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Abstract

We study the stability of some finite difference schemes for hyperbolic systems in two
space dimensions. The grid is assumed to be cartesian, but the space steps in each direction
are not necessarily equal. Our sufficient stability conditions are shown to be also necessary
for one concrete example. We conclude with some numerical illustrations of our result.
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1 Introduction

Finite difference schemes are commonly used to approximate the solutions to hyperbolic systems
of conservation laws. In this paper, we are interested in the stability of such finite difference
schemes when applied to constant coefficients hyperbolic systems in two space dimensions. When
applied to variable coefficients or nonlinear systems, the Courant-Friedrichs-Lewy condition that
we derive can be seen as a local condition that needs to be satisfied in each cell of the grid.

We consider a symmetric hyperbolic system in two space dimensions:

{

∂tu + A1 ∂x1
u + A2 ∂x2

u = 0 , t ≥ 0 , x ∈ R
2 ,

u|t=0
= u0 , x ∈ R

2 .
(1)

The matrices A1, and A2 belong to Md(R), and are symmetric, so that the Cauchy problem (1)
is well-posed in L2(R2), see e.g. [3]. Moreover, the solution of (1) satisfies

∀ t ≥ 0 , ‖u(t)‖L2(R2) = ‖u0‖L2(R2) . (2)

We introduce a finite difference approximation of (1). Let ∆x1, and ∆x2 denote some space
steps in the x1, and x2 directions, and let ∆t denote the time step. Then the vector un

j,k, where
(n, j, k) ∈ N×Z×Z, denotes an approximation of u(n∆t, j ∆x1, k ∆x2). Following [1], we define

λ1 :=
∆t

∆x1
, λ2 :=

∆t

∆x2
.

We refer to [1, chapter IV.3], and [2, chapter 6] for a general description of finite difference
schemes for two-dimensional hyperbolic systems, and we shall thus assume that the reader is
familiar with the basic L2 stability theory of finite difference schemes (see e.g. [1, page 348]).
In this paper, we shall study the stability of four finite difference schemes:
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• The two-dimensional Lax-Friedrichs scheme:

un+1
j,k =

1

4
(un

j−1,k+un
j+1,k+un

j,k−1+un
j,k+1)−

λ1

2
A1 (un

j+1,k−un
j−1,k)−

λ2

2
A2 (un

j,k+1−un
j,k−1) .

(3)

• The dimensional-splitting Lax-Friedrichs scheme:

u
n+1/2
j,k =

1

2
(un

j−1,k + un
j+1,k) −

λ1

2
A1 (un

j+1,k − un
j−1,k) ,

un+1
j,k =

1

2
(u

n+1/2
j,k−1 + u

n+1/2
j,k+1 ) − λ2

2
A2 (u

n+1/2
j,k+1 − u

n+1/2
j,k−1 ) .

(4)

• The two-dimensional Godunov scheme:

un+1
j,k = un

j,k −
λ1

2
A1 (un

j+1,k − un
j−1,k) −

λ1

2
|A1| (2un

j,k − un
j+1,k − un

j−1,k)

− λ2

2
A2 (un

j,k+1 − un
j,k−1) −

λ2

2
|A2| (2un

j,k − un
j,k+1 − un

j,k−1) . (5)

• The dimensional-splitting Godunov scheme:

u
n+1/2
j,k = un

j,k −
λ1

2
A1 (un

j+1,k − un
j−1,k) −

λ1

2
|A1| (2un

j,k − un
j+1,k − un

j−1,k) ,

un+1
j,k = u

n+1/2
j,k − λ2

2
A2 (u

n+1/2
j,k+1 − u

n+1/2
j,k−1 ) − λ2

2
|A2| (2un+1/2

j,k − u
n+1/2
j,k+1 − u

n+1/2
j,k−1 ) .

(6)

We do not know whether the terminology is really standard, but we hope that it is clear enough.
Recall that in (5), and (6), the matrices |A1,2| are defined as follows: let P1,2 denote orthogonal
matrices that diagonalize A1,2:

P−1
1 A1 P1 = diag (α1, . . . , αd) , P−1

2 A2 P2 = diag (β1, . . . , βd) . (7)

Then the matrices |A1|, and |A2|, are given by:

P−1
1 |A1|P1 = diag (|α1|, . . . , |αd|) , P−1

2 |A2|P2 = diag (|β1|, . . . , |βd|) . (8)

Observe that |A1|, and |A2| are symmetric, nonnegative matrices. They are positive definite if
A1, and A2 are nonsingular.

