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Abstract

Under certain physically reasonable assumptions, three-phase flow of immiscible, in-
compressible fluids can be described by a 2×2 nongenuinely nonlinear, hyperbolic system.
We combine analytical solutions to the corresponding Riemann problem with an efficient
front-tracking method to study Cauchy and initial-boundary value problems. Unlike finite
difference methods, the front-tracking method treats all waves as discontinuities by evolv-
ing shocks exactly and approximating rarefactions by small entropy-violating discontinu-
ities. This way, the method can track individual waves and give very accurate (or even ex-
act) resolution of discontinuities. We demonstrate the applicability of the method through
several numerical examples, including a streamline simulation of a water-alternating-gas
(WAG) injection process in a three-dimensional, heterogeneous, shallow-marine formation.

1 Introduction

It is by now well established that most oil recovery processes involve three-phase flow, that
is, the simultaneous flow of oil, water, and gas in the reservoir. Practical examples include
primary production below bubble point and with movable water, waterfloods in the presence
of free gas, gas floods, and water-alternating-gas injection processes. Models of three-phase
flow in porous media are also required to describe many problems of environmental interest,
such as contamination (and subsequent remediation) of the vadose zone by non-aqueous phase
liquids, and geological CO2 sequestration. In all these cases, reliability of numerical simulation
predictions depends critically on the ability to incorporate the heterogeneity present in the
system, which in turn leads to simulation models with a very large number of grid blocks. As
a result, there is –and there will continue to be in the foreseeable future– need for faster and
more robust numerical solution methods.

During the past decade, there has been a renewed interest in streamline-type methods
because of their potential for providing fast numerical solutions [27]. The underlying idea is
to decouple the three-dimensional transport equations into a set of one-dimensional problems
along streamlines. Streamlines are computed from the solution of a properly defined pressure
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equation. In this way, streamline-type methods exploit the completely different character of
the essentially elliptic pressure equation and the essentially hyperbolic system of saturation
equations. Streamline and other related methods, however, rely heavily on the efficient solu-
tion of the transport equations along one-dimensional domains. In this paper, we propose a
front tracking method for solving one-dimensional three-phase flow problems.

The term “front tracking” usually refers to a family of numerical methods that per-
form some kind of tracking of shocks and other evolving discontinuities. Most front-tracking
schemes consist of a finite-difference scheme coupled with a recipe for detecting and tracking
discontinuities. Our method is different in the sense that no finite differences are involved.
Instead, the numerical solution is computed by treating all waves as discontinuities. Smooth
rarefaction waves are approximated by small discontinuities that violate the entropy condi-
tion, whereas shocks and real other discontinuities are tracked exactly. The corresponding
numerical method comes from a mathematical algorithm [21, 6, 36] for constructing approx-
imate and exact solutions to (systems of) hyperbolic conservation laws of the form

ut + f(u)x = 0, u(x, 0) = u0(x). (1)

Here u ∈ IRm for m ≥ 1, x ∈ IR and t ≥ 0. The front-tracking construction –which is
sometimes called wave front tracking or Dafermos’ method– was introduced in its current
form as an analytic tool to prove existence for scalar equations [12] and systems of equations
[36]. However, the most important application of the method came when it was used as an
essential tool in proving uniqueness for systems of conservation laws in one spatial dimension
[8, 7].

Front tracking, and other closely related constructive methods, has been used by several
researchers for numerical computations of discontinuous solutions in one space dimension,
and in several space dimensions through a fractional step procedure; see [21] for a complete
(historical) overview. The most appealing features of the method is that it is able to resolve
discontinuities exactly, has no grid-dependence, and is unconditionally stable. Depending
upon the availability of a fast Riemann solver and the complexity of the wave interactions of
the problem, the method can be very efficient compared with conventional finite volume and
finite element methods. Furthermore, for scalar equations one can prove that the method has
a finite number of steps in infinite time [20]. Somewhat surprisingly, the method has not yet
become part of the standard numerical repertoire for conservation laws. The only exception
is perhaps within porous media flow, where front-tracking is a key technology in obtaining
the high numerical efficiency of the two-phase version of the streamline simulator FrontSim
[5] by Schlumberger.

The use of front tracking for the simulation of three-phase flow in porous media has been
hindered by the lack of analytical solutions of the corresponding Riemann problem –a par-
ticular case of the Cauchy problem (1) where the initial condition consists in two constant
states separated by a single discontinuity [4]. Most previous solutions to the three-phase
Riemann problem have been limited to overly simplistic relative permeability functions, in
which the relative permeability of each phase is assumed to be a function of its own phase
saturation alone [39, 35, 18, 29, 14, 13, 38, 33]. When this condition is relaxed, and the rel-
ative permeabilities are allowed to depend on all saturations, only generic guidelines for the
construction of the solution have typically been provided [16, 17]. In a recent paper [25], a
complete catalogue of solutions was identified when the relative permeability functions satisfy
certain physical conditions. Moreover, efficient algorithms for the evaluation of the solution



K.–A. Lie and R. Juanes: Front-tracking method for three-phase flow 3

are given. They are based on a predictor-corrector strategy coupled with a Newton iterative
scheme, which yields quadratic convergence. Since the solution to the Cauchy problem typ-
ically requires computing a large number of Riemann problems, the availability of a general
and highly efficient Riemann solver is essential.

