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Abstract. The one-dimensional system of elasticity with a non-monotone or convex-concave stress-strain relation
provides a model to describe the longitudinal dynamics of solid-solid phase transitions in a bar. If dissipative effects are
neglected it takes the form of a system of first-order nonlinear conservation laws and dynamical phase boundaries appear
as shock wave solutions. In the physically most relevant cases these shocks are of the non-classical undercompressive type
and therefore entropy solutions of the associated Cauchy problem are not uniquely determined. Important dissipative
effects that lead to unique regular solutions are viscosity and capillarity where the latter effect is usually modelled by
at least third-order spatial derivatives.
Differently from these models we consider a novel type of non-local regularization that models both effects but avoids
high-order derivatives. We suggest a particular scaling for the dissipative terms and conjecture that with this scaling
the regular solutions single out unique physically relevant weak solutions of the first-order conservation law in the limit
of vanishing dissipation parameter. We verify the conjecture first by proving that the non-local system admits special
solutions of traveling-wave type that correspond to dynamical phase boundaries. Moreover it is proven that regular
solutions of a general Cauchy problem converge to weak solutions of the system of first-order conservation laws. The
proof is achieved by the method of compensated compactness.
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1. Introduction. We consider the Cauchy problem for the one-dimensional system of elasticity
which is given by

wt − vx = 0,

vt − σ(w)x = 0,
(1.1)

in R× (0, T ), T > 0, and

w(., 0) = w0, v(., 0) = v0, (1.2)

in R. Here the strain w : R × (0, T ) → (−1,∞) and the velocity v : R × (0, T ) → R are the two
unknowns depending on x ∈ R and time t ≥ 0. The given function σ : (−1,∞) → R is the stress-
strain relation and w0 : R → (−1,∞), v0 : R → R are the initial functions.
The system (1.1) governs the longitudinal dynamics of an elastic bar of infinite length at constant
temperature. We are interested in materials that occur in different phases and undergo dynamical
phase transitions. More specifically we consider the two following choices for σ which describe two-
phase materials:

(a) σ is a monotone increasing function except in a bounded interval,

(b) σ is a monotone increasing function but has concave-convex shape.

Examples for materials for which choice (a) applies are shape-memory alloys (see e.g. [31, 43]). The
two distinct intervals of strain state for which σ is monotone increasing determine the two different
phases. An example for which (b) holds are rubber-like materials (see e.g. [32]). In this case the
two distinct intervals of strain states for which either σ convex or σ concave holds determine the two
different phases.
Formally the system (1.1) with choice (a) or (b) is a nonlinear conservation law. As such standard weak
solutions of (1.1) are shock waves connecting two end states. In particular dynamical phase transitions
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2 C. ROHDE

can be constructed in a natural way as shock waves with strain components of the end states in two
different phases. However, if they are of the physically relevant subsonic type, then they do not belong
to the class of classical Laxian waves like e.g. hydrodynamical shock waves for Euler’s equations with
a perfect gas. Rather these waves are called non-classical undercompressive waves ([34] or [23] for a
general classification of shock waves). One consequence of this non-standard structure is that entropy
solutions of the Cauchy problem (1.1), (1.2) are not uniquely determined anymore ([1, 29, 34]). By

an entropy solution for (1.1), (1.2) we mean here a weak solution (w, v)T ∈
(

L∞loc(R× [0, T ))
)2
of the

Cauchy problem that satisfies the Clausius-Duhem inequality

H(w, v)t + F (w, v)x ≤ 0 (1.3)

in the distributional sense. The entropy H and the entropy flux F in (1.3) are given by

H(w, v) :=
v2

2
+

∫ w

0

σ(w̃) dw̃, F (w, v) := vH(w, v). (1.4)

This non-uniqueness problem is in contrast to the situation for one-phase materials governed by a
monotonely increasing and strictly convex stress-strain relation. In the latter case the entropy solution
is supposed to be the unique solution and allows only for compressive shock waves ([14] and references
therein).
Returning to the phase transition problem (1.1), (1.2) we note that a lot of research is devoted to
approaches that impose additional conditions for the undercompressive waves in order to enforce
unique solvability. We mention the so-called kinetic relations ([1, 13, 33, 28, 29]) and the entropy rate
criterium ([27]).
Here we will follow another in fact more traditional path to single out unique physically relevant
solutions of the Cauchy problem for (1.1). We regularize (1.1) by supplementing terms which model
the effects of viscosity and capillarity. Denoting the small regularization parameter by ε > 0 this leads
to the problem

wε
t − vεx = 0,

vεt − σ(wε)x = µεvεxx − γ
[

Dε[wε]
]

x
,

(1.5)

in R× (0, T ), and

wε(., 0) = w0, vε(., 0) = v0, (1.6)

in R. In (1.5) µ and γ are nonnegative viscosity and capillarity constants. To model the viscosity effect
we restrict ourselves to a simple linear term, the choice for the capillarity term Dε will be discussed
below. We want to analyze the behaviour of solutions to (1.5), (1.6) in the sharp interface limit ε→ 0.
To do this we must fix Dε and identify an appropriate scaling with respect to ε between the viscosity
and capillarity terms. Let us remark that one expects the capillarity effect to be necessary in order
to obtain dynamical phase boundaries in the limit of vanishing dissipation (see e.g. [42]).
As a first prototypical choice for the capillarity term Dε we consider the local term

Dε[w] = ε2wxx. (1.7)

Systems with capillarity terms like Dε given by (1.7) have been analyzed by many authors ([2, 8,
29, 39]), also in the closely related case of liquid-vapour phase transitions in Van-der-Waals fluids
([3, 9, 19, 20, 26, 42]). In particular with the ε-scaling given by (1.5), (1.7) solutions of the Cauchy
problem for (1.5) have been shown to converge to weak solutions of the Cauchy problem for the sharp-
interface limit system (1.1) which contain dynamical phase boundaries ([29]). In this way a unique
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weak solution of (1.1) is singled out and the modelling of the capillarity mechanism with the particular
ε-scaling is justified.
However the choice (1.7) to model capillarity effects is not the only possible and considerations from
statistical mechanics suggest different non-local models ([5, 22, 37]). In this paper we shall focus
therefore on these non-local alternatives for (1.7) which typically lead to a capillarity term of the form

Dε[w](x) =
1

ε

∫

R
φ

(

x− y
ε

)

(

w(y)− w(x)
)

dy (x ∈ R). (1.8)

Here φ : R → R is a given nonnegative kernel function. Of course also (1.8) fixes a certain scaling
with respect to ε which is just postulated at this point. Note that the choice (1.8) does not lead to
higher-order derivatives in (1.5) as (1.7) does.
It is the aim of this paper to justify the capillarity term from (1.8) and the induced ε-scaling. We shall
develop a theory for the non-local model (1.5), (1.8) which is comparable to the theory for the local
regularization (1.5), (1.7). Let us give a more specific outline. In Sect. 2 we give a short motivation of
the model (1.5) with capillarity term given by (1.8) starting from the equilibrium case. It is derived
by means of the principle of least action and the relations between (1.7) and (1.8) are discussed. The
model (1.5), (1.8) fixes a particular scaling with respect to the parameter ε. The Sects. 3 and 4 will
show that the scaling prescribed through (1.8) for (1.5) is the correct one for the non-local approach.
As the first step to analyze (1.5), (1.8) we establish in Sect. 3 the existence of traveling-wave solutions
for (1.5) with capillarity term (1.8) which correspond to dynamical phase boundaries. By construction
and due to the selected ε-scaling these traveling waves single out certain sharp-interface solutions of
(1.1). This non-local viscosity-capillarity criterium could be used to determine a unique solution of
e.g. the Riemann problem for (1.1).
The sharp-interface limit for the Cauchy problem is analyzed in Sect. 4 by means of appropriate a-
priori estimates and the method of compensated compactness. The main theorem of this section is
Theorem 4.5 which states that the limit function exists and is a weak solution of (1.1).

