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Abstract. This paper develops a new approach in the analysis of the Camassa-Holm equation.
By introducing a new set of independent and dependent variables, the equation is transformed into
a semilinear system, whose solutions are obtained as fixed points of a contractive transformation.
These new variables resolve all singularities due to possible wave breaking. Returning to the
original variables, we obtain a semigroup of global solutions, depending continuously on the initial
data. Our solutions are conservative, in the sense that the total energy equals a constant, for
almost every time.

0 - Introduction

The nonlinear partial differential equation

ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ IR,

was derived by Camassa and Holm [CH] as a model for the propagation of shallow water waves, with
u(t, x) representing the water’s free surface over a flat bed (see also the alternative derivation in
[J]). The Camassa-Holm equation was actually obtained much earlier as an abstract bi-Hamiltonian
partial differential equation with infinitely many conservation laws by Fokas and Fuchssteiner [FF]
(see [L]). Nevertheles, Camassa and Holm put forward its derivation as a model for shallow water
waves and discovered that it is formally integrable (in the sense that there is an associated Lax pair)
and that its solitary waves are solitons (i.e. the solitary waves retain their shape and speed after
the nonlinear interaction with waves of the same type), features that prompted an ever increasing
interest in the study of this equation. For a large class of initial data the Camassa-Holm equation
is an integrable infinite dimensional Hamiltonian system. That is, by means of a Lax pair, it
is possible to associate to each solution with initial data within this class some scattering data
that evolve in time linearly at constant speed and from which the solution can be reconstructed
in an explicit way (see [BSS2, CM1, C2]). In contrast to the Korteweg-de Vries equation, which
is also an integrable model for shallow water waves, the Camassa-Holm equation possesses not
only solutions that are global in time but models also wave breaking. Indeed, while some initial
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data develop into waves that exist indefinitely in time [CE1], others lead to wave breaking: the
solution remains bounded but its slope becomes unbounded in finite time [CE2]. Moreover, wave
breaking is the only way in which singularities can arise in a classical solution [C1]. This raises the
natural question of the behaviour of the solutions after wave breaking. In [XZ1, XZ2] global weak
solutions are obtained as weak limits of viscous regularizations of the Camassa-Holm equation. The
notion of weak solution used in [XZ1, XZ2] allows for wave breaking so that a notion of solution
independent of wave breaking or not is advanced. Nevertheless, due to lack of uniqueness (within
the class of such global weak solutions, uniqueness is obtained only under an a priori assumption
cf. [XZ2], and the fulfillment of this assumption can presently be guaranteed only for initial data
that actually do not develop into breaking waves - see [CM2, W]), these investigations do not shed
light on the wave breaking process or on what happens after breaking. Therefore, to gain insight
into wave breaking, the most natural approach is to investigate it on some particular cases. The
solitary waves of the Camassa-Holm equation are peaked waves: for each c ∈ IR, there is a solitary
wave ϕc (unique up to translations) propagating at speed c, given by the explicit formula

ϕc(x− ct) = c e−|x−ct|, t > 0, x ∈ IR,

cf. [CH]. These solitary waves are stable solitons [BSS1, CS]. Notice that the solitary waves are
not classical solutions due to the fact that they have a peak at their crest (feature which explains
why they are called “peakons”). They have to be understood [CM2] as weak solutions of the
Camassa-Holm equation, for which purpose it is suitable to recast the equation in the nonlocal
conservation law form

ut + uux + ∂x(1− ∂2
x)−1

(
u2 +

1
2

u2
x

)
= 0.

The peakon-antipeakon interaction, corresponding to the evolution in time from an initial profile
of the form u(x, 0) = ϕc(x+x0)−ϕc(x−x0) with c, x0 > 0 leads to wave breaking: ux(0, t) → −∞
in finite time T (c, x0) > 0 cf. [CE1, W]. Two scenarios can be put forward. The first suggests total
annihilation at t = T (c, x0) in the sense that u(x, t) = 0 for all t > T (c, x0) (see [W]), whereas
the second scenario proposes a “switching” phenomenon: the waves pass through each other, each
continuing unscathed as a solitary wave (see [BSS3, M]). The first scenario would correspond to
loss of energy, whereas in the second the energy∫

IR

(u2 + u2
x) dx

is preserved. Conservation of energy up to breaking time is of fundamental importance as the
Camassa-Holm equation satisfies the Least Action Principle [C1].

The aim of this paper is to develop a new approach to the Camassa-Holm equation. In
connection with smooth solutions, we first introduce a new set of independent and dependent
variables. In these new variables, the evolution equation becomes semilinear. A local solution can
be obtained as the fixed point of a contractive transformation. Remarkably, the new variables
allow us to resolve all singularities. Indeed, solutions of the equivalent semilinear system remain
smooth and can be globally extended in time, even after wave breaking. Going back to the original
variables u(t, x), we thus recover a semigroup of global solutions to the Camassa-Holm equation,
continuously depending on the initial data. The solutions that we obtain are conservative, in the
sense that their total energy, measured by the H1 norm, is a.e. with respect to time equal to a
constant. By a suitable modification in the dynamics of our semilinear system, it appears that
one can also recover a continuous semigroup of dissipative solutions. These will be analyzed in a
forthcoming paper.
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1 - The basic equations

We consider the following form of the Camassa-Holm equation

ut + (u2/2)x + Px = 0 , (1.1)

where the source term P is defined as a convolution:

P
.=

1
2
e−|x| ∗

(
u2 +

u2
x

2

)
.

As initial data, we take
u(0, x) = ū(x) , x ∈ IR, (1.2)

To make sense of the source term P , at each time t we require that the function u be in the space
H1(IR) of absolutely continuous functions u ∈ L2(IR) with derivative ux ∈ L2(IR), endowed with
the norm ∥∥u∥∥

H1 =
(∫

IR

[
u2(x) + u2

x(x)
]
dx
)1/2

.

For u ∈ H1(IR), Young’s inequality ensures that

P = (1− ∂2
x)−1(u2 +

1
2

u2
x) ∈ H1(IR).

Definition 1. By a solution of the Cauchy problem (1.1)-(1.2) on [t1, t2] we mean a Hölder
continuous function u = u(t, x) defined on [t1, t2]× IR with the following properties. At each fixed
t we have u(t, ·) ∈ H1(IR). Moreover, the map t 7→ u(t, ·) is Lipschitz continuous from [t1, t2] into
L2(IR), satisfying the initial condition (1.2) together with

d

dt
u = −uux − Px (1.3)

for a.e. t. Here (1.3) is understood as an equality between functions in L2(IR).

