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the nonlinear stability of these stationary solutions by using energy method. The analysis
combines the analytic techniques used for the conservation laws using the fluid-type system
derived from the Boltzmann equation, cf. [14], and the dissipative effects on the fluid and
non-fluid components of the Boltzmann equation through the celebrated H-theorem. To our
knowledge, this is the first result on the global classical solutions to the Boltzmann equation
with external force and non-trivial large time behavior in the whole space.

1 Introduction

Recently, there are some progress on the nonlinear stability of three basic wave patterns for the
Boltzmann equation with ”slab symmetry”, cf. [16, 15, 7] for the shock, rarefaction wave and
contact discontinuity respectively. However, for the Boltzmann equation with external forces,
to our knowledge, there are few results on the stability of non-trivial solution profiles. In this
paper, we will study the nonlinear stability of a family of nontrivial profiles, i.e. the stationary
solutions, to the Boltzmann equation with a potential force in the whole space. Consider

Jt+8-Vaof =Vao@-Vef =Q(f, f), (1.1)

with initial data

f(O,CC,f) :fO(xag)? (12)

where f(t,x,£) is the distribution function of the particles at time ¢ > 0 located at x =
(x1,2,23) € R3 with velocity & = (&1,&,£3) € R?, and ® denotes the potential of the ex-
ternal force. The short-range interaction between particles is given by the standard Boltzmann
collision operator Q(f,g) for the hard-sphere model

Q9@ =5 [ [ (g€ + HE(E) ~ F©ale:) — FENIO) €~ &) - 2 déedr

Here S2 = {Q2 € S?: (£—&,)-Q >0}, and

§=¢-[¢-&) -0,
E=&+[€-&)- 9,

which represents the relation between velocities &', £, after and the velocities &, &, before the
collision coming from the conservation of momentum and energy.

We will consider the case when ® depends only on space variables, i.e. ® = ®(z). In this
case, the local Maxwellian given by

M = M(z,§) = %exp {—1 (@(m) + W)} = M[p(z) 05](3775)7
(nr)? B ’ ’

where R > 0 is the gas constant and p; > 0,0 > 0 are some constants, is a stationary solution to

(1.1). This local Maxwellian represents the distribution of a gas in an equilibrium state with the
®(z)
RO o
goal is to show that if the initial data fo(z, &) is a small perturbation of the local Maxwellian M,

then there exists a global classical solution to (1.1)-(1.2) converging to M time asymptotically.

mass density p(x) = p1 exp (— ), the zero flow velocity, and the absolute temperature . Our
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Here we will apply the micro-macro decomposition of the Boltzmann equation and its solution
introduced in [14, 16], where the Boltzmann equation can be rewritten into a fluid-type system
coupled with an equation for the non-fluid(kinetic) component in [14]. In fact, this decomposition
is also used in the study of the Boltzmann equation with self-induced electric field, i.e. the
Vlasov-Poisson-Boltzmann system [20] near a given global Maxwellian.

Decompose the solution f(¢,z,£) of the Boltzmann (1.1) with external forces ®(x) into the
macroscopic (fluid) component, i.e., the local Maxwellian M = M(t, x, &) = M|, ,,4,(§), and the
microscopic (non-fluid) component, i.e., G = G(t, z,§) as follows, [18, 14]:

[t x,8) = M(t, 2, 8) + G(t, z,§).

The local Maxwellian M is defined by the five conserved quantities, that is, the density p(t, x),
momentum m(t, x) = p(t, x)u(t, ), and energy density E(t,z) + 2|u(t, z)|* given by:

plt.a) = [ f(t.a,)de,
= /1:{3¢i(§)f(t,x,§)d£ fori =1,2,3, (1.3)
o (B+31uP)] (k) = [ wal€)s0. ),

t,x € —u(t,z)|?
M=M,,qt ) = (25}(%0(2’ P exp <_‘2R95t,w§> . (1.4)

Here 0(t, z) is the temperature which is related to the internal energy E by E = 3 Rf, and u(t, z)
is the fluid velocity. And 1, (§), a =0,1,---,4, are the five collision invariants, cf. [2, 3|:

Yo(§) =1
wz(f)zfz for 1 =1,2,3 or ¢ =&, (1.5)
¥a(8) = 51€P,

satisfying
[, val©@Uhg)ds =0, for a=0.1,2,3.4,
R

which are also the basis of the sub-manifold of the fluid components, denoted by N up to a
weight function. .
Define an inner product in ¢ € R? w.r.t. a given Maxwellian M as:

(hghst = [, =h(Oa()de

for functions h, g of & so that the above integral is well-defined. With respect to this inner
product, a set of pairwise orthogonal basis for N can be chosen as:

Xo(&;p,u,0) = }M
(& p,u,0) = LM for i=1,2,3,
Xi(&; ps u, 0) F

X4(£;p7u7 0) = ﬁ <|§R0| - 3) M7
<XZ7X]>M = 51]7 fOI' Z?j = 07 1727374'

(1.6)
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With this, one can define two orthogonal and self-adjoint projections Py and P; onto the
fluid and non-fluid sub-manifolds respectively:

4

Poh = h, x; i
0 jZ::O< X]>MX] (1.7)

Pih=h—Poh.
Using these notations, the solution f(¢,x,&) of (1.1) satisfies,
Pof=M, P,f=G.
Then by using f(¢,z,&) = M(t,z,§) + G(t, z,§), the equation (1.1) becomes:
(M +G)y +&-Vo(M+G) = V, 8- Ve(M+ G) = (2Q(G,M) + Q(G,G)). (1)
By applying Pg to (1.8), we have
M, + P0(§ : va) + P0(§ : va) —V,®- VM = 0.

As usual, the system of the conservation laws below can be obtained by taking the inner product
of the above equation for M with the collision invariants ¥ (£):

pt + divy m = 0,

3
mi + Z (uimj)a:j + Py — Dy T+ (P - P) @mi = _/ngi (g ) V:BG) g, 1=1,2,3, (1.9)

J=1

[,0(%|u|2 + E)L —I—jzg:l <uj (,0 (%]u|2 + E) —I—p)) +m-V;® = —/RSM (§-V.G)dE.

Tj

Here p is the pressure for the monatomic gases:
2 _ -
p= ng = Rp, p=Rpb,

and we have used
Dy, + PPz, = 0.

Moreover, the microscopic equation for G is obtained by applying the microscopic projection
P to (1.8):

Gi+P1(¢ VoG +€- VM) = V@ VeG = LuG + Q(G, G), (1.10)
ie.,
G = Lyf (P1(€- VaM)) + Lif (Gi + P1(€ - V. G) — V@ - VG - Q(G, G))
= Lyt (P1(¢ - V.M)) + 6, -
where

Lyvg = Lipug9 = Q(M +9,M + g) - Q(9,9)-
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With the Burnett functions A and B, the viscosity and heat conductivity coefficients can be
represented by:

2_ .
A6 =50, 5=1,2,3,

)= —Ro / a (
6) — —R20 / A

Hence, we have (cf. [5])

Mlu v (Bii (F55) M) de >0, i,

Mi1,u,0] (A (\/%) M[l,u,e]) d§ > 0.

