φdx dt dy

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′(
u+ − v

)
|∂yi

ζi(v)|pi φdx dt dy ds.

(3.21)

One checks easily that

(3.22) sign+
(
u+ − v

)
= sign+

(
u+ − v+

)
(1− sign+

(
v−
)
) + sign+

(
v−
)
.

Using this fact, we have

sign+
(
u+ − v

) (
fi(u+)− fi(v)

)
= sign+

(
u+ − v+

) (
fi(u+)− fi(v+)

)
1v≥0 + sign+

(
v−
) (
fi(u+)− fi(v)

)
= sign+

(
u+ − v+

) (
fi(u+)− fi(v+)

)
− sign+

(
v−
)
fi(v)

+ sign+
(
v−
)
fi(u+)− sign+

(
u+ − v+

) (
fi(u+)− fi(v+)

)
1v<0

= sign+
(
u+ − v+

) (
fi(u+)− fi(v+)

)
− sign+

(
v−
)
fi(v).

Similarly,

(u+ − v)+ = (u+ − v+)+ − sign+
(
v−
)
v,

(u+ − v0)+ = (u+ − v+
0 )+ − sign+

(
v−0
)
v0,

and

sign+
(
u+ − v

)
|∂yiAi(v)|

pi−2
∂yiAi(v)

= sign+
(
u+ − v+

) ∣∣∂yi
Ai(v+)

∣∣pi−2
∂yi

Ai(v+)

+ sign+
(
v−
)
|∂yi

Ai(v)|pi−2
∂yi

Ai(v).
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Thus it follows from (3.21) and (3.22) that

∫
QT×QT

(
(u+ − v+)+∂sφ+

d∑
i=1

sign+
(
u+ − v+

) (
fi(u+)− fi(v+)

)
∂yi

φ

+
d∑
i=1

sign+
(
u+ − v+

) ∣∣∂yi
Ai(v+)

∣∣pi−2
∂yi

Ai(v+)∂yi
φ

)
dx dt dy ds

+
∫

({0}×Ω)×QT

(u+ − v+
0 )+φdx dt dy

≥ lim inf
ε↓0

∫
QT

d∑
i=1

(
sign+

ε

)′(
u+ − v+

) ∣∣∂yi
ζi(v+)

∣∣pi
φdx dt dy ds

+ lim inf
ε↓0

∫
QT×QT

d∑
i=1

(
sign+

)′(
u+ − v−

) ∣∣∂yi
ζi(−v−)

∣∣pi
φdx dt dy ds

+ L̃v(φ)

≥ lim inf
ε↓0

∫
QT×QT

d∑
i=1

(
sign+

ε

)′(
u+ − v+

) ∣∣∂yi
ζi(v+)

∣∣pi
φdx dt dy ds

+ L̃v(φ),

(3.23)

where

L̃v(φ) :=
∫
QT×QT

sign+
(
v−
)(

v∂sφ+
d∑
i=1

fi(v)∂yiφ

−
d∑
i=1

|∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂yi

φ

)
dx dt dy ds

+
∫

({0}×Ω)×QT

sign+
(
v−0
)
v0φdx dt dy.

Adding (3.20) and (3.23) yields (compare with (3.13))

∫
QT×QT

(
(u+ − v+)+(∂t + ∂s)φ+

d∑
i=1

sign+
(
u+ − v+

) [
fi(u+)− fi(v+)

−
(∣∣∂xi

Ai(u+)
∣∣pi−2

∂xi
Ai(u+)

−
∣∣∂yi

Ai(v+)
∣∣pi−2

∂yi
Ai(v+)

)]
(∂xi

+ ∂yi
)φ

)
dx dt dy ds

+
∫

({0}×Ω)×QT

(u+ − v+
0 )+φdx dt dy ≥ lim inf

ε↓0
E1 + E2 + L̃v(φ),

(3.24)
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where

E1 =
∫
QT×QT

d∑
i=1

(
sign+

ε

)′(
u+ − v+

)
×
(∣∣∂xiζ(u

+)
∣∣pi +

∣∣∂yiζ(v
+)
∣∣pi
)
φdx dt dy ds,

E2 = −
∫
QT×QT

d∑
i=1

sign+
(
u+ − v+

) ∣∣∂xi
Ai(u+)

