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Abstract

This paper is the third of a series where the convergence analysis of

SPH method for multidimensional conservation laws is analyzed. In this

paper, two original numerical models for the treatment of boundary condi-

tions are elaborated. To take into account nonlinear e�ects in agreement

with Bardos, LeRoux and Nedelec boundary conditions ([1], [14]), the

state at the boundary is computed by solving appropriate Riemann prob-

lems. The �rst numerical model is developed around the idea of boundary

forces in surrounding walls, recently initiated in [33] by Monaghan in his

simulation of gravity currents. The second one extends the well-known ap-

proach of ghost particles for plane boundaries to the case of general curved

boundaries. The convergence analysis in Lp

loc
(p <1) is achieved thanks

to the uniqueness result of measure-valued solutions recently established

in [3] for L1 initial and boundary data.

Keywords: SPH method, numerical modeling, boundary conditions, conser-
vation laws, measure valued solutions, convergence.

1 Introduction

In this paper, we continue the investigation of the convergence analysis of SPH
(Smoothed Particle Hydrodynamics) method for scalar nonlinear conservation
laws. We consider the initial boundary value problem which remains a very chal-
lenging question for deriving �tting and eÆcient numerical methods to model
boundary conditions with their convergence analysis. In ([4],[6]), this analy-
sis is performed for the Cauchy problem by deriving some new features of the
SPH scheme in connection with �nite volume methods. The resulting hybrid
formulation turned out to be well-�tted for constructing conservative and weak
consistent SPH schemes. For the stability of the resulting scheme (i.e. when ad-
ditional time-explicit discretizations is applied), we have developed an original
strategy making use of a robust class of upwinding schemes based on approxi-
mate Riemann solvers instead of the classical approach employing an arti�cial
viscosity (see [19]) to deal with shocks.
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In the present work, we elaborate two numerical models for the treatment of
boundary conditions without compromising the speci�c SPH formalism which
has contributed until now to its attractiveness and its popularity among the so-
called Gridless or Meshless methods. This popularity has increasingly achieved
(see [29],[27] for the pioneer works) through some speci�c domains of physics
as astronomy and astrophysics, where uids are mostly contained by their self-
gravity. Thereby, boundary conditions are taken as vanishing at the in�nity and
do not interfere in the e�ective numerical simulation. In contrast, when dealing
with problems restricted to a domain as those we encounter in industrial applica-
tions, commercial codes have been mostly developed using only �nite volume or
�nite element approaches because of their heavy study since the 1950's and their
best understanding. Nevertheless, in the last two decades, SPH method, due to
its Lagrangian character and its simple and self-adaptive formalism, has known
a great success in the simulation of a variety of complex industrial applications.
However, to achieve its maturity, SPH is still on a great demand of a mathe-
matical background to increase its accuracy and eÆciency, and particularly to
derive eÆcient numerical models to treat boundary conditions.

Despite their wide use, it is worth indicating that, Eulerian based methods
are facing to increasing diÆculties hampering the advances of large-scale nu-
merical simulations of some speci�c and sophisticated problems where obviously
they are not suited. For example those with multiple phases, which require an
additional complex internal mathematical modeling to represent these phases.
The result is that a large part of the overall computational e�ort is expend-
ed on technical details connected with mesh adaptation and grid generation.
Moreover, changes in the domain geometry and/or topology, are more diÆcult,
if not impossible, to accommodate with existing meshing techniques. By con-
trast, SPH method, based on its Lagrangian and grid-free characteristics, has
shown a great ability to handle most of these mechanical engineering applica-
tions. Since then, some e�orts have been made to treat some types of boundary
conditions for wall and free boundaries by using essentially two techniques. The
�rst one models wall boundaries by using the so-called boundary particles which
interact with the uid particles through boundary forces that prevent the uid
from passing through the boundary. This approach is �rst used by Monaghan
[33] in his simulation of gravity currents for nearly incompressible uid ow.
The second one employs the so-called ghost particles (generated in a neighbor-
hood of the boundary outside of the domain) well-known for plane boundaries
when approximating specular reection boundary conditions. From the physi-
cal point of view, the two types of particles are endowed with similar physical
properties to those of the particles that represent the ow and interact with
them in a way such that the necessary boundary conditions are satis�ed. For
both approaches, we deal here with general curved boundaries, in particular we
give new treatments of polyhedral boundaries as those encountered in industrial
problems. We develop a mathematical framework for deriving these numerical
models by taking into account nonlinear e�ects and by computing the state at
the boundary by solving appropriate Riemann problems. As far as the stability
analysis is concerned, we introduce a nice formulation based on the equilibrium
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property for uniform �elds. For the numerical simulation of these models in
continuum mechanics, we refer to the forthcoming paper [8]. We also refer to
Randles and Libersky's paper [38] and to the recent book by Lui and Lui [30].

The convergence analysis which is our second contribution in this paper, is
derived by using the uniqueness result of measure valued solutions established
in [3] for L1 initial and boundary data. As showed by Diperna in [13] and
by Szepessy in [42], this convergence follows by proving that the approximate
solutions are uniformly bounded in L1, weakly consistent with all entropy in-
equalities and consistent with the initial data. For the weak consistency with all
entropy inequalities, one needs to show in particular the weak consistency with
the boundary integral term associated to Bardos, LeRoux and Nedelec's bound-
ary conditions formulated in [1]. For that purpose, we introduce a new de�nition
of measure valued solutions equivalent to the one proposed by Szepessy in [41].
The two de�nitions di�er as far as the formulation of boundary conditions is con-
cerned. Our formulation requires less information in terms of measure-valued
solutions and turns out to be well-adapted for the convergence of numerical
schemes in bounded domains.

To carry out this program, we start in section 2 with a brief review of
SPH method and show how to adapt Raviart's standard accuracy results in
([39],[32]) to the case of bounded domains. We end this section by describing
our two numerical models of boundary conditions for a given boundary data.
Section 3 will however be concerned with the derivation of the SPH scheme
for scalar nonlinear equation (1). In section 4, we state the main convergence
result (Theorem 4.1) as well as the uniqueness result of measure-valued solutions
(Theorem 4.4). The remainder of the paper is roughly devoted to the existence
proof of measure-valued solutions as weak star limit of the approximate solutions
provided by the SPH scheme.

2 SPH method and boundary conditions

Let 
 be a bounded open set in IRd with a smooth boundary @
 and an outward
unit normal vector n. Consider for u : 
 � IR+ ! IR the following model of
scalar nonlinear conservation law

Lau+ divF (u; x; t) = S(u; x; t); (x; t) 2 
� IR+; u(x; t) 2 IR (1)

with the Bardos, LeRoux and Nedelec ([1], [14]) boundary condition on @
�IR+,
for all k 2 IR,

(sgn(u(�x; t)� k)� sgn(b(�x; t)� k))(F (u(�x; t); �x; t)� F (k; �x; t)) � n(�x) � 0; (2)

and the initial condition
u(�; 0) = u0; on 
; (3)

where F = (F1; :::; Fd) : IR! IRd, divxF (u; x; t) =

dX
i=1

@Fi(u(x; t); x; t)=@xi and

IR+ � (0;1). The transport operator Lau and its adjoint operator �L�
a
u via
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the usual L2 scalar product are de�ned by

Lau :=
@u

@t
+ div(a(x; t)u): L�

a
u =

@u

@t
+

dX
i=1

a
i(x; t)

@u

@xi
:=

d

dt
(u):

In the present model (1), the advection �eld a is a given smooth vector say a 2
L1(IR+;W 2;1(
)) and which veri�es a(�x; t):n(�x) = 0 along the boundary @

. This assumption is very important in our convergence analysis since it avoids
in the limit process the diÆcult problem related to the behavior of a regularized
no smooth physical advection �eld (see [45]) since it can lead to a nonlocal
dispersive equation. Alternativelly, in our methodology, the model equation
(1) suggests to treat the physical advection term in the generic nonlinear ux
term F (u; x; t) by well-known arguments based on relevant entropy admissibility
criteria to select the physical solution in the �eld of nonlinear conservation laws.
Thereby, we keep track of all the properties inherited from the physical velocity
as those regarding the boundary conditions in the sense of inequality (2) as well
as in the entropy formulation (47). As a matter of fact, from the numerical point
of view, this process of regularization (by convolution) of the physical velocity
is of current use in the SPH literature for Euler equations where the density, the
velocity and the energy are tansported by the velocity itself. The mathematical
analysis of the resulting scheme is however a very open question.

In what follows, to develop our program of performing the SPH scheme of
(1-3), let us �rst give a brief review of the method.

2.1 Review of SPH method

The method was introduced at the end of the seventies by Lucy in [15] and
Gingold and Monaghan in [20] as an alternative to classical methods (based
on grid technique) to solve compressible Euler equations. The method still
uses computational nodes called particles to be sprinkled through the domain,
but do not require any pre-speci�ed connectivity of these particles, or locally
regular topological structure as is needed for traditional meshing. Basically,
the approximate solutions of equation (1) are computed for any time t with
respect to a set denoted by K (K � ZZd) of moving particles provided by a
suitable quadrature formula (xk(t); wk(t))k2K1. In this formula, xk(t), which is
the position of the particle k 2 K and wk(t) which is its e�ective weight, are
solutions to the following systems of di�erential equations

(i)

d

dt
xk = a(xk ; t)

xk(0) = x0
k

(ii)

d

dt
wk = div(a(xk ; t))wk

wk(0) = w0
k
:

(4)

The quadrature formula (x0
k
; w0

k
)k2K de�nes the initial particle distribution

through the domain 
. It is worth indicating that the solutions of the system
(i) are the classical characteristic curves of the �eld a while those of equation

1in the sequel of this paper, we omit the time dependence when there is no ambiguity
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(ii) reect the evolution of the weights (i.e. the deformation of the particle
distribution) in the change of coordinates. Thereby, the accuracy of the SPH
approximation is in part connected to the quadrature rule over 
Z




g(x)dx �
X
k2K

wkg(xk): (5)

On account of the regularity of the �eld a, this approximation is accurate for
any t > 0 as soon as it is accurate initially and the particles and their weights
move according to (4). In most of practical computations, the particles are
initially distributed on a regular grid (for instance cubic grid) and it is quite
easy to �nd suitable weights such that the error in (5) is of "in�nite order" (see
Raviart [39]) when applied to C1 functions g that vanish suÆciently rapidly
at the in�nity. In our setting, the set K of the initial distribution of particles
could be performed by using �nite elements triangulation denoted by P
 and by
taking that the particles are initially distributed on the center of the elements
B0
k
2 P
 of this triangulation with their initial weights w0

k
= meas(B0

k
). If we

denote by Bk(t) (or simply Bk) the image at time t of the cell B
0
k
by the vector