2. Derivation of the Non-Local Model. In this section we derive the non-local model (1.1)
with capillarity term (1.8) from basic principles. To illustrate the roots of the non-local modelling we
start with a short description of the time-independent equilibrium case. Even though the analytical
results that will be presented in Sects. 3, 4 are restricted to the spatially one-dimensional case we will
present here the models for arbitrary number of space dimensions.

2.1. The Energy Functional for the Equilibrium Case. Let Ω ⊂ R
d, d ∈ {1, 2, 3}, be an

open non-empty set and u = (u1, . . . , ud)
T : Ω → R

d be a deformation field at fixed temperature.
Here the deformation is assumed to be a C1-function. We define the deformation gradient by

∇u :=
(

∇u1
∣

∣ · · ·
∣

∣∇ud
)

, (2.1)

and the matrix-valued function F : Ω→ R
d×d with F = (Fik) by

Fik(x) := ui,xk
(x) (i, k = 1, . . . , d, x ∈ Ω), (2.2)

where the spatial coordinates are denoted by x = (x1, . . . , xd)
T .

The function W = W (F) : Rd×d → R is the (isothermal) energy function which in particular defines
the different phases. For energy functions in the multidimensional case we refer to [17]. We will specify
the energy function only for the case d = 1 in Sect. 2.3 below. The associated total stored energy E 0
is given by

E0[u] =
∫

Ω

W (∇u(x)) dx. (2.3)
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Each equilibrium deformation field is expected to be a minimizer of (2.3) (in an appropriate function
space and under appropriate constraints enforced by a given extension, incompressibility, boundary
conditions,...). One problem is that even for d = 1 the minimizers for (2.3) are not uniquely determined
(see [16]). To circumvent this drawback usually one considers modified versions of E 0 that incorporate
higher-order strain gradient terms of Van-der-Waals type. In this way the the functional is regularized
and the non-uniqueness problem can be removed (see e.g. [12] for the case d = 1), however on the cost
of higher regularity of the minimizers not present in the original problem. Moreover one is forced to
introduce new possibly non-physical boundary conditions.
Motivated by mathematical models for liquid-vapour phase transitions in fluid mechanics still first-
order but non-local approaches have been been suggested in [22] and also in [37]. Following these
authors we define for ε > 0 the non-local stored energy Eεglobal through

Eεglobal[uε] = E0[uε] +
γ

4

∫

Ω

∫

Ω

φε(x− y)|∇uε(x)−∇uε(y)|22 dydx. (2.4)

Here γ > 0 is a fixed parameter and |.|2 denotes the Frobenius norm for matrices. The ε-scaled kernel
function φε ∈ C1(Rd) is defined by

φε(x) =
1

εd
φ
(x

ε

)

(x ∈ R
d). (2.5)

Finally the function φ : R
d → R in (2.5) is some interaction potential in R

d. By an interaction
potential in R

d we mean an even and nonnegative function φ ∈ L1(Rd) that satisfies
∫

Rd

φ(x) dx = 1 and

∫

Rd

φ(x)|x| dx+
∫

Rd

φ(x)|x|2 dx <∞. (2.6)

We note that the conditions (2.6) are of more or less technical nature and simplify proofs while
nonnegativity and φ even are necessary properties.
We will not get absorbed in the discussion on minimizers for the energies E 0, Eεglobal (see [22]) but
conclude with some notes on non-local modelling and switch then to the time-dependent case.

Note 2.1.
(i) A prototypical choice for an interaction potential φ is such that its mass is concentrated around
zero, say in a ball of radius 1 around zero. From (2.5) we have that φε is concentrated in a
ball of radius ε around zero. In other words, the non-local contribution in E εglobal penalizes
variations of the deformation gradient on a length-scale of order ε. Such variations correspond
to phase transitions which are supposed to be avoided in reality if possible.

(ii) We mentioned the standard local Van-der-Waals approach to penalize phase transitions. In
the simplest case d = 1 and Ω = R with scalar deformation uε : R → R and x = x1 that would
lead to the total stored energy

E0local[uε] = E0[uε] +
∫

R

γ

2
|εuεxx|2 dx. (2.7)

Obviously minimizers of E0local are required to have higher regularity than those for E0global in
the case d = 1, that is,

Eεglobal[uε] = E0[uε] +
γ

4

∫

R

∫

R
φε(x− y)|uεx(x)− uε

x(y)|2 dydx. (2.8)

If we now assume uε to be an e.g. C2-function and plug the Taylor approximation uεx(y) ≈
uεx(x) + u

ε
xx(x)(y − x) into (2.8) we get with (2.6) for some constant C > 0

Eεglobal[uε] ≈ E0[uε] +
γ

4ε

∫

R

(
∫

R
φ(z)ε3z2 dz

)

|uxx(x)|2 dx = E0[uε] + γCε2
∫

R
|uxx(x)|2 dx.
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This is up to the constant 2C the expression E0local[uε]. In this sense the local functional can
be seen as an approximation of the non-local one.

(iii) Apart from the technical problems that occur for local higher-order strain gradient terms there
is a more fundamental reason to favour non-local models. Energy functionals of type (2.4)
show up as continuum limits for models in statistical mechanics and atomic lattices ([5, 37]).

(iv) As mentioned above a main issue is to prove that for each ε > 0 there is unique minimizer
for Eεglobal, which converges to a physically relevant minimizer of E0 in the limit ε → 0. In

this way the non-uniqueness problem for E0 is resolved. Rigorous results on this topic can be
found in [4].

2.2. A Generalized Wave Equation for the Time-Dependent Case. Let us consider again
a non-empty open set Ω ⊂ R

d. For T > 0 the isothermal dynamics of Ω in the time interval
(0, T ) is completely described by the now space- and time-dependent displacement function uε =
(uε1, . . . , u

ε
d)

T : Ω×(0, T )→ R
d which we assume to be three times continuously differentiable in space

and time.
Following the principle of least action in our case the dynamical process for uε = uε(x, t) is then
governed in R

d × (0, T ) by extremal points of the Lagrangian

Iεglobal[u
ε] :=

∫ T

0

∫

Ω

(

W (∇uε(x, t))− |u
ε
t (x, t)|2
2

+
γ

4

∫

Ω

φε(x− y)|∇uε(x)−∇uε(y)|22 dy
)

dxdt.

According to the regularity of uε extremal points of Iεglobal are classical solutions of the system of
Euler-Lagrange equations for Iεglobal which we compute now. We denote the partial derivatives of W ,
i.e., the components of the stress, by

sik(∇u) :=
∂W

∂Fik

(

∇u
)

(i, k = 1, . . . , d),

where Fik are the components of F defined as in (2.2).
To determine the variation with respect to the components uεi , i = 1, . . . , d, let ψ ∈ C∞0 (Ω × (0, T ))
be an arbitrary test function, τ ∈ R and ei be the ith unit vector in R

d. We compute

d

dτ
Iεglobal

[

uε + τψei
]

∣

∣

∣

∣

τ=0

=

∫ T

0

∫

Ω

−
d
∑

k=1

sik(∇uε(x, t))ψ(x, t) + uεi,tt(x, t)ψ(x, t) dxdt

+
γ

2

∫ T

0

∫

Ω

∫

Ω

φε(x− y)(∇uεi (x, t)−∇uεi (y, t)) · (∇ψ(x, t)−∇ψ(y, t)) dydxdt.