For smooth solutions, differentiating (1.1) w.r.t. x one obtains

uxt + uuxx + u2
x −

(
u2 +

u2
x

2

)
+ P = 0 . (1.4)

Multiplying (1.1) by u and (1.4) by ux, we obtain the two conservation laws with source term(
u2

2

)
t

+
(

u3

3
+ u P

)
x

= ux P , (1.5)

(
u2

x

2

)
t

+
(

uu2
x

2
− u3

3

)
x

= −ux P , (1.6)

valid for smooth solutions. In particular, for regular solutions the total energy

E(t) .=
∫

IR

(
u2(t, x) + u2

x(t, x)
)

dx (1.7)
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is constant in time, as one can see by first adding up (1.5) and (1.6) and subsequently integrating
with respect to the x-variable. Since P, Px are both defined as convolutions, from the above bound
on the total energy we immediately derive

∥∥P (t)
∥∥
L∞

,
∥∥Px(t)

∥∥
L∞

≤
∥∥∥1

2
e−|x|

∥∥∥
L∞

·
∥∥∥∥u2 +

u2
x

2

∥∥∥∥
L1

≤ 1
2

E(0) . (1.8)

∥∥P (t)
∥∥
L2 ,

∥∥Px(t)
∥∥
L2 ≤

∥∥∥1
2
e−|x|

∥∥∥
L2
·
∥∥∥∥u2 +

u2
x

2

∥∥∥∥
L1

≤ 1√
2

E(0) . (1.9)

2 - An equivalent semilinear system

Let ū ∈ H1(IR) be an initial data. Consider an energy variable ξ ∈ IR, and let the non-
decreasing map ξ 7→ ȳ(ξ) be defined by setting

∫ ȳ(ξ)

0

(1 + ū2
x) dx = ξ . (2.1)

Assuming that the solution u to the Camassa-Holm equation remains Lipschitz continuous for
t ∈ [0, T ], we now derive an equivalent system of equations, using the independent variables (t, ξ).
Let t 7→ y(t, ξ) be the characteristic starting at ȳ(ξ), so that

∂

∂t
y(t, ξ) = u

(
t, y(t, ξ)

)
, y(0, ξ) = ȳ(ξ) . (2.2)

Moreover, we write

u(t, ξ) .= u
(
t, y(t, ξ)

)
, P (t, ξ) .= P

(
t, y(t, ξ)

)
.

The following further variables will be used: v = v(t, ξ) and q = q(t, ξ) defined as

v
.= 2arctanux , q

.= (1 + u2
x) · ∂y

∂ξ
, (2.3)

with ux = ux(t, y(t, ξ)). We stress that v is defined up to multiples of 2π. All subsequent equations
involving v are invariant under addition of multiples of 2π. Notice that (2.1) implies

q(0, ξ) ≡ 1 . (2.4)

For future use, we write the identities

1
1 + u2

x

= cos2
v

2
,

ux

1 + u2
x

=
1
2

sin v ,
u2

x

1 + u2
x

= sin2 v

2
, (2.5)

∂y

∂ξ
=

q

1 + u2
x

= cos2
v

2
· q . (2.6)
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In turn, (2.6) yields

y(t, ξ′)− y(t, ξ) =
∫ ξ′

ξ

cos2
v(t, s)

2
· q(t, s) ds . (2.7)

Furthermore, we have

P (t, ξ) = P
(
t, y(t, ξ)

)
=

1
2

∫ ∞

−∞
e−
∣∣y(t,ξ)−x

∣∣(
u2(t, x) +

1
2
u2

x(t, x)
)

dx ,

Px(t, ξ) = Px

(
t, y(t, ξ)

)
=

1
2

(∫ ∞

y(t,ξ)

−
∫ y(t,ξ)

−∞

)
e−
∣∣y(t,ξ)−x

∣∣(
u2(t, x) +

1
2
u2

x(t, x)
)

dx .

In the above formulas, we can perform the change of variables x = y(t, ξ′), the validity of which
will be checked below (see Section 4), and write the convolution as an integral over the variable
ξ′. Using the identities (2.5)–(2.7), we thus obtain an expression for P and Px in terms of the new
variable ξ, namely

P (ξ) =
1
2

∫ ∞

−∞
exp

{
−

∣∣∣∣∣
∫ ξ′

ξ

cos2
v(s)
2

· q(s) ds

∣∣∣∣∣
}

·
[
u2(ξ′) cos2

v(ξ′)
2

+
1
2

sin2 v(ξ′)
2

]
q(ξ′) dξ′,

(2.8)

Px(ξ) =
1
2

(∫ ∞

ξ

−
∫ ξ

−∞

)
exp

{
−

∣∣∣∣∣
∫ ξ′

ξ

cos2
v(s)
2

· q(s) ds

∣∣∣∣∣
}

·
[
u2(ξ′) cos2

v(ξ′)
2

+
1
2

sin2 v(ξ′)
2

]
q(ξ′) dξ′.

(2.9)

By (1.1) and (2.2), the evolution equation for u in the new variables (t, ξ) takes the form

∂

∂t
u(t, ξ) = ut + uux = −Px(t, ξ) (2.10)

with Px given at (2.9).
To derive an evolution equation for the variable q in (2.3), we observe that∫ ξ2

ξ1

q(t, ξ) dξ =
∫ y(t,ξ2)

y(t,ξ1)

(
1 + u2

x(t, x)
)

dx .

Hence (2.2) and (1.6) yield

d

dt

∫ ξ2

ξ1

q(t, ξ) dξ =
∫ y(t,ξ2)

y(t,ξ1)

{
(1 + u2

x)t +
[
u(1 + u2

x)
]
x

}
dx =

∫ y(t,ξ2)

y(t,ξ1)

(2u2 + 1− 2P )ux dx .

Differentiating w.r.t. ξ we find

∂

∂t
q(t, ξ) = (2u2 + 1− 2P )

ux

1 + u2
x

· q =
(
u2 +

1
2
− P

)
sin v · q . (2.11)
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Finally, using (2.2)-(2.3) and (1.4), we obtain

∂

∂t
v(t, ξ) =

2
1 + u2

x

[
−u2

x

2
+ u2 − P

]
= 2(u2 − P ) cos2

v

2
− sin2 v

2
. (2.12)

In (2.11) and in (2.12), the function P is computed by (2.8).

3 - Global solutions of the semilinear system

Let an initial data ū ∈ H1(IR) be given. We rewrite the corresponding Cauchy problem for
the variables (u, v, q) in the form

∂u

∂t
= −Px

∂v

∂t
= (u2 − P ) (1 + cos v)− sin2 v

2
∂q

∂t
=
(
u2 +

1
2
− P

)
sin v · q

(3.1)

with 
u(0, ξ) = ū

(
ȳ(ξ)

)
v(0, ξ) = 2 arctan ūx

(
ȳ(ξ)

)
q(0, ξ) = 1 .

(3.2)

Here P, Px are given by (2.8)-(2.9) as functions of u, v, q and ξ. We regard (3.1) as an O.D.E. in
the Banach space

X
.= H1(IR)×

[
L2(IR) ∩ L∞(IR)

]
× L∞(IR) , (3.3)

with norm ∥∥(u, v, q)
∥∥

X

.= ‖u‖H1 + ‖v‖L2 + ‖v‖L∞ + ‖q‖L∞ .

As usual, by a solution of the Cauchy problem we mean a fixed point of the integral transformation:
T (u, v, q) = (ũ, ṽ, q̃), where

ũ(t, ξ) = ū
(
ȳ(ξ)

)
−
∫ t

0

Px(τ, ξ) dτ ,

ṽ(t, ξ) = 2 arctan ūx

(
ȳ(ξ)

)
+
∫ t

0

[
(u2 − P ) (1 + cos v)− sin2 v

2

]
dτ ,

q̃(t, ξ) = 1 +
∫ t

0

(
u2 +

1
2
− P

)
sin v · q dτ .

