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Abstract. We study the longtime behavior of spatially inhomogeneous scalar balance laws with
periodic initial data and a convex flux.

Our main result states that for a large class of initial data the entropy solution will either
converge uniformly to some steady state or to a discontinuous time-periodic solution. This ex-
tends results of Lyberopoulos, Sinestrari and Fan & Hale obtained in the spatially homogeneous
case. The proof is based on the method of generalized characteristics together with ideas from
dynamical systems theory.

A major difficulty consists of finding the periodic solutions which determine the asymptotic
behavior. To this end we introduce a new tool, the Rankine-Hugoniot vector field, which describes
the motion of a (hypothetical) shock with certain prescribed left and right states. We then show
the existence of periodic solutions of the Rankine-Hugoniot vector field and prove that the actual
shock curves converge to these periodic solutions.
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1. Introduction

In this paper we study the long-time behavior of scalar, spatially non-homogeneous hy-
perbolic balance laws

w5 f(w) = g(u,2) (1.1)

with £ € S' ~ R/Z and t > 0. The flux f : R — R is assumed to be a strictly convex
function while ug € BV(S*,R) belongs to the space of functions with bounded variation
in the sense of Tonelli. Therefore a solution u(z,t) maps the cylinder S* x R* into R. In
the case that f is a convex function a solution u(z,t) is called an admissible solution if it
satisfies for almost all ¢ > 0 the entropy condition

u(z—,t) > u(x+,t) (1.2)
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where u(z+,t) denotes limp\ gu(z £ h,t). We can, and will, assume that admissible solu-
tions, possibly after a modification on a set of zero measure, are continuous from the left
and satisfy the entropy condition for all ¢ > 0.

The Cauchy problem associated with a scalar hyperbolic conservation or balance law
has a long history. It is known, that there are in general no classical solutions of this
problem for all times, even if the initial data is smooth. In general there is no unique
weak solution to equation (1.1), but the entropy condition singles out a unique one. In
1967, Volpert [16] could show that there is a unique solution that satisfies the entropy
condition (1.2) if the initial data is continuous.

In 1970 Kruzkov proved in [9], that there is a unique solution fulfilling the entropy
condition, even if the initial data does not. At the points where the entropy condition is
violated in the initial condition, rarefaction waves smoothen these points in arbitrarily
short time. Moreover, a comparison principle holds: If we consider two solutions for which
the initial data are ordered, then the solutions remain ordered for all positive times.

In [12] Lyberopoulos studied equation (1.1) with g(u,z) = u and f strictly convex. He
was able to show that the solution to periodic initial data with period L and fOL up(z)dz =0
converges to a traveling wave for ¢ — oco.

Fan and Hale [5] and Sinestrari [14] published a result for general source terms g(u,z) =
g(u) that possess only single zeros and fulfill the sign condition g(u)u < 0 for large u. They
were able to show that the solution either converges uniformly to a spatially homogeneous
steady state or it converges to a discontinuous traveling wave with wave speed f'(azm),
where as,, is one of the zeros of g with ¢'(asn,) > 0.

In this work we will consider more general source terms g(u,z) € C! that depend ex-
plicitly on the space variable z. Technically, this causes several difficulties: The stationary
solutions are no longer constant functions, comparison with spatially homogeneous solu-
tions is not available any more and the characteristic system associated with (1.1) is not
of skew-product structure as in the spatially homogeneous case.

The main result states that the solutions either converge against a spatially inho-
mogeneous stationary solution or converge towards a shock solution that is periodic in
time. The description via unstable fibers of periodic orbits of the associated characteristic
equation shows that these time-periodic solutions are periodically modulated waves. The
results in this article are based on the first author’s thesis [4].

2. The method of generalized characteristics

Characteristics are a classical tool to study smooth solutions of first order partial dif-
ferential equations. Dafermos [2] introduced the notion of generalized characteristics and
showed how they can be used to get information about the structure of non-smooth
solutions of scalar conservation laws with a convex flux. His method of generalized char-
acteristics is crucial for our analysis and we recall in this chapter the notions and results
we will use later on.
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Definition 2.1. A Lipschitz curve z = £(t), defined on an interval I = [0,00) s called a
generalized characteristic associated with the solution u of (1.1) if it satisfies the differ-
ential inequality

£ € [fulw(E()+,1)), fulu(€(t)—,1))]
for almost all t € 1.

By the theory of Filippov [8] it can be shown, that there exists at least one forward
and one backward characteristic through any point (z,%) € (R x Rt).

It seems that definition 2.1 does allow many different propagation speeds. However,
as the following theorem shows, this is not the case:

Proposition 2.2. Let &(-) : [a,b] — R be a characteristic. Then the following holds for
almost all t € [a,b]

fu(u(€(t)£,1)) if w(€(t)—,t) = u(é(t)+,1)

£(t) = (2.2)

fu(€(®)+,1) — f(u(é(t)— 1))
u(é(t)+,t) — u(€(t)—,1)
The second equation in this theorem is called the Rankine-Hugoniot condition for the

propagation speed of shocks.

i uw((t)=t) > u(l(t)+,1)

Definition 2.3. A characteristic on the interval [a,b] is called genuine, if
u(é(t)—,t) = u(é(t)+,t) for almost all t € [a,b].

The set of backward characteristics through (z,t) spans a funnel between the minimal back-
ward characteristic £ (¢;%,t) and the maximal backward characteristic £*(¢; Z,t) through

(z,1).

Proposition 2.4. Let (z,t) € R x Rt be arbitrary. Then the minimal and the mazimal
backward characteristic £ (-;z,t) respectively £¥(-;z,t) are genuine characteristics.

The following theorem is central for our further analysis, as it relates the partial
differential equation (1.1) to a system of two ordinary differential equations:

Proposition 2.5. If£(-) s a genuine characteristic on the interval [a,b] then there exists
a function v(-) on [a,b] such that (£(-),v(-)) is a continuously differentiable solution of the
following characteristic system of ordinary differential equations

£(t) = fulv(t))
o(t) = g(£(t),v(t)) (2.4)

If
v(0) = u(¢(t0),0)
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then v(t) is a solution of equation(1.1) on the characteristic £(t) at time t. We therefore
have:

u(§(t)—,t) = v(t) = u({(t)+,t) Vte€la,b]. (2.6)
From the theorem of Picard-Lindelof we deduce:

Corollary 2.6. Two genuine characteristics only intersect at their endpoints, in partic-
ular backward characteristics do not intersect for t > 0.

Corollary 2.7. If the solution of the characteristic system (2.4) through any (z,v,t) €
R x R x R™ on [0,%] is bounded, then every backward characteristic through any (z,%) is
defined on the interval [0,1].

Corollary 2.8. If the solution through any (z,v,t) € RxRxR* is bounded on [t, o), then
there is mo blow up in finite time on any forward characteristic, therefore it is defined for
all times in [t, 00).

Proposition 2.9. If the assumptions of the corollaries 2.7 and 2.8 are satisfied, there is
a unique forward characteristic through any point (z,t) € R x Rt.

Forward characteristics can be used to construct the solution of a scalar hyperbolic
balance law from the initial condition ug(z), even if the solution or the initial condition
is not continuous.