�eld a such that meas(Bk) = wk, then the P 1 �nite element approximation
gives

jEh(g)j � C(
)h with Eh(g) =
X
k2K

Ek(g) :=
X
k2K

�Z
Bk

g(x)dx � wkg(xk)

�
:

(6)
The SPH method takes advantage of the particle distribution to provide by
convolution, a discrete derivative operator denoted by D" approximating �rst
derivatives as follows

rg � D"g(x) =
X
k2K

wkg(xk)r�"(x� xk); �"(x) = 1="d�(x="); (7)

where the smooth function � is a nonnegative with compact supported and
veri�es

(i)

Z
IRd

�(x)dx = 1 (ii)

Z
IRd

xi�(x)dx = 0 (i 2 1; : : : ; d): (8)

For the conservativity of the SPH scheme, it is convenient to work with a sym-
metrized version of D" denoted by D";s (s: refers to this symmetry)

D";sg(x) := D"g(x)� g(x):D"1(x) (9)

and obtained by substituting the following vanishing error term

g(x):D"1(x) � g(x)r1 = 0: (10)

Accuracy results due to Raviart and Mas-Gallic are available in case of 
 = IRd

in ([39]) and ([32]). To make use of these results, one needs to restrict the
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validity of the approximations of (7) and (10) to the subset of x 2 
 such that
supp(��(x � xk) \ @
 = ; for all k 2 K. Thus, if one considers the subset

�

0

= fy 2 
 : distance (y; @(
)) � �0 > 2"g; then, for all ' 2 W 2;1(
) and for
all T > 0

kD"'(x)�D'(x)k1 � C(T;
�
0

)

�
"j'j1;1 +

h

"2
k'k2;1

�
; 8x 2 
�

0

: (11)

In particular, this last estimate implies

kD"1(x)k1 � C(T;
�
0

)
h

"2
; 8x 2 
�

0

: (12)

Therefore, the combination of (11) and (12) yields

8x 2 
�
0 kD";s'(x)�D'(x)k1 � C(T;
�

0

)

�
"j'j1;1 +

h

"2
k'k2;1

�
: (13)

Notice that, on account of the compact support of the cut-o� � and the regularity
of the �eld a, a straightforward calculation proves the following estimates

(i) cardfk 2 K ; kr�"(x � xk)k 6= 0g � C(
"

h
)d (ii) C1h

d � wk � C2h
d

(iii) kr�"(x� xk)k �
C

"d+1
(iv)

X
k2K

wk kr�"(x � xk)k �
C

"
:

(14)
These estimates will be on a systematic use when evaluating errors terms fol-
lowing on our SPH scheme of equation (1).

Comments It is apparent from the estimates (11-13) that in the SPH setting,
the convergence of the approximations (7) and (10) is obtained by letting si-
multaneously h! 0, "! 0 and the ratio h="2 ! 0 (which in the sequel will be
expressed by �("; h)! 0). This clearly shows that the parameter discretization
h has to be taken much smaller than the smoothing lenght ", precisely h = o("2).
As a result, the ratio � = "=h becomes much bigger and tends to in�nity. To
show the central role of this resulting scaling � in the SPH formalism, note that
by (14) (i), it provides the appropriate relatively constant number Nsph of the
neighboring particles inside the smoothing lenght " of each particle so that the
local approximation (7) makes sense. Moreover, the fact that � tends to in�nity
can be seen as a necessary condition to make it possible the passage limit from
the discrete SPH model to the continuous uid ow model. We refer to [26]
for some convergence tests in the simulation of fracture analysis. We should
point out that by (14) (i), Nsph also depends on the space dimension d. So, in
practice, the parameters h and " have to be chosen such that Nsph is around 25
for d = 2 computations and 50 in d = 3.
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2.2 Particle formulation of boundary conditions

The question of deriving an appropriate SPH scheme of equation (1) in un-
bounded domains is treated in [4]. On account of the fact that the solution
develops singularities in �nite time, even with smooth initial data, the right
approximation is performed from the weak formulation of (1). Herein for "nice"
test functions, this formulation readsZ


�IR+

(uL�
a
'+ F (u; x; t):r'+ S(u; x; t)')dxdt

�
Z
@
�IR+

F (u; x; t):n'd�(x)dt = 0:

This clearly shows the remaining diÆculty we have to deal with which concerns
the derivation of a suitable particle formulation of the boundary integral ter-
m by taking into account nonlinear e�ects of the solution itself. To motivate
our investigation of this question, recall that in the SPH formalism, the uid
ow is represented by uid pseudo-particles. These individual particles inter-
act with one another, moving with the ow and carrying with them all of the
computational information about the uid. Fluid properties are then interpo-
lated between the particles. In other words, for the model equation (1) (see the
scheme (26)), the term divF is interpreted as an internal volume force while
the right hand side S acts as an external volume force. On the light of these
features, one needs to �nd a way to associate to the boundary contribution an
appropriate volume approximation making relevant the interaction with the u-
id particles such that the necessary boundary conditions are satis�ed. In this
direction, we shall study two solutions

- The technique based on the so-called boundary particles and boundary forces.
It was �rst used by Monaghan [33] in the simulation of gravity currents.
Here, we deal with the derivation of a mathematical framework for deriving
an eÆcient numerical model modeling this phenomena. This numerical
model will be set in a general and exible way such that it can be used
in variety of problems including solid friction, multiphase ows as well
as when coupling SPH method with Eulerian based methods. Moreover,
the nonlinear e�ects at the boundary will be taken into account by solving
appropriate Riemann problems. In our formalism, the necessary numerical
requirements such as the conservativity and the stability of the resulting
scheme will be performed by using the equilibrium condition for a uniform
�eld.

- The quite well-known approach of the so-called ghost particles used to model
specular reection boundary conditions in case of plane boundaries. Here-
in, we deal with the treatment of general curved boundaries and provide
under the same machinery as in the previous case, an eÆcient numeri-
cal model to handle di�erent types of boundary conditions including free
boundaries (see [8]). In particular, our numerical model yields new treat-
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ments of polyhedral boundaries as those encountered in many industrial
applications.

In what follows, we are going to focus on describing the general formalism
of these numerical models while the question concerning nonlinear e�ects at the
boundary will be treated in section 3.

2.2.1 Boundary forces

Let us introduce in a neighborhood of @
, the change of coordinates


 3 x! (�x; y) 2 @
� (��0; 0)

�x = x� yn(�x); for some �0 > 0: (15)

Consider a �nite element type triangulation E@
 of the boundary @
. To this
triangulation, we associate a �nite element interpolation RE(g) of any boundary
function g(�x; t)

RE(g)(�x; t) =
X
i2NE

g(�xi; t)	i(�x); (16)

where the summation is taken over the degrees of freedom NE (respectively
located at �xi 2 @
, i 2 NE) of the �nite element, associated with the basic
polynomial functions 	i(�x). These degrees of freedom, located on the boundary,
can be considered either as boundary particles (moving or �xed) or as points of
a �xed grid depending on the problem under consideration. Our weak model is
derived as follows:

let � a regular function of the real variable y 2 [0; 1], such that

(i); 0 � �(y); (ii); �(y) = 0; fory � 1; (iii);

Z 1

0

�(y)dy = 1: (17)

Next, we are going to construct an appropriate extension to the whole domain

 of any g(�x; t) 2 @
 in the weak sense. So, take ' 2 C1(
 � IR+), then the
change of variables givesZ
@


g(x; t)'d�(x) = lim
�0!0

Z
@


Z 1

0

g(x(�x; 0); t)�(y)'(x(�x; �0y); t)J@
(�x)d�xdy

= lim
�0!0

Z



g(x(�x; 0); 0); t)��
0

(y)'(x; t)J@
(�x)J(x)dx;

where J and J@
 are the Jacobian associated with the changes of coordinates
while the kernel ��

0

(y) = 1
�0
�(y=�0). Consequently, for �0 suÆciently small,Z

@


g(�x; t)'d�(x) �
Z



g(�x; t)��
0

(y)'(x; t)J@
(�x)J(x)dx:

Hence, an appropriate extension of g(�x; t) to the whole domain 
 is given by

g�0(x(�x; y); t) = g(x(�x; 0); t)J@
(�x)J(x(�x; y))�
�
0

(y): (18)
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Moreover, one may writeZ



g�0(x; t)'dx �|{z}
by(16)

X
j2NE

g(�xj ; t)

Z



J@
(�x)	j(�x)�
�
0

(y)J(x)'dx

�|{z}
by(5)

X
k2K;j2NE

wk'kJ(xk)J@
(�xk)g(�xj ; t)	j(�xk)�
�
0

(yk):

In terms of external forces acting on the particles k 2 K, this last formula can be
interpreted by associating to each boundary particle (or grid point) j a volume
boundary force �eld fj(x) at the point x de�ned by

fj(x(�x; y)) = J(x)J@
(�x)g(�xj)	j(�x)�
�
0

(y):

The resulting boundary force acting on each uid particle k 2 K moving on the
boundary layer (��0; 0)� @
 is then, given by

f(x) =
X
j2NT

fj(x):

Remark 2.1 By construction, the conditions (17) on the shape function ��
0

are devoted to ensure the weak consistency of our numerical model of boundary

forces. Nevertheless, we should point out that the �nal choice of ��
0

depends

on the physical problem at hand, the type of boundary conditions as well as

the compatibility relation between the initial and boundary data. In our model

(1-72), one possible choice is to take simply �(y) = 1 for 0 � y � 1.
Note that by our general formalism, the three models used by Monaghan

in [33] based on central forces and Leonard-Jones inter-molecular force with a

repulsive core and attractive well, could be improved to get weak consistent and

wellposed models.

Remark 2.2 The �nite element approximation (16) is well �tted when mod-

elling physical problems as solid friction or when coupling SPH method with

Eulerian methods in such a way that the best aspects of both approaches can be

incorporated into a single model. We refer to [8] for more details.

