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1 Introduction

We are interested in the behavior of solutions to the multidimensional isothermal Euler equations
with a strong relaxation term:∂tρ +∇x ·m = 0 ,

∂tm +∇x ·
(

m⊗m
ρ

)
+ a2∇xρ = −1

τ
m ,

(1)

where ρ : R+ × Rd →]0,+∞[ is the density, m : R+ × Rd → Rd is the momentum, a > 0 is the
speed of sound, and 0 < τ � 1 is a (small) relaxation time. The system (1) is considered in the
whole space Rd, and we add initial data for (ρ,m). In this paper, the density will always be
bounded away from vacuum. The velocity of the fluid is u := m/ρ. The aim of this paper is to
construct global smooth solutions to (1) with initial data that are independent of the relaxation
time τ , and to show that, in an appropriate time scaling, the density converges towards the
solution to the heat equation as τ tends to 0. The sound speed a is always kept constant.

In the one-dimensional case, the convergence of the solutions to (1) towards the solution
to the heat equation has been proved in [3] for arbitrarily large initial data in BV (R) that are
bounded away from vacuum. In this case, one also obtains a rate of convergence in L2([0, T ]×R)
for the density, by using an appropriate stream function, see [3].

For fixed τ > 0, the existence of global smooth solutions to (1) follows from a result by Yong
[10] (which is the analogue of [2] in the multidimensional framework). We refer the reader to [8]
for the existence of global smooth solutions in the isentropic case. We also refer the reader to
[6] for the derivation of the porous media equation as the limit of the isentropic Euler equations
in one space dimension. In this paper, we show that the result of [10] can be made independent
of the relaxation time τ . This is due to the special structure of the system (1). (It is not clear
whether the result of [10] is independent of the relaxation time for an arbitrary system.) In the
end, we study the asymptotic behavior of the density when the relaxation time τ tends to zero.
Our main results are the following:
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Theorem 1. Let ρ > 0, and let k ∈ N with k > d/2 + 1. There exist two constants δ > 0 and
C > 0 such that, for all τ ∈ ]0, 1] and for all initial data (ρ0,m0) verifying ‖ρ0 − ρ‖Hk(Rd) +
‖m0‖Hk(Rd) ≤ δ, there exists a unique global solution (ρτ ,mτ ) to (1) such that (ρτ − ρ,mτ ) ∈
C(R+;Hk(Rd)). Moreover, this solution satisfies

sup
t≥0

(
‖ρτ (t)− ρ‖2

Hk(Rd) + ‖mτ (t)‖2
Hk(Rd)

)
+

1
τ

∫ +∞

0
‖mτ (s)‖2

Hk(Rd) ds

≤ C
(
‖ρ0 − ρ‖2

Hk(Rd) + ‖m0‖2
Hk(Rd)

)
. (2)

As a consequence, we can study the convergence of the solutions ρτ in the strong relax-
ation limit, that is, when τ tends to 0. The initial data are chosen independent of τ , and the
convergence is observed on a large time scale. Namely, we shall prove the following statement:

Corollary 1. Let the assumptions of Theorem 1 be fulfiled. Let (ρτ ,mτ ) denote the correspond-
ing solution to (1), and let us set

%τ (s, x) := ρτ (s/τ, x) , vτ (s, x) := uτ (s/τ, x) .

Then, %τ −ρ is bounded in C(R+;Hk(Rd)), and (%τ vτ )/τ is bounded in L2(R+;Hk(Rd)). More-
over, if Br denotes the ball of radius r in Rd, then for any 0 < T,R < ∞, and for any
0 < k′ < k, (%τ ) converges in C([0, T ];Hk′(BR)) towards the solution % ∈ C(R+; ρ + Hk(Rd)) to
the heat equation {

∂s%− a2 ∆x% = 0 , s ≥ 0 , x ∈ Rd,

%|s=0 = ρ0 , x ∈ Rd .
(3)

2 Uniform Well-Posedness

2.1 Preliminary transformations

Recall that system (1) admits the following entropy:

η(ρ,m) :=
|m|2

2ρ
+ a2 ρ ln ρ , (4)

whose flux is

q(ρ,m) :=
|m|2

2ρ2
m + a2 (1 + ln ρ)m .