(3.4)

We remark that as initial data for v we choose 2 arctan ux ∈ [−π, π]. However, we allow v(t, ξ) /∈
[−π, π] for t 6= 0. In any case, all occurrences of v on the right hand side of (3.1) are clearly
invariant under addition of multiples of 2π.

By proving that all functions on the right hand side of (3.1) are locally Lipschitz continuous,
the local existence of solutions will follow from the standard theory of O.D.E’s in Banach spaces.
In a second step, exploiting the conservation of energy property expressed by (1.7), we will then
prove that this local solution can be extended globally in time.
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Theorem 1. Let ū ∈ H1(IR). Then the Cauchy problem (3.1)-(3.2) has a unique solution, defined
for all times t ∈ IR.

Proof. Step I - Local existence. To establish the local existence of solutions, it suffices to show
that the map

(u, v, q) 7→
(
−Px , (u2 − P ) (1 + cos v)− sin2 v

2
,
(
u2 +

1
2
− P

)
sin v · q

)
, (3.5)

determined by the right hand side of (3.1), is Lipschitz continuous on every bounded domain Ω ⊂ X
of the form

Ω =
{

(u, v, q) ; ‖u‖H1 ≤ α , ‖v‖L2 ≤ β , ‖v‖L∞ ≤ 3π

2
, q(x) ∈ [q−, q+] for a.e. x ∈ IR

}
,

(3.6)
for any constants α, β, q−, q+ > 0.

Due to the Sobolev’s inequality ∥∥u∥∥
L∞

≤
∥∥u∥∥

H1 (3.7)

and the uniform bounds on v, q, it is clear that the maps

u2, u2 cos v , sin2 v

2
, sin v · q ,

are all Lipschitz continuous as maps from Ω into L2(IR), and also from Ω into L∞(IR).
Our main task is to prove the Lipschitz continuity of the maps

(u, v, q) 7→ P , (u, v, q) 7→ Px (3.8)

defined at (2.8)-(2.9), as maps from Ω into H1(IR). Of course, this will also imply the Lipschitz
continuity of these maps from Ω into L2(IR) ∩ L∞(IR). Toward this goal, we first observe that, as
long as |v| ≤ 3π/2, there holds

sin2 v

2
≤ v2

4
≤ 9π2

8
sin2 v

2
. (3.9)

For (u, v, q) ∈ Ω, by (3.6) and (3.9) one has

meas
{

ξ ∈ IR;
∣∣∣v(ξ)

2

∣∣∣ ≥ π

4

}
≤ meas

{
ξ ∈ IR; sin2 v(ξ)

2
≥ 1

18

}
≤ 18

∫{
ξ∈IR: sin2 v(ξ)

2 ≥ 1
18

} sin2 v(ξ)
2

dξ ≤ 9
2

β2 .

Therefore, using again (3.6), for any ξ1 < ξ2 we find∫ ξ2

ξ1

cos2
v(ξ)
2

· q(ξ′) dξ ≥
∫{

ξ∈[ξ1,ξ2]; | v(ξ)
2 |≤π

4

} q−

2
dξ ≥

[
ξ2 − ξ1

2
− 9

2
β2

]
q− . (3.10)

The above is a key estimate, which guarantees that the exponential term in the formulas (2.8)-(2.9)
for P and Px decreases quickly as |ξ − ξ′| → ∞. Introducing the exponentially decaying function

Γ(ζ) .= min
{

1 , exp
(

9
2

β2q− − |ζ|
2

q−
)}

, (3.11)
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an easy computation shows that

‖Γ‖L1 =

(∫
|ζ|≤9 β2

+
∫
|ζ|≥9 β2

)
Γ(ζ) dζ = 18β2 +

4
q−

. (3.12)

We begin by showing that P, Px ∈ H1(IR), namely

P , ∂ξP , Px , ∂ξPx ∈ L2(IR) . (3.13)

In the following we derive a priori bounds on Px. The estimates for P are entirely similar. From
the definition (2.9) it follows

∣∣Px(ξ)
∣∣ ≤ q+

2

∣∣∣∣Γ ∗ (u2 cos2
v

2
+

1
2

sin2 v

2

)
(ξ)
∣∣∣∣ .

Therefore, using standard properties of convolutions we obtain

‖Px‖L2 ≤ q+

2
· ‖Γ‖L1 ·

(
‖u2‖L2 +

1
8
‖v2‖L2

)
≤ q+

2
· ‖Γ‖L1 ·

(
‖u‖2L∞‖u2‖L2 +

1
8
‖v‖2L∞‖v2‖L2

)
< ∞ .

(3.14)

Next, differentiating (2.9) we find

∂

∂ξ
Px(ξ) = −

[
u2(ξ) cos2

v(ξ)
2

+
1
2

sin2 v(ξ)
2

]
q(ξ)

+
1
2

(∫ ∞

ξ

−
∫ ξ

−∞

)
exp

{
−

∣∣∣∣∣
∫ ξ′

ξ

cos2
v(s)
2

· q(s) ds

∣∣∣∣∣
}

·
[
cos2

v(ξ)
2

· q(ξ)
]
sign (ξ′ − ξ)

[
u2(ξ′) cos2

v(ξ′)
2

+
1
2

sin2 v(ξ′)
2

]
q(ξ′) dξ′ .

(3.15)

Therefore ∣∣∂ξPx(ξ)
∣∣ ≤ q+

∣∣∣∣u2(ξ) +
v2(ξ)

8

∣∣∣∣+ q+

2

∣∣∣∣Γ ∗ (u2 cos2
v

2
+

1
2

sin2 v

2

)
(ξ)
∣∣∣∣ ,

∥∥∂ξPx

∥∥
L2 ≤ q+

(
‖u2‖L2 +

1
8
‖v2‖L2

)
+

q+

2
· ‖Γ‖L1 ·

(
‖u2‖L2 +

1
8
‖v2‖L2

)
≤
(
q+ +

q+

2
‖Γ‖L1

)
·
(
‖u‖2L∞‖u‖L2 +

1
8
‖v‖2L∞‖v‖L2

)
< ∞ .

(3.16)

By (3.14), (3.16) and the analogous estimates for P, ∂ξP , relation (3.13) follows.
We just proved that the maps in (3.8) actually take values in H1(IR). To establish their

Lipschitz continuity, it suffices to show that their partial derivatives

∂P

∂u
,

∂P

∂v
,

∂P

∂q
,

∂Px

∂u
,

∂Px

∂v
,

∂Px

∂q
, (3.17)

are uniformly bounded as (u, v, q) range inside the domain Ω. We observe that these derivatives
are bounded linear operators from the appropriate spaces into H1(IR). For sake of illustration, we
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shall work out the detailed estimates for ∂Px/∂u. All other derivatives can be estimated by the
same methods.

At a given point (u, v, q) ∈ Ω, the partial derivative ∂P/∂u : H1(IR) 7→ L2(IR) is the linear
operator defined by[

∂Px(u, v, q)
∂u

· û
]

(ξ)

=
1
2

(∫ ∞

ξ

−
∫ ξ

−∞

)
exp

{
−

∣∣∣∣∣
∫ ξ′

ξ

cos2
v(s)
2

· q(s) ds

∣∣∣∣∣
}
· 2u(ξ′) cos2

v(ξ′)
2

q(ξ′) · û(ξ′) dξ′.