The backward characteristics are useful to analyze the qualitative properties of a given
solution. Mainly this aspect will be used in the following chapters.

3. Longtime behavior of solutions

In this chapter we will state the technical assumptions and formulate our main result,
theorem 3.6.
Like in [5] and [14] we need assumptions on the flux function f and on the source term

g:
(A1) f e C?*(R,R) and f is strictly convex, i.e. f”(u) >c > 0 for all u
(A2) g € C! and there exists a constant M > 0 such that

u-g(u,z) < 0for all [u| > M and all z € S* (3.1)
(A3) The characteristic system (2.4) possesses no equilibria.

Condition(A1) is central for the method of generalized characteristics.
A direct consequence of (A2) is, that the solutions of (2.4) remain bounded for all
positive times ¢ > 0 because for v the following estimate holds:

|v(t)] < max {iréasalc|u0(m)|, \M|} vt € [0, 00).

From this we deduce with proposition 2.9 the existence of a unique forward charac-
teristic through any point (z,t) € S x R.
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As a direct consequence of the entropy condition (1.2) and the periodicity we have the
following statement:

Lemma 3.1. Let a(-) be a continuous function on [¢1,&] C S*. If the solution of equation
(1.1) at a fized time t > 0 satisfies

u(éy,t) <a(é) and u(éet) > a(é2) (3.3)
then there is a € € (£1,&) with u(€,t) = a(€).

Proof. Without loss of generality we can assume &; < &, then

& :=sup{y € [&1,&]; u(é,t) < a() for all & < € <y}

has the desired property. To see this we note first that u(-,¢) must be continuous at z = &.
Otherwise the entropy condition (1.2) requires

w(é+,t) < u(é—, 1)

and since BV functions possess one-sided limits u(¢,t) < a(¢) would hold in some right
neighborhood of €. This however contradicts the definition of ¢, so u is in fact continuous
with respect to z at z = £.
The definition of £ now implies that u is strictly bigger than a(¢) in a right neighbor-
hood of . Together with the continuity at ¢ this shows that u(¢,t) = a(¢).
m|

To study the longtime behavior of solutions we need some further assumptions on
the stationary solutions of (1.1). We will formulate them using the periodic solutions of
equation (2.4). Due to assumption (A3) they have to wind around the cylinder S x
R because contractible periodic orbits would have to contain some equilibrium in their
interior. We require

(A4) All periodic orbits of the characteristic system (2.4) are hyperbolic in the o.d.e.
sense, i.e. their nontrivial Floquet exponents do not lie on the imaginary axis.

Remark 3.2. By dissipativity (A2) and o.d.e hyperbolicity (A4) there are only finitely
many periodic orbits of (2.4). Moreover, the sign of their Floquet exponents alternates,
the first and the last being positive. In particular, the number of periodic orbits is odd.

Finally, all periodic orbits can be parameterized over ¢. This leads to the following
notation:

Definition 3.3. Let {(vi(t),&(t)),1 <i <k} be the set of all periodic orbits of (2.4),
Ti,..., Ty denote their minimal periods and p1, ..., py their nontrivial Floquet exponents.

Before stating the main theorem of this paper we will prove an important theorem on
the stationary solutions of the hyperbolic balance law.
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Lemma 3.4. The periodic solutions of the characteristic system can be identified with
the continuously differentiable stationary solutions of the balance law, more precisely:

There is a one-to-one correspondence between the periodic solutions (vi(t), &i(t)) of (2.4)
and the stationary solutions u(z,t) = a;(z) of (1.1).

Proof. Assume first that (v;(¢),&:(t)) is periodic: v;(T;) = v;(0) and &;(T;) = &(0). Set
ai(&i(t)) := vi(t).

Then a; is a steady state solution of the balance law because differentiating both sides
gives

al(&(t)) &(t) = vi(t)
= q;(&(t) f(vi(t)) = g(&i(t), vi(t))
= a;(&(t) f'(ai(&i(t))) = g(&i(t), ai(&i(t)))-

If, vice versa, a;(z) is a steady state of the balance law we let (v(t),£(t)) be the solution
of the characteristic system (2.4) with initial condition £(0) = 0 and v(0) = a;(0).
We have to show that a;(£(t)) = v(¢) holds for all ¢ > 0. To this end we consider

%(ai(ﬁ(t)) —v(t)) = a;(£(t)) f'(v(t)) — 9(£(2), v (1))

Ao 11000 - o(e(0),o00)
_ (06 () - 9(60)) ) + 0(6,v) (F(00) — Flasle(®)))

f'(ai(€(t)))
Since g and f’ are Lipschitz and f'(a;(z)) is uniformly bounded away from zero we can
estimate

9 (as(e(t) —v(t)) < L (@:(€(®) — v(0)

for some L > 0. A standard application of the Gronwall lemma now shows that a;(£(t)) —
v(t) = 0. O
Remark 3.5. We note that there cannot exist discontinuous steady states if (A 3) holds.

If f’ changes its sign we have to include another assumption which restricts the possible
initial data.

(A5) Let vy denote the zero of f'. We denote with a, the smallest stationary solution
which is larger than vg. Then the initial data ug satisfies

ug(z) > a,(z) Yz € St

Now we can state the main theorem.
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Theorem 3.6. Consider the hyperbolic balance law
9 (@ t) + o flu(z,) = g(u(z ), 2)
8tu:v, e u(x,t)) = g(u(x, t),
u(z,0) = up(x) (3.9)

with ug(z) € BV(S',R). Under the assumptions (A1)—(A5) the entropy solution u of
equation (1.1) either satisfies
tli>nolo [u(-;t) — azmt1()||0 = 0

for some m, or u(-,t) converges in L' to a Tem-periodic solution. Except for the stationary
case ug(z) = agm(z) this Tom-periodic solution is discontinuous, i.e. a shock solution.

Remark 3.7. If f' does not possess a zero we do not need assumption (A5). In this case
one should think of a, := —oco in the statements and proofs.
Moreover, assumption (A5) may be replaced by

(A5’) The initial data ug satisfies
up(z) < ap_1(z) Yz € S
where a,_; is the biggest stationary solutions which is smaller than vy.

The proof can be reduced to the proof for (A5) after performing a transformation u
Vo — U.

However, we strongly believe that the statement is true under the assumptions (A1)—
(A4) alone.

4. Proof of Theorem 3.6

The proof will be accomplished by several lemmata. First we modify ideas of Fan &
Hale [5] and Sinestrari [14] to be able to deal with the inhomogeneous source term. This
will allow to prove that some (in fact, almost all) solutions converge uniformly to some
steady state. In contrast to the case g = g(u) these steady states may be spatially non-
homogeneous. In addition, there are solutions which converge to a non-stationary and
discontinuous asymptotic state. A difficulty arises when we want to identify these discon-
tinuous asymptotic states. While in the spatially homogeneous case g = g(u) the shocks
propagate with constant speed, the location of the shock curves has to be determined
differently in our case. To this end we introduce the Rankine-Hugoniot vector field which
for any point (z,t) corresponds to the motion of an hypothetical shock located at this
point with certain left and right states.