It is straightforward to check that the entropy η is a strictly convex function of (ρ,m) in the
open set {(ρ,m) ∈ ]0,+∞[×Rd} where (1) is hyperbolic. For smooth solutions to (1), one has
the additional balance law

∂tη +∇x · q = −1
τ

ρ |u|2 .

We fix once and for all a positive density ρ > 0, and we introduce the entropic variables:

W =
(

U
V

)
:= ∇η(ρ,m)−∇η(ρ, 0) =

a2 ln(
ρ

ρ
)− 1

2
|u|2

u

 , (5)

in order to use Godunov’s symmetrization. Note that this is a change of variables from the
open set {(ρ,m) ∈ ]0,+∞[×Rd} to the whole space R1+d. After a few simplifications, we show
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that for smooth solutions (ρ,m) away from vacuum, (1) is equivalent to a quasilinear symmetric
hyperbolic system for W = (U, V ):

A0(V ) ∂tW +
d∑

j=1

Aj(V ) ∂xjW = −a2

τ

(
0
V

)
, (6)

where A0(V ) is a symmetric positive definite matrix, the matrices Aj(V ) are symmetric, and
are defined as follows:

A0(V ) :=
(

1 V T

V a2 Id + V ⊗ V

)
, (7)

Aj(V ) :=
(

Vj a2 eT
j + Vj V T

a2 ej + Vj V a2(ej ⊗ V + V ⊗ ej) + Vj(a2 Id + V ⊗ V )

)
. (8)

To avoid overloading the notations, we define the new relaxation parameter τ̃ := τ/a2, so that
(6) reads

A0(V ) ∂tW +
d∑

j=1

Aj(V ) ∂xjW = −1
τ̃

(
0
V

)
, (9)

Observe that the matrices A0, . . . , Ad are independent of τ̃ , and that they only depend on
the component V of the vector W . (The sound speed a is fixed once and for all.) This will
be extensively used in what follows. In the next paragraph, we are going to show an energy
estimate for smooth solutions to (9) that may be defined only locally in time. Such (local in
time) smooth solutions exist thanks to Kato’s result, see [4] or [5]. This energy estimate will
yield global existence of smooth solutions for small enough initial data in the Sobolev space
Hk(Rd), k > 1 + d/2.

2.2 Energy estimates

We first introduce some classical notations. For all integer `, the Sobolev space H`(Rd) is
equipped with the norm

‖f‖2
H`(Rd) :=

∑
α∈Nd,|α|≤`

∫
Rd

|∂α
x f(x)|2 dx ∼

∫
Rd

(
1 + |ξ|2

)` |f̂(ξ)|2 dξ .

We now fix an integer k such that k > 1+d/2. For any positive time T > 0, and any function
W = (U, V ) ∈ C([0, T ];Hk(R)), (with U ∈ R and V ∈ Rd), we introduce the energy functional

Nτ̃ (T )2 := sup
0≤s≤T

‖W (s)‖2
Hk(Rd) +

1
τ̃

∫ T

0
‖V (s)‖2

Hk(Rd) ds + τ̃

∫ T

0
‖∇xW (s)‖2

Hk−1(Rd) ds . (10)

We also define
S(T ) := ‖W‖L∞([0,T ]×Rd) + ‖∇xW‖L∞([0,T ]×Rd) . (11)

Note that the functional S is independent of the relaxation parameter τ̃ . Observe also that,
since k > 1 + d/2, Sobolev’s imbedding Theorem yields the following inequalities:

S(T ) ≤ C Nτ̃ (T ) , ‖V ‖L2([0,T ];W 1,∞(Rd)) ≤ C
√

τ̃ Nτ̃ (T ) ,

‖∇xW‖L2([0,T ];L∞(Rd)) ≤ C
Nτ̃ (T )√

τ̃
,

for some numerical constant C.
We are going to prove the following:
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Proposition 1. Let τ̃ ∈ ]0, a−2], let T > 0, and assume that W ∈ C([0, T ];Hk(Rd)) is a solution
to (9). There exists an increasing function C : R+ → R+, that is independent of T , τ̃ , and W ,
such that the following inequality holds:

Nτ̃ (T )2 ≤ C
(
S(T )

) (
Nτ̃ (0)2 + Nτ̃ (T )3 + Nτ̃ (T )4

)
.