2.2.2 Ghost particles

This technique is formulated so that the local conservativity and consistency
of the SPH scheme near the boundary is satis�ed by means of the so-called
ghost particles generated outside the domain 
. For the well-posedness of this
approach, one needs to equip a neighborhood of @
 outside to 
 with a new
and appropriate quadrature formula in accordance with the one de�ning the real
particles inside 
. To this end, since the boundary @
 is assumed to be smooth
enough, then by using the local system of coordinates (�x; y) over @
�(��0; 0), it
suÆces to construct an appropriate extension ~
 � IRd of the set 
. In practice,
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this construction can be performed by means of a suitable di�eomorphism M
which maps to any point x = �x� yn(�x) 2 @
� (��0; 0) the point

M(x) = �x+ yn(�x) 2 
M := @
� (0; �0): (19)

It turns out that, with this map, one may associate to each particle k 2 K of
position xk 2 K, suÆciently close to the boundary @
, a new particle called
ghost particle located at the position M(xk) outside of 
. We thus get a new
quadrature formula over 
M by taking as a weight of the ghost particle the
weight of the particle that it is ghost multiplied by JM (xk) the Jacobian deter-
minant jdet(DM(xk))j at point xk. Consequently, by denoting by G the set of
the new ditribution of ghost particles i.e.

G = cardfk 2 ZZd; xk(t) 2 
Mg;

one gets a quadrature formula over ~
 = 
 [ 
M with its associate quadrature
rule de�ned by Z

~


g(x)dx �
X

k2K[G
~!k(t)g(xk(t)); (20)

with

~!k(t) =

�
!k(t) if xk 2 

!M�1(k)(t)J ÆM�1(xk(t)) if xk 2 
M :

To this new quadrature formula, one associates a discrete derivative operator
denoted by ~D", well-de�ned in the whole domain 
 for any g 2 C1(~
) by

8x 2 
; ~D"g(x) =
X

k2K[G
~!k(t)g(xl)r�"(x� xk):

We also de�ne
~D";sg(x) = ~D"g(x)� g(x) ~D"1(x) (21)

so that, the accuracy results (11-13) can be extended to the whole domain 

instead of 
�

0

.

Remark 2.3 There exists another technique to provide the local conservativity

of SPH method called the semi-analytic approach (see [10]). It is based on the

use of the exact values of the integrals of the shape function and its derivatives

outside the domain 
 instead of generating a new distribution of ghost particles,

by computing the integralsZ
IRd=


�"(x� y)dy;

Z
IRd=


r�"(x � y)dy:

For the half-plane or polyhedral boundaries, one may compute these integrals in

case of polynomial shape functions � by using formal calculus computer codes

such as the results given by Herand in [18].
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Remark 2.4 Note that the two approaches of modeling boundary conditions we

have described, seem close as far as the basic principle is concerned, that is pre-

venting the uid particles from passing through the boundary. However, from

the implementation point of view, these approaches are very di�erent. Indeed,

the technique of ghost particles needs the creation of a ghost particles' distribu-

tion at any time t so that the number of particles inside the radius " is equal

to the constant value Nsph for all the particles near the boundary @
. For the

boundary forces' technique, the boundary particles are set initially.

3 The weak form of the SPH scheme

In this section, we are going to derive the SPH scheme of equation (1) by using
the results of the previous section.

3.1 Case of boundary forces

We proceed into three steps. First, we derive the particle scheme in the interior
domain. Secondly, we make use of the upwind particle scheme developed in ([4])
to overcome the problem of the stability of the method. In the third step, we
treat the boundary contribution in equation (1) by using the numerical model
developed in the above section.

Step 1 (The interior domain) Consider the adjoint operator D�";s of D";s

according to the L2 discrete scalar product as

(D";s';	)h = �
�
';D�

";s
	
�
h

(';	)
h
:=
X
i2K

wi'i:	i: (22)

Take also the hybrid particle approximation �uh(x; t) introduced in ([4]) in order
to extend �nite volume techniques to the particle scheme. It is de�ned by

�uh(x; t) =
X
k2K

uk�Bk
(x); (23)

where uk stands for an approximation of the exact solution of problem (1) and
�Bk

is the characteristic function of the set Bk. To get the particle scheme of
equation (1) inside 
, let us take the following weak model (� = O(�0))Z

[0;T ]

�
(�uh;L�a('))h + (F (�uh; x; t); �

�D";s')h + (S(�uh; x; t); ')h
�
dt = 0; (24)

where ' is a test function and �� is a suitable regularization of the characteristic
function � of the domain 
, for instance

��(x(�x; y)) =

8><
>:

0 0 � y < �
1=2 + 3(y � 2�)=(4�)� (1=4)((y � 2�)=�)3 � � y < 3�
1 y � 3�:

(25)
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In view of (22) together with an integration by parts with respect to t, one easily
gets that (24) is equivalent to the system of di�erential equations

8k 2 K; d

dt
(wkuk) + wk(D

�
";s)(�

�F )x=xk = wkS(uk; xk; t); (26)

where

D�
";s
(��F )x=xk =

X
l2K

wn

l
(��

k
F (uk; xk; t)Akl � ��

l
F (ul; xl; t)Alk)

and the abbreviation Aij = (r�")x=xi(xi � xj) has been used.
Note that the result of our model (24) is that the weak consistency of the

numerical scheme (26) is by de�nition a direct consequence of the quadrature
error (6) and the accuracy result (13). The global conservativity is also ensured
by the use of the derivative operator D";s de�ned in (9) instead of D". Indeed,
neglecting the boundary contribution and taking in the scheme (26), the sum
over k 2 K, we �nd that

d

dt
(
X
k2K

wkuk) +
X
k2K

wkD
�
";s
(��F )x=xk =

X
k2K

wkS(uk; xk; t): (27)

This is nothing but the discrete equivalent inside 
 of

d

dt

Z



u(x; t) dx =

Z



S(u(x; t); x; t) dx; (28)

since
P

k2K wkD
�
";s
(��F )x=xk = 0. By symmetry, this last point can be seen

by switching the indices k and l in one of the two terms composing it.
Note in passing that the scheme (26) is well-de�ned for all known versions

of SPH method developed for compressible Euler equations to remedy particle
distortion by taking the smoothing length " as an adaptive one "(x) such that the
number of particles inside the smoothing radius "(xk) for all k 2 K is equal to a
suitable constant value Nsph. For instance, Gather and Scatter approximations
where respectively in the scheme (26) Aij = (r�"(xi))(xi � xj) and Aij =
(r�"(xj ))(xi�xj) or the symmetric version in which " = ("(xi)+"(xj))=2. This
last form is the most popular of them (see [33],[19],[20], [34]).

Step 2 (The upwind particle scheme) As already underlined in ([4],[6]),
the scheme (26) is somehow a generalized �nite di�erence centered scheme well
known to be unconditionally unstable whenever a time-explicit discretization
is used. To lift this diÆculty, we have developed an original approach using
nonlinear upwinding and Riemann approximate solvers well known in the �eld of
�nite di�erence schemes for nonlinear hyperbolic equations (see for instance [16],
[17]). Indeed, the form of the scheme (26) computing the interaction between
any pair of particles (k; l) along the direction nkl connecting xk with xl, suggests
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the introduction at the point xkl = (xk + xl)=2 of the Riemann problem8>>><
>>>:

@

@t
(u) +

@

@x
(F (u; xkl; t):nkl) = 0; with nkl = Akl=kAklk:

u(x; 0) =

�
uk if x < 0
ul if x > 0:

(29)

Therefore, a suitable approximation can be performed by the introduction of a 1-
dimensional �nite di�erence scheme g in a conservation form associated to (29).
This numerical scheme g is consistent with the nonlinearity F:n(x) and conserva-
tive, i.e, that g(n(x); u; u) = F (u; x; t):n(x) and that g(n; u; v)+ g(�n; v; u) = 0
respectively. The corresponding numerical viscosity Q(n(x); u; v) and incremen-
tal coeÆcient C(n(x); u; v) are then classically de�ned by

Q(n(x); u; v) =
F (x; t; u):n(x) � 2g(n(x); u; v) + F (x; t; v):n(x)

v � u

(30)

C(n(x); u; v) =
F (u; x; t):n(x) � g(n(x); u; v)

v � u
:

Thus, the upwind numerical scheme which consists in �nding functions t 2
IR+ �! uk(t) 2 IR, k 2 K reads

d

dt
(wkuk) + wk

X
l2K

wl

�
��
k
g(nkl; uk; ul)kAklk � ��

l
g(nlk; ul; uk)kAlkk

�
= wkSk:

There exist a lot of numerical uxes g well �tted for such an upwinding. One
can quote the Lax Friedrich and the Godunov schemes. They are in fact mono-
tone �nite di�erence schemes (see Crandall and Majda [12] and Kuznetsov and
Volosin [25]) which belong to the widest class of E-schemes (Osher [36]). In
the following, we suppose that g is such an E-ux (i.e. its numerical viscosi-
ty satis�es Q(n; u; v) � QG(n; u; v) where QG is the numerical viscosity of the
Godunov scheme).

Step 3 (The boundary contribution) According to result (18) and Remark
(2.1), let b�0(x; t) be the extension to 
 of the boundary data b(�x; t) satisfying
(2). In our formulation of boundary forces for equation (1), the boundary con-
tribution will be computed in the boundary layer [��0; 0] � @
 by taking into
account nonlinear e�ects. With this end in view, the correct formalism consist-
s in solving an appropriate Riemann problem similar to (29). Thus, for each
particle k 2 K of position xk moving in this boundary layer, one considers the
additional Riemann problem at xk along the direction ~nk (to be determined a
posteriori) in the following way8>><

>>:
@

@t
(v) +

@

@x
(F (v; xk ; t):~nk) = 0

v(x; 0) =

�
uk if x < 0
bk = b�0 (xk) if x > 0:
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Accordingly, in a similar way to the interior domain, one may use the E-scheme
g for the approximate solutions of this Riemann problem. Moreover, for the
stability of the scheme, one needs to introduce a function �(x) (also to be com-
puted) with supp(�) � (��0; 0)� @
 so that the global upwind scheme reads

d

dt
(wkuk) + wk

X
l2K

wl

�
��kg(nkl; uk; ul)kAklk � ��l g(nlk; ul; uk)kAlkk

�

+wk�(xk)g(~nk; uk; bk) = wkSk:

(31)

Note that the scheme (31) is well-posed if in particular the equilibrium condi-
tion for a uniform �eld is satis�ed (i.e. with F (u; x; t) = cte and S(u; x; t) = 0).
Accordingly, (31) reads

d

dt
(wkuk) = 0 =) �k~nk = �

X
l2K

wl(�
�

kAkl � ��l Alk) (32)