Since the kernel φ is supposed to be an even function we get

d

dτ
Iεglobal

[

uε + τψei
]

∣

∣

∣

∣

τ=0

=

∫ T

0

∫

Ω

−
d
∑

k=1

[

sik(∇uε(x, t))
]

xk
ψ(x, t) + uεi,tt(x, t)ψ(x, t) dxdt

+ γ

∫ T

0

∫

Ω

(
∫

Ω

φε(x− y)(∇uεi (x, t)−∇uεi (y, t)) dy
)

· ∇ψ(x, t) dxdt

=

∫ T

0

∫

Ω

(

uεi,tt(x, t)−
d
∑

k=1

[

sik(∇uε(x, t))− γ
(

φε ∗ uεi,xk
− uεi,xk

)

]

xk

)

ψ(x, t) dxdt.
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In the last equation and henceforth ∗ denotes the convolution symbol. i.e., for some function w : Ω→ R

we have

[φε ∗ w](x) =
∫

Ω

φε(x− y)w(y) dy (x ∈ Ω).

The fundamental lemma of variational calculus implies that uε satisfies a system of equations given
by

uεi,tt −
d
∑

k=1

[

sik(∇uε)
]

xk
= −γ

d
∑

k=1

[

φε ∗ uεi,xk
− uεi,xk

]

xk
(i = 1, . . . , d)

in Ω×(0, T ). The irreversible viscosity effect is not deduced from Hamilton’s principle. We supplement
viscosity terms and obtain for µ ≥ 0 the equations

uεi,tt −
d
∑

k=1

[

sik(∇uε)
]

xk
= µε∆uεi,t − γ

d
∑

k=1

[

φε ∗ uεi,xk
− uεi,xk

]

xk
(i = 1, . . . , d). (2.9)

Note that the scaling with respect to ε between the viscosity and the capillarity term is still only
postulated at this stage and has to be verified later.

2.3. The One-Dimensional Case. If we choose d = 1 in (2.9) and define x := x1 we get for
uε := uε1 the equation

uεtt − σ(uεx)x = µεuεtxx − γ
(

[φε ∗ uεx(., t)](x)− uεx(x, t)
)

x
. (2.10)

Here σ = s11 : R → R is a given stress-strain relation which is a one-dimensional counterpart the
tensor (sik) in (2.9). For notational simplicity we will from now on extend the physical range (−1,∞)
for the strain to the whole real line. Moreover we choose Ω to be the whole real line R. The strain
wε : R × (0, T ) → R and the (longitudinal) velocity vε : R × (0, T ) → R are then defined as partial
derivatives of the displacement uε : R× (0, T )→ R. For (x, t) ∈ R× (0, T ) we have

wε(x, t) := uεx(x, t),

vε(x, t) := uεt (x, t).
(2.11)

Obviously we can rewrite (2.10) in the evolutionary form (1.5) with Dε given by (1.8).
Note 2.2.
(i) The local approach in d = 1 with stored energy given by (2.7) would have led us to the equation

uεtt −
[

σ(uεx)
]

x
= µεuεtxx − γε2uεxxxx. (2.12)

A Taylor approximation as in Note 2.1(ii) establishes again that (2.12) is an approximation
of the non-local wave equation (2.10).

(ii) For other time-dependent non-local models in the framework of phase transition problems we
refer to [21, 24]. The paper [21] provides an overview on non-local Allen-Cahn equations and
[24] deals with a non-local Cahn-Hilliard equation.

As said in the introduction we consider for σ two different choices. The following assumption
makes precise what we need for the analysis.

Assumption 2.3. The function σ ∈ C3(R) satisfies either condition (a) or condition (b) below.
(a) There are numbers α1, α2 ∈ R such that α1 < α2 holds and such that

σ′(w) > 0 for w ∈ (−∞, α1) ∪ (α2,∞) and σ′(w) < 0 for w ∈ (α1, α2)

holds.
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α
2

α
1

β
1 β

2

σ

w

α

σ

Fig. 2.1. Graph of the stress-strain relation σ for case (a) (left-hand figure) and case (b) (right-hand figure) from
Assumption 2.3.

(b) The function σ is monotone increasing and there is a number α ∈ R such that

σ′′(w) < 0 for w ∈ (−∞, α) and σ′′(w) > 0 for w ∈ (α,∞)

holds.
The non-monotone shape of σ for case (a) in Assumption 2.3 allows to define different phases in

the following way. The strain values in the interval (−∞, α1] are identified with a low-strain phase and
strain values in the interval [α2,∞) with a high-strain phase. All other strain values are called elliptic.
If Assumption (b) applies we associate with w ∈ (−∞, α) (w ∈ (α,∞)) a low-strain phase (high-strain
phase). In Fig. 2.1 we present the graphs of examples for the stress-strain function, together with the
associated energies.
We record some remarks for the first-order conservation law (1.1) that we obtain if we neglect the
dissipative effects in (1.5), resp. (2.10). Let

f(w, v) :=

(

−v
−σ(w)

)

(w, v) ∈ R
2.

The eigenvalues λ∓ = λ∓(v, w) and associated eigenvectors r∓ = r∓(v, w) of the Jacobian of f are
given by

λ∓(v, w) = ∓
√

σ′(w), r∓(v, w) =

(

1

±
√

σ′(w)

)

,

provided (w, v) ∈ R
2 are such that σ′(w) ≥ 0 holds. Otherwise there are no real eigenvalues. Moreover

we compute for the classification of the characteristic fields

∇λ∓(v, w) · r∓(v, w) = ∓
σ′′(w)
√

σ′(w)
(w, v) ∈ R

2. (2.13)

The (sign of the) expression ∇λ∓ ·r∓ generalizes the notions of convexity/concavity to a vector-valued
function, here the flux f (see [14] for instance).
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Let now Assumption 2.3(a) be true. From the calculations above we observe that the first-order
system (1.1) is hyperbolic in the low and high strain phases (−∞, α1] ∩ [α1,∞) but not in (α1, α2).
Furthermore we note that there are unique numbers β1, β2 ∈ R with β1 < β2 and σ(β1) = σ(β2) such
that

∫ β2

β1

σ(β)− σ(βi) dβ = 0 (i = 1, 2). (2.14)

These are the Maxwell states (see Fig. 2.1).
For the case (b) the hyperbolic state space is the complete space R

2 but the characteristic fields change
their type in w = α according to (2.13) and the convex-concave behaviour of σ. But even in this case
it makes sense to speak of different phases as defined above.

3. Dynamical Phase Boundaries and Non-Local Viscosity-Capillarity Profiles. In this
section we prove that the system (1.5), (1.8) has special solutions which correspond to dynamical
phase boundaries. Throughout the section we suppose that Assumption 2.3 (a) holds, i.e. σ has a
non-monotone shape. Let us stress that all definitions, notations etc. are specialized to (1.1) or (1.5)
and not meant to hold for general conservation laws.