In summary, the key ingredients of the approach presented here are: (1) decoupling of the
three-dimensional equations into a global pressure equation, and a system of one-dimensional
saturation equations along streamlines; (2) solution of the Cauchy problem along each stream-
line by means of a front tracking algorithm; and (3) the use of an efficient three-phase Riemann
solver as a building block for the front tracking solution.

The outline of the paper is as follows. In Section 2, we outline the mathematical model.
The solution to the three-phase Riemann problem is discussed in Section 3. We describe
the wave structure that may arise, and pay particular attention to the role of detached
branches of the Hugoniot locus on the global solution structure. In Section 4 we describe
the front-tracking algorithm used to solve the Cauchy problem, with particular reference
to discretization of rarefaction waves, and data reduction. Representative one-dimensional
simulations are presented in Section 5. Examples 1–3 are Riemann problems, in which the
front tracking method is compared against the analytical solution and common finite volume
schemes. Example 4 is a more involved test problem modeling water-alternating-gas injection
in an oil and gas reservoir. In Section 6 we present a three-dimensional three-phase flow
simulation, in which the front tracking algorithm is used in combination with a streamline
method. These numerical simulations illustrate the potential of this approach for fast and
accurate quantitative predictions in real three-dimensional, heterogeneous reservoirs. Finally,
in Section 7, we gather the main conclusions and anticipate future work.

2 Mathematical model of three-phase flow

Under certain assumptions (see, e.g. [10]) the mathematical model describing three-phase flow
in porous media may be expressed in terms of a pressure equation, and a system of saturation
equations. For one-dimensional flow, the system of saturation equations takes the form (after
re-scaling of the space variable):

ut + f(u)x = 0, (2)

where u = (Sw, Sg) is the vector of water and gas saturations, and f = (fw, fg) is the
vector of fractional flow functions. The oil saturation is determined by the algebraic relation
So = 1− Sw − Sg, which dictates that the fluids fill up the entire pore space. If the effects of
miscibility, compressibility, capillarity and gravity are neglected, the fractional flow of phase i
is simply:

fi =
λi

λT
, (3)

where λi is the relative mobility of phase i, and λT = λw + λg + λo is the total mobility. The
relative mobility is defined as:

λi =
kri

µi
, (4)

where kri and µi are the relative permeability and the dynamic viscosity of phase i, respec-
tively.

The relative permeabilities are normally understood as functions of the fluid saturations
alone. It is well known that most relative permeability models used today give rise to elliptic
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regions, that is, open sets in the saturation space where the system (2) is locally elliptic rather
than hyperbolic [9, 10, 3, 15, 40, 41, 22, 19, 26]. There is an ongoing debate on whether elliptic
regions are physical, or simply an unintended consequence of the severe modeling assumptions
made in development of three-phase flow models (see, e.g., [41, 23, 2, 26]). In this paper, we
adopt the view that elliptic regions are the result of an incomplete model, and we use relative
permeability functions which render the system hyperbolic [26].

3 Solution to the Riemann problem

The Riemann problem is a particular case of the Cauchy problem (1) in which the initial
condition is given by piecewise constant data, separated by a single discontinuity:

u0(x) =

{

uL if x < 0,

uR if x ≥ 0.
(5)

The state uL is the ‘left’ or ‘injected’ state, and uR is the ‘right’ or ‘initial’ state. Solutions
to the Riemann problem (especially analytical solutions) are extremely valuable: they offer
insight into the behavior of the system, and they can be used as a building block to obtain
solutions for problems with more complex initial conditions.

3.1 Wave structure

Analytical solutions to the Riemann problem of three-phase flow have been studied extensively
[42, 39, 35, 18, 14, 13, 16, 17, 33]. In a recent paper [25], a complete catalogue of solutions
was identified, and efficient algorithms for the computation of the solution were given. The
main assumptions used to limit the admissible wave structure are: (1) the system is strictly
hyperbolic; and (2) both characteristic fields are nongenuinely nonlinear, and the inflection
locus of each field is assumed to be a single curve which corresponds to maxima of the
eigenvalues. The inflection locus of the i-family is the set of states at which the i-characteristic
velocity attains a maximum or a minimum value when moving along integral curves of the
i-family. We define, for any saturation state u, the quantity

Vi(u) := ∇νi(u) · ri(u), (6)

where νi is the i-eigenvalue and ri is the i-eigenvector of the Jacobian matrix f ′(u). With this
definition, the i-inflection locus is nothing but the contour Vi = 0, which separates convexity
regions.