When λ1 = λ2, the stability of (3) was completely analyzed in [4], even in the case of variable
coefficients. The extension to different space steps is easy, but we give it here to enlight the
difference between the stability criteria for (3) and (5).

In all what follows, the spectral radius of a square matrix M with complex entries is denoted
ρ(M). Our main result is the following:

Theorem 1. • The scheme (3) is stable in `2(Z2) if

∀ϑ ∈ [0, 2π] , ρ(λ1 cosϑA1 + λ2 sinϑA2) ≤
1√
2

. (9)

• The scheme (4) is stable in `2(Z2) if, and only if

max(λ1 ρ(A1) , λ2 ρ(A2)) ≤ 1 . (10)
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• The scheme (5) is stable in `2(Z2) if

λ1 ρ(A1) + λ2 ρ(A2) ≤ 1 . (11)

If A1, and A2 are nonsingular, and if λ1ρ(A1) + λ2ρ(A2) < 1, then the scheme (5) is
dissipative (in Kreiss’ sense) of order 2. Namely, if G(ξ1, ξ2) denotes the symbol of the
scheme (5), there exists a constant c > 0 such that

∀(ξ1, ξ2) ∈
[

− π

∆x1
,

π

∆x1

]

×
[

− π

∆x2
,

π

∆x2

]

, ρ(G(ξ1, ξ2)) ≤ 1−c
(

(ξ1 ∆x1)
2 + (ξ2 ∆x2)

2
)

.

• The scheme (6) is stable in `2(Z2) if, and only if

max(λ1 ρ(A1) , λ2 ρ(A2)) ≤ 1 . (12)

For the schemes (3), and (5), Theorem 1 only gives sufficient stability conditions. For
a particular system, one may hope to get less restrictive stability conditions. However, the
following result shows that the conditions of Theorem 1 are optimal in the general case (that is,
they can not be improved for all symmetric hyperbolic systems):

Theorem 2. Let A1, and A2 be given by

A1 =

(

0 1
1 0

)

, A2 =

(

−1 0
0 1

)

.

Then we have the following necessary and sufficient conditions:

• The scheme (3) is stable in `2(Z2) if, and only if
√

2 max(λ1, λ2) ≤ 1, which is equivalent
to (9).

• The scheme (5) is stable in `2(Z2) if, and only if λ1 + λ2 ≤ 1.

The paper is organized as follows. In section 2, we prove the first two items of Theorem 1,
and we also give a Lax-Friedrichs type scheme that is always unstable. We give this example
in order to highlight the fact that one should be cautious when constructing two-dimensional
schemes by simply adding one-dimensional schemes in each direction. Such an operation may
yield instabilities. In section 3, we prove the last two items of Theorem 1. Then in section 4, we
prove Theorem 2. Eventually, in section 5, we compare the dissipativity of the Lax-Friedrichs
and Godunov schemes with the help of numerical simulations. We shall also discuss the choice
of the space steps.

2 Stability of Lax-Friedrichs type schemes

2.1 An unstable Lax-Friedrichs type scheme

There are many possible ways to construct a finite difference schemes in two space dimensions.
As a first guess, one could think that it is enough to add the one-dimensional Lax-Friedrichs
fluxes in each direction. Such a procedure yields the following scheme (see e.g. [1, page 346]):

un+1
j,k =

1

2
(un

j−1,k+un
j+1,k+un

j,k−1+un
j,k+1−2un

j,k)−
λ1

2
A1 (un

j+1,k−un
j−1,k)−

λ2

2
A2 (un

j,k+1−un
j,k−1) .

The symbol G of this scheme is computed by using a Fourier transform in the space variables.
We obtain:

G(ξ1, ξ2) =
(

cos(ξ1∆x1) + cos(ξ2∆x2) − 1
)

Id − i (λ1 sin(ξ1∆x1)A1 + λ2 sin(ξ2∆x2)A2) .