Therefore ∥∥∥∥∂Px(u, v, q)
∂u

· û
∥∥∥∥
L2

≤
∥∥∥Γ ∗ |u|∥∥∥

L2
q+ · ‖û‖L∞ .

Recalling that ‖û‖L∞ ≤ ‖û‖H1 , the operator norm can thus be estimated as∥∥∥∥∂Px(u, v, q)
∂u

∥∥∥∥ ≤ q+‖Γ‖L1 · ‖u‖L2 . (3.18)

Next, by (3.15), ∂(∂ξPx)/∂u : H1(IR) 7→ L2(IR) is the linear operator defined by[
∂(∂ξPx)(u, v, q)

∂u
· û
]

(ξ)

= −2u(ξ) cos2
v(ξ)
2

q(ξ) · û(ξ) +
1
2

(∫ ∞

ξ

−
∫ ξ

−∞

)
exp

{
−

∣∣∣∣∣
∫ ξ′

ξ

cos2
v(s)
2

· q(s) ds

∣∣∣∣∣
}

·
[
cos2

v(ξ)
2

· q(ξ)
]
sign (ξ′ − ξ) 2u(ξ′) cos2

v(ξ′)
2

q(ξ′) · û(ξ′) dξ′ .

Its norm, as an operator from H1(IR) into L2(IR), is thus bounded by∥∥∥∥∂(∂ξPx)(u, v, q)
∂u

∥∥∥∥ ≤ 2q+‖u‖L2 + (q+)2 ‖Γ‖L1 · ‖u‖L2 . (3.19)

Together, (3.18) and (3.19) yield the boundedness of ∂Px/∂u as a linear operator from H1(IR) into
H1(IR). The bounds on the other partial derivatives in (3.17) are obtained in an entirely similar
way. In the end, this establishes the uniform Lipschitz continuity of the maps P, Px at (3.8).

The local existence of a solution to the Cauchy problem (3.1)-(3.2) on some small time interval
[−T, T ] now follows from the standard theory of O.D.E’s in Banach spaces. Indeed, we proved that
the right hand side of (3.1) is Lipschitz continuous on a neighborhood of the initial data, in the
space X.

Step II - Extension to a global solution. To ensure that the local solution of (3.1) constructed
above can be extended to a global solution defined for all t ≥ 0, it suffices to show that the quantity

∥∥q(t)∥∥
L∞

+
∥∥∥∥ 1

q(t)

∥∥∥∥
L∞

+
∥∥v(t)

∥∥
L2 +

∥∥v(t)
∥∥
L∞

+
∥∥u(t)

∥∥
H1 (3.20)
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remains uniformly bounded on any bounded time interval. The a priori bound on (3.20) will
actually follow from the conservation of the total energy (1.7). In the following, we re-derive this
energy conservation property in terms of the new variables (u, v, q) and ξ.

As long as the local solution of (3.1) is defined, we claim that

uξ =
q

2
sin v , (3.21)

and
d

dt

∫
IR

(
u2 cos2

v

2
+ sin2 v

2

)
q dξ = 0. (3.22)

Indeed, (3.1) yields

uξt = q
(
u2 cos2

v

2
+

1
2

sin2 v

2
− P cos2

v

2

)
(3.23)

if we take into account (2.8)-(2.9). On the other hand, by (3.1) we get(q

2
sin v

)
t
=

qt

2
sin v +

q

2
vt cos v

=
q

2

(
(u2 +

1
2
− P ) sin2 v + (u2 − P ) cos v + (u2 − P ) cos2 v − cos v sin2 v

2

)
= q

(
u2 cos2

v

2
+

1
2

sin2 v

2
− P cos2

v

2

)
.

(3.24)
Moreover, at the initial time t = 0, by (2.5) and (3.2) we have

∂u

∂ξ
=

ux

1 + u2
x

=
sin v

2
, q ≡ 1 .

Since the right hand sides of (3.23)-(3.24) are Lipschitz continuous and the identity (3.21) holds
at t = 0, we infer that (3.21) remains valid for all times t, as long as the solution is defined.
To prove (3.22), we proceed as follows. From (3.1) we deduce that

d

dt

∫
IR

(
u2 cos2

v

2
+ sin2 v

2

)
q dξ =

∫
IR

q
{

2 (u2 cos2
v

2
+ sin2 v

2
) (u2 +

1
2
− P ) sin

v

2
cos

v

2

− 2 u Px cos2
v

2
+ sin

v

2
cos

v

2
(1− u2)

[
2(u2 − P ) cos2

v

2
− sin2 v

2

]}
dξ

=
∫

IR

q
{
− 2P sin

v

2
cos

v

2
− 2u Px cos2

v

2
+ 3u2 sin

v

2
cos

v

2

}
dξ.

(3.25)
On the other hand, from (2.8)-(2.9) we infer

Pξ = q Px cos2
v

2
.

Therefore, using (3.21) we obtain

(u P )ξ = uξP + u Pξ = q
{

P sin
v

2
cos

v

2
+ u Px cos2

v

2

}
while

3 q u2 sin
v

2
cos

v

2
= 3u2uξ = (u3)ξ .
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The above implies

d

dt

∫
IR

(
u2 cos2

v

2
+ sin2 v

2

)
q dξ =

∫
IR

∂ξ

{
u3 − 2 u P

}
dξ = 0 ,

the last equality being justified since P is uniformly bounded while lim|ξ|→∞ u(ξ) = 0 as u ∈
H1(IR). This proves (3.22).

We can now rewrite the total energy (1.7) in terms of the new variables According to (3.22),
this energy remains constant in time, along any solution of (3.1)-(3.2):

E(t) =
∫

IR

(
u2(t, ξ) cos2

v(t, ξ)
2

+ sin2 v(t, ξ)
2

)
q(t, ξ) dξ = E(0) .= E0 , (3.26)

As long as the solution is defined, using (3.21) and (3.26) we obtain the bound

sup
ξ∈IR

∣∣u2(t, ξ)
∣∣ ≤ 2

∫
IR

|uuξ| dξ ≤ 2
∫

IR

|u|
∣∣∣ sin v

2
cos

v

2

∣∣∣ q dξ ≤ E0 . (3.27)

This provides a uniform a priori bound on
∥∥u(t)

∥∥
L∞

. From (3.26) and the definitions (2.8)-(2.9)
it follows ∥∥P (t)

∥∥
L∞

,
∥∥Px(t)

∥∥
L∞

≤
∥∥∥∥1

2
e−|x|

∥∥∥∥
L∞

·
∥∥∥∥u2(t) +

u2
x(t)
2

∥∥∥∥
L1

≤ 1
2

E0 . (3.28)

We thus recover the estimate (1.8), working in the new variables.
Looking at the third equation in (3.1), by (3.27)-(3.28) we deduce that, as long as the solution

is defined,

|qt| ≤
(

E0 +
1
2

+
E0

2

)
q .

