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Abstract

We establish the existence of a global solution to a regular reflection of a shock

hitting a ramp for the pressure gradient system of equations. The set-up of the

reflection is the same as that of Mach’s experiment for the compressible Euler

system, i.e., a straight shock hitting a ramp. We assume that the angle of the

ramp is close to 90 degrees. The solution has a reflected bow shock wave, called

the diffraction of the planar shock at the compressive corner, which is mathemat-

ically regarded as a free boundary in the self-similar variable plane. The pressure

gradient system of equations is a subsystem, and an approximation, of the full

Euler system, and we offer a couple of derivations.
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1 Introduction

We are interested in solving multi-dimensional systems of conservation laws. The pri-
mary system is the well-known Euler system for compressible gases ([22]). Much effort
has been devoted to the system, see the survey papers [55][3][4][34][36], the conference
proceedings [30] by Glimm and Majda, the monograph [29], and the recent progress
Shuxing Chen [16][17][18], Chen, Xin, and Yin [19][20], Zhang [70], and Guiqiang Chen

1Research partially supported by NSF-DMS-0305497 and 0305114.
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and Feldman [14][15]. However, the Euler system remains formidable because of its com-
plexity. Simplified models that capture various isolated features of the Euler system may
be proposed and studied to pave the road. Immediate models are the isentropic case,
the irrotational (potential) flow equations, and the steady flows [54][65][66][67], some of
these assumptions are already made in some of the aforementioned papers. A remark-
able and distinct model is the unsteady transonic small disturbance system (UTSD)
which was proposed and studied ([21][38] [54][10][11][12][8][9][39][60][63][26]) for tran-
sonic solutions and the transition from Mach reflection to regular reflection. Despite
the conveniences these models bring, all these models have their difficulties. In recent
years, another model called the pressure gradient system is proposed ([71][69]), which
seems to exihibit new and complementary conveniences. See [13] for a similar system.
In this paper we present further motivational work on the pressure gradient system, and
in particular we present the global existence of a self-similar solution that is similar to
the regular reflection seen in Mach’s experiment for the full Euler system, see Section 4.

We spend Section 2 deriving the pressure gradient model and providing supportive
materials. Section 3 covers the set-up of the shock reflection problem and basic classical
treatment. The precise statement of the result is given in Section 4. Sections 5–9 are
devoted to the proof. Section 10 is on fine properties of the velocity. And in Section
11 we offer some discussions. In the Appendix we provide theory that are somewhat
implied by theorems in various papers but not yet clearly stated in writing.

2 The pressure gradient system

The pressure gradient system takes the form







ut + px = 0,
vt + py = 0,
Et + (up)x + (vp)y = 0,

(1)

where E = 1
2
(u2 + v2) + p.

The pressure gradient system is a reduction of a subsystem appeared in the flux
splitting scheme of Li and Cao [45] and Agarwal and Halt [1]. Its mathematical structure
and numerical simulations were studied in Zhang, Li, and Zhang [69], where one sees
striking similarity to the Euler system. The pressure gradient system was intuitively
justified for its own physical validity when the velocity is small and the gas constant γ
is large in Zheng [71], where the existence of a subsonic solution was also established,
which adds on further attractiveness of the model. Its regime of physical validity is
clarified further in the formal presentation of an asymptotic derivation to be presented
later in this section. See the books by Li et al [44] or Zheng [72] for more background
information.
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We recall that the full Euler system for an ideal fluid takes the form






ρt + ∇ · (ρu) = 0,
(ρu)t + ∇ · (ρu⊗ u+ pI) = 0,
(ρE)t + ∇ · (ρEu+ pu) = 0,

(2)

where

E :=
1

2
|u|2 + e,

where e is the internal energy. For a polytropic gas, there holds

e =
1

γ − 1

p

ρ
,

where γ > 1 is a dimensionless gas constant (the adiabatic exponent). More precisely
γ = 1 + Rc−1

v where R is the constant in the equation of state for ideal gases and cv is
the specific heat at constant volume ([22]).

2.1 The flux-splitting derivation

Separating the pressure from the inertia in the flux of the Euler equations









ρ
ρu
ρv
ρE









t

+









ρu
ρu2 + p
ρuv
ρuE + up









x

+









ρv
ρuv
ρv2 + p
ρvE + vp









y

= 0, (3)

where

E =
1

2
(u2 + v2) +

1

γ − 1

p

ρ
,

we obtain two systems of equations








ρ
ρu
ρv
ρE









t

+









ρu
ρu2

ρuv
ρuE









x

+









ρv
ρuv
ρv2

ρvE









y

= 0 (4)

and








ρ
ρu
ρv
ρE









t

+









0
p
0
up









x

+









0
0
p
vp









y

= 0 . (5)

Agarwal and Halt [1] have used this splitting (4)(5) to form a scheme in numerical
computations for airfoil flows and observed a consistent improvement over other schemes
(Roe, AUSM, CUSP, and Van Leer). System (4) is called the zero pressure system, or
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the transport or convective system. System (5) is called the variable-density pressure
gradient system. This splitting corresponds to the separation of the two mechanisms–
pressure difference and inertia– that are causes for fluid motion.

We focus on system (5). Let us do some simple reduction. From the first equation of
system (5) we obtain

ρt = 0.

Thus ρ is independent of time. For simplicity, let us assume ρ = 1. Then system (5)
can be written as (1) with E = (u2 + v2)/2 + p/(γ − 1). It can be seen easily that the
transformation

{

p = (γ − 1)P,
t = 1

γ−1
T,

(6)

will effectively rescale the gas constant γ to 2. Thus system (1) with E = (u2 +v2)/2+p
will be the primary system for us to study.

For smooth solutions or in regions where a solution is smooth, system (1) can be
simplified to be







ut + px = 0,
vt + py = 0,
pt + pux + pvy = 0.

(7)

From system (7) we can find a decoupled equation

(

pt

p

)

t

= pxx + pyy. (8)

2.2 The asymptotic derivation

Besides the previous somewhat brutal derivation, there is a soft derivation. Let us write
the energy in the form

E =
1

2
|u|2 + εp/ρ

where

ε :=
1

γ − 1
.

We propose to look for an asymptotic solution of the form

ρ = ρ0+ ερ1 +O(ε2),
u = εu1 +O(ε2),
p = εp1 +O(ε2).

(9)

This scaling corresponds to sound speeds of the order O(1):

c =
√

γp/ρ = O(ε0).
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So we scale space and time variables by the same factor (order O(1)) to study acoustic
phenomena.

The leading order perturbation equation from conservation of mass is

(ρ0)t = 0,

so
ρ0 = ρ0(x).

The leading order equation from conservation of momentum O(ε) and conservation of
energy O(ε2) constitute the variable-density pressure gradient system

{

(ρ0u1)t + ∇p1 = 0,
(

1
2
ρ0|u1|2 + p1

)

t
+ ∇ · (p1u1) = 0.

(10)

This is the same as in the flux-splitting derivation of the previous subsection.

John Hunter became interested in the system during the author’s talk on its Riemann
problem at an FRG workshop in Pittsburgh in 2003, and wanted to fix the handwaving-
type argument for the physical validity of the system loosely presented in the talk (based
on Zheng [71]). This formal derivation presented here is what he sent the author a few
days after the meeting ([37]). We note that this asymptotic regime lacks strong physical
sense because there is no such physical material for very large γ. There is no other
nonphysical concerns though. For example, it is physical to have p = εp1 + O(ε2) → 0
since p is an independent variable and one can adjust the temperature to achieve it.

2.3 Progress of research

Both Cauchy and Riemann problems for systems (5), (1), or (8) are open. The self-
similar coordinates

ξ =
x

t
, η =

y

t

can reduce the Riemann problem by one dimension. However, all three systems (5),
(1), and (8), and even their linearized versions are of mixed type in the self-similar
coordinates. Peng Zhang, Jiequan Li, and Tong Zhang [69] have given a set of conjectures
for solutions to the four-wave Riemann problem for these systems, see the book of Li,
et. al. [44], or Section 9.3 of [72]. Zheng has established the existence of solutions in
the elliptic region [71][72].

More precisely, equation (8) in the self-similar coordinates (ξ, η) takes the form

(p− ξ2)pξξ −2ξηpξη + (p− η2)pηη

+1
p
(ξpξ + ηpη)

2 − 2(ξpξ + ηpη) = 0.
(11)
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The eigenvalues of the coefficient matrix of the second order terms of (11) can be found
to be p and p−ξ2−η2. Zheng proved in [71] the existence of a weak solution for equation
(11) in any open, bounded and convex region Ω ⊂ R

2 with smooth boundary and the
degenerate boundary datum

p|∂Ω = ξ2 + η2 (12)

provided that the boundary of Ω does not contain the origin (0, 0).

Kyungwoo Song [62] has removed the restriction on the origin and the smoothness
of the boundary. Kim and Song [43] have obtained regularity of the solution in the
interior of the domain and continuity up to and including the boundary. Dai and Zhang
[23] have obtained the interaction of two rarefaction waves adjacent to the vacuum. For
numerical simulations, see [44].