The proof splits into three steps. One first estimates the L∞([0, T ];L2(Rd)) norm of W and
the L2([0, T ] × Rd) norm of V by integrating the entropy balance law for the corresponding
solution to the isothermal Euler equations. Then one estimates the L∞([0, T ];Hk(Rd)) norm of
W and the L2([0, T ];Hk(Rd)) norm of V , by using the classical energy method for the system
(9) (see, e.g., [5]). Special attention is needed to obtain uniform bounds with respect to the
relaxation parameter τ̃ . Eventually, one recovers the L2([0, T ];Hk−1(Rd)) estimate of ∇xW by
using the so-called Kawashima condition. (This final step was already achieved in [10], but it is
crucial here to check the independence of the constants with respect to τ̃ .)

In what follows, the constants in the inequalities may depend on the sound speed a, but
they are always independent of τ , or τ̃ . We recall that τ and τ̃ only differ by a multiplicative
constant. Moreover, C will always denote either a constant, or a nonnegative increasing function
of its argument, that may vary from line to line or within the same line.

2.2.1 The L∞(L2) estimate of W

Let W ∈ C([0, T ];Hk(Rd)) be a solution to (9), that corresponds (for the original unknown
quantities) to a solution (ρ,m) ∈ C([0, T ]; ρ + Hk(Rd)) × C([0, T ];Hk(Rd)) to the isothermal
Euler equations (1), which is bounded away from vacuum.

To obtain the first useful estimate, it is convenient to slightly modify the entropy (4). We
set

η̃(ρ,m) := η(ρ,m)− a2 ρ ln ρ− a2 (1 + ln ρ)(ρ− ρ) ,

which is still, of course, a strictly convex entropy for the system (1). Its flux is denoted q̃(ρ,m).
Moreover, the entropy η̃ satisfies

η̃(ρ, 0) = 0 , ∇η̃(ρ, 0) = 0 .

Actually, η̃ is the sum of the kinetic energy (ρ|u|2)/2 and the relative entropy of the density ρ
with respect to the constant state ρ:

H(ρ|ρ) := a2 ρ

(
ρ

ρ
ln
(ρ

ρ

)
− ρ

ρ
+ 1
)
≥ 0 .

Note that H(ρ|ρ) is a nonnegative quantity, and vanishes if, and only if, ρ = ρ; it is a natural
quantity to evaluate how far ρ is from ρ.

For the smooth solution (ρ,m) ∈ C([0, T ]; ρ+Hk(Rd))×C([0, T ];Hk(Rd)) to (1), we integrate
the balance law

∂tη̃ +∇x · q̃ = −1
τ

ρ |u|2 ,

over the strip [0, t]× Rd, and we obtain∫
Rd

η̃ dx
∣∣∣t
0
+

1
τ

∫ t

0

∫
Rd

ρ |u|2 dx ds = 0 .

Using the convexity properties of η̃, we get

1
C

(
|ρ− ρ|2 + |u|2

)
≤ η̃(ρ,m) ≤ C

(
|ρ− ρ|2 + |u|2

)
,
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where the constant C only depends on ρ, and the norms ‖ρ−ρ‖L∞([0,t]×Rd), ‖m‖L∞([0,t]×Rd). To
conclude, we use the definition (5), and we thus derive the bounds

1
C
|W |2 ≤ η̃(ρ,m) ≤ C |W |2 ,

where the constant C only depends on ρ, and the norm ‖W‖L∞([0,t]×Rd), but is independent of
the relaxation parameter τ̃ .

Eventually, we obtain:

∀ t ∈ [0, T ] , ‖W (t)‖2
L2(Rd) +

1
τ̃

∫ t

0
‖V (s)‖2

L2(Rd) ds ≤ C
(
S(t)

)
Nτ̃ (0)2 . (12)

2.2.2 The L∞(Hk) estimate of W

Let α ∈ Nd satisfy 1 ≤ |α| ≤ k. We apply the derivative ∂α
x to (9), take the scalar product with

∂α
x W , and integrate over the strip [0, t]× Rd. Integration by parts yields

1
2

∫
Rd

A0(V )∂α
x W · ∂α

x W dx
∣∣∣t
0
+

1
τ̃

∫ t

0

∫
Rd

|∂α
x V |2 dx ds

=
∫ t

0

∫
Rd

[I1 + I2

2
− (I3 + I4)

]
dx ds , (13)

where we have set:

I1 :=
{
∂tA0(V )

}
∂α

x W · ∂α
x W , I2 :=

d∑
j=1

{
∂xjAj(V )

}
∂α

x W · ∂α
x W , (14)

I3 := [∂α
x , A0(V )]∂tW · ∂α

x W , I4 :=
d∑

j=1

[∂α
x , Aj(V )]∂xjW · ∂α

x W . (15)

We first estimate the integrals of I1 and I2. Then we shall estimate the commutators I3 and I4.
Observe that (7) yields

∂tA0(V ) =
(

0 ∂tV
T

∂tV V ⊗ ∂tV + ∂tV ⊗ V

)
.

Therefore, using (14) and (9), we have∫ t

0

∫
Rd

|I1| dx ds ≤ C
(
S(t)

) ∫ t

0

∫
Rd

|∂tV | |∂α
x V | |∂α

x W | dx ds

≤ C
(
S(t)

) ∫ t

0

∫
Rd

(
|∇xW |+ 1

τ̃
|V |
)
|∂α

x V | |∂α
x W | dx ds

≤ C
(
S(t)

) ∫ t

0

(
‖∇xW (s)‖L∞(Rd) +

1
τ̃
‖V (s)‖L∞(Rd)

)
‖∂α

x V (s)‖L2(Rd) ‖∂α
x W (s)‖L2(Rd) ds .

To conclude, we use the obvious bound ‖∂α
x W (s)‖L2(Rd) ≤ Nτ̃ (t), as well as Sobolev’s imbedding

Hk−1(Rd) ⊂ L∞(Rd), and Cauchy-Schwarz’ inequality. We get∫ t

0

∫
Rd

|I1| dx ds ≤ C
(
S(t)

)
Nτ̃ (t)3 . (16)
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The estimate of I2 is rather similar. From (14), we get∫ t

0

∫
Rd

|I2| dx ds ≤ C
(
S(t)

) ∫ t

0

∫
Rd

|∇xV | |∂α
x W |2 dx ds

≤ C
(
S(t)

) ∫ t

0
‖∇xV (s)‖L∞(Rd) ‖∂α

x W (s)‖2
L2(Rd) ds .

Again, we use the bound ‖∂α
x W (s)‖L2(Rd) ≤ Nτ̃ (t), Sobolev’s imbedding, and Cauchy-Schwarz’

inequality. We end up with ∫ t

0

∫
Rd

|I2| dx ds ≤ C
(
S(t)

)
Nτ̃ (t)3 . (17)

To estimate I3, we first apply Cauchy-Schwarz’ inequality:∫ t

0

∫
Rd

|I3| dx ds ≤
∫ t

0
‖[∂α

x , A0(V )]∂tW (s)‖L2(Rd) ‖∂α
x W (s)‖L2(Rd) ds , (18)

and we use the classical tame estimate for a commutator, see, e.g., [5, page 43]. For a fixed time
s ∈ [0, t], we obtain

‖[∂α
x , A0(V )]∂tW (s)‖L2(Rd) ≤ C

(
‖∂tW (s)‖L∞(Rd) ‖∇xA0(V )(s)‖Hk−1(Rd)

+‖∂tW (s)‖Hk−1(Rd) ‖∇xA0(V )(s)‖L∞(Rd)

)
. (19)

Using (9) to obtain the expression of ∂tW in terms of ∇xW and V , we have, on the one hand

‖∂tW (s)‖L∞(Rd) ≤ C
(
S(t)

)(
‖∇xW (s)‖L∞(Rd) +

1
τ̃
‖V (s)‖L∞(Rd)

)
,

while, on the other hand, the classical tame estimate for composed functions, see, e.g., [1, page
101], yields

‖∂tW (s)‖Hk−1(Rd) ≤ C
(
S(t)

)(
‖W (s)‖Hk(Rd) +

1
τ̃
‖V (s)‖Hk−1(Rd)

)
.

The tame estimate of composed functions also enables us to derive the bound

‖∇xA0(V )(s)‖Hk−1(Rd) ≤ C
(
S(t)

)
‖V (s)‖Hk(Rd) .

Using the three previous estimates in (19), we end up with

‖[∂α
x , A0(V )]∂tW (s)‖L2(Rd) ≤ C

(
S(t)

)
‖V (s)‖Hk(Rd)

(
‖W (s)‖Hk(Rd) +

1
τ̃
‖V (s)‖Hk(Rd)

)
.