∣∣pi−2
∂xi

Ai(u+)∂yi
φdx dt dy ds

+
∫
QT×QT

d∑
i=1

sign+
(
u+ − v+

) ∣∣∂yi
Ai(v+)

∣∣pi−2
∂yi

Ai(v+)∂xi
φ

)
dx dt dy ds.

As in the proof of Lemma 3.3, our goal now is to show that lim infε↓0E1+E2 ≥ 0.
However, different from the proof of Lemma 3.3, the test function φ(·, ·, s, y) does
not vanish on the boundary (0, T ) × ∂Ω, so it becomes necessary to invoke the
integration by parts rule (D.4), which is stated for u not u+. But (D.4) also applies
to u+. Indeed, this is true because ζ(u+) = ζψ(u), ψ(ξ) := sign+ (ξ) ∈ L∞(R), for
i = 1, . . . , d. Using first (3.14), then the chain rule (3.5), and finally integration by
parts (D.4), we can calculate as follows:

E1

≥
∫
QT×QT

d∑
i=1

(
sign+

ε

)′(
u+ − v+

) (∣∣∂xiζi(u
+)
∣∣pi−2

∂xiζi(u
+)∂yiζi(v

+)

+
∣∣∂yiζi(v

+)
∣∣pi−2

∂yiζi(v
+)∂xiζi(u

+)
)
φdx dt dy ds

=
∫
QT×QT

d∑
i=1

∂yi

∫ v+

u+

(
sign+

ε

)′(
u+ − ξ

)
(A′i(ξ))

pi−1
pi dξ

×
∣∣∂xiζi(u

+)
∣∣pi−2

∂xiζi(u
+)φdx dt dy ds

+
∫
QT×QT

d∑
i=1

∂xi

∫ u+

v+

(
sign+

ε

)′(
ξ − v+

)
(A′i(ξ))

pi−1
pi dξ

×
∣∣∂yi

ζi(v+)
∣∣pi−2

∂yi
ζi(v+)φdx dt dy ds

= −
∫
QT×QT

d∑
i=1

∫ v+

u+

(
sign+

ε

)′(
u+ − ξ

)
(A′i(ξ))

pi−1
pi dξ

×
∣∣∂xi

ζi(u+)
∣∣pi−2

∂xi
ζi(u+)∂yi

φdx dt dy ds

−
∫
QT×QT

d∑
i=1

∫ u+

v+

(
sign+

ε

)′(
ξ − v+

)
(A′i(ξ))

pi−1
pi dξ

×
∣∣∂yi

ζi(v+)
∣∣pi−2

∂yi
ζi(v+)∂xi

φdx dt dy ds.

(3.25)

We now proceed exactly as in the proof of Lemma 3.3 by applying Lemma 3.4 when
passing to the limit ε ↓ 0 in (3.25) and then using the chain rule (3.5). The result
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is

lim inf
ε↓0

E1

≥
∫
QT×QT

d∑
i=1

sign+
(
u+ − v+

) ∣∣∂xiAi(u
+)
∣∣pi−2

∂xiAi(u
+)∂yiφdx dt dy ds

−
∫
QT×QT

d∑
i=1

sign+
(
u+ − v+

) ∣∣∂yi
Ai(v+)

∣∣pi−2
∂yi

Ai(v+)∂xi
φdx dt dy ds,

from which it follows that lim infε↓0E1 + E2 ≥ 0.
Summarizing, we have established

∫
QT×QT

(
(u+ − v+)+(∂t + ∂s)φ+

d∑
i=1

sign+
(
u+ − v+

) [
fi(u+)− fi(v+)

−
(∣∣∂xi

Ai(u+)
∣∣pi−2

∂xi
Ai(u+)

−
∣∣∂yiAi(v

+)
∣∣pi−2

∂yiAi(v
+)
)]

(∂xi + ∂yi)φ

)
dx dt dy ds

+
∫

({0}×Ω)×QT

(u+ − v+
0 )+φdx dt dy ≥ L̃v(φ).