2.4 Closeness to the Euler

How good does the pressure gradient system approximate the full Euler system? We will
show solid evidence in a future paper [74]. For now we notice that the full Euler system
can be rewritten in a form in which the pressure gradient system plays a dominating
role.

First let us show the maximum principle for p of the full Euler system, although it
is known, see Serre [61]. In the self-similar plane and for smooth solutions, the system
takes the form:































1
ρ
∂sρ+ uξ + vη = 0,

∂su+ 1
ρ
pξ = 0,

∂sv + 1
ρ
pη = 0,

1
γp
∂sp+ uξ + vη = 0

(13)

where
∂s := (u− ξ)∂ξ + (v − η)∂η.

By differentiating the fourth equation in (13) in the flow stream direction ∂s and using
the second and third equations, we obtain a second-order equation for p:

−∇ · (1

ρ
∇p) + ∂s

∂sp

γp
−
(

∂sp

γp

)2

− ∂sp

γp
+ 2(uξvη − uηvξ) = 0. (14)

The combination uξvη−uηvξ can be manipulated to depend on (vη, pξ, pη) homogeneously
with degree 2. In fact, using the last three equations in (13) we find that

uξvη − uηvξ =
vηpη

(v − η)ρ
− vηpξ

(u− ξ)ρ
− pξpη

(u− ξ)(v − η)ρ2
+

pηps

γpρ(v − η)
. (15)
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When ∇p vanishes, so does uξvη − uηvξ. Therefore there holds the maximum principle
for p in the subsonic domains.

Furthermore, we show that there holds the ellipticity principle. Let

ϕ := c2 − (u− ξ)2 − (v − η)2. (16)

Assuming the variables are in C2, we derive an equation for ϕ:

−c2∆ϕ+ ∂2
sϕ = O(ε) + (

∂sϕ

c
)2 − 4ϕ∂sϕ

c2
− 3∂sϕ+

3ϕ2 + (ϕ− c2)2

c2
+ c2. (17)

Thus so long as |O(ε)| < c2, there holds the ellipticity principle:

min
Ω
ϕ ≥ min

∂Ω
ϕ. (18)

This means that our solution will be subsonic in a region if we use a barrier to force the
domain subsonic.

Since the right-hand side of the ϕ equation is so much positive, the ellipticity holds
uniformly independent of ε > 0. That is, consider

F := ϕ− βω; (19)

where ω > 0 in Ω and
ω = 0 on ∂Ω. (20)

Then there exists a small β > 0, independent of ε > 0, such that

F > 0 in Ω, (21)

thus
ϕ > βω > 0 in Ω. (22)

For ellipticity principle for the potential equation, see Elling and Liu [24].

2.5 Comparison of models

The Burgers’ equation ut + (u2/2)x = εuxx has played an essential role in the theory of
one-dimensional systems of conservation laws. No such a model has emerged for multi-
dimensional systems. Current various models seem to have different physics captured.
As the names suggest, the isentropic, the irrotational, and the steady flows are different.
The UTSD model is regarded as describing the transition between Mach and regular
reflections; i.e., it is best used locally at the triple point. The pressure gradient system
can have global solutions that are similar to those of Euler system seen in numerical sim-
ulations and physical experiments, established in this paper. Thus this model possesses
essential physics.
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What separates this model from others is the series of features: It is a neat set of
three evolutionary conservation laws, the pressure variable can decouple from the other
two to form a single quasilinear equation whose quasilinearity is lower than that for the
potential flow equation (or the potential formulation of the pressure gradient system).
By quasilinearity I mean the order of the highest order of derivatives involved in the
coefficients of the principal part of the second-order equation. In the pressure gradient
system, the coefficients of the principal part of the second-order equation for the pressure
do not depend on ∇p, thus its quasilinearity is zero. In the potential flow equation (p.248
of [22]), however, the coefficients of the principal part of the second-order equation for
the potential depend on ∇p, thus its quasilinearity is one. This small difference makes
the pressure gradient system more accessible since the state of the art in elliptic theory
has been employed fully here. The success here, as intended as a model, may induce
better utilization of the elliptic theory to handle the potential flow in the near future.

The model’s simplicity has allowed us to establish the existence a global solution in
this paper that resembles the regular reflection of a straight shock hitting a ramp for
the adiabatic Euler system. This is the first of such a result.

So this model is simple enough for mathematical treatment and yet captures essential
physics. In addition, its potential to fully approximate a major part of the full Euler
system is promising, see a forthcoming paper [74].

3 Set-up of regular reflection

So we consider pressure gradient system (1). We consider self-similar solutions. In the
self-similar plane (ξ, η) = (x/t, y/t), the system of equations are











−ξuξ − ηuη + pξ = 0,

−ξvξ − ηvη + pη = 0,

−ξEξ − ηEη + (pu)ξ + (pv)η = 0.

(23)

Consider a flat shock hitting a wedge with half angle θw ∈ (0, π/2). The state ahead
of the shock is (p, u, v) = (p0, 0, 0) for some p0 > 0. The state behind the shock is
(p1, u1, 0) with p1 > p0. To connect the two states with a single forward shock, we need
the relation

u1 =
p1 − p0√

p̄10
, p1 > p0. (24)

The overhead bar denotes the average: p̄10 = (p1 + p0)/2. Assuming the shock reflection
is a regular one, then it hits the ramp at the location

(ξ, η) = (ξ10, η10) := (
√
p̄10, tan θw

√
p̄10). (25)
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See Figure 1 for the set-up.

ξ

(1)

(0)

(2)

R

Figure 1.  Regular reflection

η
I

θ w

Two free parameters: We see that system (1) is invariant under the translation
(u, v) → (u − a, v − b), which we have utilized in assuming that the velocity is zero
ahead of the incident shock. The system enjoys another invariance: (p, u, v, x, y) →
(α2p, αu, αv, αx, αy) which we can use to scale p0 = 1. Thus there is only one free
variable p1/p0 in describing the data. The entire experiment can thus be characterized
by the two parameters (p1/p0, θw).

Algebraic portion: To find the reflected shock and the state between it and the ramp,
denoted by state 2, we need the Rankine-Hugoniot relation in 2-D. Let η = η(ξ) with
slope σ = η′(ξ) be a shock curve. Then,

(η − ξσ)[u] + σ[p] = 0
(η − ξσ)[v] − [p] = 0
(η − ξσ)[E] + σ[pu] − [pv] = 0.

(26)

We can solve them to obtain the contact discontinuity σ = η/ξ = [v]/[u], [p] = 0 and
the shocks

dη
dξ

= σ± :=
ξη±

√
p̄(ξ2+η2−p̄)

ξ2−p̄
,

[p] = ξ[u] + η[v],

[p]2 = p̄([u]2 + [v]2).

(27)

We use the minus branch for the reflected shock. A useful and equivalent form for the
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Rankine-Hugoniot relation is

dη

dξ
= σ± =

ξη ±
√

p̄(ξ2 + η2 − p̄)

ξ2 − p̄
, (28)

[u] =
ξp̄± η

√

p̄(ξ2 + η2 − p̄)

p̄(ξ2 + η2)
[p], (29)

[v] =
ηp̄∓ ξ

√

p̄(ξ2 + η2 − p̄)

p̄(ξ2 + η2)
[p]. (30)

We require that the state (p2, u2, v2) be such that the velocity (u2, v2) be parallel to
the wall; that is,

v2 = tan θw u2. (31)

This requirement and the Rankine-Hugoniot relation determine the state 2.

Proposition 3.1. (Regular reflection of the algebraic portion) There exists a critical
θw = θ0 ∈ (0, π/2), depending only on p1/p0, given by the formula

tan2 θ0 =
8p1(p1 − p0)

(p1 + p0)2
, (32)

such that there exist two states (p2, u2, v2) for each θw > θ0, given by

p2 = p1 + p̄10 tan2 θw ± tan θw

√

p̄2
10 tan2 θw − 2p1(p1 − p0), (33)

u2 =
p2 − p0√

p̄10

1

1 + tan2 θw
, v2 = u2 tan θw. (34)

Both values of the pressure of the state 2 are greater than p1; the larger one goes to
infinity while the smaller one approaches

p∗2 := p1 +
2p1(p1 − p0)

p1 + p0
(35)

as θw → π/2−.

We comment that the p∗2 in (35) is the pressure that corresponds to the planar shock
hitting a vertical wall with zero velocity (u2, v2) = (0, 0) between the reflected backward
shock at ξ = −

√

(p1 + p∗2)/2 and the vertical wall.