= �(D�";s��)x=xk � �D�";s��k ;

which yields the following suitable choice

~nk = �D�
";s
��
k
=kD�

";s
��
k
k; �k := �(xk) = kD�

";s
��
k
k:

Therefore,

�(x) =

( kD�";s��(x)k if x 2 [��0; 0]� @


0 elsewhere:

To show the weak consistency with the boundary integral term in the new
model (31), let us take for simplicity the case of symmetry shaped function
�(x). Consequently, Akl = �Alk and then the accuracy result (11) yields

�(D�";s��)(x) �!
�(h;")!0

r(1� ��)(x); in L1loc(
): (33)

Moreover, replace the numerical ux g(~nk; uk; bk) by its expression from (30) and
take the contribution coming from the boundary forces, then a straightforward
calculation using (33) and the quadrature rule (6) gives (with �0 = 3�)

lim
�0!0

lim
�(h;")!0

�
�X
k2K

wk'kF (b�0(xk ; t); xk; t)D
�
";s
��
k

�

= lim
�0!0

Z



F (b�0(x; t); x; t)r(1 � ��)(x)'(x)dx =

Z
@


F (b; x; t):n ' d�(x):

(34)

Note however, that since the hybrid particle approximation �uh is not smooth e-
nough, the evaluation of the other terms requires more sophisticated arguments.
These arguments use in particular the concept of measure-valued solutions and



SPH method and boundary conditions 15

the convergence for measures in the weak topology �(Mb; Cc) where Mb de-
notes the set of bounded Radon measures. This last step constitutes the main
diÆculty in the present convergence analysis.

In the sequel, to make the reading easier, we assume that the cut o� function
�(x) is in addition symmetric, therefore the scheme (31) reads

d

dt
(wkuk)+wk

X
l2K

wl(�
�

k
+��

l
)g(nkl; uk; ul)kAklk+wk�(xk)g(~nk; uk; bk) = wkSk

Moreover, without loss of generality one may replace the average (��
k
+ ��

l
)=2

by the value ��(xkl) at the mean point xkl denoted by ��
kl
to get

d

dt
(wkuk) + wk

X
l2K

wl�
�

kl2g(nkl; uk; ul)kAklk+ wk�(xk)g(~nk; uk; bk) = wkSk:

(35)
Finally, by using the forward Euler scheme in time, we get the following

algorithm

(i) u0k =
1

meas(Bk)

Z
Bk

u(x; 0)dx

(ii) ~un+1
k

= unk � �n2
X
l2K

wn

l �
�

klg(nkl; u
n

k ; u
n

l )kAn

klk

��n(�nk g(~nk; unk ; bnk )� Snk )

(iii)
wn+1
k

wn

k

un+1
k

= ~un+1
k

(36)

In the above algorithm the position and the e�ective weight of any particle
k 2 K are computed by integrating in (4) the system (i) and the equation (ii)
i.e.

xn
k
= xk(t

n) wn

k
= w(xk(t

n)): (37)

In particular, we have the following relation connecting wn+1
k

with wn

k

wn+1
k

= wn

k
exp(

Z
t
n+1

tn

div(a(xk(t); t)dt) := wn

k
Dan

k
: (38)

Remark 3.1 We should point out that our analysis can be done for the gen-

eral case of an adaptive smoothing length "(x) subject to a slight adaptation

of Raviart's approximation results (11) (see [39],[32]) together with the addi-

tional bound C1 � "(x)="0 � C2. For more details on the derivation of these

approximation results, we refer to [26] or [7].

Remark 3.2 In the frame of Euler equations, one may compute a suitable local

approximation at the boundary of the pressure using the neighboring uid par-

ticles. Indeed, in view of the above formalism at any time tn, for any boundary
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particle k 2 NE, the pressure of the boundary particles can be computed by the

formula

pn(�xk) =
X
l2K

wn

l
pn
l
kAn

kl
k=
X
l2K

wn

l
��
kl
kAn

kl
k:

It turns out (see [8]) that this approximation produces nice volume repulsive

boundary forces acting on the uid particles inside 
. It also has the advantage

to keep a perfect equilibrium for moving particles with a velocity parallel to plan

boundaries.

3.2 Case of ghost particles

Equipped with the quadrature formula over ~
 (20) and the di�eomorphism M
(19) de�ned in section 2.2.2, one may extend the ux F (u; x; t) and the boundary
data b(x; t) outside to 
 in 
M = @
� (0; �0) in the following appropriate way


M 3 x = �x+ yn(�x) �!
(

F (u; x; t) = F (u;M�1(x); t)

b(x; t) = b(�x; t);
(39)

with M�1(x) = �x� yn(�x) 2 @
� (��0; 0).
Let also denote by ~D�

";s
the adjoint operator associated to ~D";s provided by

(21) in which the scalar product (22) is taken over ~
. For the wellposedness of
the model below, we also take �uh(x; t) = b(x; t) for x 2 
M . So, the particle
model of (1) using the ghost particles' approach is given byZ

[0;T ]

h
(�uh;L�a')h �

�
~D�
";s
F (�uh; x; t)� S(�uh; x; t); '

�
h

i
dt = 0: (40)

An integration by parts with respect to t shows that this model consists in
�nding the sequence t �! uk for all k 2 K solution of the system of di�erential
equations

d

dt
(wkuk) + wk

X
l2K

wl(F (uk; xk; t) + F (ul; xl; t))Akl (41)

+ wk
X
l2G

~wl(F (uk; xk; t) + F (bl; xl; t))Akl = wkSk: (42)

In this scheme, the term in the right-hand side of (41) represents the SPH
formulation of divF in the interior domain while the term in the left-hand side
of (42) provides the suitable volume formulation associated with the boundary
contribution F:n in the weak sense (see Appendix A for the proof of this last
fact in case of smooth solutions).

Using the numerical scheme g introduced in the previous case, then the
upwind particle scheme may be written

d

dt
(wkuk) + wk

X
l2K

wl2g(nkl; uk; ul)kAklk (43)

+ wk
X
l2G

~wl2g(nkl; uk; bl)kAklk = wkSk: (44)
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Hence, using an explicit-time discretization, the numerical particle scheme
is then given by

(i) u0
k
=

1

meas(Bk)

Z
Bk

u(x; 0)dx

(ii)0 ~un+1
k

= un
k
� �n2

X
l2K

wn

l
g(nkl; u

n

k
; un

l
)kAn

kl
k

��n
X
l2G

~wn

l
2g(nkl; u

n

k
; bn
l
)kAn

kl
k+ �nSn

k

(iii)
wn+1
k

wn

k

un+1
k

= ~un+1
k

;

(45)

where the positions and the e�ective weights (xn
k
; wn

k
) of the uid particles k 2 K

are computed by (37) and (38).

4 Statement of the main results

We are now ready to state the convergence results of the two approximate
solutions given by the schemes (36) and (45). To that purpose, let us denote by
�+ = maxtn�T �n and �� = mintn�T �n and by (FS) and (DFS) the following
assumptions

(FS)
F 2 [C(IR�
� IR+)]

d; F (u; :; :) 2 [C1(
� IR+)]
d

S 2 C(IR �
� IR+);

(DFS) F i(0; :; :); @xjF
i(0; :; :); S(0; :; :) 2 L1(
� IR+): for 1 � i; j � d:

Theorem 4.1 Assume that the assumptions (FS) and (DFS) hold and that the

ux F and S are Lipschitz with respect to u uniformly on (x; t). Suppose also

that the initial and boundary data (u0; b) belong to L1(
) � L1(@
 � IR+).
Let �uh(x; t) be approximate solutions of (1), de�ned by (23) and computed by

either the scheme (36) or (45). Suppose in addition that �0 = O(") and that the

following CFL condition is satis�ed for some constant �, 0 < � < 1

�+ = (1� �) Sup
juj;jvj�C0

k;l2K

"

j C(nkl; u; v) j
; (46)

where the constant C0 = C(T; ku0k1; kbk1). Then �uh(x; t) converges in L
p

loc
(
�

IR+) (for 1 � p < 1) towards u, the unique weak entropy solution of (1) in

Otto's sense [37], when �("; h)! 0,
"

p
��

! 0 and �0 ! 0.

In this convergence result, the additional assumption " = o(
p
��) is used to

get the suitable control of the global dissipation of the scheme (see [4] for more
details in case 
 = IRd).
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The proof of this theorem will be given in the case of boundary forces. The
case of ghost particles can be done in a similar way (see [6] for the detailed
proof). For both cases, the proof is based on the use of the concept of measure
valued solutions (based on Young measures) and their uniqueness for equation
(1). To de�ne this concept of solutions for equation (1), let us take, by the end
of this section (for an easy presentation), that the transport �eld a � 0, since it
does not play here any special role, except involving additional terms that can
be included in the ux F .

De�nition 4.2 A Young measure �, with its trace � (see lemma 1:1 in [41]),
is a measure solution to problem (1-3) if for any entropy-entropy ux pair

(�(u); �h(u; x; t)) such that @uH
i(u; x; t) = �0(u)@uF i(u; x; t) and for all non-

negative test function ' 2 C1c (
� IR+),Z

�IR+

fh�x;t(�); �(�)i@t'+ h�x;t(�); �h(�; x; t)irx'g dxdt

+

Z

�IR+

h�x;t(�);
X
i=1;d

(@xi(H
i(�; x; t)) � �0(�)@xiF

i(�; x; t))i'dxdt

+

Z

�IR+

h�x;t(�); �0(�)S(�; x; t)i'dxdt

�
Z
@
�IR+

h�s;t(�); B(�; b; s; t)i:n(s)'(s; t)dsdt � 0;

(47)

and with

lim
t!0+

Z



h�(x;t)(�); j� � u0(x)jidx = 0: (48)

The boundary entropy ux is de�ned by

B(�; b; s; t) = �h(b(s; t); s; t)� �0(b(s; t))(F (b(s; t); s; t)� F (�; s; t)): (49)

Remark 4.3 Note that the well-known boundary formulation introduced by Bar-

dos, LeRoux and Nedelec in [1] using the Kruskov entropy j:�cj can be recovered

from the above one (49) by taking �0(:) = sgn(:� c) to get

B(�; b; s; t) = sgn(b� c)(F (�; s; t) � F (c; s; t)):

However, the inequality (47) is not well-de�ned with the Kruskov entropy-entropy

ux pair �
j�� cj; q(�; c; x; t) = sgn(�� c)(F (�; x; t) � F (c; x; t))