Since q(0, ξ) = 1, the previous differential inequality yields

exp
{
−1 + 3E0

2
|t|
}
≤ q(t) ≤ exp

{
1 + 3E0

2
|t|
}

. (3.29)

By the second equation in (3.1), it is now clear that∥∥v(t)
∥∥
L∞

≤ eB |t|, (3.30)

for a suitable constant B = B(E0) > 0. Moreover, the first equation in (3.1) implies∣∣∣∣ d

dt

(∫
IR

u2(t, ξ) dξ
) ∣∣∣∣ ≤ 2 ‖u(t)‖L∞‖Px(t)‖L1 .

∣∣∣∣ d

dt

(∫
IR

u2
ξ(t, ξ) dξ

) ∣∣∣∣ ≤ 2 ‖uξ(t)‖L∞‖∂ξPx(t)‖L1 .

We already proved that the functions u and uξ are uniformly bounded on bounded intervals of
time, because of (3.27), (3.21), and (3.29). An estimate on

∥∥u(t)
∥∥

H1 will thus follow from a bound
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on the L1 norms of Px and ∂ξPx. Toward this goal, we proceed as in (3.9)–(3.12). Calling κ the
right hand side of (3.29), so that κ−1 ≤ q(t) ≤ κ, from (3.15) we deduce∥∥∂ξPx(t)

∥∥
L1 ≤ κ E0

+
1
2

∫
IR

exp

{
−

∣∣∣∣∣
∫ ξ′

ξ

κ−1 cos2
v(t, s)

2
ds

∣∣∣∣∣
}
·
[
u2(t, ξ′) cos2

v(t, ξ)
2

+
1
2

sin2 v(t, ξ)
2

]
κ dξ′

≤ κ E0 + ‖Γ‖L1 · κ E0 .

where

Γ(ζ) .= min
{

1 , exp
(

18 E0κ
−1 − |ζ|

2
κ−1

)}
.

Indeed, by (3.26), the integral of sin2(v/2) is bounded uniformly in time. We can thus repeat the
estimates in (3.10)–(3.12) and deduce

∥∥Γ∥∥
L1 =

(∫
|ζ|≤36E0

+
∫
|ζ|≥36E0

)
Γ(ζ) dζ = 72E0 +

4
κ

.

The estimate for ‖P‖L1 is entirely similar. This establishes the boundedness of the norm
∥∥u(t)

∥∥
H1

for t in bounded intervals.
Finally, the second equation in (3.1) implies

d

dt
‖v‖L2 ≤ 2

(
‖u‖L∞‖u‖L2 + ‖P‖L2

)
+

1
4
‖v‖L∞‖v‖L2 .

By the previous bounds, it is clear that ‖v‖L2 remains bounded on bounded intervals of time. This
completes the proof that the solution of (3.1) can be extended globally in time.

For future use, we record here an important property of the above solutions. Namely, consider
the set of times

N .=
{

t ≥ 0 ; meas
{
ξ ∈ IR ; v(t, ξ) = −π

}
> 0

}
. (3.31)

Then
meas(N ) = 0 . (3.32)

Indeed, when cos v = −1, by (3.1) it follows vt = −1. Using the bounds on ‖u‖L∞ and ‖Px‖L∞ ,
on any bounded time interval we can find δ > 0 such that vt < −1/2 whenever 1 + cos v(t, x) < δ.
Since ‖v(t)‖L2 remains bounded on bounded time-intervals, this transversality condition implies

(3.32) as otherwise we would have that
∫ ∫

{v(t,ξ)=−π}
vt dξdt < 0 which is impossible since vt = 0

a.e. on {v(t, ξ) = −π} due to the absolute continuity of the map t 7→ v(t, ξ) at every fixed ξ ∈ IR.

4 - Solutions to the Camassa-Holm equation

We now show that the global solution of the system (3.1) yields a global conservative solution
to the Camassa-Holm equation (1.1), in the original variables (t, x).

Let us start with a global solution (u, v, q) to (3.1). Define

y(t, ξ) .= ȳ(ξ) +
∫ t

0

u(τ, ξ) dτ . (4.1)
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For each fixed ξ, the function t 7→ y(t, ξ) thus provides a solution to the Cauchy problem

∂

∂t
y(t, ξ) = u(t, ξ) , y(0, ξ) = ȳ(ξ) . (4.2)

We claim that a solution of (1.1) can be obtained by setting

u(t, x) .= u(t, ξ) if y(t, ξ) = x . (4.3)

Theorem 2. Let (u, v, q) provide a global solution to the Cauchy problem (3.1)-(3.2). Then the
function u = u(t, x) defined by (4.1), (4.3) provides a solution to the initial value problem (1.1)-
(1.2) for the Camassa-Holm equation.

The solution u constructed in this way has the following properties. The energy is almost
always conserved, namely∥∥u(t)‖H1(IR) = ‖ū‖H1(IR) for a.e. t ∈ IR . (4.4)

Moreover, consider a sequence of initial data ūn such that ‖ūn − ū‖H1(IR) → 0. Then the corre-
sponding solutions un = un(t, x) converge to u(t, x) uniformly for t, x in bounded sets.

Proof. Using the uniform bound
∣∣u(t, ξ)

∣∣ ≤ E
1/2
0 , valid by (3.27), from (4.1) we obtain the estimate

ȳ(ξ)− E
1/2
0 t ≤ y(t, ξ) ≤ ȳ(ξ) + E

1/2
0 t .

Recalling the definition of ξ at (2.1), this yields

lim
ξ→±∞

ȳ(t, ξ) = ±∞ .

Therefore, the image of the continuous map (t, ξ) 7→
(
t, y(t, ξ)

)
is the entire plane IR2. Next, we

establish the identity
yξ = q cos2

v

2
(4.5)

for all t and a.e. ξ ∈ IR. Indeed, notice that (3.1) yields

∂

∂t

(
q cos2

v

2
)
(t, ξ) = −vt sin

v

2
cos

v

2
+ qt cos2

v

2

= q cos
v

2
sin3 v

2
− 2 q (u2 − P ) cos3

v

2
sin

v

2
+ 2 (u2 +

1
2
− P ) sin

v

2
cos3

v

2
= q cos

v

2
sin3 v

2
+ q sin

v

2
cos3

v

2
= q sin

v

2
cos

v

2
=

q

2
sin v

= uξ(t, ξ) ,

in view of (3.21). On the other hand, (4.1) implies

∂

∂t
yξ(t, ξ) = uξ(t, ξ) .

Since the function x 7→ 2 arctan ūx(x) is measurable, the identity (4.5) holds for almost every ξ ∈ IR
at t = 0. By the above computations it remains true for all times t ∈ IR.
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An immediate consequence of (4.5) is that the map ξ 7→ y(t, ξ) is non-decreasing. Moreover,
if ξ < ξ′ but y(t, ξ) = y(t, ξ′), then

∫ ξ′

ξ

yξ(t, s) ds =
∫ ξ′

ξ

q(t, s) cos2
v(t, s)

2
ds = 0.

Hence cos(v/2) ≡ 0 throughout the interval of integration. Therefore, by (3.21)

u(t, ξ′)− u(t, ξ) =
∫ ξ′

ξ

q(t, s)
2

sin v(t, s) ds = 0 .