(3.26)

The remaining part of the proof is very similar to Carrillo [13], but we include
it for the convenience of the reader. Let B be a ball such that

(3.27) B ⊂ B′ or B ∩ ∂Ω = ∅,

where B′ is a ball such that

B′ ∩ ∂Ω ⊂ {(x, L(x)) : x ∈ Ω} for some Lipschitz continuous function L.

Let us introduce a nonnegative function φ ∈ D([0, T )×Rd) such that

supp(φ) ∩ [0, T )×Rd ⊂ [0, T )×B.

For l ≥ 1, let ωl : R → R be a sequence of mollifiers such that supp(ωl) in (−2/l, 0).
For n ≥ 1, we can find a sequence of mollifiers ωn : Rd → R such that for n large
enough,

y 7→ ωn(y − x) belongs to D(Ω), ∀x ∈ B.

Define Θn(y) =
∫

Ω

ωn(y − x) dx. Then

for any y, y′ ∈ B such that y ≤ y′, Θn(y) ≤ Θn(y′), and

Θn(y) = 1 for any y ∈ B such that d(y,Rd \ Ω) >
c

n
,

for some positive constant c depending on B.
Define

φn,l(t, x, s, y) = φ(s, y)ωn(y − x)ωl(s− t).

Note that for n and l large enough, φn,l satisfies (3.18). Moreover, the function

φn(s, y) :=
∫
QT

φn,l(t, x, s, y) dx dt

= φ(s, y)
∫

Ω

ωn(y − x) dx
∫ T

0

ωl(s− t) dt = φ(s, y)Θn(y)
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has the following properties:

φn ∈ D([0, T )× Ω) for each n, φn is an increasing sequence,

and for all y such that d(y,Rd \ Ω) >
c

n
, φn(s, y) = φ(s, y).

Note that

φn ≤ φ and φn ↑ φ in Lq((0, T )× Ω) as n ↑ ∞ for any q ≥ 1.

Substituting φ = φn,l in (3.26) and using the identities

(∂t + ∂s)φn,l = ∂sφωnωl, (∇x +∇y)φn,l = ∇yφωnωl,

we deduce

∫
QT×QT

(
(u+ − v+)+∂sφ+

d∑
i=1

sign+
(
u+ − v+

) [
fi(u+)− fi(v+)

−
(∣∣∂xi

Ai(u+)
∣∣pi−2

∂xi
Ai(u+)

−
∣∣∂yi

Ai(v+)
∣∣pi−2

∂yi
Ai(v+)

)
∂yi

φ
]
ωnωl

)
dx dt dy ds

+
∫

({0}×Ω)×QT

(u+ − v+
0 )+φωnωl dx dt dy ≥ Lv(φn),

(3.28)

where

Lv(φn) :=
∫
QT

sign+
(
v−
)(

v∂sφn +
d∑
i=1

fi(v)∂yiφn

−
d∑
i=1

|∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂yi

φn

)
dy ds

+
∫
{0}×Ω

sign+
(
v−0
)
v0φn dy

=
∫
QT

(
(−v)+∂sφn −

d∑
i=1

sign+ (−v) fi(v)∂yiφn

+
d∑
i=1

sign+ (−v) |∂yi
Ai(v)|pi−2

∂yi
Ai(v)∂yi

φn

)
dy ds

+
∫
{0}×Ω

(−v0)+φn dy.