We begin by showing that the solution u after a sufficiently large time T' can intersect
at most one stationary solution.
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0a(0) %(0) v

Fig. 1. Situation in lemma 4.2. The relation v,(t) < vp(t) for t > 0 does not follow immediately from
16(0) < vp(0).

Lemma 4.1. There is a constant T > 0 only depending on f and the stationary solutions
ai,as,...,ag, such that for all t > T the set

k
{(u(&,1),8); €€ 8} | J{(ai€),6); € € '}
i=1

is either empty or a subset of {(an(€),£); € € S*} for somen € {1, --- ,k}.

To prove this we will first need two other lemmata. The first of them compares two
solutions of the characteristic system (2.4) which run around the cylinder in the same
direction but start in different points on the line ¢ = 0. Here and in some other places it
will be convenient to work in the extended phase space with z,¢ € R instead of z, ¢ € St.

Lemma 4.2. Let (vq(t),&4(t)) and (vp(t), &(t)) be the two solutions of (2.4) with initial
conditions £,(0) = £&,(0) =0 and a,(0) < v4(0) < vp(0) < Q where a, is the smallest periodic
solution bigger than vy and Q > 0 is some arbitrarily large constant.

Consider these solutions in the extended phase space (v,€) € R x R and let T, and T,
be the times for which £,(T,) = &(Tp) = 1.
Then there exists a constant k > 0 depending only on Q but not on v, ,(0) such that

T, — Ty > k(vp(0) — v4(0)), (4.2)

in particular, the solution with larger v is faster.
Moreover, £,(t) < &(t) for allt > 0.

Proof. For a,(0) < v < Q we have the estimate 0 < ¢y < f'(v) = % for some constant
¢o > 0. Therefore we can apply the inverse function theorem to £(¢) and obtain the inverse
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function ¢(¢) which satisfies the equation
dt 1

d€ — F(@(e)
v(t(€)). Denote with ¢,(¢) and #,(¢) the inverse functions of ¢, and &, then
£a(D) 0

i
_ B d¢ dé
‘!“‘ ; »>!f%M»

since 74(€) < p(€) for all £ € R. The same calculation shows that
& ()

where (¢
t

) =
forany ¢ >0

which implies & () > £,(t) since f'(9p(€)) > 0.
To prove the estimate (4.2) note first that the trajectories 9(¢) of the characteristic
system satisfy the equation

dv _ g(¢,9)

a  f(v)
For a.(¢) < 9(¢) < Q the right hand side is uniformly Lipschitz in ¢. A standard Gronwall
argument then shows that there is some constant ¢; > 0 such that for all £ € [0, 1]

5(€) — Ua(§) > c1(5(0) — 04(0)) = c1(vs(0) — va(0)).
This implies by convexity (A1) of the flux that

F'(@6(8)) = f'(Ta(€)) > cer(vp(0) — va(0)) V€ € [0,1].

i
) F@a(€)) ) F(@(0)

:jf((»—%}@)

In particular

P @) E)
cer(vp(0) — va(0))
> 1 bf,(Q)Z — H(Ub(o) — ’Ua(O))- O

If (vq,&,) and (vp, &) are periodic solutions of (2.4) this turns into a statement about
their periods.

Corollary 4.3. Ifa; <az <...<ar_1 <vg <ap <...<ay are the steady states of (1.1)
then the periods of the associated periodic orbits of (2.4) satisfy

T'<To<...<T, and Ty >...>Tp_1 > Ty



10  Julia Ehrt and Jorg Hérterich

Lemma 4.4. For any fized T > 0 and any number § > 0 there exists a time t > 0 with
the following property: If £1(t) is a genuine characteristic on [0,t] corresponding to a T-
periodic solution of (2.4) then there cannot be another genuine characteristic &x(t) defined
on [0,t] such that

sign(€1(t)) = sign(éa(t)) Yt € [0,4].

and the time interval for one round trip of & around the S* is always greater than T + 6,
t.e. if t; € [0,t] are the times with &(t;) = £2(0) and ©; :=t; — t;_1 then

©;>T+6

cannot hold.
Simalarly, there cannot be a genuine characteristic £x(t) defined on [0,t] with
sign(€1(t)) = sign(éx(t)) and ©; < T —§ for all i.

Proof. Suppose there are two such characteristics & (+) and &»(-) for all times ¢. We have
to show, that they intersect in finite time. This contradicts corollary 2.6.

Let ©; > T + § for arbitrary i.

We work in the extended phase space ¢ € R and assume without loss of generality that

£1(0) < £(0).
We set © :=T + ¢ and choose n € N large such that

(n+1)T < n®.
From this we deduce
E((n+1)T)=¢6(0)+n+1
but
2((n + 1)T) < £(0) +n <& ((n+1)T)
holds as well. From the intermediate value theorem we know that there is a time ¢, > 0

when &; and & intersect. This contradicts corollary 2.6 and thereby proves the lemma. o

Proof of lemma 4.1. We argue by contradiction and assume that the solution u(-,t)
of (3.9) intersects two different periodic orbits of (2.4) for all ¢ > 0. Since (2.4) has only
finitely many periodic orbits there are i,j € N such that

k
{(u&,1),€); € € 5"} 0 [J{(ai(9), 0); € € 5}

is a subset of

{(ai(¢),€); € € 8" U{(a;(6),€); €€ 5}

but not a subset of only one of the two latter sets.
We will show how this leads to a contradiction.
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By (A5) and comparison with the stationary solution a, we can assume a, < a; < a;.

Here, as before, a, is the smallest stationary solution bigger than vg if vy is a zero of
f'. If f' does not possess a zero then we assume only a; < a;. From corollary 4.3 we obtain
some ¢ > 0 such that T; — T; > 4.

Choose t large such that it satisfies the assumptions of lemma 4.4. If the solution u(:,?)
intersects both trajectories a;(-) and a;(-) in ; and x; respectively, then the corresponding
backward characteristics &(-; z;,t) and &;(-; z;,t) were both genuine characteristics on [0, ?)
and T;- respectively Tj-periodic.

From lemma 4.4 we now deduce that this is impossible. Hence u(-,#) cannot intersect
more than one periodic orbit of (2.4).

i

Lemma 4.5. Let a¢(§) := —oo0 and ap41(€) := +oo. If there are constants § > 0, tg > 0
and an integer 0 < m < 21 such that

u({‘,to) € [agm(ﬁ) + 5, a2m+2(5) — (5] fO’f’ all é' € Sl
then

u(-,t) — agmy1 () uniformly for t — oo .

Proof. Let u(&,ty) C [azm(€) + 0, a2m2(€) — 6] for all ¢ € S'. The comparison princi-
ple applied to u and the stationary solutions as,, and as;,12 then shows that w(¢,t) C
[a2m (€), aomi2(€)] for all t >t and all ¢ € St.

Without loss of generality we can assume ¢y = 0.