Both conditions mentioned above are natural extensions of the corresponding conditions
in the two-phase flow case. Under those assumptions, the solution to the Riemann problem
comprises two separated waves,W1 (slow wave) andW2 (fast wave), connecting three constant
states, uL (left), uM (middle) and uR (right):

uL
W1−→ uM

W2−→ uR. (7)

In general, when the characteristic fields are neither genuinely nonlinear nor linearly degen-
erate in the sense of Lax [31], each wave may be a composite wave of rarefactions and shocks
[32]. However, when the inflection loci are connected manifolds of dimension n−1 (n being the
size of the system of equations) where the eigenvalues attain maximum values, each composite
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Figure 1: Local and detached branches of the Hugoniot loci for a reference state near the vertex of
100% gas saturation.

wave may only involve a rarefaction followed by a left discontinuity [1]. This important result
limits the wave structure of three-phase flow models to only nine admissible combinations of
waves, because each of the two waves can only be a single rarefaction R, a single shock S, or
a composite rarefaction-shock RS.

Rarefaction curves are described in terms of ordinary differential equations, whereas shock
curves are defined by algebraic equations (the Rankine-Hugoniot condition). Efficient algo-
rithms for the computation of individual waves can be obtained based on a Newton iterative
scheme in combination with an efficient ODE solver for the rarefaction curves. We use the
Runge–Kutta (4,5) pair of Dormand and Prince. Algorithms for all solution types can then be
devised by piecing together the individual waves using a predictor-corrector strategy, which
achieves quadratic convergence in all cases [25]. Such optimal methods for the evaluation of
the analytical solution are necessary because typical applications of the front-tracking method
require millions of calls to the Riemann solver.

3.2 Detached branches of shock curves

The usual construction of the Riemann solution [25] assumes that the wave curves are local,
that is, that they are continuous curves, which emanate from the left and right states. The
intermediate constant state is therefore determined as the intersection of a local 1-wave em-
anating from uL, and a local 2-wave emanating from uR. It turns out, however, that this
construction may lead to globally inadmissible Riemann solutions because the wave speeds
are not necessarily monotonically increasing (even if both waves are admissible individually).
The reason is that the Hugoniot locus, that is, the set of saturation states which satisfy the
Rankine–Hugoniot condition for a given reference state, may present detached branches. An
example of such behavior is shown in Figure 1, where H1 and H2 correspond to the slow and
fast local branches of the Hugoniot locus, respectively, and Hd is the detached branch.

Detached branches of the Hugoniot locus are typically present for reference saturation
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Figure 2: Inadmissible Riemann solution using the local branch of the Hugoniot locus. Left: Satu-
ration path on the ternary diagram; Right: Saturation profiles showing a nonincreasing sequence of
wave speeds (σ1 > σ2).

states near the vertex of 100% gas saturation. The presence of detached branches in the
saturation space is an indication that the solution may not be constructed in the usual way,
by connecting local wave curves emanating from the left and right states. To illustrate the
role of detached branches in the construction of admissible solutions, we present the three
possible solutions of the Riemann problem with initial state uR = (0.05, 0.80), and injected
state uL = (0.8, 0.2).

The first tentative solution (Figure 2) is obtained by connecting the local 1-wave from uL

with the local 2-wave from uR. The solution is in this case of type R1S1S2, that is, the slow
wave is a rarefaction-shock, and the fast wave is a single shock. While each of the waves is
individually admissible, the computed shock speeds are such that σ1 > σ2 and, therefore, the
solution is globally inadmissible. On the right plot of Figure 2, we show the saturation profiles
of water, oil, and gas against the similarity variable x/t. The two solid curves correspond to
the values of Sw and 1− Sg. This is a convenient representation, because it allows to display
all three saturations on the same plot: water at the bottom –in blue; gas at the top –in white;
and oil in between –in dark gray. The saturation profiles clearly show that the solution is
unphysical.

The second tentative solution (Figure 3) involves a local 1-wave emanating from uL, and
an intermediate saturation state uM on the left side of the detached branch. The solution is of
type R1S1S2 but it is inadmissible because, as before, the wave speeds form a nonincreasing
sequence.

The third tentative solution (Figure 4) connects uL with the intermediate state uM on the
right side of the detached branch, which is then connected to uR by a single shock. This is the
physically admissible solution because both waves satisfy the e-Lax entropy condition and the
wave speeds are monotonically increasing. Indeed, the saturation profiles are uniquely-valued.

The example presented here is representative of the typical behavior of three-phase flow
models. Whenever the construction involving local wave curves does not lead to a globally
admissible solution, the solution must involve a detached branch. In general, two solutions
are then possible, one of which does not satisfy the e-Lax entropy criterion, and the other
yields the physically correct Riemann solution. It is important to note that the catalogue of
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Figure 3: Inadmissible Riemann solution with an intermediate state at the detached branch of the
Hugoniot locus. Left: Saturation path on the ternary diagram; Right: Saturation profiles showing a
nonincreasing sequence of wave speeds (σ1 > σ2).

  0 0.
2

0.
4

0.
6

0.
8   1

  0

0.2

0.4

0.6

0.8

  1

  0

0.2

0.4

0.6

0.8

  1

O W

G

PSfrag replacements

R1

S1

S2

uL

uM

uR

PSfrag replacements

0

σ1

σ2

x/t

0

1
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solutions presented in [25] does not change, and that the number of admissible solution types
is still nine. Moreover, the predictor-corrector algorithms are also valid and yield quadratic
convergence even if the solution involves detached branches. Only the initial guess needs to be
judiciously chosen to guarantee that the iterative method converge to the physically correct
solution. A more complete study of the role of detached branches on the Riemann solution
of three-phase flow models is presented in a separate publication.