�
: (50)

This comes from the fact that for example the term

h�x;t(�); �0(�)S(�; x; t)i = h�x;t(�); sgn(� � c)S(�; x; t)i

is not well-de�ned for discontinuous functions. To remedy this problem, we

consider a regularized entropy-entropy ux pair (�Æ(�� c); HÆ(�; c; x; t) of (50)
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provided by regularizing the sgn function

sgnÆ(x) =

8<
:

1 if x � Æ
x

Æ
if � Æ < x < Æ

�1 if x � �Æ
(�Æ)

0

(�� c) = sgnÆ(�� c);

then

HÆ(�; c; x; t) =

Z �

c

�
0

Æ(v)@vF (v; x; t)dv = qÆ(�; c; x; t) + qÆr(�; c; x; t);

with

qÆ(�; c; x; t) = sgnÆ(�� c)(F (�; x; t) � F (c; x; t))

qÆ
r
(�; c; x; t) =

Z
�

c

�
sgn

Æ
(v � c)� sgn

Æ
(�� c)

�
@vF (v; x; t)dv:

Moreover, a direct computation proves that

jqÆ
r
(�; c; x; t)j � CÆ: (51)

Thus

(�Æ(�� c); HÆ(�; c; x; t) �! (j�� cj; q(�; c; x; t)) a.e in 
� IR+:

Theorem 4.4 Assume that (u0; b) belongs to L
1(
)�L1(@
� IR+), that the

assumption (FS) holds and that � and � are Young measure solutions to (1-3),
in the sense of de�nition (4.2), then, the inequality

@t

Z



h�x;t(�)
 �x;t(�); j� � �jidx

� �
Z



h�x;t(�)
 �x;t(�); sgn(�� �)(S(�; x; t) � S(�; x; t))idx

holds in the distribution sense on IR+. If in addition � and � satisfy the same

initial condition (48) and S is Lipschitz with respect to u 2 IR uniformly on

(x; t), then there exists a unique solution u 2 L1(
� IR+) such that

�y = �y = Æu(y); for a.e. y 2 
� IR+

and u is the unique weak entropy solution to (1-3) in the sense of Otto [37].

Recall that the measure tensor product �y 
 �y is de�ned for all g 2 C(IR2)
by

h�y 
 �y; g(�; �)i �
Z
IR

Z
IR

g(�; �)d�y(�)d�y(�):

This uniqueness result is established in [3] in case where F (u; x; t) = f(u) and
S(u; x; t) = 0. The proof of the present general result is a slight adaptation of the
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one of the previous case combined with Gronwall Lemma. The main diÆculty
lies in the treatment of boundary conditions which is completely ful�lled in [3].

We next give an equivalent de�nition to (4.2) which is well-�tted for the
analysis of the scheme (36) since it requires less information than (4.2) for
the weak formulation of boundary conditions. The proof of this equivalence is
postponed to the end of the paper (Appendix B).

De�nition 4.5 A Young measure � is a measure solution to problem (1-3) if
and only if

(In the interior domain) For any entropy-entropy ux pair (�(u); �h(u; x; t))
and 8' 2 C1c (
� IR+)

M�(�x;t; ') � 0; (52)

with

M�(�x;t; ') :=

Z

�IR+

fh�x;t(�); �(�)i@t'+ h�x;t(�); �h(�; x; t)irx'dxdt+

+

Z

�IR+

h�x;t(�);
X
i=1;d

�
@xiH

i(�; x; t) � �0(�)@xiF
i(�; x; t)

�
i'dxdt

+

Z

�IR+

h�x;t(�); S(�; x; t)i'dxdt +
Z



h�x;t(�); �(�)i'(x; 0)dx

(The weak formulation of boundary conditions) There exists a Radon mea-

sure #s;t 2 Mb(@
� IR+) such that 8' � 0 2 C1
c
(�
� IR+), 8 c 2 IR

lim
Æ!0

M�
Æ

(�x;t; ')�
Z
@
�IR+

sgn(b� c)'(s; t) d#
s;t

+

Z
@
�IR+

F (c; x; t):nsgn(b� c)'d�(x)dt � 0:

(53)

One emphazises that the crucial point making this formulation equivalent
to Szepessy's one (47), is the existence of the term sgn(b � c) in the weak
formulation of both boundary terms (see Appendix B for the proof).

In view of the uniqueness result given by Theorem (4.4), the remainder of
this paper will be mainly concerned with the existence proof of a measure valued
solution of equation (1) in the sense of de�nition (4.5) as a weak star limit of
the approximate solutions �uh(x; t). This existence result follows by proving
that �uh, provided either by the scheme (36) or (45), are uniformly bounded in
L1 (section 6), weakly consistent with all entropy inequalities in the sense of
de�nition (4.5) and �nally consistent with the initial data (section 7). For this
program, one needs to derive in the next section some preliminary properties of
the particle scheme.
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5 Basic properties of the scheme and entropy

production

In connection with �nite volume schemes ([2], [11], [22]), we have obtained in
[4] a new interpretation of the hybrid particle scheme (36) in terms of one-
dimensional �nite di�erence schemes as a sum of convex decomposition up to
some additional terms (see (64) below). This interpretation allows us to get a
suitable discrete maximum principle result yielding the derivation of the L1

stability of �uh.
For sake of clarity when there is no ambiguity, we will use the notations for

any function G(u; x; t)

Gn

k;kl
= G(un

k
; xkl; t

n); Gn

k;l
= G(un

k
; xl; t

n); G�uh = G(�uh; x; t):

5.1 Properties of the upwind particle scheme

De�ne the positive constant �n
k
by

�nk =
�n

�xn
k

; �xnk =
1

�nk +
X
l2K

�nkl
;

(
�n
kl
= 2wn

l
��
kl
kAklk

�n
k
= k(D�

";s
��)n

k
k:

(54)
Let also recall the numerical three point scheme which is purely one-dimensional,
introduced in [4], de�ning the interaction between any pair (k; l) of particles

un+1;l
k

= un
k
� �n

k
(g(nkl; u

n

k
; un

l
)� Fn

k;kl
:nkl) �W (�n

k
; un

k
; un

l
): (55)

De�ne in a similar way the interaction with boundary forces by

un+1;f
k

= un
k
� �n

k
(g(~nk; u

n

k
; bn
k
)� Fn

k;k
:~nk): (56)

So, to get the appropriate convex form of the scheme, one needs to �nd some

positive constants �l;n
k
; �k;n

k
with

X
l2K

�l;n
k

+ �f;n
k

= 1 such that the scheme (ii)

in (36) could be written as

~un+1
k

=
X
l2K

�l;n
k
un+1;l
k

+ �f;n
k
un+1;f
k

+ �n
�
Sn
k
� Gn

k
�Bn

k

�
: (57)

Indeed, as in [4], a straightforward computation using the following choice

�f;n
k

=
�n
k

�nk +
X
l2K

�nkl
; �l;n

k
=

�n
kl

�nk +
X
l2K

�nkl
;

(58)

proves that (36) and (57) are equivalent if and only if

Bn
k

= Fn

k;k

X
l2K

wn

l
2��

kl
An

kl
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= Fn

k;k
(D�

";s
��)n

k
+ Fn

k;k

X
l2K

wn

l
(2��

kl
� ��

k
� ��

l
)An

kl

:= Fn

k;k
(D�

";s
��)n

k
+ Fn

k;k
R(��)n

k

(59)

Gnk =
X
l2K

wn

l 2�
�

klF
n

k;klAn

kl

= (@�";s�
�F�uh)

n

k +
X
l2K

wn

l

�
2��klF

n

k;kl � ��kF
n

k;k � ��l F
n

k;l

�
An

kl

:= (@�";s�
�F�uh)

n

k +R(��F�uh)
n

k :

The discrete partial derivative term @�
";s
(��F�uh)

n

k
in the last equality denotes

the adjoint operator associated with @";s(�
�F�uh )

n

k
according to (22). The latter

one is nothing but the SPH approximation of the partial derivative0
@X
i=1;d

@xi [�
�(x)F (�uh; x; t

n)]

1
A
x=xn

k

while the generic remainder R(:)n
k
is de�ned for any smooth function g by

R(g)nk =
X
l2K

wn

l (2g(x
n

kl)� g(xnk )� g(xnl ))An

kl: (60)

To get the �nal form of the decomposition (57), we claim that

Bnk + Gnk = ��k@
�
";s(F�uh )

n

k +N (��F )nk with lim
�(";h)!0

N (��F )nk = 0:

Indeed, on the one hand, a direct computation gives for any smooth functions
f and g that

D�";s(fg) = fD�";sg + gD�";sf +�(f; g); (61)

with

�(f; g)(x) =
X
l2K

wl(g(x) � g(xl)(f(x)� f(xl))r�"(x� xl)� 2g(x)f(x)D"1(x):

Thus, the estimate (12) and the bounds (14) imply that

j�(f; g)(x)j � C("+ h="2):

On the other hand, successive applications of Taylor expansion in [xk; xkl] and
[xl; xkl] combined with the bounds (14) yield the following bounds

kR(��)nkk � C" kR(��F�uh)
n

kk � C": (62)

Consequently, the combination of (61) applied to �� and F�uh and (62) ends the
proof of the claim with

N (��F )n
k
= R(��F )n

k
+ Fn

k;k
:R(��)n

k
+�(��; F�uh): (63)
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Hence, the identity (57) reads

~un+1
k

=
X
l2K

�l;n
k
un+1;l
k

+ �f;n
k
un+1;f
k

+ �n
�
Sn
k
� ��

k
@�
";s
(F�uh)

n

k
+N (��F )n

k

�
:

(64)
To make appear the CFL condition (46), one �rst needs to rewrite the

schemes (55) and (56) in terms of the incremental coeÆcient C(nkl; u
n

k
; un

l
)

de�ned in (30). Secondly, on account of (14), one may show that there exist
some constants C, C� and C+, depending only on the velocity �eld a and the
kernel � such that

(i) 0 � �nk � C="; (ii) C�
��
"
� �nk � C+

�+

"
: (65)

5.2 Entropy production

In practice, we require that, for any convex entropy function �, there exists a
numerical entropy ux �h(n; u; v) satisfying similar requirements as the ux g
i.e.