3.1. Shock Waves and Phase Boundaries. We start to consider the first-order system (1.1).
Let (w±, v±) ∈ R

2, and s ∈ R be given. A function

(

w0

v0

)

=

(

w0(x, t)
v0(x, t)

)

=

{

(w−, v−)
T : x− st < 0,

(w+, v+)
T : x− st > 0,

(3.1)

is a shock-wave for (1.1) with speed s connecting the states (w−, v−) and (w+, v+) if the conditions

−s(w+ − w−) = v+ − v−, −s(v+ − v−) = σ(w+)− σ(w−) (3.2)

hold. A shock-wave with speed s connecting the states (w−, v−) and (w+, v+) is called a phase
boundary for (1.1) if w− and w+ lie in different phases but not in the interval (α1, α2).
We note that (3.2) is nothing but the Rankine-Hugoniot relation. It ensures that each shock wave is
a weak solution of (1.1), (1.2) with the jump initial datum w0 = w−, v0 = v− for x < 0 and w0 = w+,
w0 = v+ for x > 0.
We classify shock waves according to the following definitions. A shock wave (w0, v0)T for (1.1) is
called a Laxian or compressive shock wave if either

λ−(w−, v−) > s > λ−(w+, v+) or λ+(w−, v−) > s > λ+(w+, v+)

is satisfied. A shock wave (w0, v0)T for (1.1) is called an undercompressive shock wave if

λ+(w−, v−) > s > λ−(w+, v+) and λ+(w+, v+) > s > λ−(w−, v−)

is satisfied (see Fig. 3.1). Phase boundaries can be compressive or undercompressive. If the chord
connecting the points (w±, σ(w±)) intersects the graph of σ in a third point they are undercompressive.
Since these connections are close to the equilibrium configuration, i.e., the shock wave with speed zero
connecting the states with w-component equal to the Maxwell states and vanishing v-component, it
is believed that such waves are the physically most relevant ones ([1]). We will focus on this kind of
phase boundaries in the sequel. Let us mention that undercompressvie waves have also been observed
in the magnetohydrodyamics (see [23] for a review) and in the theory of thin films ([10, 11]).
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x

s = x
t

(w−, v−)

(w+, v+)

0

t

(a) Laxian shock wave

0

x

t

s = x
t

(w−, v−)
(w+, v+)

(b) undercompressive shock wave

Fig. 3.1. Shock lines {(x, t) ∈ R × (0,∞) |x = st} for shocks with speed s ∈ R and characteristic curves
(dotted lines) in the (x, t)-plane. The two characteristic curves for a state (w−, v−) are the lines with slopes
1/λ−(w−, v−) and 1/λ+(w−, v−) intersecting the horizontal axis at some negative x-value. The two charac-
teristic curves for a state (w+, v+) are the lines with slopes 1/λ−(τ+, v+) and 1/λ+(w+, v+) intersecting the
horizontal axis at some positive x-value.

3.2. Non-Local Viscosity-Capillarity Profiles. We turn now to the non-locally regularized
system (1.5), (1.8) and discuss the admissibility problem of undercompressive phase boundaries. For
the sake of simplicity the capillarity constant γ is set to 1.
Let (w±, v±) ∈ R

2 and s ∈ R be given such that (w0, v0) from (3.1) is a shock-wave with speed s
connecting the states (w−, v−) and (w+, v+). A function (w, v)

T : R → R
2 with

w ∈ C1(R), v ∈ C2(R)

is a non-local viscosity-capillarity profile for (w0, v0)T if it solves the differential-integro boundary
value problem

−sw − v = −sw− − v−, −(φ ∗ w − w) + µv̇ = −σ(w)− sv − (−σ(w−)− sv−) in R,

w(±∞) = w±, v(±∞) = v±.
(3.3)

Here φ : R → [0,∞) is an interaction potential as defined in (2.6) in the case of d = 1. For some
given non-local viscosity-capillarity profile we have [φ ∗ w](x) − w(x) → 0 for x → ±∞ by using
φ ∈ L1(R) and Lebesgue’s theorem. Since w±, v± and s obey the Rankine-Hugoniot conditions (3.2)
we see then that the states (w±, v±) are rest points of the generalized flow associated with (3.3). From
the definition of a viscosity-capillarity profile we deduce the following statement.

Corollary 3.1. Let (w±, v±) ∈ R
2 and s ∈ R be given such that (w0, v0)T from (3.1) is a shock-

wave with speed s connecting the states (w−, v−) and (w+, v+). Assume that there exists a non-local
viscosity-capillarity profile (w, v)T : R → R

2 for the shock wave (w0, v0)T .
Then for each ε > 0 the functions wε ∈ C1(R× (0, T )) and vε ∈ C2(R× (0, T )) defined by

wε(x, t) = w

(

x− st
ε

)

, vε(x, t) = v

(

x− st
ε

)

((x, t) ∈ R× (0, T ))

are classical solutions of (1.5) with γ = 1.
Moreover we have for almost all (x, t) ∈ R× (0, T )

wε(x, t)→ w0(x, t), vε(x, t)→ v0(x, t).

Proof. Straightforward calculation using (1.5), (1.8), (3.3), and the definition of the ε-scaled
potential in (2.5).
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We observe that admissibility of a shock wave in the sense of a non-local viscosity capillarity
criterium means to prove the existence of a solution for the ε-independent problem (3.3).
The ε-independence of (3.3) underlines that our conjecture on the ε-scaling between viscosity and
capillarity terms in (1.5) is correct.
Before we proceed let us put down the following useful consequence of (3.2).

h(w+, w−, s
2) = 0,

h(r, r′, q) := −(q(r − r′)− σ(r) + σ(r′)) (r, r′ ∈ R, q ≥ 0) .
(3.4)

With (3.4) we can reduce the problem (3.3) to a first-order differential-integro problem for w alone:

φ ∗ w − w + sµẇ = h(w,w−, s
2), w(±∞) = w±. (3.5)

The velocity v is then determined from the first equation in (3.3).

Our traveling-wave analysis relies on a result from [7] for general boundary value problems of type
(3.5). We summarize what we need from this paper.

Theorem 3.2 (Bates et al.). Let φ ∈ Cr(R) ∩W r,1(R) for r ∈ N be an interaction potential in
R. Let u−, u+ ∈ R and F ∈ Cr(R) be given. For the unknowns u : R → R and ν ∈ R consider the
problem

φ ∗ u− u+ νu̇ = F (u),

u(±∞) = u±.
(3.6)

We suppose that the states u± ∈ R and the function F satisfy

(i) u− > u+,

(ii) F (u±) = 0, F
′(u±) > 0,

(iii) ∃ ! u0 ∈ (u+, u−) : F (u0) = 0,
(iv) u ∈ [u+, u−]⇒ F ′(u) + 1 > 0.

Then exactly one of the following statements holds true.
(i) There is a monotonely decreasing function u ∈ Cr+1(R) and a unique ν ∈ R \ {0} such that
(3.6) holds.
In this case we have

ν = H(u−, u+)
(
∫ ∞

−∞

(u̇(ξ))2 dξ

)−1

, H(u−, u+) :=
∫ u+

u−

F (u) du. (3.7)

(ii) There is a monotonely decreasing function u ∈ Cr(R) such that (3.6) holds for ν = 0.
In this case we have

H(u−, u+) = 0. (3.8)

In both cases the function v is unique up to translation.
An analogous theorem holds for the inverse inequality in condition (i) of the last theorem.

We present directly the following result on the existence of non-local profiles and recall the definition
of the Maxwell states in (2.14).

Theorem 3.3. Let φ ∈ C1(R)∩W 1,1(R) be an interaction potential in R. Moreover suppose that
σ satisfies Assumption 2.3(a), that 2σ′ > −1 holds, and that σ′′ vanishes only at a finite number of
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points.
Then there exists a number δ0 > 0 such that for all states

(w−, v−) ∈
{

(w, v) ∈ (α2,∞)× R
∣

∣

∣

∣σ(w)− σ(β1)
∣

∣ < δ0
}

(3.9)

there exists a number µ > 0, a speed s ∈ R \ {0} and a state

(w+, v+) ∈ (−∞, α1)× R

with the properties
(i) w±, v±, s satisfy the Rankine-Hugoniot condition (3.2),
(ii) the phase boundary (w0, v0)T with speed s connecting (w−, v−) with (w+, v+) has a non-local

viscosity-capillarity profile (w, v)T ∈ C2(R)× C2(R),
(iii) the phase boundary (w0, v0)T is undercompressive.
Before we prove Theorem 3.3 let us give some remarks on the statement.
Note 3.4.
(i) In Theorem 3.3 the left-hand state (w−, v−) was chosen such that w− is located in the high-
strain phase. Of course an analogous theorem holds for w− located in the low-strain phase.