3.3 Riemann solver algorithm

The complete algorithm for the determination of the solution to the Riemann problem is
presented in Algorithm 3.1.

Algorithm 3.1 The Riemann solver algorithm

1. Given left and right states: uL, uR

2. Set initial guess and trial solution: utr
M , Wtr

1 = R1, Wtr
2 = R2

3. Solve the Wtr
1 W

tr
2 configuration, and update the wave structure:

[uM ,W1,W2] = WaveStruct(uL,uR,utr
M ,Wtr

1 ,Wtr
2 )

4. Check admissibility (increasing wave speeds):
If (σ1 > σ2) {

Set new initial guess: uM

Declare solution invalid: W tr
1 =Wtr

2 = 0 }
5. Check convergence of the algorithm:

If W1W2 =Wtr
1 W

tr
2 Stop

Else Set Wtr
1 W

tr
2 ←W1W2, utr

M ← uM , Goto 3.

Given the left and right states uL and uR, respectively, the algorithm solves the Riemann
problem by determining the intermediate state uM and the wave typesW1 andW2 joining the
three constant states. The algorithm starts by setting an initial guess utr

M of the intermediate
state, and by assuming a trial solution of type R1R2, that is, a solution consisting in two
rarefaction waves. The reason for this choice is that it guarantees that the predicted interme-
diate saturation state uM will be inside the saturation triangle. The heart of the algorithm
is Step 3, which involves two actions:

1. Compute the intermediate state, given a trial wave structure W tr
1 W

tr
2 and an initial

guess utr
M . This step is performed following the algorithms given in [25].

2. Ascertain what the wave structure of the solution would be if the intermediate state
were the one just computed. The wave type is inferred separately for each individual
wave (i = 1, 2). Although this step must be designed carefully to obtain a robust
implementation, the concept is quite simple: a valid i-shock must satisfy the Lax entropy
criterion; if the shock is not admissible, and the constant states joined by the i-wave are
on the same convexity region, the i-wave is a rarefaction; otherwise it is a rarefaction-
shock.

Due to the potential presence of detached branches for some saturation states, it is not
sufficient to check the admissibility of individual waves. If the solution involves shocks, one
must also check that they form an increasing sequence of wave speeds, that is, σ1 < σ2. The
algorithm terminates if the trial wave structure W tr

1 W
tr
2 is admissible. Otherwise, both the
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first interaction second interaction

Figure 5: Construction of a global solution by connecting local Riemann fans depicted in the (x, t)-
plane.

intermediate state and the wave structure are updated from the computed values. Because
rarefaction curves and shock curves typically have similar paths on the saturation space, the
intermediate state is usually not very sensitive to the solution type, and the procedure often
converges after one iteration.

4 The front-tracking algorithm

Front tracking is an algorithm for constructing exact or approximate solutions to hyperbolic
conservation laws of the form

ut + f(u)x = 0, u(x, 0) = u0(x).

Assume that the initial function u0(x) is a piecewise constant function so that the Cauchy
problem consists of a series of local Riemann problems (5). Each Riemann problem is con-
nected to its nearest neighbors through common constant states. In the previous section
we saw how to solve the Riemann problem exactly to produce a similarity solution, which
is commonly referred to as the Riemann fan. Each Riemann fan is local in time and space
and consists of a set of constant states separated by simple waves. By connecting the local
Riemann fans, one obtains a solution that is global in space. Since each simple wave has a
finite speed of propagation, the global solution is well-defined up to the time when the first
waves from two neighboring Riemann fans interact. If the two interacting waves are discon-
tinuities, the interaction defines a new local Riemann problem and the new global solution
can be constructed by inserting the corresponding local Riemann fan, see Figure 5. Assume
now that all simple waves admitted by the system are discontinuities. This means that all
local Riemann problems will produce constant states separated by discontinuities. Then our
construction can be repeated to compute the exact solution of the Cauchy problem up to an
arbitrary desired time level.

If the system admits rarefactions, as is the case for the three-phase model, the above
construction cannot be used directly to construct an exact solution. However, an approximate
solution can be constructed if we approximate each Riemann fan by a step function so that
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Figure 6: Construction of an approximate Riemann fan: approximation in state space, approximate
solution in (x, u)-plane, and fronts in (x, t)-plane.

the approximate Riemann fan consists of constant states separated by space-time rays of
discontinuities, see Figure 6. To this end, we discretize the smooth rarefaction waves by a
series of (small) jump discontinuities and keep the shocks (and the linear discontinuities).

We are now in a position to use the algorithm outlined above to construct a global ap-
proximate solution (in space and time) in the same way as one builds a scaffolding. Start
by resolving Riemann the initial problems and connect the local approximate Riemann fans.
The result is a set of constant states separated by space-time rays of discontinuity, henceforth
referred to as fronts. Then, track all fronts until the first two fronts collide, resolve the cor-
responding Riemann problem, insert the approximate Riemann fan, and so on. This is the
front-tracking algorithm, which is outlined in more detail in Algorithm 4.1. In the algorithm,
the basic data objects are the propagating fronts. Each front object f has an associated left
and right state, a point of origin, a propagation speed, and a termination point. To track
the fronts, we use two lists, a spatial list F where the fronts are sorted from left to right and
a collision list C where front collisions are sorted with respect to collision time in ascending
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order.