In particular, when ξ1∆x1 = ξ2∆x2 = π, the symbol G equals −3Id, and the scheme is unstable
in `2(Z2).
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2.2 Stability of Lax-Friedrichs scheme

We now study the scheme (3). Its symbol is computed by applying a Fourier transform in the
space variables. We get

GLF (ξ1, ξ2) =
1

2

(

cos(ξ1∆x1)+cos(ξ2∆x2)
)

Id−i (λ1 sin(ξ1∆x1)A1 + λ2 sin(ξ2∆x2)A2) . (13)

The matrices A1,2 are symmetric. Therefore, the matrix GLF (ξ1, ξ2) is normal for all (ξ1, ξ2).
The scheme (3) is thus stable if, and only if:

∀ (ξ1, ξ2) ∈ R
2 , Id − GLF (ξ1, ξ2)

∗ GLF (ξ1, ξ2) ≥ 0 .

To simplify the computations, we denote ζk = ξk ∆xk, k = 1, 2. Following [4], we compute

Id − GLF (ξ1, ξ2)
∗ GLF (ξ1, ξ2) =

(

1

2
(sin2 ζ1 + sin2 ζ2) +

1

4
(cos ζ1 − cos ζ2)

2

)

Id

−
(

λ1 sin ζ1 A1 + λ2 sin ζ2 A2

)2
.

Choosing ϑ such that

sin ζ1 = cos ϑ

√

sin2 ζ1 + sin2 ζ2 , sin ζ2 = sinϑ

√

sin2 ζ1 + sin2 ζ2 ,

we end up with

Id − GLF (ξ1, ξ2)
∗ GLF (ξ1, ξ2) ≥ (sin2 ζ1 + sin2 ζ2)

(

1

2
Id −

(

λ1 cosϑA1 + λ2 sinϑA2

)2
)

.

The first item of Theorem 1 follows, by recalling that for a hermitian matrix H (and more
generally for a normal matrix), the hermitian norm of H (that is, the norm induced by the
hermitian norm in C

d) equals the spectral radius ρ(H).

2.3 Stability of the dimensional-splitting Lax-Friedrichs scheme

We now study the scheme (4). Its symbol is given by

GLFs(ξ1, ξ2) =
[

cos(ξ2∆x2) Id − iλ2 sin(ξ2∆x2)A2

][

cos(ξ1∆x1) Id − iλ1 sin(ξ1∆x1)A1

]

. (14)

Choosing either ξ1 = 0, or ξ2 = 0, it is clear that the stability of (4) implies the stability of
each corresponding one-dimensional Lax-Friedrichs schemes. Therefore, if (4) is stable, then
λ1ρ(A1), and λ2ρ(A2) are both less than 1.

Assume now that both λ1ρ(A1), and λ2ρ(A2) are less than 1. From (14), we see that the
symbol GLFs(ξ1, ξ2) is the product of two normal matrices, each of which has a spectral radius
bounded by 1. For a normal matrix, the spectral radius coincides with the hermitian norm,
which implies that the hermitian norm of GLFs(ξ1, ξ2) is less than 1. This ensures that (4) is
stable.

3 Stability of Godunov type schemes

3.1 Stability of the two-dimensional Godunov scheme

The symbol of the Godunov scheme (5) is

G(ξ1, ξ2) = Id − 2

(

λ1 sin2(
ξ1∆x1

2
) |A1| + λ2 sin2(

ξ2∆x2

2
) |A2|

)

− i (λ1 sin(ξ1∆x1)A1 + λ2 sin(ξ2∆x2)A2) . (15)
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In general, the matrix G(ξ1, ξ2) is not normal for all values of (ξ1, ξ2). As a matter of fact, the
reader can check that G(ξ1, ξ2) is normal if, and only if the matrices A1, and A2 satisfy

A1 |A2| − |A2|A1 = A2 |A1| − |A1|A2 = 0 .

We shall not assume that these conditions are satisfied. Instead, we are going to show that
under the condition (11), one has

∀ z ∈ C , |z| > 1 , ‖(G(ξ1, ξ2) − zId)
−1‖ ≤ 1

|z| − 1
, (16)

where ‖ · ‖ denotes the usual hermitian norm in C
d, as well as the induced matrix norm.

From the well-known Kreiss’ matrix Theorem, see e.g. [2, Theorem 5.2.4], the inequality
(16) yields the stability of the difference scheme (5).

Assume first of all that, under the condition (11), we can prove the inequality

∀X ∈ C
d , |X∗

G(ξ1, ξ2)X| ≤ ‖X‖2 . (17)

In particular, the spectral radius ρ(G(ξ1, ξ2)) is less than 1. Furthermore, let z ∈ C with |z| > 1,
let Y ∈ C

d, and let X ∈ C
d be the unique solution to

(G(ξ1, ξ2) − zId)X = Y .