With this estimate for the commutator, (18) yields∫ t

0

∫
Rd

|I3| dx ds ≤ C
(
S(t)

) ∫ t

0
‖∇xW (s)‖Hk−1(Rd) ‖V (s)‖Hk(Rd)(

‖W (s)‖Hk(Rd) +
1
τ̃
‖V (τ)‖Hk(Rd)

)
ds .

To conclude, we use either the bound ‖W (s)‖Hk(Rd) ≤ Nτ̃ (t), or the bound ‖∇xW (s)‖Hk−1(Rd) ≤
Nτ̃ (t), and Cauchy-Schwarz’ inequality. We have thus derived∫ t

0

∫
Rd

|I3| dx ds ≤ C
(
S(t)

)
Nτ̃ (t)3 . (20)
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The estimate of I4 is simpler, since I4 only involves spatial derivatives, see (15). We proceed
as above, and we obtain the estimate∫ t

0

∫
Rd

|I4| dx ds ≤ C
(
S(t)

)
Nτ̃ (t)3 . (21)

The left hand side of (13) is easily estimated from below, and the right-hand side is estimated
by (16), (17), (20), (21). Summing over the multiintegers α, and using (12), we obtain the
L∞([0, T ];Hk(Rd)) uniform estimate:

∀ t ∈ [0, T ] , ‖W (t)‖2
Hk(Rd) +

1
τ̃

∫ t

0
‖V (s)‖2

Hk(Rd) ds ≤ C
(
S(t)

) (
Nτ̃ (0)2 + Nτ̃ (t)3

)
. (22)

2.2.3 The L2(Hk−1) estimate of ∇xW

In this paragraph, we follow the method developed in [10]. Recall that the matrices A0, . . . , Ad

are defined by (7) and (8). We begin with the following elementary result:

Lemma 1. For ξ ∈ Rd, ξ 6= 0, we define a real matrix K(ξ) in the following way:

K(ξ) :=

 0
1
a2

ξT

|ξ|
− ξ

|ξ|
0

 .

Then K(ξ) A0(0) is skew-symmetric, and

K(ξ)
d∑

j=1

ξj Aj(0) =

|ξ| 0

0 −a2 ξ ⊗ ξ

|ξ|

 .

We rewrite (9) as follows:

A0(0) ∂tW +
d∑

j=1

Aj(0) ∂xjW = −1
τ̃

(
0
V

)
+ h , (23)

where we have set

h :=
1
τ̃

{
I −A0(0)A0(V )−1

}( 0
V

)
+

d∑
j=1

{
Aj(0)−Aj(V )−

(
A0(0)−A0(V )

)
A0(V )−1Aj(V )

}
∂xjW .

Since k − 1 > d/2, the Sobolev space Hk−1(Rd) is an algebra. Therefore, we have

∀ s ∈ [0, t] , ‖h(s)‖Hk−1(Rd) ≤ C
(
S(t)

)(
1
τ̃
‖V (s)‖2

Hk−1(Rd) + ‖V (s)‖Hk−1(Rd) ‖∇xW (s)‖Hk−1(Rd)

)
, (24)

for a suitable increasing function C that is independent of the relaxation parameter τ̃ .
We take the Fourier transform (in the space variable x) of (23), multiply by −iτ̃(Ŵ )∗K(ξ),

and then, we compute the real part of each term in the equality. The notation X∗ stands for
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the transposed conjugate of a vector X ∈ Cq, q ∈ N. Using the expression of the matrix K(ξ),
see Lemma 1, we obtain

τ̃ Im

(
(Ŵ )∗K(ξ)A0(0)

dŴ

dt

)
+ τ̃ (Ŵ )∗K(ξ)

 d∑
j=1

ξjAj(0)

 Ŵ

= − 1
a2

Im

(
(Û)∗

ξT V̂

|ξ|

)
+ τ̃ Im

(
(Ŵ )∗K(ξ)ĥ

)
. (25)

The left-hand side of (25) is simplified by observing that the skew-symmetry of K(ξ)A0(0)
(see Lemma 1) implies the relation

Im

(
(Ŵ )∗K(ξ)A0(0)

dŴ

dt

)
= Re

d

dt

(
(Ŵ )∗K(ξ)A0(0)Ŵ

)
.