Proof. We manipulate the second equation in (27) to yield

p2 = ξ10(1 + tan2 θw)u2 + p0. (36)
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Introducing the notation
ũ2 := (1 + tan2 θw)u2, (37)

we have

ũ2 =
p2 − p0√

p̄10
, (38)

or equivalently

ũ2 − u1 =
p2 − p1√

p̄10
. (39)

Manipulating the third equation of (27), we obtain

(p2 − p1)
2/p̄12 = (u2 − u1)

2 + tan2 θw u
2
2. (40)

This is a quadratic equation for u2, from which we find one branch

ũ2 − u1 =
√

1 + tan2 θw

√

(p2 − p1)2/p̄12 − sin2 θw u2
1. (41)

We have discarded the minus sign branch since it is irrelevant here. We equate the two
equations (39) and (41) to eliminate ũ2 and end up with the equation

(p2 + p1)(p2 − p1)
2 = p̄10(1 + tan2 θw)[2(p2 − p1)

2 − (p2 + p1) sin2 θw u
2
1]. (42)

Let x := p2 − p1, we rewrite the above equation as

x3 + (p1 − p0 − (p1 + p0) tan2 θw)x2 + (x+ 2p1) tan2 θw(p1 − p0)
2 = 0. (43)

We observe by inspection that the equation has a solution x = p0 − p1, which helps to
reduce the equation to

x2 − (p0 + p1) tan2 θwx+ 2p1 tan2 θw(p1 − p0) = 0. (44)

We thus find the two roots easily when the discriminant is nonnegative. The asymptotic
behavior for p2 is obvious from the explicit formula. This completes the proof of the
proposition. �

We will use the weak reflection (with the smaller pressure value), and ignore the
strong one (see p. 317 in [22] for a reason). We check easily to see that

ξ2
10 + η2

10 − p̄12 > 0 (45)

for the weak reflection as tan θw ≥ tan θ0, so the square root is well defined for the
slope of the shock wave. In fact, we use the explicit formula (33) to first obtain p2 <
p1 + p̄10 tan2 θw, then use tan θw > tan θ0 to derive

ξ2
10 + η2

10 − p̄12 >
(p1 − p0)(3p1 − p0)

2(p1 + p0)
> 0. (46)
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Further, the slope satisfies
dη

dξ
= σ < tan θw (47)

through direct comparison for as long as p2 > p1. So locally at the reflection point, the
regular reflection is possible when θw ∈ [θ0, π/2).

The state 2 at the reflection point is also supersonic in the sense that

ξ2 + η2 − p > 0 (48)

when θw is slightly more closer to π/2; i.e., tan θw > tan θ1, where

tan2 θ1 :=
p1 − p0

(p1 + p0)2

(

4p1 +
√

16p2
1 + (p1 + p0)2

)

(49)

The proof is straightforward so we omit it. The state (p2, u2, v2) will remain supersonic
in a neighborhood of the reflection point. So the constant state (p2, u2, v2) will be used
as a solution in the sector formed by the reflected straight shock and the wall until it
hits the sonic circle

ξ2 + η2 = p2. (50)

Elliptic portion: Beyond the sonic arc, the state becomes nonconstant, and the re-
flected shock curls downward to meet the ground, vertically at the ground. We propose
the problem as a boundary value problem with a free boundary on which the Rankine-
Hugoniot relation holds. We convert the Rankine-Hugoniot relation into a (degenerate)
oblique derivative boundary value problem, see the next paragraph. On the wall, the
boundary condition v2 = tan θw u2 becomes

∂
n
p = 0 (51)

where n denotes the exterior unit normal to the wall. On the ground, we can use the
Neumann condition (51) or equivalently we convert the ramp problem into a wedge
problem, so there is no boundary. On the sonic arc, we use the Dirichlet problem. The
decoupled p-equation in the subsonic domain is derived from (23) and mentioned in (11):

(p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
(ξpξ + ηpη)

2

p
− 2(ξpξ + ηpη) = 0. (52)

Here is the derivation of the (degenerate) oblique derivative boundary value on the
reflected shock, which we call Σ from now on. We require that all three equations (23)
(taken the limit from the inside) and all three Rankine-Hugoniot relations (28-30) hold.
We differentiate the last two equations in the Rankine-Hugoniot relations along the
shock wave so we have five differential equations for six derivatives (uξ, vξ, pξ, uη, vη, pη).
Holding pη fixed, we solve for the other five (uξ, vξ, uη, vη, pξ). The relation between
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pξ and pη decouples from the other derivatives and is used as the oblique derivative
condition on the shock wave:

ṗ
(

[p]
4p̄

(ξ2 + η2) − (ξ2 + η2 − p̄)
)

+ (ξη + η′(p̄− ξ2))
{

(−σ±pξ + pη) + (ξpξ + ηpη)
ξσ±−η

p

}

= 0,
(53)

where [p] = p − p1, and the term ṗ denotes the tangential differentiation along the
shock: ṗ := pξ + σ±pη. The other relations are used for determining (u, v) once p is
obtained. The first equation in the R-H relation (28) is symbolically “reserved” for use
to determine the location of Σ. The oblique derivative condition (53) is in the form
l · ∇p = 0 for a smooth vector field l(ξ, η, η′), which is tangent to the shock boundary
at its tip. The apparent p-dependence of l is removed by the formula

p̄ =
(η − ξσ±)2

1 + σ2
±

(54)

obtained by inverting (28).

The sufficiency of the oblique derivative boundary condition is seen as follows. The
second-order equation for p plus the two first-order equations for (u, v) implies

(ξ∂ξ + η∂η)L+ L = 0, (55)

for

L := (ξ∂ξp+ η∂ηp)/p− uξ − vη. (56)

This ODE (55) in the form r∂rL+L = 0 has the only solution L = 0 if L(r0) = 0 at any
point r = r0 > 0. Thus the third equation of (23) will hold if it holds on the boundary Σ.
From our previous derivation of the oblique derivative boundary condition, we see that
L = 0 on the free boundary, provided that the oblique derivative boundary condition
holds along with the other four relations between (uξ, vξ, uη, vη) and pη in obtaining
(u, v). We will use the four relations to find (u, v). Thus the oblique derivative boundary
condition is a condition that guarantees that solutions of the second-order equation for
p are solutions for the first-order systems for (p, u, v) in the sectoral domain spanned by
Σ. We point out that L = 0 holds automatically on the sectoral domain spanned by the
sonic arc if p is Lipschitz.

The free boundary problem: Find p satisfying the degenerate elliptic equation (52)
in the domain Ω bounded by the curved reflected shock Σ, the wall and the ground, and
the sonic arc (50). On the wall and the ground, it is the Neumann condition (51). On
the circular arc, it is the Dirichlet problem. On the free boundary Σ, it is the degenerate
oblique derivative boundary condition (53). The free boundary satisfies (28).

A trivial solution to the above free boundary problem is p = p2 in the entire domain
Ω, whose boundary Σ consists of two parts: The first part is the extension of the reflected
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shock R to the tangent point with the circle ξ2 + η2 = p̄12 while the second part is the
circle ξ2 + η2 = p̄12 between the tangent point and the ground. This constant solution
does not result in a solution (p, u, v) for the original problem. The reason is that the
tangential oblique derivative boundary value condition is completely degenerate on the
circular free boundary which fails to impart information from the second-order equation
(52) for p to the first-order equation for p (i.e., the third equation in (23)). In short, the
velocity field (u, v) caused by a circular shock wave connecting two constant pressure is
necessarily such that uξ + vη 6= 0.

4 Result

Main Theorem. There exists an (entropy) solution (p, u, v) defined for all (ξ, η) ∈ R
2,

provided that the ramp angle θw is close to π/2. The shock curve is C1 and piecewise C∞

smooth. The pressure p is C∞ smooth in the subsonic domain. The velocity is bounded
and Hölder continuous on the closure of the subsonic domain.

See Figure 1 for an illustration, where only half of the wedge is presented. Our result
is consistent with the asymptotic results of Keller and Blank [41] and Hunter and Keller
[40].

The proof is given in the next sections.

Ω
A

(2)

I I

Figure 2. Domain for the linear theory

wθ

C

G Σ

O ξ

η

D
R

B

(1)
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5 Linear theory with fixed boundary

We consider a linear problem with a fixed boundary that forms the basis for our nonlinear
problem. The domain Ω is the region between the wedge and a pre-selected shock curve
and its corresponding sonic arcs. See Figure 2, where the shock curve is denoted by the
curve AGB, and also by Σ. The sonic arcs are AC and BD. We are interested in the
case where AC and BD do not degenerate to single pints.