We get
z ‖X‖2 = X∗

G(ξ1, ξ2)X − X∗ Y . (18)

Using (17), and the Cauchy-Schwarz’ inequality, (18) yields

(|z| − 1) ‖X‖2 ≤ ‖X‖ ‖Y ‖ ,

from which we obtain (16). We thus only need to prove (17).
It is convenient to define ηk = ξk ∆xk/2, k = 1, 2. Then the symbol G(ξ1, ξ2) reads

G(ξ1, ξ2) = Id − 2
(

λ1 sin2 η1 |A1| + λ2 sin2 η2 |A2|
)

− i (λ1 sin(2η1)A1 + λ2 sin(2η2)A2) .

Let X ∈ C
d, with ‖X‖ = 1. Using the symmetry of A1, |A1|, A2, and |A2|, we compute:

|X∗
G(ξ1, ξ2)X|2 =

[

1 − 2(λ1 sin2 η1 X∗|A1|X + λ2 sin2 η2 X∗|A2|X)
]2

+ [λ1 sin(2η1)X∗A1X + λ2 sin(2η2)X∗A2X]2 . (19)

Observing that

|λ1 sin(2η1)X∗A1X + λ2 sin(2η2)X∗A2X| ≤ λ1 | sin(2η1)|X∗|A1|X + λ2 | sin(2η2)|X∗|A2|X ,

we can expand (19), and derive the inequality:

|X∗
G(ξ1, ξ2)X|2 ≤ 1 − 4(µ1 sin2 η1 + µ2 sin2 η2) + 4(µ1 sin2 η1 + µ2 sin2 η2)

2

+ (µ1 | sin 2η1| + µ2 sin |2η2|)2 , (20)

where we have set
µk := λk X∗|Ak|X , k = 1, 2 . (21)

Expanding the right-hand side of (20), we obtain

|X∗
G(ξ1, ξ2)X|2 ≤ 1 + 4(µ2

1 − µ1) sin2 η1 + 4(µ2
2 − µ2) sin2 η2

+ 2µ1µ2(4 sin2 η1 sin2 η2 + | sin 2η1|| sin 2η2|) . (22)

To complete the proof, we shall use the following Lemma:
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Lemma 1. Let (η1, η2) ∈ R
2, and let T denote the triangle:

T := {(y1, y2) ∈ R
2/y1 ≥ 0 , y2 ≥ 0 , y1 + y2 ≤ 1} .

Then for all (y1, y2) ∈ T , one has

(y2
1 − y1) sin2 η1 + (y2

2 − y2) sin2 η2 + 2 y1 y2 (sin2 η1 sin2 η2 +
1

4
| sin 2η1| | sin 2η2|) ≤ 0 .

From the definition (21), we have µ1 ≥ 0, and µ2 ≥ 0. The inequality µ1 + µ2 ≤ 1 follows
from the condition (11). Then using Lemma 1 in (22), we obtain (17). (Note that it is sufficient
to prove (17) on the unit sphere by homogeneity). We now prove Lemma 1. Define

g(y1, y2) := (y2
1 −y1) sin2 η1 +(y2

2 −y2) sin2 η2 +2y1y2(sin
2 η1 sin2 η2 +

1

4
| sin 2η1|| sin 2η2|) . (23)

Using the inequality

sin2 η1 sin2 η2 +
1

4
| sin 2η1|| sin 2η2| = | sin η1|| sin η2|(| sin η1|| sin η2| + | cos η1|| cos η2|)

≤ | sin η1|| sin η2| ,

one easily checks that g is a convex function. Therefore, the maximum of g on the triangle T is
attained on the edges of the triangle. We compute g on each edge of T :

g(y1, 0) = (y2
1 − y1) sin2 η1 ≤ 0 ,

g(0, y2) = (y2
2 − y2) sin2 η2 ≤ 0 ,

g(y1, 1 − y1) = (y2
1 − y1)

[

sin2 η1 + sin2 η2 − 2(sin2 η1 sin2 η2 +
1

4
| sin 2η1|| sin 2η2|)

]

≤ 0 .

Consequently, g is nonpositive on T , and Lemma 1 is proved.