This proves that the the map (t, x) 7→ u(t, x) at (4.3) is well defined, for all (t, x) ∈ IR2.
For reader’s convenience, we collect here the basic relations between the (t, x) and the (t, ξ)

variables.

∂u

∂ξ
(t, ξ) =

q(t, ξ)
2

sin v(t, ξ) ,
∂y

∂ξ
(t, ξ) = q(t, ξ) cos2

v(t, ξ)
2

, (4.6)

ux(t, x) =
sin v(t, ξ)

1 + cos v(t, ξ)
if x = y(t, ξ) , cos v(t, ξ) 6= −1 . (4.7)

Next, using (4.6) to change the variable of integration, for every fixed t we compute

∫
IR

(
u2(t, x) + u2

x(t, x)
)

dx

=
∫
{cos v >−1}

(
u2(t, ξ) cos2

v(t, ξ)
2

+ sin2 v(t, ξ)
2

)
q(t, ξ) dξ ≤ E0 ,

(4.8)

because of (3.26). By a Sobolev inequality [EG], this implies the uniform Hölder continuity with
exponent 1/2 of u as a function of x. By the first equation in (3.1) and the bound ‖Px‖L∞ ≤ E0/2,
it follows that the map t 7→ u

(
t, y(t)

)
is uniformly Lipschitz continuous along every characteristic

curve t 7→ y(t). Therefore, u = u(t, x) is globally Hölder continuous on the entire t-x plane.
We now prove that the map t 7→ u(t) is Lipschitz continuous with values in L2(IR). Indeed,

consider any interval [τ, τ + h]. For a given point x, choose ξ ∈ IR such that the characteristic
t 7→ y(t, ξ) passes through the point (τ, x). By (3.1) and the bound (3.27) it follows

∣∣u(τ + h, x)− u(τ, x)
∣∣ ≤ ∣∣∣u(τ + h, x)− u

(
τ + h, y(τ + h, ξ)

)∣∣∣+ ∣∣∣u(τ + h, y(τ + h, ξ)
)
− u(τ, x)

∣∣∣
≤ sup

|y−x|≤E
1/2
0 h

∣∣u(t + h, y)− u(τ + h, x)
∣∣ dx +

∫ τ+h

τ

∣∣Px(t, ξ)
∣∣ dt .
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Integrating over the whole real line we obtain∫
IR

∣∣u(τ + h, x)− u(τ, x)
∣∣2 dx

≤ 2
∫

IR

(∫ x+E
1/2
0 h

x−E
1/2
0 h

∣∣ux(τ + h, y)
∣∣ dy

)2

dx + 2
∫

IR

(∫ τ+h

τ

∣∣Px(t, ξ)
∣∣ dt

)2

q(τ, ξ) cos2
v(τ, ξ)

2
dξ

≤ 2
∫

IR

(
2 E

1/2
0 h

∫ x+E
1/2
0 h

x−E
1/2
0 h

∣∣ux(τ + h, y)
∣∣2 dy

)
dx + 2

∫
IR

(
h

∫ τ+h

τ

∣∣Px(t, ξ)
∣∣2 dt

)
‖q(τ)‖L∞ dξ

= 4E
1/2
0 h

∫
IR

∫ y+E
1/2
0 h

y−E
1/2
0 h

∣∣ux(τ + h, y)
∣∣2 dx dy + 2 h ‖q(τ)‖L∞

∫
IR

∫ τ+h

τ

∣∣Px(t, ξ)
∣∣2 dt dξ

≤ 8 E0 h2
∥∥ux(τ + h)

∥∥2

L2 + 2 h ‖q(τ)‖L∞
∫ τ+h

τ

∥∥Px(t)
∥∥2

L2 dt

≤ C h2

for some constant C uniformly valid as t ranges on bounded set, in view of (3.14), (3.29) and (4.8).
This clearly implies the Lipschitz continuity of the map t 7→ u(t), in terms of the x-variable.

Since L2(IR) is a reflexive space, the left hand side of (1.3) is a well defined function, for
a.e. t ∈ IR. We already proved that the right hand side also lies in L2(IR) for a.e. t ∈ IR in view
of the infinite-dimensional version of Rademacher’s theorem [A]. To establish the equality between
the two sides, we observe that

d

dt
u
(
t, y(t, ξ)

)
= Px(t, ξ)

for every t, ξ ∈ IR. Here Px is the function defined at (2.9). On the other hand, recalling (3.31),
for every t /∈ N , the map ξ 7→ x(t, ξ) is one to one and the change of variable formulas (4.6)-(4.7)
yield

Px(t, ξ) = Px

(
t, y(t, ξ)

)
=

1
2

(∫ ∞

y(t,ξ)

−
∫ y(t,ξ)

−∞

)
e−
∣∣y(t,ξ)−x

∣∣(
u2(t, x) +

1
2
u2

x(t, x)
)

dx .

for every ξ ∈ IR. According to (3.32), this set N of exceptional times has measure zero. Hence
the identity (1.3) is satisfied for almost every t ∈ IR. This completes the proof that u is a global
solution of the Camassa-Holm equation in the sense of Definition 1.

To prove the conservation property, call N the set of exceptional times defined at (3.31). We
recall that meas(N ) = 0. For all t /∈ N , from (3.26) and (4.8) we obtain the identity in (4.4).

Finally, let ūn be a sequence of initial data converging to ū in H1(IR). Recalling (2.1) and
(3.2), at time t = 0 this implies

sup
ξ∈IR

∣∣yn(0, ξ)− y(0, ξ)
∣∣→ 0 , sup

ξ∈IR

∣∣un(0, ξ)− u(0, ξ)
∣∣→ 0 ,

Moreover, ∥∥vn(0, ·)− v(0, ·)
∥∥
L2 → 0 .

This implies un(t, ξ) → u(t, ξ), uniformly for t, ξ in bounded sets. Returning to the original
coordinates, this yields the convergence

yn(t, ξ) → y(t, ξ) , u(t, x) → un(t, x) ,
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uniformly on bounded sets, because all functions u, un are uniformly Hölder continuous.

5 - A semigroup of conservative solutions

In the previous sections, for each initial data ū ∈ H1(IR), we constructed a global conservative
solution to the Camassa-Holm equation. We remark, however, that the resulting flow u(t) = Ψtū
is not yet a semigroup. Indeed, if t ∈ N , the semigroup property fails.