To prove the uniform convergence we argue indirectly and assume that u(-,¢) does not
converge uniformly to as;,,11. Then we can find a sequence (zg,tx) such that ¢, oo and

u(zg, ty) € (aam(Tk), aam+1(zk) — €) U (azm+1(zk) + €, azm+2(zk))
for all ¥ € N and some ¢ > 0. Without loss of generality we may assume u(zg,tx) €
(azm(@k), a2mi1(zk) — €).
Now we consider the minimal backward characteristics emanating from the points (zy, tx).
Since the stationary solution as, corresponds to an unstable periodic orbit of (2.4), this
orbit is asymptotically stable in backward time. This implies

w(§(0;zx, k), 0) — a2m(€(0; z, tk))
as ty — oo. This contradicts the assumptions of the lemma. O
Lemma 4.6. Either there exists am € {0,---, 51} such that
(I) limy o0 [|u(, t) — a2mt1()|leo =0
or there is am € {1,--- , 51} such that the following holds:
(I1) V¢t >0 Jz € S* such that u(z+,t) = azgm(z) or u(z—,t) = asm ()
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Proof. If
k
{u(&,1),8); €€ SN [ J{(ai(®),8); €€ 5"}
i=1

is empty or contained in {(agmy1(£),€); ¢ € S'} for sufficiently large ¢, then we deduce

that for every fixed ¢ € S! the inequality as;,(€) < u(€,t) < azm2(€) holds true. Otherwise

lemma 3.1 proves that there would have to be a € with u(£,?) = agm(€) or u(€, 1) = agmi2(€).
Due to the compactness of the S* there is a 6 > 0 such that

u(é,t) C [aam(§) + 6, azmy2(§) — 4]

With lemma 4.5 we deduce (I).
In the case that

k
{(u(&,t),€); €€ SN U{(ai(@,s)w €S'}

is not empty and a subset of {(aam(£),&); &€ € S'} for sufficiently large ¢, we deduce that
there must exist an extremal backward characteristic £*(t) or £ (¢) such that

u(€* (@), %) = azm(¢(F))
If we now solve the characteristic system (2.4) backward with the initial data vy = agm (¢(%))
and & = £(f) we obtain the characteristic claimed in (II) with

u(é(t),t) = aam(£(t)) Vit € [0,1). O

The second case of lemma 4.6 is the one we will now further analyze, because this is
the case where the solution u(-,t) does not converge to a stationary solution.
For this reason we will assume for the rest of this chapter

(A6) For all sufficiently large ¢

k
& # {(u(6,1),0); € € 510 | J{(@i(€),); € € S € {(aam(€),); € € 51}

i=1
holds for am € {1, .-+, 551}

Remark 4.7.

(i) If (A6) is violated, we are automatically in case (I) of lemma 4.6.
(ii) (A6) implies the existence of at least one Th,-periodic, genuine characteristic
defined for all ¢ > 0.
(iii) Combining (A6) and lemma 3.1 shows that agy,_1(¢) < u(é,t) < agm1(€) for all
¢ € S and all sufficiently large t.

Periodic genuine characteristics that exist for all times ¢ > 0 will play a major role
in the longtime behavior of those solutions which do not tend to a steady state. For this
reason we need to characterize the set of genuine periodic characteristics which exist for
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all ¢ > 0. To this end, we define the set A(f) C S? of all initial points from which a genuine
and periodic characteristic on [0,7] emanates. We will have to show that this set is not
empty even for ¢t — oo.

Definition 4.8. Fiz t > 0. Let A(f) C S be the set of intersections of extremal Top—
periodic backward characteristics through points (z,t) with the z-axis:

A(t) = {€5(0;2,1) € S*; u(@+,1) = aem(Z) or w(@—,1) = asm (%), € S}

Lemma 4.9. If (A1)—(AG6) hold then A(t) is non-empty and compact for arbitrary t > 0.

Proof. From (A6) and lemma 4.6 we deduce that A(f) # 0.
A(t) C 8! is compact if and only if A(f) is closed.
To show closedness we consider an arbitrary sequence y, € A(¢) and show that it has a
convergent subsequence.

By definition of A(f) there exist points z, € S* such that y, = £(9(0; z, ) where £© is
a genuine characteristic on [0,%] with corresponding terminal value v() = agp, ().

Since the sequence z, is obviously bounded there exists a convergent subsequence

T, — & where ¢(£) is monotone in £.
Without restriction we may assume that z,) converges to # from the left. Then
u(@,8) = lim u(zy),t) = lim amm(zy)) = azm(E).

This in turn implies that £(-; Z,¢, a2 (Z)) is an extremal backward characteristic

It remains to show that £(0;zy(n),t) — £5(0;Z,%) if n — oo.
This is a direct consequence of the continuity of as,, and the continuous dependence of a
solution of an ODE from the initial data. |

Remark 4.10. In [3] such globally defined genuine characteristics obtained as uniform
limits of extremal backward characteristics are called divides.

Lemma 4.11. Ift > 5> 0 then A(t) C A(3).

Proof. Let z € A(?).

Then, by definition, there exists some extremal backward characteristic &(-;Z,¢) with
w(T—,t) = agn(T) or u(z+,t) = aon(Z). By lemma 2.4 this is a genuine characteristic,
in particular, for 5 < ¢ the solution (-, 5) is continuous in £(s; z,t). Therefore

T =¢(0;2,t) = £(0;¢(5;%,1),5) = &€ A(3). O
From this we deduce directly that

Also) = [ A()

>0
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is a compact and non-empty subset of S! and can therefore be written as

o
A(o0) = S"\ | (bn, cn)
n=1
with at most countably many disjoint open intervals (b, cp)-
For every z € A(co) there is a genuine Ty, periodic characteristic ¢ defined for all
t > 0. In particular, there are characteristics 3,, v, such that

ﬂn(o) = bp Wi U(ﬂn(t), t) = a2m(ﬂn(t))
10(0) = e } tth {uwn(t),t) — a2 (1 (t)) } =0

For each n we consider the strip S, on the cylinder S x Rt bounded by 8,(-) and v,(-):

Sp = {(z,t) € S* x RY; & € [Ba(t), v ()]}

Outside the union of the strips S,, the solution is determined by the stationary solution
ao2m-
o
u(:c,t) = a2m(m) if (:E,t) ¢ U Sn
n=1
In particular, the special case of theorem 3.6 where ug(z) = ag, Vo € S corresponds to
A(co) = St
The following lemma is a straightforward modification of Lemma 3.8 in [5].

Lemma 4.12. For any ¢ > 0 there exists a time T(e) > 0 such that the following holds:
If ¢(-;z,t) is an extremal backward characteristic through a point (z,t) € S, with t > T(e)
then

'5(0;1_"’1_:) € [bn’bn + 6) U (cn - S,Cn].

Proof. If the claim of the lemma is false, we can find a sequence (&, tx) € S, With ¢, 7 oo
such that

lim £(0;zg,tx) = o for some zg € (by,cyn).
k—o00

The curve &(t; xg, ty) is a genuine characteristic for all ¢ € [0,¢) and u(é(¢; zg, tr),t) = v(t)
where (v, £) solves equation (2.4).

From remark 4.7 and the convexity of f we deduce that the sequence of the charac-
teristics &(¢; o, ) and their derivatives £(t; zy, t;) are uniformly bounded.

Restricting all these characteristics to an interval [0,7] with T > 0 arbitrarily large
the &(-; g, tx) with ¢, > T are equicontinuous on [0,7]. By the Arzela-Ascoli theorem
there exists a convergent subsequence converging to some 7(t) uniformly on the compact
interval [0, 7.