Algorithm 4.1 The front-tracking algorithm

Construct a piecewise constant initial function u0(x) = ui

Set F = {∅}, C = {∅}, and t = 0
For i = 0 : n
{fL, . . . , fR} = RiemannSolver(ui, ui+1, xi+1/2, t)
c = ComputCollision(F, fL)
C = Sort({C, c})
F = InsertFronts({F, {fL, . . . , fR})

While (t ≤ T ) and C 6= {∅} do
(c, xc, tc) = ExtractNextCollision(C)
{fL, . . . , fR} = ExtractCollidingFronts(F,c)
{fL, . . . , fR} = RiemannSolver(fL→uL, fR→uR, xc, tc)
{cL, cR} = ComputCollision(F, {fL, . . . , fR})
C = Sort({C, cL, cR})
F = InsertFronts(F, {fL, . . . , fR})

endwhile

There are two important points that we have so far not discussed. The first is how
to approximate rarefaction waves. There are several ways to do this. One possibility is
to discretize each rarefaction wave uniformly in wave speed. Assume that the integral curve
connecting two constant states uL and uR is given by R(ξ) for ξL ≤ ξ ≤ ξR. Then the constant
states approximating the rarefaction are given by ui = R(ξL + iδξ), where the magnitude of
δξ is given by some prescribed parameter and n · δξ = ξR − ξL. In our implementation
of the Riemann solver for the three-phase problem, the integral curves are given as either
Sw = R(Sg) or Sg = R(Sw). We have therefore chosen a simpler approach, and discretize the
rarefactions by sampling uniformly along the integral curves in state space; that is, discretize
each rarefaction wave by a set of constant states {ui} such that |ui − ui−1| ≈ δu, for some
prescribed δu.

Since the rarefaction waves are discretized in state space, the wave velocities for each
discontinuity must be determined. There are several natural candidates like the characteristic
speed of the left or the right state, or the average of the characteristic speeds, see e.g., [21].
In our implementation we use the Rankine–Hugoniot wave speed given by the left and right
state of each discontinuity, ensuring that each discontinuity in the approximate Riemann fan
satisfies the equation in the weak sense, regardless of whether it is admissible or not.

The second point is data reduction. A potential pitfall of the front-tracking algorithm
is that the number discontinuities in the solution may blow up in finite time for general
systems. Once again, there are several ways to prevent this. If the purpose of the front-
tracking construction was to prove rigorous mathematical results, one would need to take
Glimm-type interaction estimates into account, see [21]. Since we are interested in solutions
with finite accuracy and not their limit, it is sufficient to remove all waves (or Riemann
problem) below a certain prescribed tolerance.

Since the conservation law is continuous in L1 with respect to its initial data u0(x), the
approximation obtained by replacing u0 by a piecewise constant function v(x) can be made ar-
bitrarily good by choosing v(x) appropriately. Similarly, the approximation of the continuous
rarefaction waves can be made arbitrarily good by increasing the number of sampling points
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along the rarefaction waves. If we also design the data reduction carefully, the front-tracking
construction will converge to the weak solution of (1) in the limit, see [21].

4.1 Two finite-volume schemes

A common way of solving hyperbolic conservation laws like (2) is to use a finite-volume
scheme. We will therefore introduce two such schemes that will be used in the next section:
the standard first-order upwind scheme and a semi-discrete, second-order, central-upwind
scheme [28]. In the following we assume that un

i denotes the cell-average function (taken in
the componentwise sense)

un
i =

1

∆xi

∫ xi+
1
2∆xi

xi−
1
2∆xi

u(x, tn) dx.

The upwind scheme has a very simple structure (here ri = ∆t/∆xi)

un+1
i = un

i − ri

(

f(un
i )− f(un

i−1)
)

.

Among all conservative first-order, three-point schemes, the upwind scheme is the one with
the lowest numerical dissipation and can be used componentwise for the three-phase flow
equations, since all eigenvalues of this system are positive. The stability condition for the
scheme is maxi ν2(ui)ri ≤ 1.

The central-upwind scheme is a so-called high-resolution scheme. It generally has five
points in the stencil and uses a nonlinear reconstruction to guarantee both second-order
accuracy and nonoscillatory behavior. In semi-discrete form, the scheme reads

d

dt
ui(t) = H(ui, t) = −

1

∆x

(

Fi+1/2(t)− Fi−1/2(t)
)

.

Since all eigenvalues are positive, the numerical flux-functions Fi±1/2(t) take a particularly
simple form

Fi+1/2(t) = f
(

ui(t) + 1
2u′

i(t)
)

,

where u′
i(t) is the reconstructed discrete slope

u′
i(t) = L

(

ui(t)− ui−1(t), ui+1(t)− ui(t)
)

.

For the nonlinear limiter function L we will use the MinMod(θ) function with θ = 1.3. To
integrate the semi-discrete equation we employ a second-order Runge–Kutta scheme based
upon combinations of forward-Euler steps

u(1) = un + ∆tnH(un, tn)

un+1 = 1
2un + 1

2

(

u(1) + ∆tnH(u(1), tn)
)

The stability condition for the central-upwind scheme is maxi ν2(ui)ri ≤ 1/2.