3.2 Dissipativity of the Godunov scheme

We now assume that the matrices A1, and A2 are nonsingular, and that λ1ρ(A1)+λ2ρ(A2) < 1.
Consequently, there exists a constant δ > 0 such that for all X ∈ C

d, with ‖X‖ = 1, one has

µ1 := λ1 X∗|A1|X ≥ δ , µ2 := λ2 X∗|A2|X ≥ δ , µ1 + µ2 ≤ 1 − δ .

For such a positive constant δ, we define the triangle:

Tδ := {(y1, y2) ∈ R
2/y1 ≥ δ , y2 ≥ δ , y1 + y2 ≤ 1 − δ} .

In order to show the dissipativity of the scheme (5), we use the inequality:

ρ(G(ξ1, ξ2))
2 ≤ max

‖X‖=1
|X∗

G(ξ1, ξ2)X|2 ≤ 1 + 4 max
(y1 ,y2)∈Tδ

g(y1, y2) ,

see (22), and (23). It is therefore sufficient to derive an upper bound of the function g on the
triangle Tδ. We have the following result:

Proposition 1. Let δ > 0 be fixed as above. Then for all (η1, η2) ∈ [−π/2, π/2]2, one has

max
(y1,y2)∈Tδ

g(y1, y2) ≤ 0 ,

and the maximum is zero if, and only if (η1, η2) = (0, 0). Moreover, there exists a positive
constant c such that for all (η1, η2) ∈ [−π/2, π/2]2, one has

max
(y1,y2)∈Tδ

g(y1, y2) ≤ −c (η2
1 + η2

2) . (24)
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Proof. From the definition (23) of the function g, it is clear that we only need to prove the result
when (η1, η2) ∈ [0, π/2]2, which we assume from now on. Moreover, we already know that g is
convex, so it is sufficient to estimate the maximum of g on the edges of the triangle Tδ.

When y2 ∈ [δ, 1 − 2δ], one has

g(δ, y2) = (δ2 − δ) sin2 η1 + (y2
2 − y2) sin2 η2 + 2 δ y2 (sin2 η1 sin2 η2 +

1

4
sin 2η1 sin 2η2)

≤ (δ2 − δ)(sin2 η1 + sin2 η2) + 2 δ (1 − 2δ) (sin2 η1 sin2 η2 +
1

4
sin 2η1 sin 2η2)

≤ (δ2 − δ)(sin η1 − sin η2)
2 − 2δ2 (sin2 η1 sin2 η2 +

1

4
sin 2η1 sin 2η2) ≤ 0 .

In a completely similar, way, for y1 ∈ [δ, 1 − 2δ], we obtain

g(y1, δ) ≤ (δ2 − δ)(sin η1 − sin η2)
2 − 2δ2 (sin2 η1 sin2 η2 +

1

4
sin 2η1 sin 2η2) ≤ 0 .

Eventually, for y1 ∈ [δ, 1 − 2δ], we compute

g(y1, 1 − δ − y1) = −y1(1 − δ − y1)

[

sin2 η1 + sin2 η2 − 2(sin2 η1 sin2 η2 +
1

4
sin 2η1 sin 2η2)

]

− δ y1 sin2 η1 − δ (1 − δ − y1) sin2 η2

≤ (2δ2 − δ)(sin η1 − sin η2)
2 − δ2 (sin2 η1 + sin2 η2)

≤ −δ2 (sin2 η1 + sin2 η2) ≤ −4 δ2

π2
(η2

1 + η2
2) .

Consequently, the maximum of g on Tδ is nonpositive, and the maximum is zero if, and only if
η1 = η2 = 0.

When (η1, η2) ∈ [0, π/4]2, one has

g(δ, y2) ≤ 4(δ2 − δ) sin2 η1 − η2

2
cos2 η1 + η2

2
− 2δ2 sin η1 sin η2 cos(η1 − η2)

≤ −c(δ)
(

(η1 − η2)
2 + η1 η2

)

≤ −c(δ) (η2
1 + η2

2) ,

and similarly
g(y1, δ) ≤ −c(δ) (η2

1 + η2
2) .

We have thus obtained (24) when (η1, η2) ∈ [0, π/4]2. When (η1, η2) ∈ [0, π/2]2 \ [0, π/4]2, we
have

max
(y1,y2)∈Tδ

g(y1, y2) ≤ −c(δ) ≤ −c(δ) (η2
1 + η2

2) ,

so the proof of (24) is complete.