(i) �h(n(x); u; u) = H(u; x; t):n(x) (ii) �h(n; u; v) = ��h(�n; v; u);

where H is an entropy ux associated with (F; �), such that @uH
i = �0(u)@uF

i.
Moreover, such an entropy-entropy ux pair (�;H) veri�es a certain entropy
inequality. Since we have an E-scheme, the incremental coeÆcient C(n; u; v)
is positive. Therefore, by using the three point scheme (55), it follows from
Proposition 3.3 in [2] (the (x; t) dependence is omitted below) that for the
entropy-entropy ux pair (� = u2; H),

�(W (�; u; v))��(u)+�[�h(n; u; v)�H(u)n] � ��
2
j u�v j2 (C(n; u; v))2�2; (66)

provided the CFL condition �Q � 1� � is satis�ed. Note however that (66) is
valid for any entropy-entropy ux pair if we take � = 0, in which case, we have

�h(n; u; v)�H(u):n � �0(u)(g(n; u; v)� F (u):n): (67)

Moreover, in view of the treatment of the boundary contribution, we also recall
that (67) for � = �c = ju� cj is equivalent to

sgn(v � c)(g(u; v)� F (c)) � �hc(u; v) � sgn(u� c)(g(u; v)� F (c)): (68)

Let us now turn to the derivation of the entropy dissipation corresponding to
our hybrid particle scheme.

In the interior domain: The inequality (66) reads

�(un+1;l
k

)� �(unk ) + �nk (�h(nkl; u
n

k ; u
n

l )�Hn

k;kl:nkl)

� ��
2
j uk � ul j2 (C(nkl; unk ; unl ))2(�nk )2:

(69)
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By adding and substituting appropriate terms, this last inequality reads

�(un+1;l
k

)� �(un
k
) +

�n
k

2
(Hn

k;k
+Hn

l;l
)nkl � �n

k
Hn

k;kl
:nkl

� ��
n

k

2
(2�h(nkl; u

n

k
; un

l
)� (Hn

k;kl
+Hn

l;lk
)nkl)

��
n

k

2
(Hn

k;kl +Hn

l;lk �Hn

k;k �Hn

l;l):nkl �
�

2
j uk � ul j2 (C(nkl; unk ; unl ))2(�nk )2:

Multiplying this last inequality by �l;n
k
, summing it over (l 2 K) and using (54)

and (58), we then getX
l2K

�l;n
k
(�(un+1;l

k
)� �(un

k
)) + �nD�

";s
(��H�uh)

n

k

��n@�
";s
(��H�uh)

n

k
� R(��H)n

k
�
X
i=1;3

(�i
h;"

)n
k

�
X
l2K

�nwn

l
�n
k
j un

k
� un

l
j2 (C(nkl; unk ; unl ))2kAklk;

(70)
where the remainder R(��H)n

k
is de�ned according to (60) and the above mea-

sure terms are given by

(�1
h;"

)n
k
= �n

X
l2K

wn

l
��
kl
[2�h(nkl; u

n

k
; un

l
)� (Hn

k;kl
�Hn

l;lk
):nkl]kAklk;

(�2h;")
n

k = �n
X
l2K

wn

l �
�

kl[(H
n

k;kl +Hn

l;lk)� (Hn

k;k +Hn

l;l))]Akl;

(�3
h;"

)n
k
= �n

X
l2K

wn

l

�
(��

kl
� ��

k
)Hn

k;k
+ (��

kl
� ��

l
)Hn

l;l

�
Akl:

The boundary contribution: In a similar way, by using the three point scheme
(56) and the entropy inequality (66), one gets

�f;n
k

[�(un+1;f
k

)� �(un
k
)] + �n�n

k
�h(~nk; u

n

k
; bn
l
)� �nHn

k;k
:D�

";s
(��)n

k

� �nHn

k;k:R(��)nk �
�

2
�n�nk j uk � bl j2 (C(~nk; uk; bk))2(�nk ):

(71)

The resulting interaction: By combining the two inequalities (70) and (71) and
using the identity (61), it yieldsX

l2K
�l;n
k
(�(un+1;l

k
) + �f;n

k
(�(un+1;f

k
)� �(un

k
)

+D�";s(�
�H�uh)

n

k � �n��k(@
�
";sH�uh)

n

k + �n�nk�h(~nk; u
n

k ; b
n

k )

� �nN (��; H)n
k
�
X
i=1;3

(�i
h;"

)n
k
� ��n

k
(u);

(72)
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where the remainder N (��; H)n
k
is de�ned according to (63) and

�n

k
(u) = 2

X
l2K

�nwn

l
�n
k
j un

k
� un

l
j2 (C(nkl; unk ; unl ))2kAklk

+2�n�nk�
n

k j unk � bnk j2 (C(~nk ; uk; bk))2:
(73)

So, by using successively the convexity inequaliy of �, the new form (64), the

inequality �(u + v) � �(u) + v�
0

(u + v) together with Jensen's inequality, we
then obtain the �nal form of the entropy inequality

�(~un+1
k

)� �(unk ) +D�";s(�
�H�uh)

n

k + �n�nk�h(~nk; u
n

k ; b
n

k )

��n (��
k
(@";sH�uh)

n

k
� �0(un

k
) (Sn

k
� ��

k
@";s(F�uh)

n

k
))

� �
X
i=1;5

(�i
h;"

)n
k
� ��n

k
(u);

(74)

where the additional measure terms are de�ned by

(�4h;")
n

k = �n(�0(~un+1
k

)� �0(unk ))
�
Snk � ��kD

x

";s(F�uh )
n

k

�
(�5h;")

n

k = �n
�
N (��; H)nk � �0(~un+1

k
)N (��; F )nk

�
.

6 L
1 Stability and weak BV estimate

Let us denote by the sequence vn+1
k

the convex part in the scheme (64) i.e.

vn+1
k

=
X
l2K

�l;n
k
un+1;l
k

+ �f;n
k
un+1;f
k

:

Proposition 6.1 Assume that (u0; b) 2 L1(
) � L1(@
 � IR+) and �uh(x; t)
is computed by the scheme (36-38) with E-uxes, then for any T > 0, provided
the time step �n satis�es the CFL condition (46), we successively have

(i) min
i2K

j2Ne

(un
i
; bn
j
) � vn+1

k
� max

i2K

j2Ne

(un
i
; bn
j
)

(ii) k�uh(:; t)k1 � K1 := C(T; ku0k1; kbk1)

(iii)
X
k2K

n; tn�T

wn

k�
n

k (u) � C� �
1

�
�
�
ku0k2L2 + C(T; ku0k1; kbk1)

�
;

(75)

where the local dissipation term �n

k
(u) is given by (73).

Proof of proposition 6.1
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L1 stability: Rewriting the schemes (55) and (56) by means of the incre-
mental coeÆcient C given by (30), then the CFL condition (46) implies that

un+1;l
k

2 I(un
k
; un

l
) and un+1;f

k
2 I(un

k
; bn
l
) with

I(f; g) := fw;w = �f + (1� �)g; � 2 [0; 1]g:
Therefore, the inequality (i) follows directly. To prove the L1 stability, consider
the increasing function v �! G(v; T ) de�ned by

G(v; T ) = max
juj�v

x2
;t�T

(k@xF (u; x; t)k+ kF (u; x; t)k+ kS(u; x; t)k) ;

and start with the new form of the scheme (64). Thus, by using successively
the estimates (13) and (63), we �nd that

jun+1
k

j � wn

k

wn+1
k

�
�
kunk1 + kbk1 + �nG(kunk1; T )C(1 + "+

h

"2
)

�
:

Take Ca = kdivak1 exp(kdivak1T ) then, the identity (38) yields wn

k =w
n+1
k

�
(1 + Ca�

n) and consequently,

jun+1
k

j � (1 + Ca�
n)�

�
kunk1 + kbk1 + �nG(kunk1; T )C(1 + "+

h

"2
)

�
:

(76)
Next, as in [4], de�ne the sequence vn by8<
:

v0 = ku0k1;
vn+1 + kbk1 = (1 + Ca�

n)

�
vn + kbk1 + �nG(vn; T )C(1 + "+

h

"2
)

�
:

By construction, kunk1 � vn and from the inequality (76) we infer that

vn+1 � vn

�n
� C(Ca; T )(v

n + kbk1) + C(1 + "+
h

"2
)G(vn; T )

� �(vn):

Let �(v) :=

Z v

v0

1

�(x)
dx ; � is a smooth and increasing function, its converse

function also. We easily get that : �(vn+1) � (tn+1 � t0) + �(v0) and the
following L1 estimate holds

kunk1 � ��1
�
(tn � t0) + �(v0)

�
:

Weak BV estimate (iii): Take the inequality (74) with � 6= 0 and �(u) = u2=2,
then the multiplication by wn

k
and the summation over k 2 K yieldX

k2K
wn

k

h
�(~un+1

k
)� �(un

k
) +D�

";s
(��H�uh)

n

k
+ �n�n

k
�h(~nk; u

n

k
; bn
k
)
i

��n
X
k2K

wn

k (�
�

k(@";sH�uh)
n

k � �0(unk ) (S
n

k � ��k@";s(F�uh )
n

k ))

� �
X
i=1;5

X
k2K

wn

k
(�i

h
)n
k
� �

X
k2K

wn

k
�n

k
(u):

(77)
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Notice that, by switching the indices k and l and using thatAkl = �Alk together
with �h(nkl; u

n

k
; un

l
) = ��h(nlk; unl ; unk), one deduces

X
k2K

wn

k
D�
";s
(��H�uh)

n

k
= 0 =

3X
i=1

j
X
k2K

wn

k
(�i
h
)n
k
j :

Moreover, by adding and substituting the term
P

k2K wn+1
k

�(un+1
k

) and sum-
ming up the inequality (77) over tn � T = tN , we �nd thatX
k2K

(wN

k
juN
k
j2 � w0

k
ju0
k
j2) + �

X
k2K

n; tn�T

wn

k
�n

k
(u) +

X
i=4;5

X
k2K

wn

k
(�i

h
)n
k

�
X
k2K

n; tn�T

�nwn

k

�
��
k
(@�

";s
H�uh)

n

k
� un

k

�
Sn
k
� �k

�
@�
";s
(F�uh )

n

k

��

+
X
k2K

n; tn�T

�nwn

k
�n
k
�h(~nk; u

n

k
; bn
k
) +

X
k2K

n; tn�T

(wn+1
k

jun+1
k

j2 � wn

k
j~un+1
k

j2)

� R2 +R3 +R4:

(78)

Thus, straightforward computations using successively the identities (36) (iii)
and (38), the Lipschitz continuity of the numerical ux �h(n; u; v), the fact that
supp(�(x)) � @
� [0; �0] together with the estimates (11-13) and (65) (ii) imply
the following estimates

jR2j+jR3j � C(T; "; h="2; �0="; ku0k1; kbk1); jR4j � C(T;
�0

"
; k�uhkL2): (79)

On the other hand, since �(u) = u2=2, we have

�0(~un+1
k

)� �0(unk ) = ~un+1
k

� unk ;

therefore, in view of (36) (ii), the combination of the bounds (14), (62) with
the CFL condition (46) givesX

i=4;5

j
X
k2K

wn

k
(�i

h
)n
k
j� C(T; "; ku0k1; kbk1): (80)

By taking the results (79) and (80) into account, the inequality (78) yields the
weak estimate (75) (iii).