5 One-dimensional simulations

In the following we will present several simple examples to demonstrate the behavior of the
front-tracking algorithm. To this end, we have chosen a simple three-phase model given by
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Figure 7: (Example 1) Saturation path of the exact solution and the approximate front-tracking
solution with δu = 0.05.

the relative mobility functions

λw(Sw) =
(

awSw + (1− aw)S2
w

)

/µw,

λg(Sg) =
(

agSg + (1− ag)S
2
g

)

/µg,

λo(Sw, Sg) = (1− Sw − Sg)(1− Sw)(1− Sg)/µo,

(8)

where aw = 0, ag = 0.1, µw = 0.35, µg = 0.012, and µo = 0.8. With this choice, the system
is strictly hyperbolic in the entire saturation triangle, except at the vertex of 100% gas
saturation, where the eigenvalues are equal [25].

Example 1

The first example is a simple Riemann problem at x = 0.1 with left state uL = (1, 0) and right
state uR = (0, 0.5). The example is motivated by water injection in an oil-gas reservoir. The
solution is of type R1S1S2, as shown in Figure 7. Figure 8 shows three approximate solutions
obtained with three different choices for the parameter δu determining the approximation of
rarefaction waves. The S1 and S2 shocks are resolved exactly in all three computations and the
solution is approximate only along the rarefaction wave. Since rarefactions are approximated
in state space and not in wave speed, the step function is uniformly decreasing in Sw and
nonuniformly increasing in x/t. We observe that the solution converges nicely to the analytical
solution as δu is decreased.

Figure 8 also shows the cumulative production at the right boundary up to time t = 1.0.
Initially, the reservoir produces almost only gas. The oil production increases dramatically
when the gas has been emptied and decreases again when the water front hits the boundary.

Example 2

The second example is also a Riemann problem at x = 0.1, but now with right state uR =
(0, 0.75). The solution is of type R1S2, where the S2 wave is on the detached branch of the
Hugoniot locus, see Figure 9. Figure 10 shows three approximate solutions obtained with
three different choices for the parameter δu determining the approximation of rarefaction
waves.
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Figure 9: (Example 2) Saturation path of the exact solution and the approximate front-tracking
solution with δu = 0.05. The S2 shock involves the detached branch of the Hugoniot locus.
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Figure 11: (Example 2) Comparison of the front-tracking solution with δu = 0.01 and two finite-
volume methods on a grid with ∆x = 1/50.
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Figure 12: (Example 3) Comparison of the front-tracking solution with δu = 0.001 and two finite-
volume methods on a grid with ∆x = 1/50; the left plot shows solutions in the (x, u)-plane and the
right plot shows solutions in the ternary diagram.

Given the complexity of the Riemann solver and the front-tracking algorithm, an obvious
question to ask is what is gained compared with a finite-volume method. Figure 11 shows a
comparison of the front-tracking solution, the upwind scheme, and the central-upwind scheme.
The grid size was chosen so that the runtime of the front-tracker and the upwind scheme were
comparable. The runtime of the central-upwind scheme was a factor 5-6 larger. Whereas
the two finite-volume schemes have comparable numerical dissipation at the water front, the
smooth rarefaction is resolved better by the second-order scheme. The front-tracking scheme
gives exact resolution of the shock and slightly better resolution of the rarefaction wave, but
altogether the performance of the three schemes is similar.

Example 3

The third example is also a Riemann problem with uL = (0, 0.6) and uR = (0.4, 0.05). The
wave structure is R1S1R2, where the S1 wave is very weak with |ul−ur| = 0.0039. Figure 12
compares approximate solutions at t = 0.1 obtained by the two finite-difference schemes on a
grid with 50 cells with the exact solution. As expected, the ternary diagram shows that the
two finite-volume schemes do not resolve the structure of the W1 wave on this coarse grid.
To resolve the structure, one must in fact increase the number of grid points by at least two
orders of magnitude, as can be seen in Figure 13, where we have zoomed in on the solution
around the W1 wave. Front-tracking, on the other hand, gives a fair approximation to the
W1 wave even with δu = 0.05.

Example 4

As a fourth example, we model a simplified water-alternating-gas (WAG) process, in which
the injected conditions vary in time. We consider a linear reservoir with initial saturations of
20% gas and 80% oil, so that uR = (0, 0.2). The process starts by injecting pure water, which
defines a Riemann problem with uL = (1, 0). At time t = 0.1, the injected state is changed
to uL = (0.01, 0.99), corresponding to almost 100% gas injection. Subsequent cycles of water
and gas injection are established, with each injection phase lasting for a period ∆t = 0.1.
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Figure 13: (Example 3) Plot of 1 − Sg zoomed in around the W1 wave. Approximate solutions
computed by first-order upwind (top-left) and second-order central-upwind (top-right) on a grid with
n cells, compared with front-tracking (bottom).
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Figure 14: (Example 4) Fronts in the (x, t)-plane for the simplified WAG process, using δu = 0.05.