More precisely, for a given θw ∈ (0, π/2), p1, pm (p1 < pm), and a β ∈ (0, β0), where

β0 :=
1√
p̄m1

, (p̄m1 := (p1 + pm)/2) (57)

let

K = {η = η(ξ) ∈ C2,γ(R) | η(0) = ηm1, η
′(0) = 0, η′′(0) = β, 0 ≤ η′′ ≤ β0, η even }. (58)

Here γ ∈ (0, 1) and
ηm1 := −√

p̄m1. (59)

We introduce

p̄ =
(η − ξη′(ξ))2

1 + (η′(ξ))2
, (60)

where p̄ stands for the average of p1 and the p from the inside of the shock. This p̄ is
always well-defined and belongs to C1,γ(R) and C2,γ at the point ξ = 0 magically. In
fact, it has the expansion

p̄ = p̄m1 + β
√
p̄m1(1 − β

√
p̄m1)ξ

2 +O(ξ2+γ) (61)

at ξ = 0. So p̄ has a local minimum at ξ = 0 for the choices of β and β0. Furthermore,
we have

ξ2 + η2 − p̄ = ξ2
(

(1 − β
√
p̄m1)

2 +O(ξγ)
)

(62)

at ξ = 0. Thus the square root function

F (ξ) =







√

ξ2 + η2 − p̄, ξ > 0,

−
√

ξ2 + η2 − p̄, ξ < 0

is a smooth function at ξ = 0 along the curve η(ξ). Finally, through pure algebraic
manipulations, we find

p̄(ξ2 + η2 − p̄) = (η′(ξ2 − p̄) − ξη)2. (63)

We would like to invert (63) to find

dη

dξ
= σ± =

ξη + ξ
√

p̄(1 + (η2 − p̄)/ξ2)

ξ2 − p̄
=: σ, (64)
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which is the standard Rankine-Hugoniot locus, but we need to prove that

η′(ξ2 − p̄) − ξη > 0, for ξ > 0. (65)

In fact, we use algebraic manipulations to find

η′(ξ2 − p̄) − ξη =
1

1 + (η′)2
(ξη′ − η)(ξ + ηη′). (66)

The term ξη′ − η > 0 because it is positive at ξ = 0 and its derivative along the curve
is ξη′′ > 0. The other term ξ + ηη′ is positive:

ξ + ηη′ > 0, (67)

because it is zero at ξ = 0 and its derivative is 1 + (η ′)2 + ηη′′ which is positive since
η′′ ≥ 0 if η > 0, or |ηη′′| ≤ ( max |η|)β0 = 1. So indeed (65) holds and we have (64).

The pre-selected shock will be a curve from the set K. It is possible that only a
portion of an η(ξ) in K is actually used: We use the elliptic portion, corresponding to
AGB. Let us explain. For each η(ξ) ∈ K, we use the equation η ′ = σ− for ξ < 0 and
η′ = σ+ for ξ ≥ 0 to locate p on the boundary; i.e., formula (60). Along this curve as ξ
increases, both p and ξ2 + η2 increase (see 67) until p− ξ2 − η2 = 0 from which point we
stop using this boundary, i.e., the point B. Use p2 to denote this value of p (at B) along
the boundary where the ellipticity first vanishes. Use this p from (60) in the vector field
l of the oblique derivative condition. We then have a linear tangential oblique derivative
boundary value problem for p(1):

(p
(1)
ξ + η′p

(1)
η )
(

[p]
4p̄

(ξ2 + η2) − (ξ2 + η2 − p̄)
)

+(ξη + η′(p̄− ξ2))
{

(−η′p(1)
ξ + p

(1)
η ) + (ξp

(1)
ξ + ηp

(1)
η ) ξη′−η

p

}

= 0.
(68)

The coefficients of (68) all enjoy C1,γ regularity or higher. Note carefully that we do not
use the value p in (60) as Dirichlet boundary value. We use Dirichlet value p2 on the
sonic line and pm at G:

p = p2 on ξ2 + η2 = p2; p = pm at G. (69)

The extra condition pm at G will be justified later by identifying the problem as an
emergent type (see [35][6]) since the obliqueness fails in an emergent type.

The direction field l(ξ, η, η′(ξ)) of the oblique derivative condition is drawn for a flat
shock in Figure 3. This vector field has a natural extension into the domain by simply
letting η free everywhere including in the formula for p, while holding η ′(ξ) fixed as the
slope of the fixed boundary.

We linearize equation (52). Fix an α ∈ (0, 1). And fix a positive constant εe > 0. For
any

Q ∈ C1,α(Ω̄), pm < Q < p2 in Ω, (70)
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we consider the equation

εe∆p+ ((Q− ξ2 − η2)+ + η2)pξξ − 2ξηpξη + ((Q− ξ2 − η2)+ + ξ2)pηη (71)

+{ξQξ + ηQη

Q
− 2}(ξpξ + ηpη) = 0,

where the regularization term εe∆p is added to ensure uniform ellipticity. Or in short,
we consider an equation like this:

Lu :=
∑

ij

aijuxixj
+
∑

i

biuxi
= 0 in Ω. (72)

We point out that we have to linearize the equation to utilize the established theory on
(tangential) oblique derivative boundary value problems of Lieberman and Guan and
Sawyer, although some quasilinear and even fully nonlinear theory, which unfortunately
do not apply to our case, is available (see [32] [59]).

The boundary condition on the wall is the Neumann condition (51)

∂
n
p(1) = 0. (73)

Figure 3. Directions of the tangential oblique derivatives.

1

subsonic

η

ξ

p

2
p

We introduce a couple of notations. Let

dx = distance {x, {O,A,B, C,D}},

and for δ > 0,
Ωδ := {x ∈ Ω |dx > δ}.

Let |u|a be the Ca norms on the usual Ca functions, a ≥ 0.

Theorem 5.1 (Existence for the linearized and fixed boundary problem). There exists
a classical smooth solution p(1) ∈ C1,α′

(Ω) ∩ C2(Ω ∪ {Σ\{A,B}}) for some α′ > 0 to
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the linearized equation (71) with the Dirichlet (69), Neumann (73), and the tangential
oblique derivative boundary conditions (68). The solution satisfies the following basic
estimates:

pm < p(1) < p2 in Ω,

|p(1) − pm|1+α′(Ω) ≤ C|p2 − pm| for α′ ≤ α1(
θw

π−θw
),

|p(1) − pm|2+γ′(Ωδ) ≤ Cδ|p2 − pm| for γ′ ≤ min{γ, α}, 0 < δ � 1.

(74)

Remark: We remark that it is possible to express these estimates more neatly by using
the intermediate spaces H

(b)
a (Ω), introduced in Gilbarg-Hörmander [27]. The H

(b)
a (Ω)

consists of functions u such that

|u|(b)a (Ω) := sup
δ>0

{δa+b|u|a(Ωδ)} <∞. (75)

The numbers a and b satisfy a ≥ 0 and a+ b ≥ 0.

Proof. The proof is based on a series of four papers [46][47][49][50] from Lieberman,
one paper from Azzam [2], and one paper from Guan and Sawyer [32]. The paper of
Guan and Sawyer helps us to solve the tangential oblique derivative problem at the point
G locally. The paper of Azzam provides higher regularity of solutions at corners C and
D, where higher compatibility conditions than Lieberman’s [50] are satisfied. All other
difficulties are handled by the papers of Lieberman. Paper [46] provides the frame-work
of Perron’s method and handles the oblique derivative part. Paper [47] handles the
mixed case and in particular points A,B,C, and D. Paper [50] gives optimal regularity
at those points. And paper [49] handles the point O where two oblique derivative
boundary conditions are satisfied simultaneously. As for the interior and the Dirichlet
boundary condition on the sonic arcs, they are classical, see Gilbarg and Trudinger [28]
or Zheng [71].

We mention here the key points of the proof, details are given in the Appendix. First
we verify the obliqueness of (68) on the boundary. An interior normal of Σ is (−σ±, 1).
The obliqueness is defined by the inner product of a unit (interior) normal with the
oblique direction (−σ±, 1) + ξσ±−η

p
(ξ, η). We ignore the tangential direction. We ignore

the normalization of the interior normal for now as well. Thus

Obliqueness = (−σ±, 1) · {(−σ±, 1) +
ξσ± − η

p
(ξ, η)}. (76)

We do some simple algebra to yield,

Obliqueness =
p− ξ2

p

{

(σ± +
ξη

p− ξ2
)2 +

p(p− ξ2 − η2)

(p− ξ2)2

}

. (77)

The obliqueness is obvious provided that p− ξ2 − η2 > 0 along the curve. It is true in
a neighborhood of G, and recall we stop when it ceases to be true. The other factor
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ξη + η′(p̄ − ξ2), which we do not place in (76), has been shown in (65) to be less than
zero for ξ between G and B.

Regarding point O, we realize that the interior angle COD is not less than π, thus
Lieberman’s theory does not apply directly to yield C1,α estimate. But, we realize that
the solution is symmetric with respect to the η axis. Hence, the left-half of the domain
enjoys an interior angle COG which is π − θw ≤ π. Therefore Lieberman’s theory can
apply in this case to yield C1,α1 solutions where α1 is a positive number depending on

θw

π−θw
.

Regarding point B, where p2 = ξ2 + η2, the oblique derivative boundary condition
becomes

K2(pξ + η′pη) − η′pξ + pη + (ξpξ + ηpη)(ξη
′ − η)/(ξ2 + η2) = 0, (78)

where

K2 =
p1

p1 + p2

√

p2 − p1

p2 + p1
.

We rewrite (78)

pξ +Hpη = 0, where H :=
K2η′ + 1 + η(ξη′ − η)/(ξ2 + η2)

K2 − η′ + ξ(ξη′ − η)/(ξ2 + η2)
. (79)

We claim that the direction of the oblique derivative points in between the tangential
directions of the shock curve and the sonic circle; I.e.,

ξ/(−η) > H > η′, (80)

assuming ηB < 0. To prove the claim, we consider the two separate cases ηB ≥ 0 and
ηB < 0. First let ηB < 0. Then the denominator of H is positive since

−η′ + ξ(ξη′ − η)/(ξ2 + η2) = −η(ξ + ηη′)/p2 > 0.