7 Proof of Theorem 4.1

The proof of this theorem will be split into three steps. In the �rst step, we
derive the global weak entropy formulation of the scheme (36) while the last
two steps are devoted to the existence proof of a measure-valued solution in the
sense of the de�nition (4.5).
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First step: Weak entropy form of the scheme In connection with the
discrete scalar product used in (22), we are going to use the following notation
whenever a time integration is added

(g; f)h;T =
X

fn; tn�Tg

k2K

wn

k
gn
k
fn
k
=

Z
QT

g(x; t)f(x; t)dxdt + Eh;T (gf); (81)

where QT = 
 � [0; T ] and Eh;T (gf) denotes the resulting quadrature error.
Thus, we have

Proposition 7.1 For all nonnegative test function ' 2 C1
c
(�
 � IR+), the ap-

proximate solutions �uh de�ned by (23) and computed by the scheme (36)-(38)
satisfy

M�(Æ�uh(x;t); �
�; ')� �(')�

0

h;T
�

X
i=1;7

< �i
h;"
; ' >QT

+
X
m=1;4

Rh;"

m

� < �h;"; ' >QT
; (82)

where

M�(Æ�uh(x;t); a; �
�; ') :=

Z

�IR+

[�(�uh)L�a(') + ���h(�uh; x; t):D";s'] dxdt

+

Z

�IR+

h�
�(�uh)� �

0

(�uh)�uh

�
div(a(x; t)

i
'dxdt

+

Z

�IR+

��
�
@�";sH�uh � �

0

(�uh)@
�
";sF�uh

�
'dxdt

+

Z

�IR+

�
0

(�uh)S�uh'dxdt+

Z



�(�uh(x; 0))'(x; 0)dx;

�(')�
0

h;T
=

X
fn; tn�Tg

k2K

�nwn

k
�n
k
�h(~nk; u

n

k
; bn
k
)'n

k

while the right hand side < �h;"; ' >QT
will be made precise below.

Proof of proposition 7.1 As in [4], start with the inequality (74) for all
convex entropy � (i.e. � = 0), multiply it by 'n

k
wn

k
and take the double sum

over fn; tn � Tg and k 2 K, on the one hand. On the other hand, making
an integration by parts and using that Akl = �Alk together with the notation
(81), one gets

�
X

fn; tn�Tg

k2K

'n
k
wn

k

�
�(~un+1

k
)� �(un

k
)
�
+
�
�h(�uh; x; t); �

�D";s'
�
h;T

(83)

+
�
'; ��(@�

";s
(H�uh)

n

k
� �0(�uh)(�

�

k
@�
";s
(F�uh)

n

k
� S�uh)

�
h;T

� �(')�
0

h;T
�

5X
i=1

< �i
h;"
; ' >QT

;
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where the right hand side is given by

< �1h;"; ' >QT
= �

X
fn; tn�Tg

(k;l)2K2

�nwn
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l �
�

kl('
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X
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l �
�
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�
'nk � 'nl

�
(Hn

l �Hn

l;lk):Akl

< �3h;"; ' >QT
=

X
fn; tn�Tg

(k;l)2K2

�nwn
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�

kl � ��k)H
n

k :Akl

< �4
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; ' >QT

= �
X

fn; tn�Tg

k2K

�nwn

k
'n
k
(�0(~un+1

k
)� �0(un

k
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�
���

k
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k
+ Sn
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�

< �5h;"; ' >QT
= �

X
fn; tn�Tg

k2K

�nwn
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n

k

�
N (��; H)nk � �0(~un+1

k
)N (��; F )nk

�
:

Let us now denote by D the �rst term in the left hand side of (83) ; then,
one establishes with similar arguments as before (see [4] for the detailed proof)
that

D �
�
�(�uh);L�a'

�
h;T

+
�
�(�uh); '

�
h

+
��

�(�uh)� �
0

(�uh)�uh

�
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(84)

where the above measure terms are de�ned as follows

< �6
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k
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k
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k

� !n
k

�
:

Thus, the combination of the inequalities (84) and (83) yields

�
�(�uh);L�a'

�
h;T

+
�
�(�uh)� �

0

(�uh)�uhdiva; '
�
h;T

+
�
H�uh ; �

�D";s'
�
h;T

+
�
'; ��@�

";s
(H�uh)� �0(�uh)(�

�@�
";s
(F�uh)� S�uh)

�
h;T

�(�0
h;"
; ')�

0

h;T
+
�
�(�uh); '

�
h

�
7X
i=1

< �i
h;"
; ' >QT

:

(85)
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Finally, the desired inequality (82) follows by using the decomposition in (81)

and denoting by Rh;"

i
for i 2 f1; ::4g the corresponding quadrature error terms

on QT and on 
 for the initial data

Rh;"

1 = Eh;T
�
�(�uh)L�a'+(�(�uh)��

0

(�uh)�uh)'diva
�
; Rh;"

2 = Eh;T
�
H�uh�

�D";s'
�

Rh;"

3 = Eh;T
�
'(��@�

";s
H�uh��0(�uh)(��@�";sF�uh�S�uh))

�
; Rh;"

4 = Eh
�
�(�uh)'

�
.

Second step: Derivation of (47) On account of the L1 stability result of �uh
(75) (ii) and following [43] and [13], one can extract a subsequence f�uhjg with an
associated Young measure-valued mapping �(�) : 
� IR+ ! Prob([�K1;K1])
(see (75) (ii) for the value of the constant K1), such that

lim
�(h;")�!0

�0�!0

M�(Æ�uh(x;t); a; �
�; ') =M�(�x;t; a; '); (86)

where M�(�x;t; a; ') is given by

M�(�x;t; a; ') :=

Z

�IR+

fh�x;t(�); �(�)iL�a(') + h�x;t(�); �h(�; x; t)irx'dxdt

+

Z

�IR+

h�x;t(�);
�
�(�) � �

0

(�)�
�
idiv(a(x; t))'dxdt

+

Z

�IR+

h�x;t(�);
X
i=1;d

�
@xiH

i(�; x; t) � �0(�)@xiF
i(�; x; t)

�
i'dxdt

+

Z

�IR+

h�x;t(�); S(�; x; t)i'dxdt +
Z



h�x;t(�); �(�)i'(x; 0)dx:

Moreover, the combination of the bounds (14), the approximation results
(6) and (13) together with the available regularity of ��, ' and the ux H with
respect to the space variable, implies

lim
�(h;")�!0

X
i=2;7

j < �i
h;"
; ' >QT

j = lim
�(h;")�!0

X
m=1;4

jRh;"

m
j = 0: (87)

We recall that the main diÆculty encountered in [4] lies in the evaluation of the
dissipative term < �1

h;"
; ' >. We have then proved that

lim inf
�(";h)!0

"p
��
!0

< �1h;"; ' >� 0: (88)

The proof combines similar arguments as those used in (87), the weak BV
estimate (iii) in (75) together with the inequality (67) and the following suitable
decomposition (used in order to control the sign of the di�erence 'n

k
�'n

l
with

quantities that go to zero as "! 0 )

'n
k
� 'n

l
= ('n

k
� 'n

l
+A�B)| {z }

�C"�:::::�0

+ (B �A)| {z }
0�:::::�C"
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with

A = inf
k2K

inf
x2B(xk;C")

('(x; t)�'(xk; t)); B = sup
k2K

sup
x2B(xk;C")

('(x; t)�'(xk; t)):

By contrast, in the present convergence, we still have to deal with the evaluation
of the volume approximation (�0

�0;"
; ')h;T which needs a more careful treatment.

With this end in view, note that on account of the estimate (65)(i) and the fact
that supp(�(x)) � @
 � [0; �0] together with the Lipschitz continuity of the
numerical ux �h, we arrive at

j �(')�0h;T j� Cmeas(@
)(k�uhk1; kbk1)
�0

"
: (89)

This clearly shows the boundedness of this term according to the assumption
�0 = O(").

Let us now denote by

#�
0

h;"
(x; t) = �(x)�h(�n(x); �uh(x; t); b�0(x; t)); �' = '(x(�x; 0); t);

thus, one may write

�(')�
0

h;T =|{z}
by(81)

X
fn; tn�Tg

k2K

�Bk
�[tn;tn+1[h#�

0

h;"; 'i+ Eh;T (#�
0

h;"')

=

Z

�IR+

#�
0

h;"(x; t)'dxdt + Eh;T (#�
0

h;"')

=

Z

�IR+

#�
0

h;"(x; t)
�
�'+ ('� �')

�
dxdt + Eh;T (#�0h;"')

=|{z}
by(15)

Z
@
�IR+

�Z 3�

0

#�
0

h;"(x(�x; y); t)J(�x; y)dy

�
| {z }

��#�
0

h;"
(�x;t)

�'(�x; t)d�xdt

(90)

+

Z

�IR+

#�
0

h;"
(x; t)(' � �')dxdt + Eh;T (#�0

h;"
')

=

Z
@
�IR+

�#�
0

h;"
(�x; t) �'(�x; t)d�xdt

+

Z

�IR+

#�
0

h;"
(x; t)(' � �')dxdt+ Eh;T (#�0

h;"
'):

Denote by R(#�0
h;"
; ' � �') the second integral term in the above inequality.

Thus, the quadrature error (5) with similar arguments used in (89) implies

(i) j Eh;T (#�0h;"') j� C
h

"
; (ii) j R(#�0h;"; '� �') j� C�0 � �0

"
: (91)
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The assumption h = o("2) (in particular h = o(")), together with (91) (i) and
(89) yield that the sequence #�

0

h;"
2 L1(
� [0; T ]). Moreover, on account of (91)

(ii), the sequence �#�
0

h;"
is bounded in 2 L1(@
 � [0; T ]). Thus, there exists a

subsequence which still is denoted by �#�
0

h;"
converging to some bounded Radon

measure #(�x; t) for the topology �(Mb; Cc) i.e.Z
@
�IR+

�#�
0

h;"(�x; t) �'(�x; t)d�xdt �!
�(h;")�!0

�0�!0

h#(�x; t); �'i; 8 �' 2 Cc(@
� [0; T ]):

(92)
Consequently,

�(')�
0

h;T
�!