%\“ %\“

—/I{3¢if-V$L1(/}(P1(§-V$M) = 5= [00) (uia, +wja, — 20ydiven)] L i=1,2,3

i

— [ e Vaiad (Prle- VM) = 3 (w(0)0,,)

{M(H)u (Uixj + Ujz;, — §5ijdivff“)}

Zj

By plugging the above indentities and (1.11) into (1.9), we now have another representation
of the equation (1.1) which contains a fluid-type system

pt + divym =0,
3 _ 3 2 .
mit+ 3 (Wimg)g, + Pe; =P+ (P —7) Pay = 2 [100) (wiz; + wja; — 303ydiven)]
= 1= I]
- [ i v.0)ds i=123
R3
3 (1.12)
11,,12 . 110,12 .
[p(31ul +E>L+]§1 (uJ(P(2|U| +E) +p) Ame Ve
J
3
= ”2::1 {u(é?)ui (umj + Uja; — %&jdlvxu) }zj
3
£3 (k006,,), [ wnle-Va0)de,
j=1 zj R3

and the equation (1.11) for the non-fluid component G. Notice that if one drops all the terms
containing ©, then it becomes the system of the Navier-Stokes equations with external force.
Later in this paper, we will work on this reformulated system by applying the energy method
as in the study of conservation laws together with the dissipative effects from the Boltzmann
equation through the celebrated H-theorem.

For preparation, we now recall some basic properties of the linearized collision operator L.
By definition, Ly is self-adjoint w.r.t. the inner product (h,g)m, i.e.,

(h, Lmg)m = (Lnmh, g)m

and the null space is V.
For the hard sphere model, Ly takes the form, cf. [10]

(nah) (€) = =€)+ MO Fn (=) (©)) (1.13)
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Here Kn(-) = —Kim(-) + Kom(+) is a symmetric compact L2?-operator. And the collision
frequency vap(§) and Kiwv(-) have the following expressions

vm(§) = \/22:7]% {(Ié o T 1€ — u]) /5 " exp (—QL};) dy + RO exp (-'2}%3} ,

klM(fvé*) \/WM f*’ eXp( ‘54}%72!2 - lgjl;%z'z) )

2 2_ e 12)2
ha(6.6.) = 22l — & Vexp (551 — U el

where kim (€, &) (1 = 1,2) is the kernel of the operator Kyn(i = 1,2) respectively, and vpp(§) ~
(1 +[&]) as |£] — +oo. Furthermore, there exists og(u,) > 0 such that for any function
h(¢) € Nt

<h, LMh>M < —O’o(u, 9)<h, h>M

which implies cf. [10]
<h,LMh>M < —U(U, 9)<VM(f)h,h>M, (1.14)

with some constant o(u, ) > 0

Since the time asymptotic state is non-trivial(not a global Maxwellian), as in [15] and other
related works, two sets of energy estimates are needed. That is, we need the energy estimates
w.r.t. the local Maxwellian My, , 4 (¢, z,§) and a suitably chosen global Maxwellian M_ =
M, 06 (£) to close the a priori estimate. For this, a variation of the microscopic H—theroem
is needed to relate the dissipation estimates with different weights as in Lemma 2.2 of [15]. That
is, there exists a positive constant 19 = no(u, 0; . f) > 0, which is not necessary to be small,
such that if § < 0 < 6 and |u— | + |6 — 0] < 1o, the following microscopic H—therem

L 2

—/ GImG e > 5 / ()G (1.15)

RZ M R3 M

holds for some positive constant & = &(u, 6; i, 9) > 0 with M = M[ﬁ a0
Throughout this paper, we choose positive constants p_ and 6_ such that
9<0_ <9,

_ (1.16)

lp— =7l + |0 8] <.

It is easy to see that if M(t, z, £) is a small perturbation of M(z, &), (1.15) holds for such chosen
p— and 0_ when M = M_ = =Mi,_o006_]

Let g(t,z,€) = f(t,z,&)—M(z, ), we now give the function space for the solutions considered
in this paper

M (©
HY, (RY) = { g(t.2,€) | V/rm@9°020L9(t.2.6)
VM_(€)

€ BC, (R*, 12, (R® x RY))

€L, (Rt xR?xR?), for v+ |a] >0

Yo+ laf + [ <N
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Since g < 0_ < 0, we have for each 7o + |a] +|3| < N,

a ol (t,z,€) 2 3 3
0;° 020, (QMM)) € BC, (R*, L2, (R® x RY)),

Vrm(©)9;° 020, (%) € L7, (RT x R* x R%), for v+ |a| > 0.

By using the above notations, the main result in this paper can be stated as follows.

Theorem 1.1 Assume that fo(x,&) > 0 and N > 4. There exist two sufficiently small constants
e >0 and Ao > 0 such that if

A= H(I)(x)HLQ(R3) + Z Haxaq)(x)HL?)(R3) < )\0,
1<|a|<N+1

029 (fo(2,6)—M(,£))

VM-(§)

(1.17)

<e

— )

L2 ((R*xR3)

E(fo)= X

laf+|BI<N

then there exists a unique global classical solution f(t,z,£) € Hi\fg (R™) to the Cauchy problem
(1.1), (1.2) which satisfies f(t,z,&) >0 and

lim sup
—00 3
TER” J0-+al+B| <N -4

[ orozag (¢t,2.6) ~M2.9)[" o

M_(¢)

Remark 1.1 A similar result was announced in [1] on the Lg° solutions under the additional
assumption that the support of ®(x) is compact. On the other hand, the compressible Navier-
Stokes equations with the potential force was solved in [17] on the same global existence and
asymptotic property under the same assumption on ®(x), as in our Theorem 1.1.

Remark 1.2 The assumption (1.17), requires, among others, that ®(x) € L2(R3), but this
does not contradict to the fact that the potential ®(x) is unique only up to an additive constant,
because this constant can be absorbed into the constant p;.

The proof of Theorem 1.1 relies on the energy method based on the macro-micro (fluid
dynamic-kinetic) decomposition of the Boltzmann equation developed recently in [14]. The en-
ergy estimates for marcroscopic (fluid) component of f(¢, z,§) are obtained with the H—theorem
for the lower order derivatives and by the usual integrations by parts for the differential equations
for higher order derivatives. Both estimates contain Sobolov norms of the microscopic (kinetic)
component of f(t,z,£). It should be noted that if these terms are dropped, our estimates
coincide with those presented in [17] for the compressible Navier-Stokes equations.

The norm of the microscopic component can be estimated by virtue of the microscopic
H—theorem, i.e. the negative defiteness of the linearized collision operator on the space of
functions having only microscopic components, and again by the integration by parts on the
differentiated microscopic equations.

This technique has been developed in [14] for the force-free case, where the energy estimates
can be closed only with (¢, ) derivatives of f(¢,z, ). In our case, however, £ derivatives should be
also included. Recently, in [12], another L? energy method has been proposed for the Boltzmann
equation. Although the technique is quite different from [14], it applies also to our case, to deduce
the same result.
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The global existence is concluded by combining the local existence and the energy estimates.
Our local solutions should be, therefore, in consistence with our energy estimates, that is, they
should be L? solutions w.r.t. ¢ as well as (¢, z). Such solutions can be constructed by using the
L? estimate of Q(f,g) derived in [9].

The rest of this paper is arranged as follows. The microscopic and macroscopic versions of
the H—theorems will be stated in Section 2. The main energy estimates are analyzed for the
case when N = 4 in Section 3. The case when N > 4 can be discussed similarly. The proof
of Theorem 1.1 will be given in Section 4, and the proofs of some technical lemmas stated in
Section 3 are given in Section 5 for clear presentation.

Notation
In the rest of this paper, the generic constants (but perhaps depend on the initial values)
will be denoted by O(1) or C. Occasionally, we use e.g. C(r,s) when we want to emphasize the
dependence of C' on the parameters r and s. Note that all constants may vary from line to line.
For v = (ap, @), a, and 3, we use 37, 0%, and 9” to denote the differential operators 9{° 9%, 9%,
and 8? respectively. Here g is a non-negative integer and o = (o, a2, a3) and 8 = (01, B2, B3)
are multi-indices with length |a| and |3, respectively. Finally |y| = ag + |a| and Cf means

a
.l
2 H—-theorem

The celebrated H —theorem of the Boltzmann equation is based on the special property of the
bilinear structure of Q(f, f) satisfying

/ Q(f, f)In fde <0,
R3

and the equality holds only when the solution f(¢,z,§) is a Maxwellian.