Since T is arbitrary, we may use a diagonal procedure to construct a subsequence
£(t; T(k), to(k)) Which converges to a genuine characteristic 7(-) uniformly on every compact
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interval. This process will give us a genuine characteristic » which is defined on [0, 0o0) with
n(0) = zo. We claim now that

u(n(0),0) = azm (o) (4.39)

To prove this claim we show first that u(zp,0) > aam(zo) is not possible. Since 7 is a
genuine characteristic this would imply that u(n(t),t) > a2 (n(t)) for all ¢ > 0.
Since asg, is unstable, u(n(t),t) converges to agm+1(n(t)).
We now deduce from lemma 4.2 that 5(-) rotates always faster around the S! than the
characteristics £,(-) and v, (-).
If t1,to,t3,... is the sequence of times where 7(¢;) = 0 then ¢;11 — t; = Thpt1 for i — oo.
Therefore we can deduce from lemma 4.4, that n and ~, would intersect in finite time.
This contradicts corollary 2.6 because both » and -, are genuine characteristics on [0, c0).
In the same way we can show that u(z¢,0) < aom(zo) is also impossible. Together this
proves (4.39).

Now from (4.39) we deduce u(n(t),t) = asm(n(t)) for all ¢ > 0. Therefore n(0) € A(c0).
This contradicts the assumption zg € (by, cp). O

Basically, lemma 4.12 tells us, that both 8, and ~, are attractive in backward time.
The following definition divides each of the strips S,, into two parts according to whether
some extremal backward characteristic tends to the left or the right boundary of [b,, c,].

Definition 4.13. Fix ¢ > 0 small and let T(e) be sufficiently large as in lemma 4.12.
Then for t > T(e) we define

Sn(t) = [Bn(t), 1 ()]
S;(E) = {z € Sp(t); £ (0;,1) € [bn, by + €]}
SH(t) :={z € Sp(?); £T(0;2,%) € [cn — &, ¢n]}

From this definition we deduce directly with lemma 4.12 that S,(¢) = S, (£) U S,/ (2).
Now we will have a closer look at the intersection of S with S, . We will be able to prove
that this intersection is a generalized characteristic in the sense of definition 2.1. This
proof works like the proof in [5].

Lemma 4.14. Fiz some e >0 and let T'(g) be as in lemma 4.12. Then there exists some
function x : [T(g),00) — S such that for T > T(¢)

Sp () = [Bn(8), x(2)]

Sy (8) = [x(2), y (?)]
for allt > T(e).

Proof. If 7 € S,/ () then ¢1(0;Z,1) € [cn — €, ¢n)-

Therefore ¢+(0;%,) € [¢€7(0;Z,%),¢,] for all # € (z,7,(f)], because otherwise backward
characteristics would have to intersect.

From this we deduce

FeSH@®) and ¢ SI(D).
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Therefore, S, and S, are connected and the right boundary of the interval S,f (%) is equal
to ya(t)-

We have proved our claim for S if we have proved that it is closed. This is obvious for
the right limit of the interval (v,(¢) is a genuine characteristic for arbitrary ¢).

For the left boundary of the interval we consider a sequence zj € S, (f) converging to the
boundary x(t).

Since all backward characteristics are equicontinuous we can now apply the Arzela—
Ascoli theorem to see that the sequence of maximal backward characteristics 7 (-;zy, t)
converges to £ (+; x(f),%), possibly after we have chosen a subsequence .

In particular limg_,o £7(0; 2k, 2) = £7(0; x(%), %) holds. From this we obtain

E1(0;x(), ) € [en — €, ¢n]

as £1(0;zg,t) € [en — €,¢,) for all k and [e, — €, ¢y] is closed. But from this x(¢) € S; ()
follows.
The proof for S, (¢) is analogous. O

Corollary 4.15. S, (t) N S, (t) = x(?).

Lemma 4.16. Let T(c) be again sufficiently large, then x(t) is a Lipschitz continuous
function, defined on [T'(¢), o).

At

E(t,x(t+ At),t+ A

3 IR A s~ W EF(t, x(t + At), t + At)

b, b, +¢ Cn — € Cp X)

Fig. 2. Tllustration to the proof of lemma 4.16.
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Proof. Suppose At > 0 and ¢t > T'(e).

Then
ET(0; x(t + At),t + At) € [en — €, ¢n)
£T(0;x(t), ) € [en — &, cn)
and
E(0; x(t + At),t + At) € [by, by + €]
£ (0;x(¢), %) € [bn,bn +¢ ]

From this follows

X(t) < EF(t x(t + At), t + At)

x(t) > & (t; x(t + At), t + At) .
because otherwise the maximal or minimal backward characteristics ¢+ or ¢~ would have
to intersect (— figure 2). Additionally, the following equation is true:

x(t + At) = E5(t + At; x(t + At), t + At)
Therefore
Ailx(t + At) — x(t)] <
A [€ (¢ + At x(t + At), t + At) — € (¢ x(t + Ab), t + At)]

~ ~

<cta (4.48)

Adx(t+ At) = x(t)] >
a7 (€7 (4 At x(t+ Ab), t + At) — 7 (8 x(t + At), t + At)]

~ ~

>—(C-At)

where the C* are bounded by the maximal respectively minimal slope of the backward
characteristics. From this we deduce the Lipschitz condition

Ix(t + At) — x(t)| < C|At] . O
Lemma 4.17. The curve x(t) s a characteristic.

Proof. If At tends to zero in equation (4.48) we get:

tim XEFAD =X vy e [ (e, 0.6 (0 x(0),0)

At—0 At 1
= [f'(ux (@)= 1), f'(u(x(t)+,1))]
Vt € [T'(g), 00)
— x(t) satisfies the condition in definition 2.1. 0

Now we know, that x(¢) is a shock characteristic. In the spatially homogeneous case
g = g(u) (see [5,14]) the shock curve y approaches a straight line. In our case we will see
that it converges to a periodic curve. To prove this convergence we first have to identify
this curve.
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To this end we define the Rankine-Hugoniot vector field (RHV). The idea here is the
following:
We extend the two curves 3, and ~, by (2.4) for —co <t < 0. In any point (z,%) € S, we
then determine values v~ (Z,?) and u™ (%, ) such that the extremal backward characteristics
emanating from (z,%) with u(z,f) = v*(z,%) will converge to 3,(t) and v,(t) respectively,
as t — —oo:
: (47 ) — _
i [6(6:2,8)  fult)] = 0.

Then s(z,%) is defined as the velocity of a (hypothetical) shock at (z,%) with left state
u~ and right state u™ via the Rankine-Hugoniot condition.
_ fu™(z,1) — f(u (2,1))
= . 4.52
T SR ER) (452)
Remark 4.18. In some of the proofs we consider the Rankine-Hugoniot vector field as
an autonomous ordinary differential equation

dr{:s(x,t)}
t=1

in the strip S, ¢ S! x R (or S, C R x R if we work in the extended phase space).

(4.51)

Later we will prove that the RHV possesses exactly one periodic solution which is unstable.
In a last step we will then show, that x(-) converges towards this periodic orbit as ¢t — oo.