Using Lemma 1, it is now straightforward to derive a lower bound for the left-hand side of (25).
Indeed, we have

τ̃ Im

(
(Ŵ )∗K(ξ)A0(0)

dŴ

dt

)
+ τ̃ (Ŵ )∗K(ξ)

 d∑
j=1

ξjAj(0)

 Ŵ

≥ τ̃ Re
d

dt

(
(Ŵ )∗K(ξ)A0(0)Ŵ

)
+ τ̃ |ξ| |Ŵ |2 − C τ̃ |ξ| |V̂ |2 . (26)

The right-hand side of (25) can be estimated thanks to Young’s inequality, and thanks to a
uniform bound for the matrices K(ξ) (see Lemma 1). For ξ 6= 0, we obtain

− 1
a2

Im

(
(Û)∗

ξT V̂

|ξ|

)
+ τ̃ Im

(
(Ŵ )∗K(ξ)ĥ

)
≤ τ̃

2
|ξ| |Ŵ |2 +

C

τ̃ |ξ|
|V̂ |2 +

C τ̃

|ξ|
|ĥ|2 . (27)

Combining (26) and (27) in (25) yields

τ̃

2
|ξ| |Ŵ |2 ≤ C

τ̃

(
1
|ξ|

+ |ξ|
)
|V̂ |2 +

C τ̃

|ξ|
|ĥ|2 − τ̃ Re

d

dt

(
(Ŵ )∗K(ξ)A0(0)Ŵ

)
. (28)

We consider an integer ` such that 1 ≤ ` ≤ k. We multiply (28) by |ξ|2`−1, integrate over
[0, t]× Rd, and then we use Plancherel’s Theorem:

τ̃

∫ t

0

∫
Rd

∑
|α|=`

|∂α
x W |2 dx ds ≤ −C τ̃ Re

∫
Rd

|ξ|2`−1
(
(Ŵ )∗K(ξ)A0(0)Ŵ

)
dξ
∣∣∣t
0

+
C

τ̃

∫ t

0
‖V (s)‖2

H`(Rd) ds + C τ̃

∫ t

0
‖h(s)‖2

H`−1(Rd) ds . (29)

The matrices K(ξ) are uniformly bounded when ξ ∈ Rd, ξ 6= 0, and we thus have

− C τ̃ Re
∫

Rd

|ξ|2`−1
(
(Ŵ )∗K(ξ)A0(0)Ŵ

)
dξ
∣∣∣t
0

≤ C τ̃

(∫
Rd

(1 + |ξ|2)`|Ŵ (t)|2 dξ +
∫

Rd

(1 + |ξ|2)`|Ŵ (0)|2 dξ

)
≤ C τ̃

(
‖W (t)‖2

H`(Rd) + ‖W (0)‖2
H`(Rd)

)
.
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Using (22), (29) thus leads to

τ̃

∫ t

0

∑
|α|=`

‖∂α
x W (s)‖2

L2(Rd) ds ≤ C
(
S(t)

) (
Nτ̃ (0)2 + Nτ̃ (t)3

)
+ C τ̃

∫ t

0
‖h(s)‖2

Hk−1(Rd) ds . (30)

To conclude, we use the Hk−1(Rd) estimate of the source term h, see (24). We obtain

τ̃

∫ t

0
‖h(s)‖2

Hk−1(Rd) ds ≤ C
(
S(t)

) ∫ t

0

1
τ̃
‖V (s)‖4

Hk−1(Rd)

+ ‖V (s)‖3
Hk−1(Rd) ‖∇xW (s)‖Hk−1(Rd) + τ̃ ‖V (s)‖2

Hk−1(Rd) ‖∇xW (s)‖2
Hk−1(Rd) ds .

We use the bound ‖V (s)‖Hk−1(Rd) ≤ Nτ̃ (t), and Cauchy-Schwarz’ inequality. In the end, we are
led to the estimate

τ̃

∫ t

0
‖h(s)‖2

Hk−1(Rd) ds ≤ C
(
S(t)

)
Nτ̃ (t)4 .

Using this final estimate in (30), and summing over ` = 1, . . . , k − 1, we obtain the estimate of
∇xW in L2([0, T ];Hk−1(Rd)). Together with (22), this ends the proof of Proposition 1.