(ii) We get existence of non-local viscosity-capillarity profiles for dynamical phase boundaries that
are undercompressive and have strain end states close to the Maxwell states. As we mentioned
before such phase boundaries are expected to exist in reality.

(iii) In this section we handled the case (a) in Assumption 2.3. In fact Theorem 3.2 can also be
applied in the purely hyperbolic case (b) in Assumption 2.3. We refer to [38] for the detailed
treatment of a closely related scalar problem.

(iv) From Theorem 3.3 (in fact from 3.2) we observe that for a given phase boundary the existence
of a viscosity-capillarity profile depends crucially on the viscosity coefficient µ which controls
the ratio between viscosity and capillarity. Recall that the capillarity constant has been set
to 1 in this section. This is in complete agreement with existence results for the local model
(1.5), (1.7) and related systems. We refer to [8, 30, 42].

Proof of Theorem 3.3: For δ > 0 we define

Sδ :=
{

w ∈ (−∞, α1) ∪ (α2,∞)
∣

∣

∣

∣σ(w)− σ(β1)
∣

∣ < δ
}

.

Furthermore we introduce for w1, w2 ∈ R with w1 6= w2 the quantity

q[w1, w2] =
σ(w1)− σ(w2)

w1 − w2
.

Now we choose δ0 > 0 so small such that we have for all

w1 ∈ Sδ0 ∩ (α2,∞) and w2 ∈ Sδ0 ∩ (−∞, α1)

the properties

min{σ′(w1), σ′(w2)} > q[w1, w2], (3.10)

q[w1, w2] <
1

2
, (3.11)

the chord connecting (w2, σ(w2)) with (w1, σ(w1)) intersects the graph of σ in (α1, α2). (3.12)

Note that we always find a δ0 > 0 with these properties since we have

q
[

β1, β2
]

= 0



12 C. ROHDE

by construction of the Maxwell states in (2.14) and since the chord connecting (β1, σ(β1)) with
(β2, σ(β2)) intersects the graph of σ three times. Note moreover that Assumption 2.3(a) implies
that the slope of σ close to the Maxwell states is bounded from below by a positive constant.

Now according to the assumptions of the theorem we choose an arbitrary state

(w−, v−) ∈ (Sδ0 ∩ (α2,∞))× R.

Furthermore we take a number w̃+ with

w̃+ ∈ Sδ0 ∩ (−∞, α1)
and

σ(w̃+) < σ(w−). (3.13)

Consider the auxiliary problem to find µ̃ ∈ R and w ∈ C1(R) such that
φ ∗ w − w + µ̃ẇ = h(w,w−, q[w−, w̃+]), w(−∞) = w−, w(∞) = w̃+ (3.14)

holds. Note that q[w−, w̃+] is positive due to (3.13).
We apply Theorem 3.2 with F (w) = h(w,w−, q[w−, w̃+]) to solve (3.14) and check conditions (i)-(iv).
Condition (i) is clear since w− > w̃+ by construction. The Rankine-Hugoniot relations (3.2) imply
F (w−) = F (w̃+) = 0. We have for w ∈ R

∂

∂w
h(w,w−, q[w−, w̃+]) = σ′(w)− q[w−, w̃+].

The latter quantity is positive for w = w−, w̃+ due to (3.10). Thus (ii) holds.
Condition (iii) is a direct consequence of the definition of h (cf. (3.4)), (3.12) and the fact that σ ′ < 0
in (α1, α2) due to Assumption 2.3(a).
Using (3.11) we compute for w ∈ (w̃+, w−)

∂

∂w
h(w,w−, q[w−, w̃+]) + 1 = σ′(w)− q[w−, w̃+] + 1 > σ′(w) + 1/2.

The assumption σ′ > −1/2 on the stress-strain relation assures condition (iv).
We can apply Theorem 3.2 which tells us that there is a unique (up to translation) function w ∈ C1(R)
and a unique number µ̃ ∈ R that solves (3.14).
In the next step we want to show that w̃+ can be chosen such that µ̃ 6= 0 holds. To determine the
sign of µ̃ it suffices by (3.7) and (3.8) to compute the sign of the term

H(w−, w̃+) =
∫ w̃+

w−

h(w,w−, q[w−, w̃+]) dw.

We obtain for some function W with W ′ = −σ and (3.4) after straightforward calculations
∫ w̃+

w−

h(w,w−, q[w−, w̃+]) dw =
w̃+ − w−

2

(

−σ(w̃+)− σ(w−)− 2
W (w̃+)−W (w−)

w̃+ − w−

)

=:
w̃+ − w−

2
G(w−, w̃+).

To analyze the function G(w−, .) we compute
d

dw
G(w−, w) =

−2
(w − w−)2

(

W (w−)−W (w)−W ′(w)(w− − w)−
1

2
W ′′(w)(w− − w)2

)

=
−1

3(w − w−)2
∫ w−

w

σ′′(z)(w− − z)3 dz.
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The preceding computation and the assumption that σ′′ vanishes only in finitely many points implies
the following. If G(w−, .) vanishes in w̃+ and thus we have µ̃ = 0 in (3.14) there is a specific volume

w+ ∈ Sδ0 ∩ (−∞, α1)

close to w̃+ with

σ(w+) < σ(w−). (3.15)

such that G(w−, w+) does not vanish. In this degenerate case we take the new specific volume w+
(and let it as it was if G(w−, .) does not vanish in w̃+) as a new end state in (3.14).
By repeating all arguments above with the new end state and applying Theorem 3.2 we obtain a
solution (µ̃, w) ∈ R \ {0} × C2(R) of (3.14).
In the final step we construct a solution of the original problem (3.5) by

s := sgn(µ̃)

√

σ(w−)− σ(w+)
w− − w+

, µ :=
|µ̃|
|s| .

To fulfill the Rankine-Hugoniot conditions for the velocity components we set

v+ = v− − s(w+ − w−).

Note that v− was given. We have proven (ii).
By construction it is clear that also (i) holds. Moreover (iii) is true since the condition (3.12) is true
for w1 = w− and w2 = w+ and implies that the associated shock wave (w

0, v0)T is undercompressive
(see discussion at the end of Sect. 3.1). 2

4. The Sharp Interface Limit for a General Cauchy Problem. In this section we do not
consider special solutions of (1.5), (1.6) and consider the sharp-interface limit for these solutions as in
Sect. 3. Rather we consider (quite) general initial data for the Cauchy problem (1.5), (1.6) where σ
ic chosen according to Assumption 2.3(b). In this case we show that a sequence of classical solutions
for (1.5), (1.6) converges to a weak solution of (1.1) (Theorem 4.5). Even if one cannot say anything
on the structure of this weak solutions the result underlines that the chosen ε-scaling is correct and
leads to a well-defined limit-process. We will first collect some preliminaries in Sect. 4.1, present the
crucial ε-independent estimates in Sect. 4.2, and state and prove the main theorem in Sect. 4.3. Let
us note that the analogous analysis for the local version (1.5), (1.7) has been performed in [29].