4.1. Properties of the Rankine- Hugoniot vector field

We first have to verify that the Rankine-Hugoniot vector field is well-defined, i.e. that
there are unique states u*(Z,f) with the desired properties.
From the o.d.e hyperbolicity (A4) of the periodic orbits the following estimates can

be derived:

Proposition 4.19. Consider the backward solution of (2.4) with terminal condition

(v(2),£(2)) such that agm—1(£()) < v(F) < azm11(£(2))-

Denote with (vam(t), E2m(t)) the periodic solution as, parameterized by t.
Then there exists a constant C > 0 and an asymptotic phase 8 € S* such that

[o(t +t) — vom (F+t + 8)| < Ceto?
€T +t) — Lom(T + t + 6)| < Cet>n
for all t < 0.
For a proof see e.g. [6] or [1].

Remark 4.20. Recall that ps, > 0 denotes the Floquet exponent of the unstable periodic
orbit as,,. The constant C approaches infinity if v(¢) approaches the points asp,+1(Z) on
the adjacent periodic orbits.
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From (A6) and the compactness of S one can deduce that all solutions we take
into consideration are bounded away from the stable periodic solutions ag,,+1. We may
therefore assume that the constant C in the previous proposition is fixed for all backward
characteristics associated to the solution u(-,t) at a fixed time ¢.

From the theory of dynamical systems it is known that the hyperbolic periodic orbit

(vam, €2m) POssesses an unstable foliation where each fiber

F(6) := {(£(0),0(0)); (£(2),v(t)) solves (2.4) and lim (vom(t +6) —v(t)) = 0}
corresponds to those points for which the asymptotic phase § € S coincides, see [7]. If
6 corresponds to B,(t), i.e. Bn(t) = &am(t + 0) then F(0) consists of the terminal values of
those backward characteristics which converge to 8, as t - —oo.

In our relatively simple two-dimensional situation each fiber can be obtained in the
following way: Each point p on the periodic orbit is a fixed point for the time-T5,,-map of
the characteristic system (2.4). By o.d.e. hyperbolicity (A4) the linearization of this time-
Tym-map in p has the two eigenvalues 1 and e#>~T>= . Hence, p possesses a one-dimensional
unstable manifold which is as smooth as the time-T5,,-map, resp. the original vector
field (2.4). This unstable manifold is precisely the unstable fiber corresponding to p.
With respect to the base point p, one typically loses one order of regularity, see [7]. In
our situation, (A1) and (A2) imply that the fibers F(8) are C'-smooth and depend
continuously on 6.

Lemma 4.21. The Rankine-Hugoniot vector field defined in equations (4.52) and (4.51)
18 well-defined, Lipschitz in T and continuous with respect to t. Moreover, it is Ty, —periodic
mnt.

Proof. We have to show that the states u™(z,f) and v~ (z,%) are well-defined for each
(z,t) € S, and that they depend Lipschitz continuously on z and continuously on t.
These properties will then carry over to s(z,t) such that the Rankine-Hugoniot vector
field possesses unique solutions for any initial condition.

Note first that in the extended phase space (v,£) € R x R the unstable fibers F(6) are
graphs over the é-axis. This is a consequence of the fact that solutions with smaller v are
slower, see lemma 4.2.

More precisely, if F(6) would intersect a line £ = £ in two points v and v with v —v =:
d > 0 then the backward characteristics with these two terminal values would differ by
at least k§ on any line £ = & — k for any k € N. This however shows that they cannot
both correspond to solutions on the cylinder with the same asymptotic phase and hence
cannot both lie in the same unstable fiber F(6).

Fix now ¢ > 0 and consider the fiber F(6) with 6 corresponding to 3,(t), see figure 4.1.

For any z > f8,(t) the line ¢ = 7 intersects F in exactly one point (z,v"). Now u™(z,t) :=
vT has the desired property, since points on the unstable fiber are precisely characterized
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azm(-)

Tn (Z)

8

Bn ()

Fig. 3. Tllustration of the unstable fibers.

by the fact that the backward characteristics with these terminal values converge to f,
as t — —oo.

Similarly, the value u™(z,?) is determined by the unstable fiber corresponding to ~,(#).

The Lipschitz continuity of u* with respect to Z is just a consequence of the smoothness
of the fibers, while the continuity with respect to ¢ comes from the fact that the fibers we
have to consider depend continuously on 3,(¢) and hence on ¢.

The Ty,-periodicity of the Rankine-Hugoniot vector field follows from the T%,-
periodicity of the boundary characteristics 8, and 7,. For t = t4+T,, we set 4 (z, t+Top) :=
u*(z,7). Then the backward characteristic to these terminal data converges for t — —oco to
the boundary characteristics 3, or ~, as well. Because of the uniqueness of the Rankine-
Hugoniot vector field we must have

wE(Z, T4 Tom) = 07 (2, + Tom) = v (&, 1)

hence u* are Ty,,—periodic. By construction this implies that the Rankine-Hugoniot vector

field is itself Th,,—periodic. O

We are now able to study solutions of the Rankine-Hugoniot vector field. In particular,
we prove that there is exactly one periodic solution, and that its period has to be Ty,.
For this reason we analyze s(z,t) on horizontal lines in the ¢ — t—diagram. To this end, we
work in the extended phase space (z,t) € R x R again.

Lemma 4.22. The Rankine-Hugoniot vector field points outside the strip S, along the
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two boundary curves B, and .

Proof. It suffices to compare the slope (fn(f)) ' of the boundary curve 3, with the slope
of the Rankine-Hugoniot vector field in (8,(%), ?).

It is clear that u™(B,(t),t) = u(Bn(t),t) = azm(Bn(t)) because only with this terminal
condition will the backward characteristic emanating in (8,(#), ) converge to the curve 3,
for t - —oo without crossing 3,. We claim that u™(8,(f),%) < agm(Bn(t)).

This can be best seen if we consider the characteristic curves in the extended phase
space (z,t) € R x R. Here the curve 3, divides the plane in two sets one of which contains
the curve ~,. Backwards characteristics emanating from the point (5,(t),t) with terminal
value v(t) > aom(Bn(t)) will lie completely in the other region and can therefore not
approach the curve ~,.

By the mean value theorem the slope of the Rankine-Hugoniot vector field is

£t (Bal®: D) — ™ (Bul@,D)) _
B8 = A @ 0 — w1 )
where w lies between ut (3, (%), %) and u™ (8, (¢), t), in particular w < agm,(Bn(t)). By convexity
of f this implies f'(w) < f'(azm(Br(%))) and hence s(B,(f),%) < &n(?). This shows that the
RHYV points to the exterior of S, along 3,.
The proof for the other boundary ~, can be carried out by the same arguments and
is therefore omitted. 0

For fixed z € R we now consider the vertical line
in the extended phase space.

Lemma 4.23. The Rankine-Hugoniot vector field s(z,t) is strictly decreasing in t on
every vertical line {(z,t); t € Lz}.

Proof. We will first prove that for fixed z the functions u*(Z,#) used in the definition of
the Rankine-Hugoniot vector field are strictly decreasing in ¢ € Lz. Since both statements
are proved in the same way we restrict ourselves to the function u™*.

We argue by contradiction and assume that there are ¢; > t» in Lz with u] :=
ul (Z,t1) > ug (Z,t2) =: ug.