Corresponding to the macroscopic and microscopic components, the H-theorem can be
viewed in these two aspects. The first kind of dissipation comes from the linearized collision
operator Lys acting on the microscopic components stated in (1.14) and (1.15). The second
kind of dissipation comes from the nonlinear collision operator in the expression of the viscosity
and heat conductivity in the macroscopic level.

In the following, we will first state some inequalities on the nonlinear and linearized collision
operators Q(f, f) and Lys. The first lemma is from [9].

Lemma 2.1 There exists a positive constant C' > 0 such that

vm(6) ' Q(f,9)° vm (€ e 2 20 va(§)g?
[, 20 dfgc{/RB e [ gde+ [ Lae. [l dg}, (2.1)

where M is any Mazwellian such that the above integrals are well defined.

Based on Lemma 2.1, the following result was proved in [15].
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Lemma 2.2 If% < 0 < 0, then there exist two positive constants & = E(u,@;ﬁ,é) and nyg =
no(u, 0; 1, 0) such that if |u — | + |6 — 0] < ng, we have for h(§) € N+,

hLyh . uM(g)h2
*/Rg N dfz"/Rs Y Ea

Here M = M (t,x,€) and M(t,z,£) = l\N/I[@a’é] (t,z,§).

pyu,0]

As a direct consequence of Lemma 2.2 and the Cauchy inequality, we have the following
corollary (cf. [15]).

Corollary 2.1 Under the assumptions in Lemma 2.2, we have for h(¢) € N*,
v | 717, —2 [ vm(©h2(Q)
{A3M |Laih| dg <o A& O e,

(@) | =1p|? =2 [ (@~ 'h2(©
Ath Lyih| de <o Aﬁ ) 120 g

To construct the entropy-entropy flux pairs to (1.1), we first derive the macroscopic version
of the H—theorem as the one in [14] for the Boltzmann equation without force. Set

(2.2)

3
—7,055/ M In Mdg. (2.3)
2 R3
Direct calculation yields

~5(0S): = 5dive(pus) + V. ( /. B(SIHM)Gdg) -/ GPl(ﬁ\‘A VM)

de, (2.4)

and
S=-2Inp+In(2rRO) + 1,
p= 200 = kp3 exp(S), (2.5)
E=0, R=2%

Remark 2.1 Note that when the macroscopic entropy S is defined as in (2.3), the gas constant
R is normalized to be % and in such a case E =16.

An convex entropy-entropy flux pair (1, q) around the stationary solution M = M[ﬁ(x) 0]
can be given as follows, [14]. Denote the conservation laws (1.9) by

0
0
/ 1€ - VoG de
R? PPz,
m; + dlvxn = — /113¢2(£ : VIG)d£ — p(I)m2
| uale - aGd P2z,
" m-V,®
[ pate- V.G
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Here
t
m = (mg, m1, mg, ms, my)’ = (MPULPU%PU?),P(%WP+9)) ,

J t

(
(1’11, ny, 1'13) )
(nf), njla n]2’ 3, n])

n—
n; =

t
= (pUj, urm; + %pﬁ,uQmj + %p&,ugmj + %p@, pu; (%MQ + %0)) ,7=1,2,3.

Then the entropy-entropy flux pair (7, ¢) can be defined by

{nze{—3p5+Sp5+§vm(p5)lm:m<m—m)}, 6
¢; = 0{=3pu;S + 3Vm(pS)lmsm(ny — W)}, j =1,2,3.
Since ,
(PS)mo = S + 55 = 5,
(pS)TI’M = _%7 L= 172737
(pS)m4 = %7
we have
_3 _9 S_5\gu ] 4 259
77—2{p0 GpS—&-pKS’ 3)9+ 2}—1—3/) }, (27)

qj = ujn + u; (PQ—ﬁg) g =1,2,3.

Notice that for m in any closed bounded region D C ¥ = {m : p > 0,0 > 0}, there exists a
positive constant C' depending on D such that the entropy-entropy flux thus constructed satisfies
(cf. [14, 15])

Cl'm-mP?<n<Cim—m. (2.8)

And (n, q1, g2, q3) solves the following partial differential equation

m + diveq = — Vs (/ (§GlnM + g¢4§G) d§> —3m . V,®
R3

P (¢-V,M)G (2:9)
1\S"Vz
+ [ RS g
Integrating (2.9) w.r.t. x over R3 gives
d 3 P, (¢ V,M)G
%/RS n(t)dx = —3 Rsm-vxq)dx—F/Rs /R3 M dédzx. (2.10)
Since
m -V, ®dr = —/ div,m®dz = / (p—p)Pdx
R R? R? (2.11)

d —
ZEAB(p*p)M:E,
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we obtain the entropy estimate

Z{/RB (U—F;(P—p)@) dm}:/Rg/R3 Pl(f'l\V;M)Gdgd% (2.12)

which is crucial in the later energy estimates on the fluid components of the solutions.
Before concluding this section, we note from (2.8) that

/R3 (77 + g (h=") ®) (t, z)dx > ;/R3 n(t,z)dzr — O(1)A%. (2.13)

3 Energy estimates
In this section, we will give the entropy estimates for the proof of global existence theorem. For
this, we first assume the following a priori estimate
_ 2
N(t)?= sup { 2 / 8V(p—ﬁ,u,0—9)(7,x)’ der+ / / %}%dedx
0<r<t ||y|<4/R? ly|+8|<4 /R? JR3 -

TS /t/ / VM(§)|3“’8K3G(7'71’7§)|2dgdxdT (3'1>
h4lBiado Jrs Jre M

< 62,

Here 6 > 0 is a suitably chosen sufficiently small constant whose precise range can be easily seen
from the analysis below.
It is easy to see from (3.1), the conservation laws (1.9), and Sobolev’s inequality that

N(0) < O(1)E(fo) (32)
and

ap ¥ [00B()] < O()A,
z€R3 |a|<3

sup X |07(p—pu,0 — B)(7,2)| < O(1)5,
(1,2)€[0,t) xR3 |y|<2 (33)
BG(r 2

sup /
(1,2)€[0,t) xR3 ||+|6|<2 /R?

On the other hand, if we choose § > 0 sufficiently small, we have from (1.16) that

{ g<0_<o,

lp =7l + lul + |0 = 8] < m,

and consequently the microscopic H —theorem (1.15) holds when M is taken as M_ = M, 00.)-

We now give the energy estimates on the solutions f(¢, z, &) to the Cauchy problem (1.1) and
(1.2) based on the a priori assumption (3.1). To do so, some basic estimates are given in Section
3.1 and then the desired energy estimates are obtained in the subsequent three subsections: The
first one is on the estimates on the entropy 7(p,u,#) and the non-fluid component G and the
other two are on the derivatives w.r.t. the weight of the local Maxwellian M and the derivatives
w.r.t. the global Maxwellian M _, respectively.
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3.1 Preliminary estimates

In this section we give some basic estimates related to the external forces ®(z) and to the
weighted integrals of the collision operators @ (G, G) and Q (M, G) w.r.t. M and M_. First
we cite the following fundamental inequality (cf. [17])

Lemma 3.1 Let Q be the whole space R3, the half space Ri’_, or the exterior domain of a
bounded region with smooth boundary. Then

lg(z)l|Ls) < OM)|IVeg(w)]L2(0)- (3.4)
Based on Lemma 3.1, we have the following estimates concerning the external forces ®(x)

Lemma 3.2 Under the assumption (3.1), we have for each |y| < 3,|a| <5 that

/ 020 |07 (p— 7,0 - 9)’ dz < O(1 )\2/ V.07 (p—p,u.0 - 9)’ dv.  (3.5)

Moreover

> /t/ / (@076 by 0
a>0,v[+|8|<3/0 JR3 JR? M
<o) > /t/ / VM(5>|aaq>|2yawaac;fdgdxdT (3.6)
a>0,[y|+|8]<3 R? JR3

B
<o / / / o CNGICACES
|»y|+|m<4 R3 JR? -

Proof: Since (3.5) follows immediately from Holder’s inequality and (3.4), we only prove (3.6)
in the following. To this end, we only need to prove the second inequality in (3.6) because the
first one holds trivially due to 6_ < 0.