Next we pass to the limit as l, n ↑ ∞ in each term in (3.28). Sending l, n ↑ ∞ in
the first integral in (3.28) yields

∫
QT

k+(s, y)

(
(u+ − v+)∂sφ+

d∑
i=1

[
fi(u+)− fi(v+)

−
(∣∣∂yi

Ai(u+)
∣∣pi−2

∂yi
Ai(u+)−

∣∣∂yi
Ai(v+)

∣∣pi−2
∂yi

Ai(v+)
)]
∂yi

φ

)
dy ds,

(3.29)
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where k+(s, y) ∈ s̃ign
+

(u+(s, y)− v+(s, y)) and s̃ign
+

(ξ) =


0, ξ < 0,
[0, 1], ξ = 0,
1, ξ > 0.

Introduce the function

ϕn,l(t, x, s, y) = φ(s, y)ωn(y − x)
∫ T

t

ωl(s− τ) dτ.

Then ∂tϕn,l = −φ(s, y)ωn(y − x)ωl(s− t) = −φωnωl, and thus∫
({0}×Ω)×QT

(u+ − v+
0 )+φωnωl dx dt dy

= −
∫

({0}×Ω)×QT

(u+ − v+
0 )+∂tϕn,l dx dt dy.

We then exploit that u = u(t, x) is an entropy solution to obtain∫
({0}×Ω)×QT

(u+ − v+
0 )+φωnωl dx dt dy

= −
∫

({0}×Ω)×QT

(u+ − v+
0 )+∂tϕn,l dx dt dy

≤
∫

({0}×Ω)×QT

d∑
i=1

sign+
(
u− v+

0

)
×
[
fi(u)− fi(v+)− |∂xiAi(u)|

pi−2
∂xiAi(u)

]
∂xiϕn,l dx dt dy

+
∫

({0}×Ω))×({0}×Ω)

(u0 − v+
0 )+φωn dx dy

=
∫

({0}×Ω)×((0,2/l)×Ω)

d∑
i=1

sign+
(
u− v+

0

)
×
[
fi(u)− fi(v+)− |∂xi

Ai(u)|pi−2
∂xi

Ai(u)
]
φ∂xi

ωn

∫ T

t

ωl(−τ) dτ dx dy

+
∫

({0}×Ω)×({0}×Ω)

(u0 − v+
0 )+ωnφdx dy,

where we have also used that
∫ T

0

ωl(−τ) dτ = 1.

Clearly, the first integral on the right-hand side of the last equality in (3.30)
vanishes as l ↑ ∞. Hence it follows that

lim sup
n↑∞

lim sup
l↑∞

∫
({0}×Ω)×QT

(u+ − v+
0 )+φωnωl dx dt dy

≤ lim
n↑∞

∫
({0}×Ω)×({0}×Ω)

(u0 − v+
0 )+ωnφdx dy

=
∫
{0}×Ω

(u0 − v+
0 )+φdy =

∫
{0}×Ω

(u+
0 − v+

0 )+φdy.

(3.30)

Since v is an entropy solution and φn ↑ φ as n ↑ ∞, the sequence Lv(φn) is
monotonically increasing as n ↑ ∞ and 0 ≤ Lv(φn) ≤ Lv(φ), so it converges. From
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this, (3.29), and (3.30),

∫
QT

(
(u+ − v+)+∂sφ+

d∑
i=1

sign+
(
u+ − v+

) [
fi(u+)− fi(v+)

−
(∣∣∂yiAi(u

+)
∣∣pi−2

∂yiAi(u
+)−

∣∣∂yiAi(v
+)
∣∣pi−2

∂yiAi(v
+)
)]
∂yiφ

)
dy ds

+
∫

({0}×Ω)

(u+
0 − v+

0 )+φdy ≥ lim
n↑∞

Lv(φn),

(3.31)

for any 0 ≤ φ = φ(s, y) ∈ D([0, T )×B).
Observe that if w is an entropy solution of (1.1) with initial data w0, then