Because of the stepwise change in the left boundary condition, the solution is no longer a
single Riemann fan. Figure 14 shows the fronts in the (x, t)-plane for a very coarse approx-
imation δu = 0.05. The initial wave structure consists of a fast 2-shock that displaces the
initial oil-gas mixture by pure oil, followed by a rarefaction-shock in the first family displac-
ing oil by water (as in the classical two-phase Buckley–Leverett displacement). When gas is
injected at time t = 0.1, the injected gas gives a fast rarefaction-shock in the second family
that travels unperturbed through the injected water. As the gas front passes, the injected
water slows down, as can be seen from the kink in the waves of the first family. The injected
gas front overtakes the gas front induced by the first water injection cycle and the oil bank
reaches the production well at t ≈ 0.564. In Figure 15 we plot the saturation profiles at times
t = 0, 0.095, 0.195, 0.5, 1.5 and t = 2, using δu = 0.005 for a more accurate sampling of the
rarefaction waves. The front-tracking method requires in this case the solution of about half a
million Riemann problems, therefore highlighting the need for efficient three-phase Riemann
solvers.

Additional insight into the behavior of the solution can be gained by plotting the solution
as a saturation path on the ternary diagram. Figure 16 shows the solution at times t = 1.5
(end of a water injection cycle) and t = 2 (end of a gas injection cycle). Each path must
necessarily start at the saturation state of the injected conditions. Sharp changes in the
saturation path indicate strong shocks, which move across the domain by the action of the
injected fluids.

The cumulative production curves are shown in Figure 17 up to time t = 4. Until t ≈
0.564, the reservoir produces mostly gas. At that time, the leading oil bank reaches the
right boundary, and the oil production increases significantly. The oil production rate drops
dramatically after t ≈ 2.5, which is when the injected water breaks through.
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Figure 15: (Example 4) Saturation profiles at t = 0 (top), 0.095, 0.195, 0.5, 1.5 and t = 2 (bottom),
using δu = 0.005.
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Figure 17: (Example 4) Production curves.

6 Three-phase streamline simulation

An interesting application of the front-tracking method for three-phase flow is in combination
with streamlines to simulate multidimensional displacement scenarios. In a streamline sim-
ulation, the pressure and the transport equations are decoupled and solved sequentially. A
streamline is defined as the flow path traced out by a neutral particle being passively advected
by a flow field so that the velocity field v is tangential to the streamline at every point. The
streamlines are parametrised by the so-called time-of-flight τ = τ(x) that measures the time
it takes a passsive particle released at the boundary (i.e., an injector) at time zero to reach a
point x in physical space. This gives the relation

v · ∇τ = φ.

The time-of-flight can therefore be computed by integrating along individual streamlines Ψ

τ(s) =

∫ s

0

(φ ◦Ψ)(ξ)

|(v ◦Ψ)(ξ)|
dξ.

In the simulator, the streamlines are traced from cell to cell using an analytic method due
to Pollock [34]. For incompressible flow, all streamlines will start in an injector and end
in a producer. In the fluid transport, each streamline is treated as an isolated flow system
described by the one-dimensional hyperbolic system (in the case of no gravity)

ut + f(u)τ = 0. (9)

In a streamline method, the saturations are advanced forward in time by solving (9), here
by using the front-tracking method. At the end of the transport step, the saturations are
projected back onto the background grid, the fluid mobilities are updated, and the pressure
recomputed.

For a full three-dimensional simulation, the saturation step typically involves several thou-
sand streamlines, resulting in a very large number of calls to the Riemann solver. The Rie-
mann solver must therefore be highly efficient. In the current three-phase solver, the most
expensive part is the calculation of rarefactions and rarefaction-shocks, because they involve
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constrained integration of ordinary differential equations. To increase the speed significantly,
we propose a simple adaptive Riemann solver, in which the wave structure of strong Riemann
problems is resolved exactly, whereas weak Riemann problems are approximated by a (pos-
sibly inadmissible) two-shock solution. Details about the design and implementation of the
proposed adaptive Riemann solver are presented elsewhere [24]; see also [37, 30].

Example

In this example we consider a synthetic, full three-dimensional reservoir model consisting of
a five spot well configuration (one injection well at the center and four production wells at
the corners) in a highly heterogeneous, shallow-marine Tarbert formation. The heterogeneity
model is a subsample of the recent 10th SPE comparative solution project [11] on a 30×110×15
grid. The field has large (but smooth) permeability variations: 6 orders of magnitude in the
horizontal direction and 10 orders in the vertical direction, see Figure 18. The porosity is
strongly correlated to the permeability.

10 10 10 10 10 10 10−2 −1 0 1 2 3 4 

Figure 18: Logarithm of horizontal permeability and well configuration for the Tarbert formation.

For simplicity, we neglect gravity and assume incompressible flow. The three-phase model
is as given in the previous section. The initial saturation is (Sw, Sg) = (0.0, 0.2). We consider
2000 days of production by two different scenarios: (i) injection of pure water, i.e., (Sw, Sg) =
(1.0, 0.0); and (ii) a WAG cycle where the injected fluid composition is changed between pure
water and (Sw, Sg) = (0.05, 0.95) every 200th day, starting at day 400.
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Figure 19 shows the water saturation after 2000 days of production for the two scenarios,
computed using 10000 streamlines and δu = 0.025 in the approximation of rarefaction waves.
The WAG simulation involved 632 million calls to the Riemann solver, out of which 617
million satisfied |uL − uR| ≤ 0.2 and were approximated by a two-shock solution.