4.1. Global Existence of Classical Solutions for the Non-Local Model. We consider the
Cauchy problem for (1.5), (1.6). For the rest of this section we suppose that initial data, kernel
functions, and stress-strain relations are chosen according to the following assumption.

Assumption 4.1.
(i) The stress-strain function σ satisfies Assumption 2.3(b) with α = 0 and fulfills

σ′′, σ′′′ ∈ L1(R) ∩ L∞(R), σ(0) = 0.

Moreover there are constants a,A > 0 such that we have for all w ∈ R

a ≤ σ′(w) ≤ A.

(ii) The interaction potential φ in R is in C1(R) and satisfies

supp(φ) ∈ [−1, 1].

The function φε is given by (2.5) for d = 1.
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(iii) The initial functions w0, v0 belong to C
1(R) and satisfy

w0, w0x, v0 ∈ L2(R). (4.1)

A consequence of Assumption 4.1(ii),(iii) is that we have for all ε > 0 the estimate

∫

R
Eε[w0](x) dx < γ‖w0‖L2(R) <∞.

Here the mapping Eε : L2(R)→ L1(R) is given by

Eε[w](x) =
γ

4

∫

R
φε(x− y)

(

w(y)− w(x)
)2
dy (w ∈ L2(R), x ∈ R). (4.2)

The conditions on the stress-strain relation σ in Assumption 4.1 look quite restrictive. We have
chosen them in way such that the theory of compensated compactness as developped by Serre and
Shearer applies ([40]). For us the important point is that σ is not convex. This allows still the
construction of undercompressive shock waves for the first-order system (1.1) which have physical
relevance ([29]). Finally we note that the choice α = 0 is no restriction but only a simplification of
notation. The analysis holds for arbitrary position of the inflection point.
For T > 0 let the set C21 (R× (0, T )) denote the set of real-valued functions on R× [0, T ] such that all
spatial derivatives up to order 2 and the first-order time derivative is continuous in R× (0, T ). By a
classical solution of (1.5), (1.6) we mean a function (wε, vε)T ∈ (C21 (R× (0, T )))2 such that (1.5) and
(1.6) hold pointwise. We need the existence of a sequence {(wε, vε)}ε>0 of classical solutions of the
Cauchy problem for (1.5) to analyze the limit behaviour for ε→ 0. We make the following assumption
on the existence of classical solutions.

Assumption 4.2. For each ε > 0 there exists a unique classical solution (wε, vε)T ∈ (C21 (R ×
(0, T )))2 of (1.5), (1.6) with

wε, vε, wε
x ∈ C([0, T ];L2(R)), wε, vε ∈ C21 (R× (0, T )).

The classical solution satisfies for t ∈ (0, T ]

vεx(., t), w
ε
t (., t), w

ε
xx(., t) ∈ L2(R).

As a consequence of Assumption 4.2 we have for t ∈ (0, T ] the decay properties

lim
|x|→∞

(

|wε(x, t)|+ |wε
x(x, t)|+ |vε(x, t)|+ |vεx(x, t)|

)

= 0. (4.3)

Since the term (1.8) is of first order we can absorb it into the flux term −σ(w)x in (1.5) and
obtain a problem that has formally the structure of a hyperbolic-parabolic problem like (1.5), (1.6)
with γ = 0. For the latter case the existence of classical solutions for an initial boundary value problem
under Assumption 4.1 has been proven in [25] (see also [6]). We conjecture that this result can be
extended to our case if one considers the non-local capillarity term as a contribution to the flux. Since
we are not interested in the case for positive but fixed value for ε we do not give the proof of this
statement but focus on the limit process ε → 0. We note that the existence of weak solutions for
(1.5), (1.6) under Assumption 4.1 has been shown in [39].
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4.2. Estimates independent of ε. The first step to the convergence statement is an estimate
on the family {(wε, vε)}ε>0 of classical solutions which is uniform with respect to the regularization
parameter ε. We obtain this estimate only in terms of some Lp-norms with p 6=∞. For system (1.5)
and also its local counterpart global-in-time L∞-estimates independent of ε are not available. These
have only be derived for systems equipped with additional non-physical viscosity (see e.g. [15]).
The estimate rather exploits the properties of the physical energy H ∈ C4(R2) given by

H(w, v) =
v2

2
+W (w) (v, w ∈ R).

Here the function W̃ ∈ C4(R) is defined by

W (w) =

∫ w

w0

σ(w̃) dw̃ (w ∈ R),

which leads by Taylor expansion and Assumption 4.1(i) to the estimate

0 <
a

2
w2 ≤W (w) ≤ A

2
w2 (w ∈ R).

To derive the a-priori estimate in Lemma 4.4 below we need a technical result.
Lemma 4.3. Let w ∈ C21 (R× (0, T )) such that we have for all t ∈ (0, T )

w(., t), wt(., t), wx(., t), wxx(., t) ∈ L2(R).

Then we have for t ∈ (0, T )
d

dt

∫

R
Eε[w(., t)](x) dx = −γ

∫

R

[

[

φε ∗ w(., t)
]

(x)− w(x, t)
]

wt(x, t) dx (4.4)

and

2

∫

R
Eε[wx(., t)](x) dx = γ

∫

R

[

[

φε ∗ w(., t)
]

(x)− w(x, t)
]

wxx(x, t) dx. (4.5)

Proof. We compute for t ∈ (0, T )
γ

4

d

dt

∫

R

∫

R
φε(x− y)(w(y, t)− w(x, t))2 dydx

=
γ

2

∫

R

∫

R
φε(x− y)(w(y, t)− w(x, t))wt(y, t) dydx

+
γ

2

∫

R

∫

R
φε(y − x)(w(x, t)− w(y, t))wt(x, t) dydx

= γ

∫

R

∫

R
φε(x− y)(w(y, t)− w(x, t))wt(y, t) dydx

= −γ
∫

R

(

[φε ∗ w(., t)](x)− w(x, t)
)

wt(x, t) dx.

This is (4.4). Note that we used the symmetry of φ. To derive (4.5) consider for t ∈ (0, T )
∫

R

∫

R
Eε[wx(., t)](x) dx = −γ

2

∫

R

∫

R
φε(x− y)(wx(x, t)wx(y, t)− w2x(x, t)) dydx

= − γ

2

∫

R
wx(x, t)

(

[φε ∗ wx(., t)](x)− wx(x, t)
)

dx

=
γ

2

∫

R
wxx(x, t)

(

[φε ∗ w(., t)]− w(x, t)
)

dx.
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We can now proceed to verify the announced ε-independent estimate.
Lemma 4.4. Let Assumptions 4.1 and 4.2 be satisfied.

Then we have for all t ∈ [0, T ]
a

2
‖wε(., t)‖2L2(R) +

1

2
‖vε(., t)‖2L2(R) +

∫

R
Eε[wε(., t)](x) dx+ ε‖vεx‖2L2(R×(0,t))

≤
∫

R
H(w0(x)) dx+

1

2
‖v0‖2L2(R) +

∫

R
Eε[w0](x) dx

(4.6)

and

ε‖
√

σ′(wε)wε
x‖
2

L2(R×(0,t)) + 2γε

∫

R
Eε[wε

x(., t)](x) dx

≤ ‖εwε
0x‖2L2(R) +

∫

R
H(w0(x)) dx+ ‖v0‖2L2(R) +

∫

R
Eε[w0](x) dx.

(4.7)

Note that Assumption 4.1(i) implies that inequality (4.7) gives also an uniform estimate for the term

ε‖wε
x‖2L2(R×(0,t)).