�(h;")�!0

�0�!0

h#(�x; t); �'i; 8 �' 2 Cc(@
� [0; T ]); (93)

In view of the results (86-88) and the above limit, the inequality (82) implies

M�(�x;t; a; ')� h#(�x; t); �'i � 0:

Therefore, the inequality (47) follows by taking ' 2 C1
c
(
� IR+).

Third step: Derivation of (53) Take (�Æ ; HÆ) de�ned in Remark (4.3) as
an entropy-entropy ux pair (�;H) in (82) and denote by �hÆ the numerical ux
associated with the ux HÆ, then one �rst applies the inequality (68) to get

�hÆ(n; u; v) � qÆr(u; c; x; t):n+ sgnÆ(v � c)(g(n; u; v)� F (c; x; t):n) (94)

with

qÆr(u; c; x; t) =

Z u

c

�
sgnÆ(w � c)� sgnÆ(u� c)

�
@wF (w; x; t)dw:

Secondly, as before, denoting by  Æ = ' sgnÆ(b� c) and

#�
0

h;"(x; t) = �(x)g(�n(x); �uh(x; t); b�0(x; t)); � Æ =  Æ(x(�x; 0); t);

one may write

�(')�
0

h;T �|{z}
by(94)

�(')�
0
;Æ

h;T| {z }
see below

�
�
sgnÆ(b�0 � c)F (c; x; t)D�";s�

�; '
�
h;T

+
�
qÆ
r
(�uh; c; x; t)D

�
";s
��; '

�
h;T

=|{z}
by(81)

�(')�
0
;Æ

h;T
�
Z

�IR+

F (c; x; t) Ær(1� ��)dxdt

+

Z

�IR+

qÆ
r
(�uh; c; x; t)'r(1� ��)dxdt (95)

+ Eh;T
�
F (c; x; t)r(1� ��) Æ

�
+ Eh;T

�
qÆr(�uh; c; x; t)r(1� ��)'

�
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with

�(')�
0
;Æ

h;T
:=

X
k2K

�nwn

k'
n

k�
n

k sgnÆ(b
n

k � c)g(~nk; u
n

k ; b
n

k )

=|{z}
as in (90)

Z
@
�IR+

�#�
0

h;"(�x; t)
� Æd�xdt+ Eh;T (#�

0

h;" Æ)

+R(#�0
h;"
;  Æ � � Æ):

So that, as in the previous step, one deduces, that there exists a bounded Radon
measure #(�x; t) such that

�(')�
0
;Æ

h;T
�!

�(h;")�!0

�0�!0

h#(�x; t); sgnÆ(b� c) �'i; 8 �' 2 Cc(@
� [0; T ]): (96)

On the other hand, since we have in the weak star limit that

lim
�(";h)!0

qÆ
r
(�uh; c; x; t) = h�x;t; qÆr(�; c; x; t)i;

then, by using the following splitting

qÆr(�uh; c; x; t) = h�x;t; qÆr(�; c; x; t)i + (qÆr(�uh; c; x; t)� h�x;t; qÆr(�; c; x; t)i)
together with the fact that �0 = O(�) and Szepessy's weak trace limit (Lemma
1:1 in [41]), one gets

lim
�(";h)!0

�0!0

Z

�IR+

qÆ
r
(�uh)'r(1� ��)dxdt =

Z
@
�IR+

h�x;t; qÆr(�)i'd�(x)dt:

(97)
We also have

lim
�0!0

Z

�IR+

F (c; x; t) Ær(1� ��)dxdt =

Z
@
�IR+

sgn
Æ
(b� c)F (c; x; t)'d�(x)dt:

(98)
In view of the results (96-98), the inequality (95) yields

lim
�(";h)!0

�0!0

(�(')�
0

h;T
�

Z
@
�IR+

sgnÆ(b� c)' d#(�(x); t)

�
Z
@
�IR+

sgnÆ(b� c)F (c; x; t)'d�(x)dt

+

Z
@
�IR+

h�x;t; qÆr(�; c; x; t)i'd�(x)dt:

(99)

On account of the results (86-88) with � = �Æ and the bound (51), the
inequality (82) gives

M�
Æ
c (�x;t; a; ')�

Z
@
�

sgnÆ(b� c)' d#(�(x); t)

+

Z
@
�

sgn
Æ
(b� c)F (c; x; t)'d�(x)dt � CÆk'k1:

(100)
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By letting Æ ! 0 and using Lebesgue Theorem, the proof of (53) is completed.

Appendix A

Denoting by Fi = F (b(xi; t); xi; t) (with b a smooth function on �
), one has to
evaluate the term

Kh;" =
X

(k;l)2(K�G)

wk'k ~wl(Fk + Fl)Akl:

To this end, let us introduce the characteristic function � of the domain 
 and
use the notation �i = �(xi); then, one may write, on the one hand,X

(k;l)2(K�G)

wk'k ~wlFlAkl =
X

(k;l)2(K[G)2

�k(1� �l) ~wk ~wl'kFlAkl

=
X
k2K

�kwk'k( ~D";sF )x=xk �
X

(k;l)2(K�K)

wkwl�k�l'kFlAkl

�|{z}
by (11),(6)

Z



'divF (b(x; t); x; t)dx �
X

(k;l)2(K�K)

wkwl�k�l'kFlAkl

=

Z



'divF (b(x; t); x; t)dx + I ;

on the other hand,X
(k;l)2(K�G)

wk'k ~wlFkAkl

=
X

(k;l)2(K�G)

wk ~wl'lFkAkl +
X

(k;l)2(K�G)

wk ~wl('k � 'l)FkAkl

=
X

(k;l)2(K[G)2

�k(1� �l) ~wk ~wl'lFkAkl +
X

(k;l)2(K�G)

wk ~wl('k � 'l)FkAkl

�|{z}
by (11),(6)

Z



F (b(x; t); x; t)r'dx �
X

(k;l)2(K�K)

wkwl�k�l'lFkAkl

+
X

(k;l)2(K�G)

wk ~wl('k � 'l)FkAkl

=

Z



F (b(x; t); x; t)r'dx + I 0 + II:

Therefore, one combines the two results to get

Kh;" �
Z
@


F (b(x; t); x; t):n '(x)d�(x) + I 0 + I + II:

By switching the indices k and l and using that Akl = �Alk, one gets that
I 0 + I = 0. Moreover, the estimates (14) imply that j II j� Cmeas(@
)�0.
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Consequently,

Kh;" �!
�(h;")�!0

�0�!0

Z
@


F (b(x; t); x; t):n '(x)d�(x)

and the proof is completed.

Appendix B

To prove the equivalence between de�nitions (4.2) and (4.5), it is suÆcient to
show that (4.5) implies (4.2), since the converse is obvious. To this end, the
main diÆculty lies in establishing that the Radon measure #s;t is related to the
Young measure �s;t in the following sense

d#
s;t

= h�s;t; F (�; s; t)id�(s)dt: (101)

Indeed, using the notationM�(�x;t; ') in (52), the inequality (47) to be proved
reads

M�(�x;t; ')�
Z
@
�IR+

h�s;t; B(�; s; t)i:n(s)'(s; t)dsdt � 0: (102)

Taking the following decomposition

'(x; t) = '(x; t)��(x(�x; y)) + '(x; t)(1 � ��(x(�x; y)));

where �� is de�ned by (25), the inequality (102) becomes

M�

�
�x;t; '(x; t)(��(x(�x; y))

�
+M�

�
�x;t; '(x; t)(1� ��(x(�x; y)))

�

�
Z
@
�IR+

h�s;t; B(�; s; t)i:n(s)'(s; t)dsdt � 0:
(103)

Since '�Æ 2 C1c (
� IR+), then, the term M�

�
�x;t; '(x; t)(��(x(�x; y))

�
is posi-

tive thanks to (52). Thereby, to prove (102), it suÆces to show that

M�

�
�x;t; '(x; t)(1� ��(x(�x; y)))

�

�
Z
@
�IR+

h�s;t; B(�; s; t)i:n(s)'(s; t)dsdt � 0:

By developing the derivative r('(1���)), a straightforward calculation proves
that

lim
�!0+

M�

�
�x;t; '(1� ��)

�
=

Z
@
�IR+

h�; �h(�; x; t)i:n ' d�(x)dt:
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Therefore, by tending �! 0+ in the previous inequality, we getZ
@
�IR+

h�x;t; �h(�; x; t)i:n(x)d�(x)dt

�
Z
@
�IR+

h�s;t; B(�; s; t)i:n(s)'(s; t)dsdt � 0:
(104)

To prove this inequality, one �rst starts with (53) and introduces the decom-
position (103). Secondly, by letting � ! 0+ and using the same arguments as
before, one obtainsZ

@
�IR+

�
h�; q(�; c; x; t):ni+ sgn(b� c)F (c; x; t):n

�
'd�(x)dt

�
Z
@
�IR+

sgn(b� c)' d#(�(x); t) � 0:

(105)

As in [42], taking consecutively, c = 1 + max fku0k1; kbk1)g and c = �1 �
max fku0k1; kbk1)g, we �nd thatZ

�

h�x;t; F (�; x; t)i:n'd�(x)dt =
Z
�

' d#(�(x); t); (106)

which yields (101). By plugging this last identity into the inequality (105), one
getsZ

@
�IR+

h�; q(�; c; x; t)i:n'd�(x)dt

�
Z
@
�IR+

h�; sgn(b� c)(F (�; x; t) � F (c; x; t))i'd�(x)dt � 0:

To obtain (104), it suÆces to use the decomposition

sgn(b� c)(F (�; x; t)�F (c; x; t)) = sgn(b� c)(F (�; x; t)�F (b; x; t))� q(b; c; x; t)
and to approximate any entropy function � 2 C1 by the following functions

�n(s) =

nX
i=1

�
(n)
i
js� k

(n)
i
j.

To end the proof of (4.5) =) (4.2), one needs to show that (52) implies the
initial condition (48). This is achieved by Theorem 2:2 in [2].
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