Figure 20 shows a comparison of the production rates for oil, gas and water obtained by
our streamline solver and Eclipse, which is a industry-standard finite-difference simulator.
Whereas Eclipse uses an implicit formulation with adaptive stepsize control, our solver uses
a fractional steps formulation with no stepsize control. To assess the error in the operator
splitting, we therefore present results obtained with different step sized between days 400 and
2000. Given the fundamentally different nature of the Eclipse and the streamline method,
the production curves are in remarkable agreement.

Worth noting also, is that the streamline simulations are much faster. On a dual 2.0 MHz
Pentium PC, the Eclipse simulations took 1hr 22min for the water injection, and 8 hr 20min
for the WAG cycle. The timings for the streamline simulator were 50 minutes for the water
injection with stepsize 200 days, and 2hr 13min for the WAG cycle using stepsize 25 days.

7 Conclusions

In this paper we have presented a front-tracking method for the numerical solution of three-
phase porous media flow. The method is developed for constructing very accurate (even exact)
solutions to one-dimensional problems with general initial and boundary data. The solution is
approximated by a piecewise constant function, and the evolution of discontinuities is resolved
by using the analytical solution to the Riemann problem. It is the use of the exact analytical
solution, together with an appropriate algorithm to simplify the wave structure for Riemann
problems of small amplitude, what makes the front-tracking technique very attractive as a
computational method. We have illustrated the performance of the method with several one-
dimensional simulations, and compared the results with two finite volume schemes. The main
advantage of the front-tracking method is that strong shocks are resolved exactly (both in
amplitude and speed).

An important practical application of the front-tracking algorithm arises in the context
of streamline simulation. Streamline methods decouple the three-dimensional problem into a
set of one-dimensional problems along streamlines, which can then be solved by means of the
front-tracking method. In this paper, we have shown the efficacy of the proposed approach for
the simulation of a complex, highly heterogeneous, three-dimensional reservoir model adapted
from the 10th SPE comparison solution project.

The integration of analytical Riemann solvers, the front-tracking method, and stream-
line tracing, offers the potential for fast and accurate prediction of three-phase flows in real
reservoirs. This technology becomes particularly relevant for screening purposes and for risk
assessment, which require the simulation of a large number of scenarios.

The formalism presented here may be extended in several ways. The Riemann solver
was limited to three-phase immiscible, incompressible flow, and we are currently working
on its extension to account for miscibility effects. Other physical processes, such as gravity,
capillarity, and compressibility, may also be incorporated into the streamline simulator.
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Figure 19: Water saturation after 2000 days of production with constant water injection (top) and a
WAG cycle (bottom).
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Figure 20: Oil, gas, and water rates for water injection (left) and the WAG cycle (right).



K.–A. Lie and R. Juanes: Front-tracking method for three-phase flow 25

References

[1] F. Ancona and A. Marson. A note on the Riemann problem for general n×n conservation
laws. J. Math. Anal. Appl., 260:279–293, 2001.

[2] A. V. Azevedo, D. Marchesin, B. Plohr, and K. Zumbrun. Capillary instability in models
for three-phase flow. Z. angew. Math. Phys., 53:713–746, 2002.

[3] J. B. Bell, J. A. Trangenstein, and G. R. Shubin. Conservation laws of mixed type
describing three-phase flow in porous media. SIAM J. Appl. Math., 46(6):1000–1017,
1986.

[4] I. Berre, H. K. Dahle, K. H. Karlsen, and H. F. Nordhaug. A streamline front track-
ing method for two- and three-phase flow including capillary forces. In Z. Chen and
R. E. Ewing, editors, Fluid Flow and Transport in Porous Media: Mathematical and Nu-
merical Treatment, volume 295 of Contemporary Mathematics, pages 49–61. American
Mathematical Society, Providence, RI, 2002.

[5] F. Bratvedt, K. Bratvedt, C. F. Buchholz, T. Gimse, H. Holden, L. Holden, and N. H.
Risebro. Frontline and Frontsim, two full scale, two-phase, black oil reservoir simulators
based on front tracking. Surv. Math. Ind., 3:185–215, 1993.

[6] A. Bressan. Global solutions of systems of conservation laws by wave-front tracking. J.
Math. Anal. Appl., 170:414–432, 1992.

[7] A. Bressan, G. Crasta, and B. Piccoli. Well-posedness of the Cauchy problem for n× n
systems of conservation laws. Mem. Amer. Math. Soc., 694:1–134, 2000.

[8] A. Bressan and P. LeFloch. Uniqueness of weak solutions to systems of conservation
laws. Arch. Rational Mech. Anal., 140(4):301–317, 1997.

[9] I. A. Charny. Subterranean Hydro-Gas Dynamics. Gostoptekhizdat, Moscow, 1963. (In
Russian).
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