Let 6 := t; —ty > 0 and consider for : = 1,2 the backward characteristics &; and &
emanating from (z,t;) with terminal value u;, see figure 4.

From lemma 4.2 we know, that the trajectory starting in (¢;,Z) crosses the line Lz ;
after a shorter time than the one that started in (¢, %). If (£1, 4F) and (f2, @3) are the times
and v-values where the backward trajectories cross the line Lz_; we have the inequalities
51 —52 > § and 17,1'— >ﬂ;_.

By induction the distance between the two backward characteristics &,, and &,, is greater
than d on every vertical line Lz_; with j € N. But this immediately shows that they cannot
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Tn

Bn
51('; :Z" tl)
£2(55 T, t2)

Tn
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|

X
} >

Cn
Fig. 4. Illustration for the proof of lemma 4.23

K -
[

converge both to the boundary characteristic v, as demanded. Hence, our assumption
ul > ui must be wrong.

The same argument can be used to prove the strict monotonicity of v~ with respect
to t € Ls.

Because f is convex, the monotonicity of u* carries over to s(z,%): If t; > t, then the
inequality

f (@) - fu” (B t)  fu' (3 b)) — f(u”(Z,12))

<0
u+(jat1) _u’_("i:tl) u+(§c,t2)—u_(§:,t2)

is also true. This shows that s(z,t1) < s(z,t2). i

Lemma 4.24. The Rankine-Hugoniot vector field s(z,t) in the strip S, possesses exactly
one Ty, —periodic solution.

Proof. We first show the existence of a periodic solution. In the strip S,, the Rankine-
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Hugoniot vector field corresponds to the ordinary differential equation

= 5(”’”} (4.59)

t=1
Since there are no equilibrium points and ¢ > 0, following the solutions of the Rankine-
Hugoniot vector field backward in time induces a continuous Poincaré map II_ : S(t) —

S(t — Tom).
As a consequence of lemma 4.22 we have

I ([ﬂn(aa'}/n(f)]) ) [ﬁn(f_ T2m)7’7n(f_ T2m)] = [ﬁn(f)a'Yn(E)]
The intermediate value theorem then implies that there exists at least one Z such that
n_(z)==%.

Due to the Tb,-periodicity of the Rankine-Hugoniot vector field the solution o(t) of z =
s(z,t) with initial data o(t) = Z has to be a Ty,-periodic solution.

We now turn to uniqueness and show that o is the only periodic orbit the Rankine-
Hugoniot vector field can have within S,,.

If there were two such orbits o1(¢) and o2(t) they cannot intersect each other as they
solve the same ordinary differential equation (4.59) with (z,t) in the extended phase space
(z,t) € R x R. We may therefore assume that oy lies to the left and above o5. Hence, for
any t € R there exists some a(t) < t such that

01(t) = o2(a(t))

with a(t + Tbn) = a(t) for all ¢ since we assumed that both solutions oy and o9 are
Tym—periodic. Due to lemma 4.23

a1(t) = s(o1(t), 1) > s(oa(a(t)), alt) = Ga((?t))

holds for all times t € R .
This implies

o1(t) = a2(a(t)) -at) = at)= ( < 1.

Now
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We can thus estimate

\Y

s(o2(¢), ¢) d
= o2(t + Tam) — o2(t)

contradicting the periodicity of o5. |

As a corollary we note that using lemmas 4.21 and 4.24 infinitely many nontrivial
Tom-periodic solutions of the inhomogeneous balance law (1.1) can be constructed.

Corollary 4.25. Choose finitely or countably many open intervals (bn,c,) C S*. Let
(Bn,vn) and (yn,wy) be the solutions of the characteristic system (2.4) with initial condi-
tions fn(0) = by, vn(0) = azm(bn) and v,(0) = cn, wn(0) = aom(cn) respectively.

As before we denote S, = {(z,t) € R x R; B,(t) < x < v,(t)}. For each (z,t) € U,S, the
states u(z,t) and ut(z,t) as well as the Rankine-Hugoniot vector field s(x,t) are well-
defined. Let o, be the unique periodic solution of the Rankine-Hugoniot vector field in the
strip Sy,.

Then the function

u™(2,t) if Bn(t) <z <on(t)
Uper(x’t) = u*(x,t) if Un(t) <z < 'Yn(t)
aom(z) if © ¢ UpSy(t)

is a Tom-periodic solution of the scalar balance law (1.1).

Let us quickly summarize at this point the rest of the proof: Any solution u of (1.1)
which satisfies (A6) determines a set of finitely or countably many stripes S, C S* x Ry
where u does not coincide with as,,. The previous corollary shows how a Tb,,-periodic
solution can be constructed from the stripes S, via the periodic solution o, and the
Rankine-Hugoniot vector field. Moreover, we have seen that each of the stripes S, is
divided by a curve x into two parts S, and S,;. The next step consists in showing that
after sufficiently large time the solution in the region S;' is close to u™ while it is close to

u~ in S, . The proof will then be completed by showing that in each Strip S, the curves
x and o, approach each other as t — oo.

Lemma 4.26. Let u be an entropy solution of the hyperbolic balance law (1.1). For every
d > 0 there exists some time 7(8) such that the following holds for t > 7(§):

€S (t) = |u(z,t) —uT(z,t) <9
z €S, (t) = |u(z,t) —u (z,t)| <4

Proof. Recall that in lemma 4.2 we have derived an inverse Lipschitz estimate for the
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XY

Fig. 5. The proof of lemma 4.26

difference between the times that two solutions of the characteristic equation need to go
around the S*.

We fix some point (z,) € S;; and consider the backward solutions of the characteristic
system (2.4) with & () = &(f) = 7 and v1(f) = u(Z, 1), v2(f) = u=(Z,f) together with the
corresponding backward characteristics in the z-t-plane, see the illustrating figure 5.

Along both of these backward characteristics an inequality ¢ > my is satisfied for some
positive constant m; since both v; and vy satisfy

v;i(t) > ar(£(2)) > ;ﬂelgr} ar(z) > vy.

Choose now ¢ < mikd where x > 0 is the constant from lemma 4.2. We know from lemma
4.12 that for ¢ > T'(¢) the minimal backward characteristic emanating from (z,?¢) with
z € S, (t) will intersect the line ¢ = 0 within the interval [3,(0), 3,(0) + ¢].

On the other hand, the value u=(Z,t) is determined by the fact that the associated
backward characteristic converges to 3, as t — —oco. In particular, by choosing ¢ even
larger, if necessary, we may assume that

£(0) - Ba(0) < .

It remains to show that |u(Z,t) — u (Z,%)| < § must hold in order that |£2(0) — &1(0)| < e.

In the sequel we will argue in the extended phase space to be able to distinguish
between z, T — 1, etc.

We argue by contradiction and assume that |u(z,t) — v~ (Z,t)] > 6. Then the two
backward characteristics & and & intersect the line §¢ = Z — 1 at times 7, and = with
|71 — 72| > K due to lemma 4.2. The time difference between the two characteristics will
only become bigger for ¢ < z — 1. In particular, if 7y is the time when the characteristic
& crosses the line £ = £2(0) then |rg| > xd. This however proves that & cannot intersect
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the line ¢ = 0 in the interval [£2(0) — ¢,£2(0) + €] and hence not in [5,(0), 3,(0) + ¢]. If such
an intersection would take place the slope somewhere between the two points on & with
t =0 and with ¢ = 79 would be bigger than m;.