2.3 End of the proof of Theorem 1

To conclude the proof, we follow [7]. Using Proposition 1, we first deduce that there exists a
numerical constant C0 ≥ 1 such that, if W ∈ C([0, T ];Hk(Rd)) is a solution to (9) that satisfies
Nτ̃ (T ) ≤ 1, then W also satisfies

Nτ̃ (T )2 ≤ C0

(
Nτ̃ (0)2 + Nτ̃ (T )3

)
.

The constant C0 is, of course, independent of τ̃ . Consequently, if W is a smooth solution on a
time interval [0, T ] that satisfies Nτ̃ (T ) ≤ 1/(2C0), then W also satisfies

Nτ̃ (T ) ≤
√

2C0 Nτ̃ (0) . (31)

Before going on, we observe that Nτ̃ (0) is independent of τ̃ , see (10), since Nτ̃ (0) is nothing
but the norm of the initial data W (0) in Hk(Rd).

Consider an initial condition W (0) ∈ Hk(Rd) such that ‖W (0)‖Hk(Rd) ≤ 1/[2(2C0)3/2].
Assume that the corresponding smooth solution W to (9) is not global, and thus blows up in
finite time, say at time T∗ > 0. This means that for some positive time T0, one has

Nτ̃ (T0) =
1

4C0
> Nτ̃ (0) , and ∀ t ∈ ]T0, T∗[ , Nτ̃ (t) >

1
4C0

.

Since Nτ̃ (T0) < 1/(2C0), there exists a time T1 ∈ ]T0, T∗[ such that Nτ̃ (T1) ≤ 1/(2C0), and,
applying (31), we obtain

Nτ̃ (T1) ≤
√

2C0 Nτ̃ (0) ≤
√

2C0

2(2C0)3/2
≤ 1

4C0
.

We are led to a contradiction. The smooth solution is thus global in time for small enough initial
data. The key point is that the smallness of the initial data is independent of τ̃ . Moreover, when
‖W (0)‖Hk(Rd) ≤ 1/[2(2C0)3/2], we have the (global in time) uniform estimate

∀ t ≥ 0 , Nτ̃ (t) ≤ min
(

1
2C0

,
√

2C0 Nτ̃ (0)
)

.
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It remains to convert the result for the system (9) into a result for the system (1). Using
(5), we compute

ρ− ρ = ρ
[
exp

(
U +

1
2
|V |2

)
− 1
]
, u = V .

Consequently, there exists a number δ > 0 that is independent of τ̃ such that, if

‖ρ0 − ρ‖Hk(Rd) + ‖m0‖Hk(Rd) ≤ δ ,

then (1) has a global smooth solution (ρτ ,mτ ), with initial data (ρ0,m0), and that satisfies the
global uniform estimate

sup
t≥0

(
‖ρτ (t)− ρ‖2

Hk(Rd) + ‖mτ (t)‖2
Hk(Rd)

)
+

1
τ

∫ +∞

0
‖mτ (s)‖2

Hk(Rd) ds

≤ C (‖ρ0 − ρ‖2
Hk(Rd) + ‖m0‖2

Hk(Rd)) ,

for a suitable numerical constant C that is independent of the relaxation time τ (but that
depends on the fixed reference density ρ, on the sound speed a, and on the radius δ of the ball
in Hk(Rd)).

3 Convergence towards the heat equation

Let (ρτ ,mτ ) stand for the solution to (1) obtained in Theorem 1, for some given initial data
(ρ0,m0) that are independent of τ . Performing the limit τ → 0 in (1) directly is not relevant
at all, since it would simply lead to the trivial limit equation m = 0, ∂tρ = 0. Interesting
phenomena can be observed by looking at a large time scale. Indeed, we change the time
variable by considering a “O(1/τ) time scale”:

%τ (s, x) := ρτ (s/τ, x) , vτ (s, x) := uτ (s/τ, x) .