Example (Peakon-antipeakon interaction). Motivated by the form of the peakons, it is
natural to make the following Ansatz [CH] for the interaction of two solitary waves

u(t, x) = p1(t) e−|x−q1(t)| + p2(t) e−|x−q2(t)|, x ∈ IR, t ≥ 0, (5.1)

with p1, q1, p2, q2 Lipschitz continuous such that q1(0) 6= q2(0). Notice that (5.1) is a solution
in the sense of Definition 1 if the variables q1(t), q2(t), p1(t), p2(t) satisfy the following system of
ordinary differential equations with discontinuous right-hand side

q′1 = p1 + p2 e−|q1−q2|

q′2 = p1 e−|q1−q2| + p2

p′1 = p1p2 sign(q1 − q2) e−|q1−q2|

p′2 = p1p2 sign(q2 − q1) e−|q1−q2|

(5.2)

interpreted in the sense of Carathéodory (see [CE1]). Observe that (5.2) is a Hamiltonian system
with Hamiltonian

H =
1
2

∑
i,j=1,2

pipj e−|qi−qj | (5.3)

and, in addition to H, the system (5.2) admits the conserved quantity p1+p2 as long as q1−q2 6= 0,
relation which by continuity will hold true at least for t > 0 small. These observations motivate
the change to the new canonical variables{

P = p1 + p2, Q = q1 + q2,

p = p1 − p2, q = q1 − q2,
(5.4)

in terms of which (5.2) becomes the Hamiltonian system

P ′ = 0,

Q′ = P (1 + e−|q|),

p′ =
P 2 − p2

2
sign(q) e−|q|,

q′ = p (1− e−|q|),

(5.5)

with Hamiltonian
H̃ =

1
2

P 2
(
1 + e−|q|

)
+

1
2

p2
(
1− e−|q|

)
.
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If p1(0)p2(0) ≥ 0 it is known [CM2] that there is a unique solution to the Camassa-Holm equation
corresponding to any choice of q1(0) and q2(0). On the other hand, within the setting p1(0)p2(0) < 0
we encounter the peakon-antipeakon interaction, corresponding to the choice

p1(0) = −p2(0), q1(0) = −q2(0).

In view of (5.5) we have P = Q = 0 so that

p1(t) = −p2(t), q1(t) = −q2(t), p(t) = 2 p1(t), q(t) = 2 q1(t), t ≥ 0.

Case I: p(0)q(0) > 0

Notice that if u is a solution to (1.1), so is ũ(t, x) = −u(t,−x). Without loss of generality
we may therefore assume that p(0) > 0 and q(0) > 0. By continuity, the inequalities p(t) > 0 and
q(t) > 0 hold up to some maximal T > 0. On [0, T ) we have p′ = − p2

2
e−q,

q′ = p (1− e−q),

whereas the Hamiltonian yields the invariant

p2 (1− e−q) = H2
0 > 0, t ∈ [0, T ). (5.6)

Therefore p′ =
H2

0 − p2

2
on (0, T ), so that

p(t) = H0
[p(0) + H0] eH0t + [p(0)−H0]
[p(0) + H0] eH0t − [p(0)−H0]

, t ∈ [0, T ). (5.7)

On the other hand, since q′ =
H2

0

p
on (0, T ), we get

q(t) = q(0) + 2 ln
[p(0) + H0] eH0t/2 + [p(0)−H0] e−H0t/2

2 p(0)
, t ∈ [0, T ). (5.8)

But (5.6) shows that p(0) > H0, which by (5.7)-(5.8) yields T = ∞. Consequently, no wave
breaking takes place in this case.

Case II: p(0)q(0) < 0

In view of the symmetry property of the Camassa-Holm equation pointed out before, we may
assume that p(0) > 0 whereas q(0) < 0. For some maximal time T > 0 we will have p(t) > 0 and
q(t) < 0 on [0, T ). On [0, T ) we then have p′ =

p2

2
eq,

q′ = p (1− eq),
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whereas the Hamiltonian yields the invariant

p2 (1− eq) = H2
0 > 0, t ∈ [0, T ). (5.9)

Therefore

p′ =
p2 −H2

0

2
(5.10)

on (0, T ), so that

p(t) = H0
[p(0) + H0] + [p(0)−H0] eH0t

[p(0) + H0]− [p(0)−H0] eH0t
, t ∈ [0, T ). (5.11)

On the other hand, since q′ =
H2

0

p
on (0, T ), we get

q(t) = q(0)− 2 ln
[p(0) + H0] e−H0t/2 + [p(0)−H0] eH0t/2

2 p(0)
, t ∈ [0, T ). (5.12)

Since p(0) > H0 by (5.9), from (5.11)-(5.12) we infer that

T =
1

H0
ln

p(0) + H0

p(0)−H0
, (5.13)

and
lim
t↑T

p(t) = ∞. (5.14)

Since q(0) = ln
p2(0)−H2

0

p2(0)
by (5.10), from (5.12) we infer

lim
t↑T

q(t) = 0. (5.15)

From (5.14)-(5.15) we infer that at breaking time T > 0 we have

lim
t↑T

u(t, x) = 0 for every x ∈ IR . (5.16)

On the other hand, the explicit formulas

u2
x(t, x) =


p2

4 (eq − 1) (1− e−q) e2x for x ≤ q1(t)
p2 eq cosh2(x) for x ∈ (q1(t), q2(t))
p2

4 (eq − 1) (1− e−q) e−2x for x ≥ q2(t)
=


H2

0
4 (e−q − 1) e2x for x ≤ q1(t)

eq H2
0

1−eq cosh2(x) for x ∈ (q1(t), q2(t))
H2

0
4 (e−q − 1) e−2x for x ≥ q2(t)

valid for t ∈ [0, T ), show that the measure with density u2
x(t, ·) approaches weakly a Dirac mass

concentrated at the origin, as t ↑ T . Furthermore, a straightforward calculation shows that the
total amount of energy concentrated in the interval between the two extremes (crest and trough)
of the wave equals∫ q2(t)

q1(t)

(
u2(t, x) + u2

x(t, x)
)

dx =
p2(t)

2

(
1− e2 q(t)

)
, t ∈ [0, T ).
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On the other hand, the total energy equals

‖u(t, ·)‖2H1 = p2(t)
(
1− eq(t)

)
= H2

0 .

In view of (5.15), we have that

lim
t↑T

∫ q2(t)

q1(t)

(
u2(t, x) + u2

x(t, x)
)

dx = H2
0

so that, as t approaches T , an increasingly large portion of the energy is concentrated within the
interval [q1(t), q2(t)]. In the limit t ↑ T all the energy becomes concentrated at the single point
x = 0.

To resolve the singularity arising at t = T we introduce the variable

w(t) = 2 arctan
p(t)
H0

, t ≥ 0.

Then (5.10) yields

w′(t) = −H0

1−
(

p(t)
H0

)2

1 +
(

p(t)
H0

)2

 = −H0

(
1− tan2 w(t)

2

1 + tan2 w(t)
2

)
= −H0 cos w(t) .

Written in this new variable, the solution is smooth. Actually, it can be continued analytically
for all t ∈ IR. In this case, for t > T , the solution would contain two peakons moving away from
each other, i.e., with (p1 − p2)(q1 − q2) > 0, as in Case I.

Notice that this solution u = u(t, x) in (5.1) preserves the total energy at all times except at
t = T , when u(T, x) ≡ 0.

By direct inspection, one can check that this conservative multipeakon solution coincides
with the solution constructed through our variable transformations in Sections 2–4. Clearly, these
solutions by themselves do not satisfy the semigroup property. For t > T , u(t, ·) 6= 0, while the
solution to the Cauchy problem with initial data u(T, x) ≡ 0, as in (5.16), should vanish identically.