In fact, Holder’s inequality together with (3.4) imply

/RS 00 [070°G[ da < (/ |8O‘<I>|3da:>§ (/ ’8‘*85G’6dm)§

< O(1)\2 Hmaﬂc\

L6 R%

<o) )\/ ’VﬁVaﬁG‘ dz.
R3

> /t/ / VM(Q'a%'Q‘BmﬁGFdﬁdfcdr
a>0,|y[+[p|<3/0 /R? JR3
< O(1)\? / / / ©)]v=07 S e dwdr
a>0, |7|+|m<3 R JR? -

5 5
< O(1)N? // / CXGIGUES
e do Jra Jrs

This is the second inequality in (3.6) and the proof of Lemma 3.2 is completed.
Now we turn to deal with the weighted integrals of the collision operators @ (G, G) and
Q(M,G) w.r.t. M and M_.

Consequently
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Lemma 3.3 Under the assumption (3.1), we have for |y| + |3| < 4 that

Z b k™

2

85 BMaﬁ G)

dédudr

. (3.7)
<0(1) ¥ // / ik ‘({)BG’ dédxd
—_— AT,
g<pJo JR3 JR3 M
2
¢ v (€)1 Q(m’aﬁ’M,mﬂ’aﬁ*B’G)‘
> / / / = dedzdr
0<v'<y,8'<3/0 JR3 JR3
t , 2
<o ¥ // 0" (p— p.u.6)| dudr (3.8)
1<y|<[] /O /R3

t
+O((A+6)? % // / (@O G e g7
ly|+15l<4/0 /R? JR? -

8”*(95G8“Y 7 go- ﬂG)’

R //R3/R3 i dédxdr
vﬁ <B (3.9)

<0(1)8° / / / (©ITOPGE g 1y iy
I"/|+IB\§4 0 JR3JR3 -

Here M can be taken as M or M_.

Since the proof of Lemma 3.1 is similar to that of Lemma 3.1 in [20], we omit the details for
brevity.
As a direct corollary of Lemma 3.3, we have

Corollary 3.1 Under the assumptions in Lemma 3.3, we have for |y|+ |5| < 4 that

-1 8 2
/ / / 2PCCO] jequar
R3 JR3

< 0(1)8? / / / m©IOPCE ey,
M+|B|<4 R: JR?
& B
// / 1‘6 (lelif) LM8G| dédzdr
0 JR3 JR3

’aﬁ G’
6’<ﬁ/ /Rs ,/Rs dédxdr.

Furthermore, if v > 0, we have

/ t/ / tels 71’maﬁ(Ll\{G)—LM(maBG)‘Qdfdxdr
0 R3 JR3

8765 G}
<0(1) / / / dedadr
B’<B R3 JR? (3.11)

+0(1)62 // " p—ﬁ,u,@)fdxch
1§W|§|v| 0 JR3

t
+OM(A+6)?2 ¥ // / ZUGIALLLT
ly[+]8]<4 /0 JR3 JR? -

(3.10)
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Here, as in Lemma 3.5, M can be taken as M or M_.

3.2 Lower order estimates

In this subsection, we will give the energy estimates on the entropy 7(p,u, ) and the non-fluid
component G(t,x,§).
First, integrating (2.12) w.r.t. ¢ over [0, ¢] yields

/RS(nJrg(p—p)@)dxt:/()t/I{BASIWW;dédde_ (3.12)
0

From (1.11) and the fact that there exists a positive constant C' > 0 such that

P1(§VeM P1(§-V2M)
/ L= ( : )dgd:z:dT>C’/ [, [ g dedadr
R3 JR3 R3 JR3

zo// IV, (u, 0)[2dwdr,
0 JR3

we have from Lemma 2.1, Corollary 2.1, and (3.1)-(3.3) that

// / PreYeMIC e ddr < — // Ve (u, 0)2dzdr
R3 JR3 (3.13)

/ /R3 /Rs (IGe? + VoG + N|VeG? + 6%|G[?) ddadr.

Substituting (3.13) into (3.12) yields
t
/ (n—i—%(p—ﬁ)@) tdm+/ / Vi (u, 0)2dxdr
R (3.14)
< 0()(£(/0)? +22) +0(1) / /3/3”M<f) Gel? + [VL G + A2VeG? + 62|G[2) dédudr.
R3 JR.

For the non-fluid component G, multiplying (1.10) by % and integrating the result w.r.t.
t,z,and & over [0, ] x R?®xR3, we have from (1.14), Lemma 2.1, and Cauchy-Schwarz’s inequality

that
/ / leP® d§dx+// / ma@IGE 1e dpdr
R3 R3 R3 JR3

O(ME(fo)* +0(1 )\+5/ /RB/RB QISP ge iy (3.15)

1)/0 /R3 (!Vx(u,9)|2+/R3W'MVIG'> dadr.

Similarly, if we replace the weight M by the global Maxwellian M_, we have

/R/ @dfd“/ t/Rs/RsdedxdT (3.16)
et +om) [ [ (1Vawo + [ mQUTCEY dyar

(3.14)-(3.16) give the complete lower order energy estimates.
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3.3 Higher order estimates w.r.t. M

In this subsection, we will consider higher order energy estimates, i.e., 9 (p — p,u,6),070°G,
and 07 f for |y| > 1 and |y| + |3| > 1 w.r.t. the local Maxwellian M.

First, for 97 (p — p,u,0) with 1 < |y| < 3, we have the following lemma.

Lemma 3.4 Under the assumptions in Lemma 3.2, we have for j =1,2,3 that

]87(p p,u9|dx+z// V2 (u, 0)|* dedr

|7| =j Ivl=j
ome (fo)2 / / / 5) |87G 2 4|V, 0G| ) dédzdr
I“/I =j R? JR?
(3.17)
+O(1)(A +9) / / 187 (p — P, u, 0)? dedr
1<|'y|<]+1 R3
+O(1)(A + 6) / / / 2 (107G +|Ved" G ) dédudr.
IyI<i R? JR?
Proof: The conservation laws (1.12) can be rewritten as
pt = —(p—p)diveu — Vy(p—p) - u—pdivyu — V. p - u,
3 - —p i(§E-V20
Uit +J§_: UjUig; + 327) <p9 - pH)Ii + L8, = —/R37d’ (gp ) de
3
1 , ‘ L
+;j§1 {u(&) (umj + Uja, — 6Ud1vxu) }m]- , 1=1,2,3, (3.18)
3
2 —£u
0; +j§1 (ujGQ;j + geu]'m]) = — s P4 p£ (é‘ . Vm@)df
3 3 2 .
+1 {El (k)0 ), +30(0) 2 (i, + i)~ gﬂw)(dwzuy} .