(See (67) for ξ + ηη′ > 0). Using cross multiplication, the inequality H > η′ becomes
(ξ + ηη′)2 > 0, while the inequality ξ/(−η) > H becomes K2(ξ + ηη′) > 0. So they are
both valid. For the case ηB ≥ 0, we note that the numerator of H is always positive:
1 + η(ξη′ − η)/p2 = ξ(ξ + ηη′)/p2 > 0. When the denominator is positive or zero, the
proof for inequality H > η′ is the same as before. When the denominator is negative,
there holds H < 0 < η′. When the denominator is positive or zero, the inequality
ξ/(−η) < 0 < H is trivial. When the denominator is negative, then both denominators
of ξ/(−η) and H are negative, thus the proof for the case η < 0 is still applicable. Thus,
in all cases, we have proved our claim: The vector field l points from the exterior to
the exterior of the domain, see Figure 3. By Lieberman’s [47], the solution p(1) enjoys
C1,α2 regularity at the point for some α2 > 0. This α2 depends on p1, pm, and the upper
bound β0 of β, as well as εe.
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Regarding point C, Lieberman’s yields only Hölder continuity Cα3 for any α3 < 1.
But the constant value of p on the sonic arc has zero tangential derivative while the
normal of the wall is tangent to the arc, which allows for higher C1,α4 regularity for
some α4 > 0 by Azzam [2].

Regarding point G, we realize that Theorem 1.1 of Guan and Sawyer does not apply
directly since its requirement include that the boundary Σ be in C3+λ (λ > 0). Fortu-
nately, its Remark 1.3 indicates that the boundary regularity can be reduced to C2+γ

when the structure of the tangential manifold is simple, which is our case.

We use the Perron method for existence, as framed in Lieberman [46]. The basic local
existence at point G is the only new case we need to provide a proof for. It is formulated
as a Dirichlet and tangential oblique derivative boundary value problem, which is slightly
different from a pure tangential oblique derivative problem. More precisely, let B2 be a
neighborhood of G with smooth boundary. Let h be any continuous function on ∂B2∩Ω.
Consider the problem

p = h on ∂B2 ∩ Ω (81)

for equation (71) restricted to the domain B2 ∩ Ω with the oblique derivative boundary
conditions (68) restricted to Σ∩B2. The local existence for some such B2 implies global
existence of solution in Ω by Lieberman [46]. We know that the elliptic estimates are
local, so Guan and Sawyer’s estimate applies in this case. More details on the local
existence are provided in the Appendix. �

We comment that there is a lot of interesting work on the topic of tangential oblique
derivative boundary value problems, see [5][6][7][25][32][35][42][51][53][56][57][58][59][64]
[68].

6 Quasilinear theory with fixed boundary

Now we take away the linearizing function Q. This step is simple by the estimates of
the previous theorem. So we consider

Q ∈ C1,α(Ω), pm < Q < p2 in Ω. (82)

Let α1 be the least of the three exponents given at the points A, O, and C. Recall that
α1 is determined by the local geometry and is independent of α ∈ [0, 1), i.e., we can
obtain α1 by setting α = 0. We choose α so that 0 < α < α1. So our previous section
yields a solution p(1) ∈ C1,α1(Ω) and satisfies the same lower and upper bounds in Ω.

For each fixed positive εe, the estimates make the mapping Q ∈ C1,α → p(1) ∈ C1,α1

compact.

We quote from Gilbarg and Trudinger [28] the following fixed point theorem: Corol-
lary 11.2, p. 280:
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Let C be a closed convex set in a Banach space B and let T be a continuous mapping
of C into itself such that the image TC is precompact. Then T has a fixed point.

We let B be the Banach space C1,α(Ω). We let C be all Q ∈ B such that pm ≤ Q ≤ p2

in Ω, Q = pm at the point G, Q = p2 on the sonic arcs AC and BD, and the B-distance
from p2 be less or equal to 1. This C is a bounded, closed, and convex set.

Let T be the mapping from Q ∈ C to B constructed above. Each TQ satisfies
pm < TQ < p2 in Ω and the corresponding boundary values at G, AC and BD. The
image TC is in C1,α1(Ω) for α1 > α and the C1,α1(Ω)-norm is bounded by a constant
times the factor p2 − pm. Letting p2 − pm be sufficiently small, we obtain TC ⊂⊂ C.
The continuity of T follows from the precompactness and the linearity. So there exists
a fixed point Q = p(1) ∈ C1,α1(Ω).

The maximum principle still holds for the quasilinear problem:

pm < p(1) < p2 in Ω. (83)

We still have that p(1) is C2,γ′

in Ω ∪ {Σ\{A,B}}. The ellipticity holds

p(1) − ξ2 − η2 > 0 in Ω. (84)

To prove this, we write an equation for the variable w =: p(1) − ξ2 − η2 and show that
there is no interior minimum for w. Thus the sign restriction is redundant and our
solution satisfies

εe∆p + (p− ξ2)pξξ − 2ξηpξη + (p− η2)pηη +
(ξpξ + ηpη)

2

p
− 2(ξpξ + ηpη) = 0. (85)

The solution p(1) is monotone on either arms of the edge Σ, ξ < 0, or ξ > 0. The proof
is similar to that for Proposition 2.4 of [13]. The idea is to use contradiction method.
Suppose p(1) is not monotone on the right arm. Then a typical case would be that there
will be a local max at ξN and a local min at a ξn > ξN in the interior of the arm, with
the local max greater than the local min. Since these values are not permitted to be
global extremes from the closure of the domain, we can find a curve leading from the
max into the domain along which the value of p(1) will be increasing; Similarly we find
a curve starting from the min and leading into the domain along which the value of p(1)

will be decreasing. These two curves will have no where to end due to the geometry and
data we have for our problem. A more elaborate proof is available in [13].

The solution satisfies

|∇p(1)| ≤ C1(p2 − pm), in Ω (86)

for some constant C1 = C1(εe).
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7 Free boundary

We pay most of our attention to the free boundary problem. We would consider a
mapping from K to itself, establish its compactness, and thus obtain a fixed point.
However, there is an alternative.

Let us first consider an idealized situation. We take two values of pressure p2 > p1 > 0
and a small number δ ∈ (0, δ0] where

δ0 := 1 −
√
p̄12√
p2
. (87)

We introduce the point B with coordinates

(ξ, η)|B = (
√

(p2 − p1)/2,−
√

(p2 + p1)/2) =: (ξ12, η12), (88)

and A is its symmetric counterpart. Let Bδ be the intersection point of the circle

ξ2 + η2 = p2 (89)

with a straight line of slope δ that is tangent to the circle

ξ2 + η2 = p̄12. (90)

Denote the coordinates of Bδ by (ξ12δ, η12δ) that is the closest to the point B. Let Aδ

be its symmetric part. We consider the pressure equation in the domain Ω bounded by
the upper boundary (89) and the free boundary connecting Aδ and Bδ. The δ will be
the slope of the free boundary at the point Bδ. See Figure 4, where a is inside or on the
circle (89) for δ ≤ δ0.

B
(1)

R

ξ

δ

1/2p
1

p 1/2
12

−

BδδA η = η12δ

a

Figure 4. Domain for the free boundary.

A

η

O

p 1/2
2

η = η 12

(2)
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On the upper boundary we impose p = p2; Below the shock wave we take p = p1.
The free boundary is required to start at point Bδ, have slope δ at point Bδ, be even
and convex in ξ. A typical approximate free boundary is this

η = ηX(ξ) := η12δ +
δ

2ξ12δ
(ξ2 − ξ2

12δ), ξ ∈ [−ξ12δ, ξ12δ]. (91)

We now introduce a set

B = {η ∈ C2,γ [−ξ12δ, ξ12δ] |
η(ξ12δ) = η12δ , η

′(ξ12δ) = δ, 0 ≤ η′′ ≤ 1
4
p
−1/2
2 , [η′′]γ ≤ 1, η(ξ) = η(−ξ)} (92)

where γ ∈ (0, 1), δ ∈ (0, δ0], and [η′′]γ denotes the γ-Hölder modulus of continuity. The
set is closed and convex in C2,γ [−ξ12δ, ξ12δ].

For any η ∈ B, we find p̄ on it by (60). We estimate the minimum of p: Called pδ
m.