(Observe that the new “time”variable s is actually homogeneous to the square of a time, since
τ is homogeneous to a time.) The new unknowns satisfy the following system:

∂s%
τ +∇x ·

(%τ vτ

τ

)
= 0 , (32)

τ2 ∂s

(%τ vτ

τ

)
+ τ2∇x ·

(%τ vτ ⊗ vτ

τ2

)
= −%τ vτ

τ
− a2∇x%τ . (33)

We deduce directly from (2) that both quantities sups≥0 ‖%τ (s)− ρ‖Hk(Rd) and

1
τ

∫ ∞

0
‖mτ (t)‖2

Hk(Rd) dt =
1
τ2

∫ ∞

0
‖%τvτ (σ)‖2

Hk(Rd) dσ

are bounded uniformly with respect to τ > 0. Moreover, we know that the density %τ is uniformly
bounded from above, and from below. This allows us to obtain readily the heat equation as τ
tends to 0. Indeed, the left-hand side of (33) reads as τ2× the time derivative of a quantity
that is bounded in L2(R+×Rd), plus τ2× the space derivative of a quantity that is bounded in
L1(R+ × Rd). Hence, as τ goes to 0, we are led to

−%τ vτ

τ
− a2∇x%τ ⇀ 0 in D′(R+ × Rd) .

Inserting this information into (32), we get

∂s%
τ − a2 ∆x%τ ⇀ 0 in D′(R+ × Rd) as τ → 0 . (34)
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Let % ∈ C(R+; ρ + Hk(Rd)) denote the solution to the heat equation (3) with initial data
ρ0 ∈ ρ + Hk(Rd). We want to make precise the convergence of the sequence (%τ ) towards %.
First we are going to prove that (%τ ) tends towards % in the sense of distributions in R+ × Rd.
Then we are going to show the convergence stated in Corollary 1.

Let T > 0. We first note that (32) implies that (∂s%
τ ) is bounded in L2(R+;Hk−1(Rd)).

Moreover, (%τ−ρ) is bounded in C(R+;Hk(Rd)), and is thus also bounded in L2(0, T ;Hk−1(Rd)).
In particular, we deduce that there exists a subsequence (τn) that tends to 0, and there exists a
function %̃ such that

%̃− ρ ∈ H1(0, T ;Hk−1(Rd)) , and %τn − ρ ⇀ %̃− ρ weakly in H1(0, T ;Hk−1(Rd)) .

We have %̃ ∈ C([0, T ]; ρ + Hk−1(Rd)), and since %τn |s=0 = ρ0 for all n, we obtain %̃|s=0 = ρ0. To
prove this, we observe that, for all point y ∈ Rd, the linear form δ(s,x)=(0,y) is well-defined and
continuous on H1(0, T ;Hk−1(Rd)). Therefore, for all point y ∈ Rd, we have

%τn(0, y) = ρ0(y) −→ %̃(0, y) as n → +∞ .

Now, we note that (34) implies that %̃ ∈ C([0, T ]; ρ+Hk−1(Rd)) is a solution to the heat equation
with initial data ρ0. Hence %̃ = % ∈ C([0, T ]; ρ + Hk(Rd)). Now, a classical argument shows that
the whole sequence (%τ−%) converges towards zero for the weak topology of H1(0, T ;Hk−1(Rd)).
In particular, we obtain

%τ ⇀ % in D′(R+ × Rd) as τ → 0 . (35)

Let T > 0, and let 0 < k′ < k. We have already noticed that, thanks to (32), (∂s%
τ ) is

bounded in L2(R+,Hk−1(Rd)). Moreover, for any R > 0, (%τ ) is bounded in C(R+;Hk(BR)).1

Hence, we can apply the compactness result of [9, Corollary 4]; we deduce that (%τ ) is relatively
compact in C([0, T ];Hk′(BR)) for any R > 0. Note that any limit value of a subsequence of (%τ )
in C([0, T ];Hk′(BR)) is also a limit in the space of distributions D′(]0, T [×BR). Consequently,
any limit value of a subsequence of (%τ ) in the space C([0, T ];Hk′(BR)) is equal to %. We have
thus obtained the convergence of the whole sequence (%τ ) in the space C([0, T ];Hk′(BR)):

∀R > 0 , %τ −→ % in C([0, T ];Hk′(BR)) .

The proof of Corollary 1 is complete.
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[8] T. C. Sideris, B. Thomases, and D. Wang. Long time behavior of solutions to the 3D
compressible Euler equations with damping. Comm. Partial Differential Equations, 28(3-
4):795–816, 2003.

[9] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl. (4), 146:65–96,
1987.

[10] W.-A. Yong. Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech.
Anal., 172(2):247–266, 2004.

12