To obtain a semigroup, it is clear that we need to retain some additional information about
the solutions. In particular, we need to distinguish between an initial data which is identically zero,
and an initial condition ū with ū(x) ≡ 0 but where u2

x formally consists of a unit Dirac mass at the
origin, a situation encountered in the case of the peakon-antipeakon interaction at the breaking
time t = T . For this purpose, we consider the domain D consisting of all couples (u, µ), where
u ∈ H1(IR), while µ is a positive Radon measure on IR satisfying

dµa = u2
x dx .

In other words, splitting µ = µa + µs as the sum of an absolutely continuous and a singular part,
we require that the absolutely continuous part have density u2

x w.r.t. Lebesgue measure. We call
M(IR) the metric space of all bounded Radon measures on IR, endowed with the topology of weak
convergence.
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Given (ū, µ̄) ∈ D, we define the map ξ 7→ ȳ(ξ) by setting

ȳ(ξ) .= sup
{

x ; x + µ̄
(
[0, x]

)
≤ ξ
}

if ξ ≥ 0 ,

ȳ(ξ) .= inf
{

x ; |x|+ µ̄
(
[x, 0[

)
≤ |ξ|

}
if ξ < 0 .

This definition is designed so that, for any Borel set J ⊂ IR we have

µ̄(J) + meas(J) = meas
{
ξ ∈ IR ; ȳ(ξ) ∈ J

}
.

Notice that this reduces to (2.1) in the case where µ̄ is absolutely continuous. In all cases, the map
ξ 7→ ȳ(ξ) is Lipschitz continuous with constant 1, hence it is a.e. differentiable. We now solve the
system of equations (3.1) with initial data

ū(ξ) = ū
(
ȳ(ξ)

)
, q(ξ) ≡ 1 , (5.17) v̄(ξ) = 2 arctanux

(
ȳ(ξ)

)
= 2arctan ūξ(ξ) ·

dξ

dȳ
if dȳ/dξ > 0 ,

v̄(ξ) = π if dȳ/dξ = 0 .

(5.18)

In turn, from this solution (u, v, q) we recover a mapping t 7→
(
u(t), µ(t)

)
∈ H1 ×M defined by

(4.1), (4.3) together with

µ(t)

(
[a, b]

)
=
∫
{ξ ; y(t,ξ)∈[a,b]}

sin2 v(t, ξ)
2

q(t, ξ) dξ . (5.19)

Our main result in this section is the following.

Theorem 3. There exists a continuous semigroup Ψ : D × [0,∞) 7→ D whose trajectories t 7→(
u(t), µ(t)

)
= Ψt(ū, µ̄) have the following properties:

(i) The function u provides a solution to the Cauchy problem (1.1)-(1.2) in the sense of Defini-
tion 1, while the family of measures {µ(t) , t ∈ IR} provides a measure valued solution w to
the linear transport equation with source

wt + (uw)x = 2 (u2 − P ) ux . (5.20)

(ii) For a.e. t ∈ IR the measure µ(t) is absolutely continuous. Its density w.r.t. Lebesgue measure
is given by

dµ(t) = u2
x(t, ·) dx . (5.21)

(iii) If ūn → ū in H1(IR) and µ̄n ⇀ ū weakly, then un(t, x) → u(t, x) uniformly for (t, x) in
bounded sets.

Proof. Most of the above statements already follow from the analysis in the previous sections.
Indeed, we have already proved that the function u = u(t, x) defined at (4.1), (4.3) provides a
solution to the Camassa-Holm equation (1.1)-(1.2).
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As in (3.31), call N ⊂ IR the set of times where meas{ξ ; cos v(t, ξ) = −1} > 0 For t /∈
N , the measure µ(t) is precisely the absolutely continuous Radon measure having density u2

x

w.r.t. Lebesgue measure. On the other hand, our construction implies that, for t ∈ N , the measure
µ(t) is the weak limit of the measures µ(s), as s → t, s /∈ N . Since the set N has measure zero, in
view of (1.6) we deduce (5.20). Notice that this equation can be formulated more precisely as∫

IR

ϕt dµ(t)

∣∣∣t2
t1

=
∫ t2

t1

∫
IR

ϕx u dµ(t) dt− 2
∫ t2

t1

∫
IR

(u2 − P )ux ϕ dx dt

for every t2 > t1 ≥ 0 and any function ϕ ∈ C1(IR+ × IR) with compact support in (0,∞)× IR.
If (ūn, µ̄n) is a sequence of initial data with ūn → ū in H1(IR) and µ̄n ⇀ µ̄ weakly, then at

time t = 0 this implies

sup
ξ∈IR

∣∣yn(0, ξ)− y(0, ξ)
∣∣→ 0 , sup

ξ∈IR

∣∣un(0, ξ)− u(0, ξ)
∣∣→ 0 ,

Moreover, ∥∥vn(0, ·)− v(0, ·)
∥∥
L2 → 0 .

By the continuity of the solution of (3.1) on the initial data, this implies un(t, ξ) → u(t, ξ), uniformly
for t, ξ in bounded sets. Returning to the original coordinates, this yields the convergence

yn(t, ξ) → y(t, ξ) , u(t, x) → un(t, x) ,

uniformly on bounded sets.
To complete the proof of Theorem 3 it now remains to prove the semigroup property:

Ψt ◦Ψs(ū, µ̄) = Ψt+s(ū, µ̄) . (5.22)

Starting with (ū, µ̄) ∈ D, let U(τ, ξ) =
(
u(τ, ξ), v(τ, ξ), q(τ, ξ)

)
be the unique solution of (3.1) with

initial data
(
u(0, ξ), v(0, ξ), 1

)
, defined for all τ ≥ 0. Then Ψt+s(ū, µ̄) is obtained from U(t+ s, ξ)

via (4.1), (4.3) and (5.19). To obtain Ψt ◦Ψs(ū, µ̄), one proceeds as follows. If Ũ(τ, ξ), τ ≥ 0, is the
solution of (3.1) with initial data

(
u(s, ξ), v(s, ξ), 1

)
, then Ψt ◦ Ψs(ū, µ̄) is obtained from Ũ(t, ξ)

by means of (4.1), (4.3) and (5.19). Notice that U(t + τ, ξ) with τ ≥ 0 is the solution of (3.1) with
initial data

(
u(s, ξ), v(s, ξ), q(s, ξ)

)
. We claim that

U(t + s, ξ) = Ũ(t, ξ̃) (5.23)

where ξ̃ is a bi-Lipschitz parametrization of the ξ-variable with

dξ̃

dξ
=

q(τ, ξ)
q̃(τ, ξ)

at time τ ≥ 0. (5.24)

Indeed, (2.8)-(2.9) and the form of (3.1) confirm the validity of (5.23) in view of the change of
variables (5.24). The fact that ξ 7→ ξ̃ is a bi-Lipschitz parametrization follows at once if we notice
that the linearity of the third equation in (3.1) with respect to q yields

∂τ
q(τ, ξ)
q̃(τ, ξ)

=
(
(u2 +

1
2
− P ) sin v − (ũ2 +

1
2
− P̃ ) sin ṽ

) q(τ, ξ)
q̃(τ, ξ)

and the factor of
q(τ, ξ)
q̃(τ, ξ)

on the right-hand side is uniformly bounded. We thus established the

validity of (5.23). A glance at (4.1), (4.2) and (5.19) confirms now that (5.22) holds.
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