We differentiate (60) along the boundary to find

dp̄

dΣξ
=

2σ′

(1 + σ2)2
(ξσ − η)(ξ + ση). (93)

We show that this derivative is nonnegative for ξ ∈ [0, ξ12δ]. First σ′ ≥ 0 is given. Second

ξσ − η ≥ 0 trivially, assuming η < 0. Third we estimate that σ ≤ p
−1/2
2 ξ and

|η| ≤ δ0ξ12δ + |η12δ| ≤ δ0
√
p2 + |η12| ≤ p

1/2
2

by the choice of δ0, thus ξ+ση ≥ 0. So the derivative is nonnegative. And the derivative
is bounded from above by Cσ′ from which we integrate (93) in ξ to find that pδ

m deviates
from p2 at most by Cδ. In terms of the previous sections, we have pm = pδ

m = p2−O(δ).
This is a crucial estimate as it is the starting point for a mapping to be defined to take
B to itself. Thus, there exists a δ∗ ∈ (0, δ0], such that pm − p1 > Cδ0 for all δ ∈ (0, δ∗).

We show that p− ξ2 − η2 > 0 between Aδ and Bδ. At Bδ it is zero. We show that its
derivative is nonpositive for ξ ∈ (0, ξ12δ). The derivative along the shock is

d

dΣξ
(p− ξ2 − η2) =

4η′′

(1 + (η′)2)2
(ξη′ − η)(ξ + ηη′) − 2(ξ + ηη′). (94)

Its nonpositivity is equivalent to

2η′′(ξη′ − η) < (1 + (η′)2)2.

We use the bound η′′ ≤ 1
4
p
−1/2
2 , δ ≤ δ0 to derive

2η′′(ξη′ − η) < 2 · 1

4

1√
p2

(
√
p2δ +

√
p2) <

1

2
(δ + 1) <

1

2
(δ0 + 1) < 1.

Thus the nonpositivity holds and p− ξ2 − η2 > 0 between Aδ and Bδ.
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And the choice of the upper bound of the second-order derivative of η is such that
ξη + η′(p̄− ξ2) < 0 for ξ > 0, see (65)(66), thus the obliqueness holds.

For completeness we mention that ξ2 + η2 − p̄ > 0 for ξ ∈ (0, ξ12δ) because the
second-order derivative of η is less than β0 defined in (57), see (65)(63)(62).

We impose the condition that the solution p takes on the old value at the point G:
pm = pδ

m, which is part of the condition for the emergent type of tangential oblique
derivative boundary condition. By the previous sections, there exists a δ∗∗ > 0 such
that a solution p exists for all δ ∈ (0, δ∗∗). The solution is smooth every where in the
closure of the domain including A and B since the higher order compatibility condition
is satisfied. The oscillation maxΩ|p − p2| ≤ p2 − pδ

m is bounded by K1δ where K1 is
determined by the upper bound of the C2,γ norm of η ∈ B.

Now we define the mapping on B: The mapping J . Given a boundary Σ(0) from B,
we let p(1) denote the unique solution. Restricted to the old Σ(0), we can regard p(1) as
a function of the single variable ξ. We use p(1)(ξ) to define Σ(1) in the standard formula:

dη(1)

dξ
=
ξη(1) ±

√

p̄(1)(ξ2 + (η(1))2 − p̄(1))

ξ2 − p̄(1)
; η(1)(ξ12δ) = η12δ , (95)

up to a point ξ9 ∈ (0, ξ12δ) where either

η(1) = −
√

p̄(1) − 4K3δξ2, (96)

or

η(1) = −
√

p̄(1)(0). (97)

The constant K3 is explained below.

First, the tangential oblique derivative boundary condition (68) implies

|p(1)
ξ + η(0)′p(1)

η | | [p]
4p̄

(ξ2 + η2) − (ξ2 + η2 − p̄)| ≤ |ξη + η′(p̄− ξ2)|K2 |∇p(1)|. (98)

Recalling (63), we can move the term

ξ2 + η2 − p̄ = O(|ξη + η′(p̄− ξ2)|)

to the other side to obtain

|p(1)
ξ + η(0)′p(1)

η | [p]

4p̄
(ξ2 + η2) ≤ |ξη + η′(p̄− ξ2)|K ′

2 |∇p(1)|. (99)

We have

|ξη + η′(p̄− ξ2)| ≤ |ξ|(√p2 +
1

4
√
p2

(p̄+ p2)) ≤ K2|ξ|.
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Thus
|p(1)

ξ + η(0)′p(1)
η | ≤ K ′

2|ξ| |∇p(1)| (100)

for all ξ ∈ [0, ξ12δ] and all δ ∈ (0, δ∗∗). Now, our solution p(1) is a smooth solution
satisfying

|∇p(1)| ≤ K2(p2 − pδ
m) (101)

where K2 is independent of δ, but it may depend on the parameter εe, the size of the
domain Ω, and the C2 norm of Σ(0) which is bounded. So,

|p(1)
ξ + η(0)′p(1)

η | ≤ K3ξδ (102)

for all ξ ∈ [0, ξ12δ] and all δ ∈ (0, δ∗∗).

Thus in the definition of the map, if the curve η(1) hits the upper boundary (96), then

it is still a distance away from the singularity boundary η(1) = −
√

p̄(1) − ξ2, assuming
4K3δ < 1. So we can and will continue the curve from the upper boundary (96) to
ξ = 0, C3,γ−smoothly, keeping convexity, (η(1))′(0) = 0, and with second-order derivative
bounded by β0. This can be done, we omit the details. See the upper thin curve in Figure
5.

∗ξ

Σ
9

(0)

9

(1)η
δB

ξ

ξ

η

O

Figure 5. Definition of the mapping J.

R

ξ

Second, if the curve goes below the line η = p̄(1)(0) at a point ξ9, see the lower thin
curve in Figure 5, then from the definition formula expressed as

dη(1)

dξ
=

p̄(1) − (η(1))2

√

p̄(1)(ξ2 + (η(1))2 − p̄(1)) + ξ(−η(1))
> 0, for ξ > ξ9, (103)

we find that there will be a point ξ∗ ∈ (0, ξ9) such that the curve η(1) has zero derivative
at that point. We find that the second-order derivative formula

d2η(1)

dξ2
=

1

p̄(1) − ξ2

(

2p̄(1) − (ξ2 + (η(1))2)
√

p̄(1)(ξ2 + (η(1))2 − p̄(1))
− dη(1)

dξ

)

dp̄(1)

dΣ(0)ξ
(104)
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and the estimate (102) yield a uniform estimate

0 ≤ d2η(1)

dξ2
≤ K5δ, for allξ ≥ ξ∗ (105)

for all ξ∗ ≥ 0. We can then start at the point ξ9 (not ξ∗) and modify the curve so that it
remains convex with convexity less than or equal to β0, gets to ξ = 0 with ending slope
zero.

From the construction it is clear that the mapping is defined on B and takes B to
itself when δ is small enough. In addition, the solution p(1) is in C2,γ, thus η(1) is C3,γ.
Hence the mapping J is pre-compact. We obviously have continuity of J , assuming that
our modification at the upper and lower boundaries are smooth. So J is a continuous
mapping from a closed and convex set B of the Banach space C2,γ to itself whose image
JB is pre-compact, thus, by Schauder Fixed Point Theorem ([28], Corollary 11.2, p. 280)
quoted already earlier, we have a fixed point for J , which is the existence of the free
boundary. �

Since the corners C,D,O are a fixed distance away from the free boundary, we can
similarly obtain the existence of a free boundary for the wedge problem. The idealization
mentioned at the beginning of this section is an equivalent way to the mapping of K to
itself. The mild dependence of p2 on tan θw is trivially allowed.

8 De-regularization −εe and Lipschitz continuity

We obtain uniform estimates with respect to εe > 0. We use barriers to find the bound
of the gradient of p on the sonic boundary. Then we use maximum principle to establish
global bound of the gradient of p on the entire closure of the subsonic domain. Thus
the solution p is Lipschitz at the sonic arcs.

First, the maximum principle implies p ≤ p2. Second, the uniform ellipticity implies
p ≥ ξ2 +η2. Combining the two, we obtain that 0 ≤ ∂

n
p ≤ 2

√
p2 on the sonic arcs where

n is the unit exterior normal to the arcs, independent of εe ∈ (0, 1].

We let (r, θ) denote the polar coordinates of the (ξ, η) plane. In polar coordinates,
the p equation can be written as

(p− r2)prr +
p

r2
pθθ +

p

r
pr +

1

p
(rpr)

2 − 2rpr = 0. (106)

We omit the term εe∆p since it does not present any help or trouble. Multiplying with
r2

p
, we obtain

r2(1 − r2

p
)prr + pθθ + rpr +

r2

p2
(rpr)

2 − 2r3

p
pr = 0. (107)
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Taking the derivative ∂r, letting Z := pr, we obtain

r2(1− r2

p
)Zrr +Zθθ + rZr +

2r4

p2
prZr −

2r3

p
Zr + ∂r(r

2 − r4

p
)Zr −ZF (Z, r, p) = 0, (108)

where

F (Z, r, p) :=
6r2

p
− 1 − 6r3

p2
Z +

2r4

p3
Z2. (109)

Near p = r2 = p2, the function F is bounded from below by 1/2 for all Z ∈ R. We
select a thin shell domain immediately inside the sonic arc. We choose δ small, so all the
derivatives are small depending on δ and εe. We then apply the maximum/minimum
principle on Z. Thus |Z| < 2

√
p2 in a small neighborhood of the sonic arc.