Proof of Lemma 4.4. We multiply the two equations in (1.5) with the components of

∇H(wε, vε) = (σ(wε), vε)T .

From the first equation in (1.5) we obtain for t ∈ (0, T )

d

dt

∫

R
H(wε(x, t)) dx−

∫

R
σ(wε(x, t))vεx(x, t) dx = 0. (4.8)

From (4.3) we observe that vε(x, t) and vεx(x, t) vanish for x → ±∞ and t ∈ (0, T ). Therefore, using
wε
t = vεx, the second equation gives

d

dt

∫

R

1

2
(vε(x, t))2 dx−

∫

R
vε(x, t)(σ(wε(x, t)))x dx

= −ε
∫

R
(vεx(x, t))

2 dx+ γ

∫

R
wε
t (x, t)

(

[φε ∗ wε(., t)](x)− wε(x, t)
)

dx.

Due to Assumption 4.2 we can apply Lemma 4.3 for wε and we conclude

1

2

d

dt
‖vε(., t)‖2L2(R) −

∫

R
vε(x, t)(σ(wε(x, t)))x dx

= −ε
∫

R
(vεx(x, t))

2 dx− d

dt

∫

R
Eε[wε(., t)](x) dx.

(4.9)

We add up (4.8) and (4.9) and get after integration with respect to t the estimate (4.6) from the decay
properties (4.3) of vε, wε and Assumption 4.1(i).
To prove (4.7) we multiply the second equation in (1.5) by εwε

x and get using w
ε
t = vεx after integration

with respect to time and space

ε

∫ T

0

∫

R
wε
x(x, t)v

ε
t (x, t) dxdt− ε

∫ T

0

∫

R
(wε

x(x, t))
2σ′(w(x, t)) dxdt

= ε2
∫ T

0

∫

R
wε
x(x, t)w

ε
xt(x, t) dxdt− γε

∫ T

0

∫

R
wε
x(x, t)

(

[φε ∗ wε
x(., t)](x)− wε

x(x, t)
)

dxdt.
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This is equivalent to

ε
[

∫

R
wε
x(x, t)v

ε(x, t)
]T

0
− ε

∫ T

0

∫

R
vεxx(x, t)v

ε(x, t) dxdt− ε
∫ T

0

∫

R
(wε

x(x, t))
2σ′(w(x, t)) dxdt

=
ε2

2

∫ T

0

∫

R

d

dt
(wε

x(x, t))
2 dxdt+ 2γε

∫ T

0

∫

R
Eε[wε

x(., t)](x) dxdt.

Note that we used Lemma 4.3 again. We rearrange the terms in the last equation and arrive at

2γε

∫ T

0

∫

R
Eε[wε

x(., t)](x) dxdt+ ε

∫ T

0

∫

R
(wε

x(x, t))
2σ′(wε(x, t)) dxdt

= ε

∫

R
wε
x(x, T )v

ε(x, T ) dx− ε
∫

R
w0x(x)v0(x) dx

+ ε

∫ T

0

∫

R
(vεx(x, t))

2 dxdt− ε2

2

∫

R
(wε

x(x, T ))
2 dx+

ε2

2

∫

R
(w0x(x))

2 dx

≤ ε2

2

∫

R
(wε

x(x, T ))
2 dx+

1

2

∫

R
(vε(x, T ))2 dx+

ε2

2

∫

R
(w0x(x))

2 dx+
1

2

∫

R
(v0(x))

2 dx

+ ε‖vεx‖2L2(R×(0,T )) −
ε2

2

∫

R
(wε

x(x, T ))
2 dx+

ε2

2

∫

R
(w0x(x))

2 dx

≤ ‖εw0x‖2L2(R) +

∫

R
H(w0(x)) dx+ ‖v0‖2L2(R) +

∫

R
Eε[w0](x) dx.

This is (4.7). Note that we used (4.6) for the last estimate. 2

4.3. The Limit Process of Vanishing Dissipation. To perform the limit ε→ 0 in (1.5), (1.6)
we use the framework of compensated compactness. Since we have only Lp-estimates from Lemma 4.4
and moreover σ is not convex but has a (single) inflection point we cannot use the standard version
due to DiPerna but rely on the extensions by Shearer and Serre ([41, 40]).

Theorem 4.5. Let Assumptions 4.1 and 4.2 be satisfied.
Then there exists a subsequence {(wεk , vεk)T }k∈N of the family {(wε, vε)T }ε>0 of classical solutions
of (1.5), (1.6) and a function (w, v)T ∈ L2(R× (0, T ))× L2(R× (0, T )) such that

(i) the subsequence converges for k →∞ to (w, v)T in (Lq
loc(R× (0, T )))2, q ∈ [1, 2),

(ii) (w, v)T is a weak solution of (1.1), i.e.,

∫ T

0

∫

R

(

w(x, t)
v(x, t)

)

ψt(x, t)−
(

v(x, t)
σ(w(x, t))

)

ψx(x, t) dxdt = 0 (4.10)

for all ψ ∈ C∞0 (R× (0, T )).
Before we can present the proof of Theorem 4.5 we need the following lemma.
Lemma 4.6. Let the assumptions of Theorem 4.5 be valid.

Then there exists a constant C > 0 independent of ε such that

‖φε ∗ wε − wε‖L2(R×(0,T )) ≤ Cε‖wε
x‖L2(R×(0,T )).

Proof. Let (x, t) ∈ R × (0, T ) be arbitrary but fixed. Denote Bε(x) = {y ∈ R | |x − y| ≤ ε}. We
consider I : R× (0, T )→ R with

I(x, t) = [φε ∗ wε(., t)](x)− wε(x, t) =

∫

R
φε(x− y)(wε(x, t)− wε(y, t)) dy.
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Assumption 4.1(ii) and the Morrey-type inequality (see Sect. 5.6.2 of [18])

|w(x)− w(y)| ≤ C1
√
ε

(
∫ x+2ε

x−2ε

|wx(z)|2 dz
)1/2

(x ∈ R, y ∈ Bε(x), w ∈ C1(R))

show that the following estimate holds.

|I(x, t)| ≤
∫

Bε(x)

φε(x− y)|(wε(x, t)− wε(y, t))| dy

≤ C1
√
ε

∫

Bε(x)

φε(x− y)
(
∫ x+2ε

x−2ε

|wε
x(z, t)|2 dz

)1/2

dy

= C1
√
ε

(
∫ x+2ε

x−2ε

|wε
x(z, t)|2 dz

)1/2

.

Now we integrate |I(x, t)|2 with respect to space and obtain with the substitution z = x+ 4ε
π arctan(z̃)

∫

R
|I(x, t)|2 dx = C1ε

∫

R

(
∫ x+2ε

x−2ε

|wε
x(z, t)|2 dz

)

dx

= C1ε

∫

R

(
∫

R

∣

∣

∣
wε
x

(

x+
4ε

π
arctan(z̃), t

)∣

∣

∣

2

dx

)

4ε

π

1

1 + z̃2
dz̃

= C1
4ε2

π

∫

R

(
∫

R
|wε

x(x, t)|2 dx
)

1

1 + z̃2
dz̃

≤ C2ε
2‖wε

x(., t)‖2L2(R).