W := −w is an entropy solution of

∂tW −
d∑
i=1

∂xifi(−W ) = −
d∑
i=1

∂xi

(
|∂xiAi(−W )|pi−2

∂xiAi(−W )
)
,

with W |t=0 = −w0 and W |(0,T )×∂Ω = 0. Therefore, replacing u, v, u0, and v0
by −v, −u, −v0, and −u0, respectively, in the above calculations, we deduce the
following version of (3.31):

∫
QT×QT

(
(v− − u−)+∂sφ−

d∑
i=1

sign+
(
v− − u−

) [
fi(−v−)− fi(−u−)

−
(∣∣∂yi

Ai(−v−)
∣∣pi−2

∂yi
Ai(−v−)−

∣∣∂yi
Ai(−u−)

∣∣pi−2
∂yi

Ai(−u−)−
)]
∂yi

φ

)
dy ds

+
∫

({0}×Ω)

(v−0 − u−0 )+φdy ≥ − lim
n↑∞

Lu(φn),

(3.32)

where

Lu(φn) =
∫
QT

sign+
(
u+
)(

u∂sφn + fi(u)∂yi
φn

−
d∑
i=1

|∂yi
Ai(u)|pi−2

∂yi
Ai(u)∂yi

φn

)
dy ds

+
∫

({0}×Ω)

sign+
(
u+

0

)
u0φn dy.

Adding (3.31) and (3.32) gives

E(φ) :=
∫
QT×QT

(
(u− v)+∂sφ+

d∑
i=1

sign+ (u− v)
[
fi(u)− fi(v)

−
(
|∂yi

Ai(u)|pi−2
∂yi

Ai(u)− |∂yi
Ai(v)|pi−2

∂yi
Ai(v)

)]
∂yi

φ

)
dy ds

+
∫

({0}×Ω)

(u0 − v0)+φdx ≥ lim
n↑∞

Lv(φn)− lim
n↑∞

Lu(φn),

(3.33)

for any nonnegative function φ = φ(s, y) ∈ D([0, T )×B).
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Let 0 ≤ φ ∈ D([0, T ) × B) be arbitrary. For m ≥ 1, define the function
φm(s, y) := φ(s, y)Θm(y), Θm(y) =

∫
Ω
ωm(y − x) dx. As φm ∈ D([0, T ) × B),

Lemma 3.3 gives E(φm) ≥ 0 for each m. Hence

E(φ) = E(φm) + E(φ(1−Θm)) ≥ E(φ(1−Θm))

≥ lim
n↑∞

Lv(φΘn(1−Θm))− lim
n↑∞

Lu(φΘn(1−Θm)).

The right-hand side tends to zero when we send first n ↑ ∞ and second m ↑ ∞,
which is a consequence of the fact that for each fixed m

Θn(1−Θm) = Θn −Θm, n > m.

Hence we have proved that

(3.34) E(φ) ≥ 0, ∀φ ∈ D([0, T )×B), φ ≥ 0.

Let Ω0 ⊂ Ω be such that Ω0 ∪ (∪Ii=0Bi) is a covering of Ω, where (Bi)1≤i≤I are
balls satisfying (3.27). Let (ϕ)0≤i≤I be a partition of unity related to the above
covering, so that ϕ0 ∈ D(Ω), ϕi ∈ D(Bi), 1 ≤ i ≤ I. Let φ ∈ D([0, T )× Ω), φ ≥ 0,
and φi := φϕi (1 ≤ i ≤ I). From (3.34),

(3.35) E(φi) ≥ 0, i = 0, . . . , I.

By linearity of φ 7→ L(φ), Lemma 3.5 follows by summing (3.35) over i. �

Concluding the proof of Theorem 3.1. In Lemma 3.5, we pick a test function φ of
the form

φ = ψ(t), 0 ≤ ψ ∈ D([0, T )).
The result is

−
∫ T

0

ψ′(t)
(∫

Ω

(u(t, x)− v(t, x))+ dx
)
dt ≤

∫
Ω

(u0 − v0)+ dx,

from which Theorem 3.1 follows in a standard way. �
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