Using (24), we thus obtain:

c (η2
1 + η2

2) ≤ 1 − ρ(G(ξ1, ξ2))
2 ≤ 2

[

1 − ρ(G(ξ1, ξ2))
]

,

so the scheme (5) is dissipative (in Kreiss’ sense) of order 2.

7



3.3 Stability of the dimensional-splitting Godunov scheme

The symbol of the scheme (6) is given by:

G
s(ξ1, ξ2) =

(

Id − 2λ2 sin2(
ξ2∆x2

2
)|A2| − iλ2 sin(ξ2∆x2)A2

)

(

Id − 2λ1 sin2(
ξ1∆x1

2
)|A1| − iλ1 sin(ξ1∆x1)A1

)

.

Observe that A1, and |A1| commute, as well as A2, and |A2|. Therefore, G
s(ξ1, ξ2) is the

product of two normal matrices. Then the proof of the last item of Theorem 1 follows exactly
the arguments that we have used to study the dimensional-splitting Lax-Friedrichs scheme.

4 Necessary stability conditions for a particular system

In all this section, we study the finite difference schemes (3), and (5) when the matrices A1, and
A2 are given by:

A1 =

(

0 1
1 0

)

, A2 =

(

−1 0
0 1

)

. (25)

Observe that for all (ξ1, ξ2) ∈ R
2, the eigenvalues of the matrix ξ1A1 + ξ2A2 are ±(ξ2

1 + ξ2
2)

1/2.

4.1 Lax-Friedrichs scheme

We first consider the two-dimensional Lax-Friedrichs scheme (3). According to Theorem 1, the
scheme is stable if (9) holds. In the particular case (25), (9) is equivalent to

∀ϑ ∈ [0, 2π] , λ2
1 cos2 ϑ + λ2

2 sin2 ϑ ≤ 1

2
,

and this condition is equivalent to max(λ1, λ2) ≤ 1/
√

2.
Assume now that the scheme (3) is stable. Its symbol is given by (13). Using the notation

ζk = ξk ∆xk, k = 1, 2, we get

ρ(GLF (ξ1, ξ2))
2 =

1

4
(cos ζ1 + cos ζ2)

2 + λ2
1 sin2 ζ1 + λ2

2 sin2 ζ2 .

The spectral radius of GLF (ξ1, ξ2) is less than 1 for all (ξ1, ξ2). Consequently, the mapping

r : (ζ1, ζ2) 7−→
1

4
(cos ζ1 + cos ζ2)

2 + λ2
1 sin2 ζ1 + λ2

2 sin2 ζ2 ,

has a global maximum at the origin, therefore its hessian matrix at the origin is nonpositive.
We compute

D2r(0, 0) =

(

2λ2
1 − 1 0
0 2λ2

2 − 1

)

,

and we get max(λ1, λ2) ≤ 1/
√

2.

4.2 Godunov scheme

When the matrices A1,2 are given by (25), one computes |A1| = |A2| = I2, and the symbol of
the Godunov scheme (5) is given by

G =

(

1 − 2
(

λ1 sin2(
ξ1∆x1

2
) + λ2 sin2(

ξ2∆x2

2
)
)

)

I2 − i
(

λ1 sin(ξ1∆x1)A1 + λ2 sin(ξ2∆x2)A2

)

.
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In this case, the symbol G is normal for all (ξ1, ξ2), and the scheme is stable if, and only if the
spectral radius ρ(G) does not exceed 1 for all (ξ1, ξ2).

To simplify the subsequent calculations, we denote ηk = ξk ∆xk/2, k = 1, 2. The eigenvalues
of the symbol G are

1 − 2(λ1 sin2 η1 + λ2 sin2 η2) ± i
√

λ2
1 sin2(2η1) + λ2

2 sin2(2η2) .

After some simplifications, we thus compute

ρ(G)2 = 1 + 4 (λ2
1 − λ1) sin2 η1 + 4 (λ2

2 − λ2) sin2 η2 + 8λ1 λ2 sin2 η1 sin2 η2 .