Once we obtained (3.18), (3.17) can be proved similar to that of [17] for the compressible
Navier-Stokes equations with external forces by applying 97(1 < |y| < 3) to (3.18)2 and (3.18)s,
multiplying the resulting identities by pd?u; and g@”@, taking the summation w.r.t. ¢ from 1
to 3, and integrating the final results w.r.t. ¢ and z over [0,¢] x R3. The only difference is to
deal with the terms containing ©, which can be estimated suitably by explioting Lemma 2.1,
Corollary 2.1, and Lemma 3.2. We thus omit the details here for brevity. This completes the
proof of Lemma 3.4.

Secondly, for 979°G with |y| + |8 < 4, we have the following lemma whose proof will be
given in the appendix for the brevity of presentation.
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Lemma 3.5 Under the assumptions in Lemma 3.4, we have for |y| + |B] < 4 that

/ / "G Gedar + / / / (OO e i
R3 JR3 R3 JR3

O(1)(A +6) QIO GE ey g
O(1E(fo)? + O(1)(A + HW//RB,/RS OGP e
1)/0 /R3 (!me(u,e)\2+(/\+6) 1<|'E|<| l(m (P—P,u,e)f) dxdr (3.19)

t , 2
o[ [ ] e (mmem s |v.ooral )dgdxdT
0 JR?JR3 16"|=151—-1
2
o t v (€) avaﬁ’G’
R
( )ﬁ/{:,g 0 JR3 JR3 M
Letting v = 0 and 8 = 0 respectively in (3.19) yields

/ / 197G e dy +// / @G e iy g
R3 JR3 R3 JR3

O(1)(A+6) (IO G e gy
O(E(fo)? +O()(A + |WW/ L e :

dédzdr.

(3.20)
o o (i )
, < v.0'q[ + ¥ Jo'q )dfdwdf 181 < 4,
R3 JR3 18'|=18]-1 523

and

/ / |8'YG|2d§d$+/t/ / VM(g)la'YGPdfdde
R3 JR3 R3 JR3

|av "9 G2 .
OWE(R) +0(A+d) +|a/|<4/ L dédrd

2
nf [ <|vxav<u,9>|2+u+5> > |m<p_p,u,e>\>dxd7
0 JRS 1<y [<]
t
0(1)// / il \7 G dededr, 1< || <3.
0 JR3 JR3

From the estimates (3.19)-(3.21), we can deduce, on the one hand, that we can reduce
the estimates on the derivatives of the non-fluid part w.r.t. the velocity, i.e., 70°G with
IB] > 1,|v| 4+ |8] < 4 to the estimates on the derivatives of the non-fluid part w.r.t. the space
and time variables, i.e., 3 G for some |7/| < 4. And on the other hand, we can get an estimate
on 07G. The above results are summarized in the following corollary.

(3.21)

Corollary 3.2 Under the assumptions in Lemma 3.4, we have

t
> / / OO qede + % / / / (OIOPGE g 1y
B>0,|y]+|8|<4 /R? JR3 B>0,|y]+|8|<4/0 JR3 JR3

9 t v (€)[070° G2
<O()E(fo)* +O(1)(A+46) 7+%|S4/0 -/R3 /R37M* dédxdr (3.22)

// S 0 -puw )2+ ¥ [ @PGE ) gaar,
R? \1<]y/<4 y<4 /R
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Z/ / el dedr + ¥ // / QIO CE g iy
ly|=j /R? JR3 ly|=j R3 JR3

O()E(fo)? + O(1)(A + 6) M©OIOPCE e
<OWe? +omn+d) = [ [ dvdr

t (3.23)
onf | ( S 0P+ (8 % |m<p—p,u,e>|2) dedr
0 R \hi=jt1 1<p|<s
+0(1) X // / MO\ G dedadr, §=1,2,3.
lyl=j+1/0 /R? JR3
A suitably linear combination of (3.17) and (3.23) yields
£ [ (100-puor+ [ 56Ede) i
Ivl=3 R?
+// ( > 0w, o))+ ¥ W”‘”dg)dam
R3 \|yl=j+1 IyI=3
O(DE(fo)? + O(1)(A + ) / / [ g dedvar (3.24)
M+|B|<4 R? JR? -
+0(1 // / &) |57 G2 dedadr
|'y|=j+1 R3 JR?
+O(1)(A +9) / / 87 (p — p,u, 0))* dedr, §=1,2,3.
1<|*7|<j+1 R3
Consequently
s [ (06-puof+ [ 5§ax) d
1<]4|<3/R? R3
// S0 (u, )P+ S Md{ dxdr
R? \2<|y|<4 1<|7|<3
O(1)E(fo)2 + O(1)(A + ) // / m©IOOGE g 1y (3.25)
|7|+|ﬂ\<4 R3 JR? -

+o(1) / / / ) |97G [ dedwdr
ly=4/0 /R? JR3

somo+a) [ [ <1<Z (-l + T |av<u,9>\2> dadr

<|vI<4 [vl=1

To obtain the the 4—th order derivatives w.r.t. ¢ and z on G, we need to work on the original
system (1.1) to avoid the appearance of the 5—th order derivatives. This can be summarized in
the following lemma whose proof can be found at the appendix.

Lemma 3.6 Under the assumptions in Lemma 3.4, we have
/ / UME gedy + 5 t/ / @G e
2<|a,|<4 R3 JR3 2<|'y|<4 0 /JR3 JR3 M
<OME? +o+s) w1 [ [ aaSE0 G ey (3.26)
[y+18l<4/0 /R? JR?

+O(1) (A + 0) // 107 (p — B u, 0)|? dadr.
1<|7|<4 R3
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Due to

o (f—MD)|2 . |Po(87(M—M))|2+|P1 (87 (M—M))+07G|?
/Rg/RJ U= )ld’fd‘”_/Rs/Rg ( JPHP ) dédz

/Rs /Rslpo O dedr, 2< || <4,

(3.27)

we have by induction that

s [ 10— pu o) ds
1<|<4 /R?

sO(l)/3<Z (0 —pw ) + % de)dx

Ivl=1 2<|y|<4

(3.28)

and

> [ [ Bl <o) x> [ 107 puo)fds
"7‘ 4 R3 R3 1S|’7|S4 R3 (3 29)

+0(1) ¥ //7'a”(fl\‘4m2d5d:c.
2<|y|<4 /R3 JR3

Thus combining (2.13), (3.14), (3.15), (3.25), (3.26), (3.28) with (3.29) yield

—_ 12 Y 2
> <‘87(p—p,u,0—9)’ +/RSaMG|d§) dx

ly|<4/R3

+/t/ S W)+ 3 / a(@QIGE e | gy
0 JR? \1<]y|<4 ly<4/R?

o) A2) + O(1)(A + 0) @G e 1.
< O(1) (E(fo)? + X%) + O()(A + w+|ﬁ|<4//Rd[R5 :

+O(1)(A +6) // 107 (p — p)|? dedr.
1<|7|<4 R3

To recover the estimates on 97(p — p) in (3.30), we use the conservation laws (1.9) as in [15]
to deduce that

[ [ oo =pPdsdr < 0o +00) ( S 0e-pP+ ¥ |avu2>da:
R3 R3

[y|=5+1 lvl=3

t
+O(1) % / / 167 (u, 0)|2dadr
1<|y|<j+1 R3

+O(1)(A + 6) // 107 (p — p)|2dwdr
1<|’v\<J R?

+O(l)lvlg‘ﬂ/o /Rs /Rs%dgdxdﬂ 7=0.1,2,3.