Integration with respect to time yields the statement of the lemma.
We conclude the paper with the
Proof of Theorem 4.5. From Lemma 4.4 we know that the family {(wε, vε)T }ε>0 of classical

solutions of (1.5), (1.6) is in particular uniformly bounded in L2(R × (0, T )) × L2(R × (0, T )). We
shall now show that the inclusion

η(wε, vε)t + q(w
ε, vε)x ⊂ compact set in W−1,2(Q) + bounded set inM(Q) (4.11)

holds for all open bounded sets Q ⊂ R× (0, T ) and two special entropy pairs (η, q) ∈ C2(R2,R2) for
(1.1) that have been constructed in [41]. Then the Lemma of Murat ([36]) and the theorem of Shearer
and Serre (see [35] for instance) apply: Statement (i) follows. We have to establish (4.11). We do
not give the exact formulae for the Shearer entropies which can be found in [41]. For our purposes it
suffices to note that there is a constant C > 0 such that the entropies of a Shearer entropy pair (η, q)
satisfy the estimates

‖ηw/
√
σ′‖L∞(R2) + ‖ηv‖L∞(R2) + ‖ηwv/

√
σ′‖L∞(R2) + ‖ηww/σ

′‖L∞(R2) + ‖ηvv‖L∞(R2) < C. (4.12)

Let such an entropy pair be given. We compute with (1.5)

η(wε, vε)t + q(w
ε, vε)x = εηv(w

ε, vε)vεxx + γηv(w
ε, vε)

(

φε ∗ wε − wε
)

x

=: Iε1 + I
ε
2 .

In the sequel let θ ∈ W 1,2
0 (Q) and ψ ∈ C∞0 (Q). We start with the term Iε1 which we rewrite in the

form

Iε1 = εη(wε, vε)xx − ε(wε, vε)∇2η(wε, vε)(wε, vε)T − εηw(wε, vε)wε
xx

=: Iε11 + I
ε
12 + I

ε
13.
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The terms can be treated exactly as in [41] and one obtains using (4.12) for some ε-independent
constant C12 > 0

lim
ε→0

|〈Iε11, θ〉| = 0 and |〈Iε12, ψ〉| ≤ C12‖ψ‖L∞(Q). (4.13)

To work out the term Iε13 we take into account the splitting

Iε13 = ε(ηw(w
ε, vε)wε

x)x − ε∇ηw(wε, vε) · (wε
x, v

ε
x)

Twε
x =: I

ε
131 + I

ε
132

and compute with (4.12) and Lemma 4.4

|〈Iε131, θ〉| = ε
∣

∣

∣

∫

Q

ηw(w
ε(x, t), vε(x, t))wε

x(x, t)θx(x, t) dxdt
∣

∣

∣

= εC131‖
√

σ′(wε)wε
x‖L2(Q)‖θ‖W 1,2(Q)

→ 0 (ε→ 0).

(4.14)

Furthermore, for Iε132 we estimate

|〈Iε132, ψ〉| = ε
∣

∣

∣

∫

Q

(

ηww(w
ε(x, t), vε(x, t))wε

x(x, t)

+ηvw(w
ε(x, t), vε(x, t))vεx(x, t)

)

wε
x(x, t)

)

ψ(x, t) dxdt
∣

∣

∣

≤ C132ε
∣

∣

∣

∫

Q

2σ′(wε(x, t))(wε
x(x, t))

2 + vεx(x, t) dxdt
∣

∣

∣

≤ C132ε
(

‖
√

σ′(wε)wε
x‖
2

L2(Q) + ‖vεx‖
2
L2(Q)

)

‖ψ‖L∞(Q)
≤ C132‖ψ‖L∞(Q).

(4.15)

We proceed with Iε2 which we split up according to

Iε2 = γ

(

∇η(wε, vε) ·
(

0
φε ∗ wε − wε

)

x

− γ
(

∇2η(wε, vε)

(

wε
x

vεx

)

·
(

0
φε ∗ wε − wε

)

=: Iε21 + I
ε
22.

Here ∇2η is the Hessian matrix of the entropy η.
Using Lemma 4.6 and again (4.12), Lemma 4.4 leads to

|〈Iε21, θ〉| = γ
∣

∣

∣

∫

Q

ηv(w
ε(x, t), vε(x, t))

(

[φε ∗ wε(., t)](x)− wε(x, t)
)

θx(x, t) dxdt
∣

∣

∣

≤ C21γ‖φε ∗ wε − wε‖L2(Q)‖θ‖W 1,2(Q)

→ 0 (ε→ 0)

(4.16)

and

|〈Iε22, ψ〉|

= γ
∣

∣

∣

∫

Q

ηwv(w
ε(x, t), vε(x, t))wε

x(x, t)
(

[φε ∗ wε(., t)](x)− wε(x, t)
)

ψ(x, t) dxdt
∣

∣

∣

+ γ
∣

∣

∣

∫

Q

ηvv(w
ε(x, t), vε(x, t))vεx(x, t)

(

[φε ∗ wε(., t)](x)− wε(x, t)
)

ψ(x, t) dxdt
∣

∣

∣

≤ C22γ
(

‖
√

σ′(wε)wε
x‖L2(Q) + ‖vεx‖L2(Q)

)

‖φε ∗ wε − wε‖L2(Q)‖ψ‖L∞(Q)
≤ C22γ‖ψ‖L∞(Q).

(4.17)
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Collecting the results from (4.13) ,(4.14), (4.15), (4.16), and (4.17) we observe that (4.11) holds.

We proceed with statement (ii).
Since the elements of the converging subsequence {(wεk , vεk)T }k∈N are classical solutions of (1.5),
(1.6) we have for k ∈ N and for all ψ ∈ C∞0 (R× (0, T )) also

∫ T

0

∫

R

(

wεk(x, t)
vεk(x, t)

)

ψt(x, t)−
(

vεk(x, t)
σ(wεk(x, t))

)

ψx(x, t) dxdt

= −
∫ T

0

∫

R

(

0
εkv

εk(x, t)

)

ψxx(x, t) dxdt

− γ
∫ T

0

∫

R

(

0
[φεk

∗ wεk(., t)](x)− wεk(x, t)

)

ψx(x, t) dxdt.

(4.18)

Since all expressions on the left-hand side of (4.18) are globally Lipschitz-continuous in vεk and wεk

(recall Assumption 4.1(i) for σ) the convergence of {(wεk , vεk)T }k∈N in (L
q
loc(R × (0, T )))2, q < 2,

implies convergence to the left-hand side of (4.10). The same argument shows that the first term on
the right-hand side of (4.18) vanishes as εk → 0. Finally the last term term on the right-hand side of
(4.18) vanishes due to Lemma 4.6 and Lemma 4.4. 2
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[36] F. Murat. L’injection du cône positif de H−1 dans W−1,q est compacte pour tout q < 2. J.Math.Pures Appl.,

60:309–322, 1981.
[37] R. Rogers and L. Truskinovsky. Discretization and hysteresis. Physica B, 233:370–375, 1997.
[38] C. Rohde. Scalar conservation laws with mixed local and non-local diffusion-dispersion terms. Technical report,

Math. Institut, Albert-Ludwigs-Universität Freiburg No. 18, 2003. submitted to SIAM J. Math. Anal.
[39] C. Rohde and M.D. Thanh. Global existence for phase transition problems via a variational scheme. Technical

report, Math. Inst., Universtät Freiburg No. 31, 2004. accepted for publication in J. Hyperbolic Equations.
[40] D. Serre and J. Shearer. Convergence with physical viscosity for nonlinear elasticity. Technical report, 1993.
[41] J. Shearer. Global existence and compactness in lp for the quasilinear wave equation. Comm. Partial Diff. Eqs.,

19:1829–1877, 1994.
[42] M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Ra-

tion. Mech. Anal., 81:301–315, 1983.
[43] L. Truskinovsky. Kinks versus shocks. In J.E. Dunn, R. Fosdick, and M. Slemrod (eds.), Shock induced transitions

and phase structures in general media, pages 185–229. Springer, 1993.