In the interior of the domain Ω, the limit εe → 0+ does not cause trouble since there
holds uniform ellipticity.

9 Recovering the velocity

Now that we have obtained p in the entire subsonic domain, we can integrate the first
two linear equations in (23) for u and v to obtain (u, v). More precisely, we integrate

rur = ξuξ + ηuη = pξ, u = u2 at r =
√
p2 (110)

in the subsonic sector spanned by radial rays of the sonic arc to find

u(r cosα, r sinα) =

∫ r

√
p2

pξ(τ cosα, τ sinα)/τ dτ + u2 (111)

for 0 < r <
√
p2 and α stretching between θw and θA (the polar angle of the point A,

see Figure 2). For α between θA and π, we use in (110) as data the velocity obtained by
(29)(30) on the free shock to obtain u in the subsonic sector spanned by radial rays of
the free boundary Σ. We evaluate v similarly. Thus (u, v) are defined, and the first two
equations in (23) are satisfied in the subsonic domain.

We verify the third equation in (23). As previously discussed, the second-order equa-
tion written in the form r∂rL + L = 0 implies the third equation if the third equation
holds at a single point on each ray. Thus it suffices to show that L = 0 (defined in (56))
on the inside edge of the sonic arc and the free boundary Σ. To achieve that for the sonic
arc we first note that our p is Lipschitz up to the boundary from the previous section.
Our (u, v) are also Lipschitz at the boundary. Note further that (u, v) are constant on
the arc, thus their derivatives along the sonic arc are zero:

−ηuξ + ξuη = 0, −ηvξ + ξvη = 0. (112)
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Using these relations in the equation

ξuξ + ηuη = pξ, ξvξ + ηvη = pη (113)

we obtain
(ξ2 + η2)(uξ + vη) = ξpξ + ηpη. (114)

Recall that ξ2 + η2 = p on the sonic arc, we obtain

L := (ξpξ + ηpη)/p− (uξ + vη) = 0 (115)

on the sonic arc! Thus the third equation of (23) holds in the entire sector spanned by
the sonic arc.

The oblique derivative boundary condition ensures, as previously mentioned, that
L = 0 on Σ. Recall that we derived the oblique derivative boundary condition by
assuming that L = 0 on Σ. Now we want to reverse the process; I.e., we want to
derive that L = 0 on Σ from p and the oblique derivative boundary condition. From
the three facts that (i) p is known and the free boundary satisfies equation (28), (ii)
the inside edge values (u, v) are obtained from (29)(30), (iii) the first two equations of
(23) hold on the edge, we can differentiate (29)(30) along (28) to solve five variables
(uξ, uη, vξ, vη, pξ) from the five equations in terms of the sixth pη, where we used the
condition ξ2 + η2 − p̄ 6= 0 for η > 0. It can be verified that the five variables depend on
the sixth linearly, and the relation L = 0 holds identically on the inside edge of Σ, where
we use the fact that (p1, u1, v1) is a constant state. Then the second-order equation
r∂rL + L = 0 implies L = 0 in the interior of the domain. Thus the solution p of the
second-order equation is a solution to the system of first order equations in the sectoral
domain spanned by Σ.

Furthermore, the velocity (u, v) are smooth in the interior of the subsonic domain.
On the wall and the ground we show that the velocity is parallel to the solid surface.
Our p satisfies ∂

n
p = 0. Our (u, v) from (113) satisfies the equation

ξ(u
n
)ξ + η(u

n
)η = ∂

n
p

where u
n

:= (u, v) · n. Thus, u
n

= constant . The constant is zero in the state (2) and
at the tip of the bow shock. So u

n
= 0. Thus, the velocity is parallel to the solid surface.

The velocity is bounded at the origin O since ∇p is Hölder continuous and vanishes at
O.

10 Fine properties of the velocity

One might ask if there is a stagnation point of the flow in the subsonic domain, or at the
corner in particular. One might also ask if the velocity remains uniformly small to fulfill
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the condition posteriorly, under which the model is derived. Furthermore, one might
ask what exactly determines the position of the free boundary shock, if the pressure
equation decouples from the velocity field.

To answer these questions, we find it is necessary to study qualitatively the velocity
field of the solution in the subsonic domain.

Proposition 10.1 (State 2) As cos θw → 0+, we have

p2 = p∗2 +
p2

1(p1 − p0)
2

2p̄3
10 tan2 θw

+O(tan−4 θw), (116)

where p∗2 is defined in (35).

Proof. This is an easy consequence from the explicit formula in Proposition 3.1. �

Proposition 10.2 (State 2 on Σ) The velocity on the free boundary Σ is nonnegative

u ≥ 0, v ≥ 0 on Σ (117)

for large wedge angles.

Proof. In fact, we find from (30) that

[v]

[p]
=

p̄− ξ2

ηp̄− ξ
√

p̄(ξ2 + η2 − p̄)
> 0

on the shock, thus v > 0 on the inside of the shock. We present the calculation for u,
at the point G only for brevity. At the point G, we use the R-H relation (29) to find

u2G = u1 −
p2G − p1

√

(p2G + p1)/2
. (118)

In (118), we see quickly that u2G is a decreasing function of p2G, holding p1 and u1 fixed
and unrelated to p2G. In addition, if we use p2G = p∗2 from (35), we find u2G = 0. So, to
show u2G > 0, it suffices to show that p2G < p∗2 for all large wedge angles.

From Proposition 10.1, we have p2 = p∗2 + O(cos2 θw). On the other hand, we show
that p2G will be smaller than p2 by an amount C2δ at the least, which is C2 cot θw,
C2 6= 0. This follows from the oblique derivative boundary condition written in the form
(in the swapped coordinate where the free boundary shock is basically horizontal)

η′′(p̄− ξ2){ [p]
p̄

(ξ2 + η2) − 4(ξ2 + η2 − p̄)}
2p̄− ξ2 − η2 + 2η′{ξη + η′(p̄− ξ2)} = −η′p(1)

ξ +p(1)
η +(ξp

(1)
ξ +ηp(1)

η )
ξη′ − η

p
. (119)

We have 0 ≤ pη ≤ C2δ since p2 − p2G ≤ C2δ. So η′′(ξ) ≤ C2δ. From formula (93) we
have

dp̄

dΣξ
≥ C2ξσ

′ (120)
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which implies

p̄(B) − p̄(G) ≥ C2

∫ ξB

0

ξσ′ dξ = C2(ξBδ −
∫ ξB

0

σ dξ). (121)

But we have
∫ ξB

0

σ dξ ≤
∫ 1/C2

0

ξσ′(ξ) dξ +

∫ ξB

1/C2

δ dξ ≤ 1

2
(

1

C2

)2(C2δ) + (ξB − 1

C2

)δ = ξBδ −
1

2C2

δ.

(122)
Thus p2G = p2 − C2 cos θw < p∗2. Thus u2G > 0. This completes the proof. �

As fluid particles flow toward the wedge wall, the build-up of fluid raises the pressure
in the subsonic region. In the extreme case of a vertical wall, there is no escape for the
fluid, thus the velocity (u, v) = (0, 0) and the pressure is p = p∗2 in the subsonic region.
For a wall with θw ∈ (0, π/2), fluid particles can slide along the wedge surface: The fluid
particles get deflected at the corner. Although the pressure gradient is required to be
zero into the walls, no extra condition at the corner is placed to send a signal to the
decoupled second-order pressure gradient equation to take care of the build-up of fluid
at the corner. Thus, the wall is the primary reason for the reflected bow shock.

Figure 6.  Flow pattern of the regular reflection

G O

(u,v)

ξ

(2)

η

(0)

(1)

To explain the changes of velocity in the subsonic domain in response to the pressure
gradient, we find that our (u, v) from (113) satisfies the equation

ξ(uα)ξ + η(uα)η = ∂αp

where uα := u cosα + v sinα and ∂αp = pξ cosα + pη sinα. Thus, for example uα

for α = π/4 is decreasing from the shock wave toward the origin, provided that the
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pressure is increasing in the direction (1, 1). See Figure 6. Overall, the velocity remains
small. And existence of a stagnation point seems rather exceptional under these general
circumstances, so we go deeper to the vorticity level to find out.

10.1 Vorticity

We study the vorticity in the subsonic region to reveal more refined properties of the
velocity. As is usual, the vorticity is defined by ω = ∂xv − ∂yu. We can show that the
vorticity is zero at time t = 0 for our configuration. Furthermore, it is easy to check
that

∂tω = 0 (t > 0)

for smooth solutions of the pressure gradient system. So we expect that our solution
has zero vorticity.

We show that our solution indeed has zero vorticity. Although it might seem unnec-
essary to do the proof, we feel that our construction of the solution has been a guess
work, and piecewise, so it is a good idea to verify the end result. In addition, curved
oblique shock waves in a gas are known to generate vorticity, see e.g. the appendix of
[33], or p.431 of [52]. Thus, first, from (112)(113) we obtain

vξ =
ξ

p
pη, uη =

η

p
pξ (123)

on the sonic arc, and thus

vξ − uη =
ξpη − ηpξ

p
= 0 (124)

on the sonic arc, since p = p2 is a constant there. Thus, there is no vorticity along the
sonic arc in the subsonic region.