A suitably linear combination of (3.30) and (3.31) yields

—_ 12 Y 2
s [ (lrte-puo-af + [ 5§ ) ds

ly|<4/R3

t
(o —D.u.0)2 Md dxd '
s <1§%§4| (0~ p.1u.6)] +|7|E<4/Rg s) v (3.32)
< O(1) (E(fo)? + A2) + O(1)(A + 6) // / ma@OOGE e,
et S Jro

(3.30)

vl J+1

(3.31)

Putting (3.22) and (3.32) together, we finally have the following energy estimates w.r.t. M
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Corollary 3.3 Under the assumptions of Lemma 3.4, we have

— 12
z/ D(p-pu,0-0) det+ 3 / / [0 GE e da
7[<4 /R rl+181<4 /R TR
L s oe-pueps 5 [ mORICEE) gy (3
0 JR? \1<]y|<4 hi+lp1<4 JR?

O(1) (E(fo)2 + A2) + O(1)(A + 6) a(©ON7CE e .
<om (et + ¥ romnen w1 [ e ¢

3.4 Higher order estimates w.r.t. M_

In this subsection, we will consider certain higher order energy estimates w.r.t. the global
Maxwellian M = M|, 4 ] in order to close the a priori estimate (3.1). Compared to those
w.r.t. the local Maxwellian M, the only difference is that the fluid part and non-fluid part are no
longer orthogonal w.r.t. the global Maxwellian M_. More precisely, from the proofs of Lemma
3.5 and Lemma 3.6, we can see that we have used the following identity

Po(0YMy, 5,0,0)0" (LmG) .
/R ) - ¢ =0

/Rg (2 ((Muo l\l\f“oﬂ)))m(LMG)dg —0, 2<y|<4,

while if the weight M is replaced by M_, the above identity does not hold any longer. As a
result, there is an extra error term in the form of

Z // 187 (p — P, u, 0)|? dudr.

1<||<4

Noticing this difference, we have by repeating the procedure to deduce (3.33) to obtain

—_ 12 .
z/ m(p—p,u,e—e)\ dz+ X / / [020°GE ey
<4 /R yI+1Al<a /RS R

// / é)lamﬁG‘ d¢dxdr (3.34)
M+|B|<4 R3/R3

2 u TarT.
< O(1) (E(fo)> + X?) + 01 1<7<4//ngan 5.0, 0)[2 dad

Combining (3.33) with (3.34), we finally deduce that

—_ 12
> / P(p—pu0-0) de+ ¥ / / [000°GE ey
ly|<4 /R? ly[+]8|<4 /R? JR? -
T A O O P A R SR L P
0 JR? \1<]y|<4 ly|+18|<4 /R3 -
<O(1) (E(fo)? +A?),

which closes the a priori estimate (3.1) provided that we choose € > 0 and Ay > 0 sufficiently
small such that

{)\ <o, €&E(fo)<e,
(3.36)

0(1)(e2+ 1) < 8.
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4 The proof of Theorem 1.1

This section is devoted to the proof of the main result Theorem 1.1. The idea is to use the
continuity argument to extend the local solution to all time by the closed a priori estimate (3.1).
To do so, we first need to get the local existence of solutions to the Cauchy problem (1.1), (1.2)
in the following energy space

M- (¢)

908 g(t,x,£) 2 3 3

——==2=2c BC; (|0,T),L:, (R° xR

t ([ ) Lie ( )) } ’ (4.1)
lgllx <M, |al+|B] <4

H&GQT»—{ﬂt%Or

which will be established in the coming subsection. Here g(t,z,¢) = f(t,z,&) — M(z,£), M > 0
and T > 0 are some positive constants, and ||g||x is defined by

_ |0298g(t,x,8)|?
= su B2l dedy
rwx(@%iw%gé&églm@ 5}

+ X /T/ / (+EDI* D gtz ) e i,
ol 1Bi<ato Jr3 Jrs M_(9)

4.1 Local existence

To construct local solution to the Cauchy problem (1.1), (1.2) in the energy space ﬁig([o, T)),
for each given point (tg, zo, &) € Rt x R3 x R3, we first analysis the backward bi-characteristic
curve (X (t),Z(t)) = (X, E)(t; to, zo,&o) of (1.1), (1.2) passing through (to,xo,&p) which is given
by

X0 — =(p),
Bl — _v,0(X(1)), (4.3)

(X (@), Z(8)lt=to = (20, €0)-

From the assumption (1.17);, one can immediately deduce that there exists a positive con-
stant C(tg, xo,&p) such that

[(X, E) (& to, 20, S0)| < C(to, zo, §o)|t — to| + |xol-

Consequently the backward bi-characteristic curve (X(t),Z(¢)) can be continued to the time
t = 0 and we use (Xp,Zp) to denote (X, E)(0;tg,x0,&p). Furthermore, it is easy to show that
there exists a positive constant C; > 0 such that for [t —to| < T

1 —ClT < 0X;(t;t0,70,50) 85«;(15;52,930750) < 1+01T i—1.2.3
- ’ 0i = ) 5 450,

0xo;

0X;(t;t0,70,80) 0=, (t;t0,%0,80) . .
’ 5;01'0 =l 3500;‘0 CI<SOIT, i#g, 4, =1,2,3,
’ 8500]' - + ‘ 8(;30;) ° ‘ S ClT? 1’7] - ]-7 27 37

from which we can deduce that if we choose T' > 0 sufficiently small, we have

9(X,E)

78(%,50) < 2. (4.4)

< ‘det

1
2
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Note that g(t, z,§) solves

{gt+€‘vmg_vx@‘VEQZLM9+Q(979)7 (45)
g(t,x,§)|t:0:go(aj,§), '
where as in (1.13)

(Lah) (€) =~ ) + M. K (=) (©)) (46)

and K7(-) = —K37;7() + Kyzz(*) is a symmetric compact L?-operator. And the collision fre-
quency vgp(€) a d () have the following expressions

vsil(©) = P()P(e). 7(E) = (Je]) = {(£| w16) [ (<) dy o (_ff)} ,
11\/[(5 §) = \/7‘5 §*|exp< 4 %) )
k M(&?g*) = %’f - 5*’71 €xXp (_ ‘5_86*'2 - (‘%‘25__%:;5)2) 5

where k37(€, &) (i = 1,2) is the kernel of the operator K 37(7 = 1,2) respectively. Moreover, we
have from (4.3)y that for each 0 < s,t <T

{ 2(t) — E(s)| < 0T,
(4.7)

dv(r)
dr —

Thus we have from
0<s,t<T

(1) that there exists a positive constant Cy > 2 such that for all

vpi(2(t)) < 2vg5(E(s)) + CoT,
1+ €] < Corgg(E(2)), (4.8)

1 C!
M_(=@)) = M,(é(s))-

By using the explicit expressions of kg;(£,6+)(4 = 1,2), straightforward calculations yields
the following lemma

Lemma 4.1 If0 < g <0_ <0, then fori=1,2

sup { [ e, € ide.} < o),

EER? (4.9)
s { [ ke e < o)
Here
Ki(€, &) = Mz.6) (& &) M@, £.) i=1,2. (4.10)

M_(&,) ™M M_(¢)
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Consequently

i.e.