The scheme (5) is thus stable if, and only if the following inequality holds true for all (η1, η2) ∈ R2:

(λ2
1 − λ1) sin2 η1 + (λ2

2 − λ2) sin2 η2 + 2λ1 λ2 sin2 η1 sin2 η2 ≤ 0 . (26)

Choosing η1 = η2 = π/2, (26) implies the necessary condition λ1 + λ2 ≤ 1.
When λ1+λ2 ≤ 1, the scheme (5) is stable according to Theorem 1. Therefore, the condition

λ1 + λ2 ≤ 1 is sufficient and necessary for the stability of (5).

5 Numerical results
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Figure 1: Left: scheme (3). Right: scheme (5)
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Figure 2: Left: schemes (4). Right: scheme (6).

In this section, we compare the dissipativity of the schemes (3), (5), (4), (6). We consider
the system

∂tu + A1 ∂x1
u + 2A2 ∂x2

u = 0 , (27)

where the matrices A1,2 are given by (25). (Observe the scaling in the x2 variable). We run
each of the four finite difference schemes on the square [−2, 2] × [−2, 2]. To avoid the problem
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of boundary conditions, we choose some initial data that are supported in the square [−1, 1] ×
[−1, 1], and we stop the computations when the support of the solution reaches the boundary
(that is, at time T = 1/2). The initial data are

u0(x1, x2) =

(

(cos(x1 π/2) cos(x2 π/2))2

cos(x1 π/2) cos(x2 π/2)

)

,

when (x1, x2) ∈ [−1, 1] × [−1, 1], and 0 outside.
In the x2 direction, we consider a space step ∆x2 = 4/300 (which corresponds to 300 points),

while in the x1 direction, the space step is first ∆x1 = 4/450, then ∆x1 = 4/600, and, at last,
∆x1 = 4/750. We always choose the maximal time step that ensures stability (see Theorem 1).
In the first case, one has λ1ρ(A1) < λ2ρ(2A2), in the second case, one has λ1ρ(A1) = λ2ρ(2A2),
and in the last case, one has λ1ρ(A1) > λ2ρ(2A2). In figures 5, and 5, we plot the ratio
‖u(t)‖L2/‖u0‖L2 on the interval [0, T ]. The dotted line represents the case ∆x1 = 4/450, the
dashed line represents the case ∆x1 = 4/600, and the solid line represents the case ∆x1 = 4/750.

The numerical results show the following fact: the schemes (3), (4), and (6) do not diffuse
when λ1ρ(A1) = λ2ρ(2A2), and in any case, (6) is the less diffusive scheme. Surprisingly, the
two-dimensional Godunov scheme (5) has a more and more diffusive behavior as ∆x1 decreases.
In particular, it is still diffusive when λ1ρ(A1) = λ2ρ(2A2).

These observations are easily explained by computing the modified equations of the finite
difference schemes (3), and (5) (we shall not detail here the modified equations of the schemes
(4), and (6)). For the test case (27), the modified equation of the scheme (3) is

∂tu + A1 ∂x1
u + 2A2 ∂x2

u = ∆t

[

( 1

4λ2
1

− 1

2

)

∂2
x1x1

u +
( 1

4λ2
2

− 2
)

∂2
x2x2

u

]

.

In particular, when λ1 = 2λ2 = 1/
√

2, there is no diffusion in the modified equation.
For the test case (27), the modified equation of the scheme (5) is

∂tu + A1 ∂x1
u + 2A2 ∂x2

u = ∆t

[

( 1

2λ1
− 1

2

)

∂2
x1x1

u +
( 1

λ2
− 2

)

∂2
x2x2

u

]

.

When λ1 = 2λ2 = 1/2, there is a positive definite diffusion tensor in the modified equation, and
the scheme (5) is dissipative. Note that the ideal choice would be λ1 = 2λ2 = 1, but in this case
the scheme is unstable according to Theorem 2 (this is confirmed by numerical simulations).

Acknowledgments Research of the author was supported by the EU financed network HYKE,
HPRN-CT-2002-00282.

References

[1] E. Godlewski, P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation
laws, volume 118 of Applied Mathematical Sciences. Springer-Verlag, 1996.

[2] B. Gustafsson, H.-O. Kreiss, and J. Oliger. Time dependent problems and difference methods.
Pure and Applied Mathematics. John Wiley & Sons, 1995.

[3] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables.
Springer-Verlag, 1984.

[4] R. Vaillancourt. On the stability of Friedrichs’ scheme and the modified Lax-Wendroff
scheme. Math. Comp., 24:767–770, 1970.

10