In the self-similar plane we call for convenience ω = vξ − uη although the physical
quantity t(∂xv− ∂yu) scales to be vξ − uη. We use the equations (23) to easily find that
ω satisfies the equation

−ξωξ − ηωη + ω = 0 (125)

in any region where the solution is smooth. Using the equation (125) and the boundary
data (124), we obtain that vorticity is zero in the subsonic domain spanned by the sonic
arc.

We show then that the vorticity is zero on the free boundary shock. From the original
form of Rankine-Hugoniot relation we can obtain that

[u] = − σ

η − ξσ
[p], [v] =

1

η − ξσ
[p]. (126)
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We differentiate the [u] equation along the shock to find

d[u]

dΣξ
=

−ησ′

(η − ξσ)2
[p] − σ

η − ξσ

dp

dΣξ
(127)

Using the fact that u1 is a constant and the first equation in (23) we obtain

(ξσ − η)uη = −pξ −
ξησ′

(η − ξσ)2
[p] − ξσ

η − ξσ

dp

dΣξ
. (128)

Similarly we obtain

(η − ξσ)vξ =
ξησ′

(η − ξσ)2
[p] +

η

η − ξσ

dp

dΣξ
− σpη. (129)

Combining the two terms we obtain vξ − uη = 0 on the shock. Thus vorticity is zero
in the subsonic domain spanned by the free boundary. So the flow is irrotational in the
entire subsonic domain.

We can now use vξ = uη to manipulate the first two equations of (23) into

u = (ξu+ ηv − p)ξ, v = (ξu+ ηv − p)η. (130)

We call
ψ = ξu+ ηv − p (131)

the potential. Thus we have a nice formula

p+ ψ = ξu+ ηv. (132)

So we have

∆ψ = uξ + vη =
ξpξ + ηpη

p
(133)

by the third equation of (23). Replacing the derivatives pξ and pη from the first two
equations of (23), we obtain

p∆ψ − (ξ2ψξξ + 2ξηψξη + η2ψηη) = 0. (134)

We can replace p to obtain a decoupled equation

(ξψξ + ηψη − ψ)∆ψ − (ξ2ψξξ + 2ξηψξη + η2ψηη) = 0. (135)

The boundary data for ψ are the Dirichlet on the free boundary and the sonic arc, and
Neumann ∇ψ ·n = 0 on the ground and the surface of the wall. Since we have obtained
p already, we choose to use equation (134). We are mainly interested in regularity of
the solution. First we find that there is a stagnation point at the origin. Second, the
solution ψ is in Cα(Ω̄) where α = π/(π − θw) ∈ (1, 2), and the solution ψ is unique, see
Grisvard [31]. Further, we have the asymptotic formula

ψ = rα cos(α(θ − θw)) + o(rα) (136)

in polar coordinates (r, θ), at the origin. This formula is useful for explaining the exis-
tence of a stationary point in the pseudo-velocity (u− ξ, v− η) of the full Euler system
on the wall (but not the corner), see [74].
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11 Further discussions

It remains open to calculate the threshold at which regular reflection gives way to Mach
reflection in the whole (not just locally at the Mach stem). Further in depth questions
include solutions to the Riemann problems and the Euler system.

Appendix: Linear theory

A1. Local existence

We provide details on the issue of local existence. Recall that B2 is a neighborhood of G
with smooth boundary and h is a continuous function on ∂B2∩Ω. Consider the problem

p = h on ∂B2 ∩ Ω (137)

for equation (71) restricted to the domain B2 ∩Ω with the tangential oblique derivative
boundary condition (68) restricted to B2 ∩ Σ. This is a mixed-type boundary value
problem on which we do not find any clear literature. So we give an existence proof
here. We chop off the tip G; i.e., we replace Ω by Ωδ which is δ-distance shorter than Ω
from the point G upward. See Figure A1. On the bottom straight boundary of Ωδ, we
impose the Dirichlet boundary condition

p = pm on bottom of Ωδ.

Now by Lieberman [47], there exists a solution pδ in C(Ω̄δ ∩ B̄2) ∩ C2,α(Ωδ ∩ B2). The
maximum principle holds for pδ, thus there is a subsequence of pδ, which converges
locally in C2(Ω ∩B2) to a solution in C2,α(Ω ∩ B2) as δ → 0+.

h

O ξ

2

Figure A1.  Domain with tip G removed.
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We use a barrier function at G to obtain continuity of p at G. We note that our l is
not degenerate (|l| 6= 0) and well-defined for (ξ, η) ∈ B2 provided that B2 is sufficiently
small and the variable p̄ is regarded as given by formula (60) where η ′(ξ) is given, but η
can be free (well, we choose η = η(ξ) to be given). So we can introduce integral curves
in B2 by

(
dξ

ds
,
dη

ds
) = l(ξ, η(ξ), η′(ξ)). (138)

The vector field enjoys C1,γ(B2) regularity, so the integral curves enjoy C2,γ regularity.
We now perform a coordinate transformation to straighten the vector field so that the
boundary condition becomes

∂p

∂ξ
= 0 (139)

and the equation becomes
aijDijp+ biDip = 0 (140)

where the usual summation convention is used. We omit introducing new notation for
p for the new coordinate system. We consider the auxiliary function

v = pm + c(1 − e−N(η−η̄m1)) (141)

where c > 0 and N > 0 are to be chosen large. This v satisfies the oblique boundary
condition and is greater than pm on each of the bottom boundary of Ωδ, δ > 0. For the
equation, we have

aijDijv + biDiv = −ce−N(η−η̄m1)(N2a11 −Nb1)

which can be made less than a negative constant by choosing N > |b1|0/λ where λ ≤
a11(ξ, η). Now we can choose c so that v is greater than sup |h|. Thus all our solutions
pδ are bounded from above by the super solution v and below by the constant pm. (We
consider the case h ≥ pm only.) So p is continuous at the point G. The continuity of p
at other points follows from Lieberman’s aforementioned work.

We establish the C2,α′

(Ω̄ ∩ B2) regularity for p for α′ = min (α, γ). Take a domain
B3 ⊂⊂ B2 so that ∂B3 intersects Σ with infinite order of contact. Extend the vector field
l from the (only two) contact points to ∂B3 ∩B2 C

∞ smoothly so that there is only one
point on the boundary ∂B3∩B2 that is tangentially degenerate, thus this portion is rather
like the Σ. Propose the corresponding tangential oblique derivative boundary value
problem on B3 ∩Ω: The equation is the same, the boundary condition on Σ is the same
as before, but the (nonhomogeneous) tangential oblique derivative boundary condition
on ∂B3 ∩ B2 is the newly-invented one. We know that this problem has a solution p
that is continuous on the closure of B3 ∩ Ω by design. But this problem has maximum
principle, so any C2,α solution (kept the nonhomogeneous data unchanged) will coincide
with the solution p. The homogeneous problem will have only the zero solution, thus
the null space has dimension zero. Hence, there is no compatibility condition for this
problem, since this problem is Fredholm (p. 158, [25]). Thus smooth data imply existence
of smooth solutions by Theorem 5.3 of Egorov and Kondrat’ev [25]; i.e., there exists a
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solution p in the Sobolev space W 1,2(B3∩Ω). By the smoothness theorem, Theorem 5.2,
of the same paper [25], the solution is as regular as the data, which we can make very
smooth to start with the curve η(ξ) and the linearization Q. For smooth solutions, we
then use Guan and Sawyer [32] to obtain uniform estimates in the space C2,γ(B2 ∩ Ω̄)
in terms of C2,γ regularity of η(ξ) and Q.

A2: Corner O

The angle 2θw will be close to π, but strictly less than π. Thus the interior angle is more
than π, so Lieberman [49] does not apply. We extract an example from Grisvard [31].

Example. Consider the Laplace equation

∆p = 0

in a sector of angle ω ∈ (0, 2π) in R
2, in the polar coordinate (r, φ). See Figure A2.

Consider the function
p1 = rπ/ω cos(φπ/ω).

It is harmonic in the sector and satisfies ∂φp = 0 on the edges of the sector. See Grisvard
[31]. If ω ∈ (π, 2π), this function is only Hölder continuous at the origin. This example
illustrates the requirement 0 < φ ≤ π in Theorem 1 of [49] in order for p to be in
∈ C1(Ω̄) ∪ C2(Ω). �

r

Figure A2.  Laplace at a big corner.

φ

ω Ω

So we use the symmetry of the problem with respect to ξ to cut the large angle in
half. Then the solution at the corner has Hölder continuous gradient: p ∈ C1,θw/(π−θw).
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[10] C̆anić, S., Keyfitz, B., Lieberman, G.: A proof of existence of perturbed steady tran-
sonic shocks via a free boundary problem, Commun Pure Appl Math., 53 (2000),
484–511.
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