— 2
[ (VMKLKA(@D(&) <o) [ M -

Under the above preparations, we now turn to construct local solutions to the Cauchy prob-

lem (1.1), (1.2) in Hig([O,T )). For this purpose, we consider the following iterating sequence
{g"(t,z,&)} (n > 0) for solving (4.6)

9°(t, x,€) = go(, 5),
G+ € Vg™t = V- Vg™ = Ligg™ ! + Qg™ g7)

. - (4.12)
—vpp(€)g™ T + \/1\7IKM< ) + Qg™ 9"),

2l

gn+1 (t> x, 5) |t=0 = gO($7 5)
Integrating (4.12)9 along (X, E)(¢; to, xo, o), we have

9" (to, z0, &)
=exp (_/OtOVM(E(S))dS> go(Xo,Zo)
+/0t°eXp (_/ﬂtovﬁ(E s))d )(WK (&%))(777)((77)75(77))@ (4.13)

We now show by induction that if ||go||x < 3C , then ||¢™||x < M for all n provided that M
and T are chosen sufficiently small. To do so, if ||¢"||x < M, we have from (4.13) that

/ / "+1(t_0:ro,£o 2 déodry < 2/ / |90 0 ,_(0) déodo
R3 JR3 R3

w2 [ e (< [ Eenas) (F sr (22)) 0 X o) S| it
o 0 (4.14)
w2 L[ e (<[ maEenas) @t X, 2y " e
j=1
From (4.8)3 and (4.4), we have
I <20, / /R oot § O géodag -
<acsf [ sl t) g
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b<4 LAﬁ*ﬁK 7))

(n.X
)
rp( L) ) X ) 2() (4.16)
= 202/ /R3 /Rs M_(Z(n)) déodxodn

§4C/ / / lg" (n,2,6)|2 dédxd ’
o Jro Jrs M- S

where in deducing (4.16), we have used (4.11).
For I3, we have from (4.8)3, Lemma 2.1, and Cauchy-Schwarz’s inequality that
déodzo_

Is < O(1) /RS/RS
)HQ(g™, ™) (. X (0), Z(n))Pdn| {576

T
-11Q(g™.g™) (1. X (m),E(m)|?
/0 A—w /I{3 M- (€0) dEodzodn (4.17)
T
~11Q(g™,9™) (1, X (n).E(n))|?
/0 /R3 /RS Moz dsodzodn
T n T 2
/R?’/ Vﬁ -11Q(g 79_)((27), 23l d¢dxdn

R3
1)M*.

/ " exp (<2 [ ua((5))ds ) (S )i

zT
[I]

g
[I]

Inserting (4.15)-(4.17) into (4.14) deduce
g™+ (t.x.)[? lgo (=.€)|? 4, 72
L | estelacar <aco [ [ 18202 dedn + 0(1) (314 + T

T
" ()2
+4Cy /O /R ) /R gt dedadt.

By exploiting the Gronwall inequality and by choosing 7' > 0 sufficiently small such that
exp(4CyT) < 2, we have from the above inequality that

n+1 T 2 T 2
e /Rawdfdx <80 @de o) (M +T?).  (4.18)

On the other hand, we can get by repeating the techniques used above that

[] mmw”®%wm<d//mo'%w
R3 JR3 (4.19)
) (M +T?).

Combining (4.18) with (4.19) yields

/ / 9"+1('f,m7€)2d£d$+/T/ / (1+|§\)1|\€I”j(1§()t,x,€)|2dgdxdt
R? JR? R? JR? (4.20)
<4c2/ / e P gege + O(1) (M +T2).
R3
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For the corresponding estimate for 9*9%g"+1(t, x, &) with |a| + |3| = 7,1 < j < 4, since

9°0° (Lggg"™) = Lag (80‘859”“) 19 5 e (aa 9% M, 9o’ 95~F G )

0<|a’|+|ﬁ’\<J @

o n s 80‘8[3 n+1
= —v55(€)0°0%g" " + VMKy; (\&)

+2 2 oryQ (070 M, 009G
o<lo’iHEI<i
it is easy to check that it solves

(000%g"+1) + &V, (0°0%g™H) = V,® - Ve (907" +1)

— () 0°0P g + VMK (a“f‘”g”“) +2Q (9°9°9", ")

VM
— Y CJ9%¢ v, (9095 gt
e P ( ) (4.21)
+ 3 CYVL0YD - Ve (9000
la/|=1
+Sl.o.t)

g = 070 go(w,€).

Here
Soi=2 3 50 (aa 99 M, 9o~ 98-8 G
0<|@’\+|B’\<J “
+ T cfq (aa 8% G, aa*a’aﬁfﬁ’c;)
o<laitIgl<i
+ Y CY¥VYP Ve 9l gt
1<|o/[<]af

Compared with the estimate on ¢"*!(¢, z,¢), the only difference is to estimate the first and the
third tems in S;, ¢ when the order of the derivatives of the potential of the external forces ®(x)
w.r.t. x is more than 3 which can be controlled suitably by using Lemma 3.2. Hence

/ / \aaaﬁg"“(tms\ dédz + / / / (A+EDIO° 079" 2 (2 e g
R3 JR3 - R3 M-(¢) (4.22)

90 go(z,&
< 4022/Rs /R:i%dédx—kO(l) (M4 72).

Thus (4.20) together with (4.23) imply
lg" % < 4C3lg0ll% +OQ1) (M* +T72)
<A 4 0(1) (M +T?) (4.23)
< M?
provided that we choose M > 0 and T' > 0 sufficiently small such that

o() (M*+1?) < SM%
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Moreover, for each |a| + |B| < 4, similar to that of (4.13), we can get a similar integral
formula for the solution 9%9° g™+ (¢, z,€) of (4.21), from which and (4.23) one can easily verify
that this integral equation can be solved on the existence of ¢g"*1(¢, x, ¢) by the Neumann series
for small T}, and further that %“g)xf) € BG, ([0,7), 2 ¢ (R? x R?)) provided that

0°9°g"(t,z,€)

M © BC, ([0,7), L3¢ (R* x R?)).

This observation together with (4.23) imply that g"*1(¢,z,&) € ﬁf;g([o, T)).
To show that {g"(¢,z,£{)} is a Cauchy sequence in ﬁié([O, T)), we set

W (tw,€) = g™ (L 2,6) — g"(t3,8), n >0,
then h"(t,z,&)(n > 1) solves

W4 € - Voh™ — V,® - Veh?

— (O + VMK (=) + Q) £ Qe ), (424)
h™(t, z,&)|t=0 = 0.

From (4.24), we have by repeating the argument to deduce (4.23) that
n 1 n—1
B < IRy, =1 (1.25)

provided that we choose M > 0 and T" > 0 sufficiently small. Thus {¢"(¢,z,£)} is a Cauchy
sequence in ﬁig([O, T)) and we finally arrive at

Lemma 4.2 (Local existence) For any sufficiently small constant M > 0, there exists a pos-
itive constant T*(M) > 0 such that if

0% (fo(x,€) — M(x, €))
M_(¢)

Efo)= D

o +]8]<4

< )
— 30,

L2 ¢(R®xR3)

then the Cauchy problem (1.1), (1.2) admits a unique classical solution f(t,z,&) € ﬁi,é ([0, T*(M)))
on [0,T*(M)) x R? x R? such that f(t,z,£) >0 and

aaaﬂftv 75 _M ag 2
sup 5 /Rg/RS\ ((;‘/I) (z ))IdfdeM.

0T (M) |y}l <4 -(&)

4.2 Global existence

By combining the local existence result Lemma 4.2 and the energy estimates obtained in Section
3, we can conclude immediately that the Cauchy problem (1.1), (1.2) has a unique global classical
solution f(t,z,€) € HiyE(RJF) satisfying f(t,z,£) > 0.
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To complete the proof of Theorem 1.1, we show that (1.18) holds. In fact, we have from
(3.35) that

|v|z<3/00 /R3 /stdédf”m < O1),
2

/ / 10SE ged| dr < O(1 / / / GO G ge iy
ly|<3 @ Jrs Jra M- M<3 R3 JR3

. (4.26)
/ / / MNP e g dr < O(1),
1<|y[<3/0  JR? JR3 -
*la 67 (M -2 * |67 (M-M)|2
dt/Rg [m WM dedz| dr < O(1) 724/0 /Rg /Rg M dedadr

< 0(1).