This proves that the backward characteristic ¢; misses the interval [3,(0), 3,(0) + €]
on the z-axis if |u(Z,t) — u™(Z,t)] > ¢ contrary to lemma 4.12. Hence we must have
lu(z,t) — u=(Z,t)] < & for £ € S, (t). The proof of the estimate in S;(¢) is completely
analogous. O

We will now prove that x and o approach each other as ¢t —+ oco. This is quite remarkable
since o is unstable as an integral curve of the Rankine-Hugoniot vector field. Before giving
a formal proof we describe shortly the mechanism which forces x and o to be very close
for large times: We know already that the characteristic x exists for all ¢ > 0 and the
previous lemma implies that it behaves “almost” like a solution of the Rankine-Hugoniot
vector field for sufficiently large times. If the distance between x and o was too big, x
would therefore leave the strip S, precisely because of the instability of o. Then, however,
it would have to intersect one of the boundary characteristics 3, or o, and would not be
defined on R;.

Lemma 4.27. The shock curve approaches the curve o ast — co:
Jim [x(t) — o(t)] = 0.
Proof. We will show that for each £ > 0 there exists some time 7 (¢) such that for ¢t > 7 (¢)
the curve x(t) is contained in a strip
Se = {(2,t) € Sp; [t —0 (2)] <€}

around o. By lemma 4.23 the Rankine-Hugoniot vector field is strictly monotone on every
line Lz. Due to periodicity of s this allows to find some v > 0 such that

s(z,o7 () —e) +v < s(z,07 (z)) < s(z,07 () +¢) —v. (4.70)

This implies that trajectories of the Rankine-Hugoniot vector field cannot enter X, from
outside. From the definition of s(z,t¢) and the continuity of f it follows that there exists
some §y = dp(¢) > 0 such that

lut(z,0 () — ) —w| < 8 = [s(z,0 H(z) —¢) — w < g (4.71)
and similarly
lut (2,0 Hz) + ) — w| < §o = |s(z,0 Hz) +e) — f(“’:j — i(_"’_) < g (4.72)

We set T(g) := 7(dp) and show that for ¢ > T (¢) the curve x has to lie within X.. To this
end we prove that if x(¢) lies outside of X, for some ¢ > 7(¢) then it has to remain outside
for all t > T(¢). We will later show that this is impossible for a characteristic which is
defined on [0, c0).
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To see that x(t) cannot enter ¥, for some ¢t > 7 (c) we assume x(t) = o(t — ¢) and
compare the slopes of x(¢) and the boundary o(t —¢) of X.. The other case x(t) = o(t +¢)
can be treated in the same way.

The slope of x is determined by the Rankine-Hugoniot condition. Our estimate (4.70)
together with (4.71) then implies that

X(t) > ot — ) + g (4.73)

for t > T(¢) = 7(6p). The curve x can therefore only leave the strip X, but not enter it.
In the next step we will show that it is not possible for x to be outside ¥, for all
sufficiently large ¢. Note that (4.73) implies that the ¢-difference between the curves y and
o grows linearly with a fixed rate v/2 after any revolution around the cylinder.
Lemma 4.4 then tells us that in this case x(¢) would have to intersect one of the
boundary characteristics 3, or v, in finite time. This however is a contradiction to the
fact that x(t) is a characteristic defined on R*. ]

We can finally complete the proof of our main result.

Proof of Theorem 3.6. Let ug(z) € BV(S!,R). According to lemma 4.1 we have for all
t > T with sufficiently large T

k
{(u(g,t),€); €€ S*}n U{(ai(g),s); £ 8"y

is either empty or contained in {(a,(£),&); &€ € S'} for some n € {1, ... ,k}.
Lemma 4.6 now yields uniform convergence of the solution towards a profile ag;11
with m € {0, --- , &2} if

k
{(u(¢,),€); €€ 83N U{(ai(g),s); ¢ 8hy

is either empty or contained in one of the sets {(asm1(£),€); € € S1}.

In the other case (A6) holds and lemma 4.17 shows the existence of at least one shock
characteristic x on some interval [tg, 00). Lemma 4.27 in addition gives the T5,,—periodicity
of this shock characteristic x(t).

The L-convergence of the solution for ¢t — oo towards a discontinuous periodic solution
follows from lemma 4.26 and lemma 4.27. The periodic shock solution is given by the
functions u* as described in corollary 4.25: To the left of the periodic orbit ¢ the solution
u is given by u~ while to the right of ¢ it coincides with u™. m|

Acknowledgments

The second author was supported by the DFG priority research program ANumkE.



28 Julia Ehrt and Jérg Hdrterich

References

[1]
[2]
[3]
[4]
[5]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

C. Chicone, Ordinary Differential Equations and Applications, Texts in Appl. Math. 34
(Springer Verlag, 1999).

C. M. Dafermos, Generalized Characteristics and the Structure of Solutions of Hyperbolic
Conservation Laws, Indiana Univ. Math. J. 26 (1977) 1097-1119.

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren d.
Math. Wissenschaften 325 (Springer Verlag, 2000).

J. Ehrt, Langzeitverhalten von skalaren Erhaltungsgleichungen mit raumlich inhomogenem
Quellterm, Zulassungsarbeit, Freie Universitat Berlin, (2004).

H. Fan und J. K. Hale, Large-Time Behavior in Inhomogeneous Conservation Laws,
Arch. Rat. Mech. Analysis 125 (1993) 201-216.

J. K. Hale, Ordinary Differential Equations, (Wiley Interscience, 1969)

N. Fenichel, Asymptotic stability with rate conditions. II. Indiana Univ. Math. J. 26 (1977),
81-93.

A F. Filippov, Differential equations with discontinuous right-hand side, AMS Translations,
Series 2, 42, 199-231.

S.N. Kruzhkov, First order quasilinear equations in several independent variables, Math.
USSR-Sbornik 10 (1970) 217-243.

R. J. LeVeque, Numerical methods for conservation laws, Lectures in Mathematics
(Birkhauser, 1990)

M. J. Lighthill and G. B. Whitham, On kinematic waves II: a theory of traffic flow on long
crowded roads, Proc. Roy. Soc. Lond. A229 (1955) 317-345.

A. N. Lyberopoulos, A Poincaré-Bendixson theorem for scalar balance laws, Proc. R. Soc.
Edinb. A 124 (1994) 589-607.

J. M. Roquejoffre, Convergence to steady states or periodic solutions in a class of Hamilton-
Jacobi equations, Journale Mathematiques Pures Appl. 80 (2001) 85-104.

C. Sinestrari, Large time behaviour of solutions of balance laws with periodic initial data,
NoDEA 2 (1995) 111-131.

C. Sinestrari, Instability of discontinuous traveling waves for hyperbolic balance laws, J.
Diff. Equ. 134 (1997) 269-285.

A. 1. Volpert, The spaces BV and quasilinear equations, Math. USSR Sbornik 2 (1967)
225-267.