Consequently

/ / 2 (M= M)P F1RGE g — 0. (4.27)
R3

1<| |<3

Since

1 1
IM-M2+|G/? IM-M]2+G[? ;. ? 0 (M=M)[2+[0°G[2 . | *
o e <o ([ f, M) (2 [ [ Irorgrerera)
1 1
0°(M-M)P+10°GI? 5 | * / / 0" (M-M)P+10° G )
o) <|oz21 /R3 /R3 M- dé) <|a|22 R? JR3 M- @“)

we have from (4.27) that

lim sup / (‘M — M+ ’GP) (t,z,£)d¢ = 0. (4.28)
R3

t—o0 z€R3 M_

Thus

: [ (2O -M@O ;0 - : / IM(t,2,6) ~M(2.8) [+|G (t,2.)
frg o, Jo MR 2 O iy s, [ MRS

=0,

which is (1.18). And this completes the proof of Theorem 1.1.

5 Appendix

In the last section, we will give the proof of Lemma 3.5 and Lemma 3.6 respectively.
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5.1 The proof of Lemma 3.5

Applying 970%(|y|+|3| < 4) to (1.10) and integrating its product with % over [0,t] x R3xR3
yield

t
Y OB G |2
%/ / 1070°GE jeda
R3 JR3 0

t
B 998 G-070° (P (£V,G))
/0 /R3 /R3 i dédxdr

t Y 9B . . Y]
+// / PPC(VeVDE) e iy (5.1)
0 JR3 JR3
r

678BG~8;/6193(LMG) dédzdr

+/t/ / avaﬁc.maﬁ(Q(G,G))dwxdT
0 Jr3 Jrs M

where Iy — I15 are the corresponding terms in the above equation.

Due to

P1<£-va>={FzA( u) % +EBjk(m)umJ}M,

0700 (P1(€6-VaG)) = € V,00°G + Y CF97¢-V,00° 7 G (5.2)
6=1

— 3 0 (6 VaGo)md, )
7=0

we have from Cauchy-Schwarz’s inequality that

v s
L <oMm(+d) Y // /RSM |1<\9/;a G|2d§dd (5.3)

Iy 1+18"1<4

I/\
~1Q

/ / / O ICE je gy 4 0(1) / / / (OO0 PEVMDE e i

R3 JR3 R3 JR3

// / malOID0°CE gegudr 1 O(1) // V.07 (u, 0)[2dadr (5.4)
R3 JR3

so0+8) 5 [ 1070~ p.u.0)Pdsar,

1<|y/|<]y] /0

IN
ISE
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and

Iy < 4// / ma@IVO°GE g g7 4 O(1)(A+ 6) // / @I 07 G e g
R?/R? m+|6'\<4 RS JR?
/ / / QY007 GE e gy
|,6'| Iﬁl 170 JR? JR?

1%4\Y/ \VL(;WG\
/0 /R3 /RgiM dédxdr

+O(1)(A+6) > /t R3\87/(p—ﬁ, u, 0)|>dzdr.

1<]y/|<]y] 70

(5.5)

As to Ihp, due to

O {V,®-Ve0'G} =V, @ Ve O'G+ Y CYV.0D V0T G,
0<y' <y

we have from Lemma 3.2 that

£)|07 9% G|?
Lo <OoMA+48) Y (€ dedzdr. (5.6)
Iy |+|ﬁ’<4/ / [Rg M-

Moreover, since

PO(LmG) = Lm (00°G) +2 5 €7 Q(0"M,070°7G)
0<p'<pB
+2  x  ayQ(ore Moo G),
0<y'<y,B'<B

we have from Lemma 2.1, Lemma 3.3, and Corollary 3.1 that

I < / / / mOIPCE e g
R3 JR3
+O()(A+6) X // / (@070 G e g7
IYIHRI<4 /0 SR JR? -

/ / / (007 GE ye gy
,3,<B RB R3

t
LO)A+6) T / [ 167 (0= p.u.0) Pdadr.

1<ly/[<]y| /0

(5.7)

Similarly, we deduce from Lemma 2.1, Lemma 3.3, and Corollary 3.1 that

v Y 56’
I <O(M)(A+08) > // [RB m( |1\8/16 G|2d§d dr. (5.8)

Iy [+16"1<4

Inserting (5.3)-(5.8) into (5.1), we can get (3.19) immediately. This completes the proof of
Lemma 3.5.
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5.2 The proof of Lemma 3.6
For Lemma 3.6, since

(f—ﬁ)t+§-vx (f—M) ~V, PV, (f—ﬂ) = LmG + Q(G, G), (5.9)

we have by applying 07(2 < |y| < 4) to (5.9), multiplying it by w, and integrating the
final equation w.r.t. ¢,z, and £ over [0,t] x R3 x R? that

! /R 3 /R 3\m<fM>fd§dxt

:“/ /3/;’8” ML (M, + € - 9, M) dgdudr
RS JR-

J— t NI
+/ / / o (f-M)o( X/}Eé.vg(f_M))dfdl‘dT—F/ / / Bv(f—Ml)v?”(LMG)dédxdT
0 Jr3 Jrs 0 JR?JR?
. = 16
0 JR3 JR3 j=13

where I13 — I1¢ are the corresponding terms in the above equation.
Now we estimate [;(j = 13,14,15,16) term by term. First from Lemma 3.2, we have

¢ L (p RN (2
I < 0(1)(A+5)/0 /RS /Rga(l{/l_M)dgdxdT

(5.10)

. (5.11)
<omm+o [ [ ( > 0 (p-puo)P+ [ ”M@}‘“’”G'st) dadr,
0 JR3 \1<|y/|<] R3 -
and
e < O(1)(A + 6) // / @I OV GE e
% |+\ﬁ’|<4 R? JR (5.12)
om0+ s [ [ 1070 pu.0)Pdmar
1<|y/[<[]4| /O JR3
For I;5, due to
/ PO((‘)VM[’,_;KZ[,Q])O'Y(LMG) dé- — 0’
R3
(o o) s
’ = < <
[m - dg=0, 2<py|<4,
we have from Lemma 2.1, Lemma 3.2, Lemma 3.3, and Corollary 3.1 that
Iis = / t / / P1 (O Myp001)0" () e g 7
0 JR3 JR3
+/t/ / P1(8“’(P(M[l,u,el_;\/[/[u,o,e])))OV(LMG)dgdxdT
0 JR3 JR3
t

+// / %Mdgdmm' (5.13)

0o JrR3 JR3

¢ t
s—g// / MOWGE gedrdr + O1)(A+6) 3 07 (p — P, u, 0)*dadr
0 Jr3 Jrs 1<ly/|<]y| /0 JR3

LO)A+8) X /t/ / e 10707 GE e g i
lv/|+61<4 /0 JR3 JR3 -
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Finally by employing the same argument as above, we can estimate I;g as follows

Lis < O(1)(A +9) / / / Qo OOV GE e
Iy’ |+\5’|<4 R? JR?

LOMA+6) T /R3\av(p 7, u,0)|2dudr.

1<]y|<|] Y0

(5.14)

Substituting (5.11)-(5.14) into (5.10) yields

/ / o (W[ dgdx+// / ZHGILlTp e
R3 JR3 R3 JR3

|m '98’ G2
OWeh? +omR+d) v | A /R e dedrdr  (5.15)

+O(1)(\ + 6) // 107 (p — 7, u, 0)2dxdr.
1<|7\<M R?

Having obtained (5.15), (3.26) follows immediately. This completes the proof of Lemma 3.6.
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