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Abstract. This paper is concerned with a model system for radiation hydrodynamics
in multiple space dimensions. The system depends singularly on the light speed c and
consists of a scalar nonlinear balance law coupled via an integral-type source term to a
family of radiation transport equations. We first show existence of entropy solutions to
Cauchy problems of the model system in the framework of functions of bounded variation.
This is done by using differences schemes and discrete ordinates. Then we establish strong
convergence of the entropy solutions, indexed with c, as c goes to infinity. The limit function
satisfies a scalar integro-differential equation.

1. Introduction

The dynamics of a radiating fluid is governed by the Euler equations of compressible
hydrodynamics coupled to a radiation transport equation via an integral-type source term.
See [11, 13] for the full system of equations. In [3, 4], the following model

(1.1)
ut + divf(u) =

∫

Sd−1

(

I(x, t, ω) −B(u)
)

dω

1

c
It + ω · ∇I = B(u) − I.

was derived from the full system. In this model, the unknowns are non-negative functions
u = u(x, t) and I = I(x, t, ω) for (x, t, ω) ∈ R

d×[0,∞)×Sd−1 with Sd−1 being the unit sphere
in R

d. The parameter c > 1 stands for the speed of light. The subscript t denotes the partial
derivative with respect to the time variable t, while div and ∇ are the usual divergence and
gradient operators with respect to the spatial variable x. The dot “·” between two vectors
denotes the scalar product. The flux f = (f1, . . . , fd)

T : [0,∞) → R
d and B : [0,∞) → R

are given functions of u.
It was pointed out in [3, 4] that the relation of system (1.1) to the full system of radiation

hydrodynamics is similar to the relation of scalar nonlinear conservation laws to the Euler
equations of compressible hydrodynamics. In particular, u is a lumped variable for the orig-
inal hydromechanical unknowns (density, velocity, and temperature) and I is the radiation
intensity. For applications, B(u) is the Planck function νu4, with ν being a positive constant,
which is increasing for u ≥ 0. This monotonicity of B(u), not the specific form, is crucial to
our analysis.

The goal of this paper is to investigate what we call the non-relativistic limit, i.e., the
limit as the light speed c in (1.1) tends to infinity. We shall prove under quite general
assumptions that for each c > 1, there is an entropy solution (uc, Ic) to (1.1) with some
initial data. Moreover, we show that as c goes to infinity, uc converges, almost everywhere,
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to an entropy solution of the non-local scalar equation

(1.2) ut + divf(u) = φ ∗B(u) −B(u)

with corresponding initial data. Here ∗ denotes convolution in R
d and the kernel φ is defined

through

φ(x) =
e−|x|

|x|d−1
, x ∈ R

d \ {0}.

Our analysis starts with discrete-ordinate models derived from (1.1) by replacing Sd−1 with
its finite subsets. As in [17], we prove existence of entropy solutions to Cauchy problems of
the discrete-ordinate models by showing convergence of a difference scheme in the framework
of functions of bounded variation. The estimates rely crucially on the relaxation structure
[18] of equations (1.1). The result is summarized in Theorem 3.8. Next we let the number
of ordinates tend to infinity and show existence of entropy solutions to Cauchy problems of
(1.1). Here it is important that the equations are linear with respect to I, which enables us
to use the weak-star convergence, since uniform BV -estimates for I are not available. The
result is summarized in Theorem 4.1. Since the entropy solutions thus obtained obey some
c-independent estimates, we analyze the nonrelativistic limit c → ∞ in Sec. 4.2 and thus
show existence of entropy solutions to (1.2) (Theorem 2.1). By formally solving a linear
equation for I with the method of characteristics, we arrive at the convolution source term
in the scalar model problem (1.2).

Note that stable explicit numerical integrations of (1.1) would require very small time
steps due to the factor c−1 in the transport equation (see also Remark 3.1 below). Because
of this fact, in numerics one usually uses the hydrodynamical equations coupled with the
stationary transport equation which results formally from (1.1) by setting c = ∞ [11]. Our
analysis shows the validity of the ad-hoc approach in the regime of weak entropy solutions.

We mention some related work for the equations of radiation hydrodynamics. In [7],
Kawashima et al. proposed a scalar model problem (coupled with an elliptic equation).
That is a one-dimensional problem and therefore has only two directions of radiation. For
that model problem, Ito [6] established the existence of weak solutions in the framework of
functions of bounded variation. See also [16] for early work on related problems. In addition,
we refer to [8, 12] for threshold behaviours of equations of the form (1.2).

The paper is organized as follows. In Section 2 we present the main result and introduce
discrete-ordinate models for (1.1). Section 3 is devoted to a difference scheme for the discrete-
ordinate models. The main result is proved in Section 4.

2. The Main Result

The aim of this section is to present our main result for Cauchy problems of (1.1) with
initial data

u(x, 0) = u0(x), I(x, 0, ω) = I0(x, ω).(2.1)

We recall that the space BV (Rd) consists of all measurable functions u = u(x) such that

(2.2) |u|BV (Rd) := lim sup|z|→0, z∈Rd\{0}

{ 1

|z|

∫

Rd

|u(x+ z) − u(x)| dx
}

<∞.

Our main result reads as
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Theorem 2.1. Suppose the flux functions fj = fj(u) are continuously differentiable, B =
B(u) is continuous and increasing with respect to u, u0 ∈ BV (Rd) ∩ L∞(Rd), and I0 ∈
L∞(Rd × Sd−1) satisfies ess supω∈Sd−1 |I0(., ω)|BV (Rd) <∞.

Then, for each c > 1, the Cauchy problem (1.1) with (2.1) has an entropy solution (uc, Ic).
Moreover, as c tends to infinity, uc converges to an entropy solution to (1.2) with initial data
u0.

As usual, a pair of functions (uc, Ic) ∈ L∞
loc

(

R
d × [0,∞)

)

× L∞
loc

(

R
d × [0,∞) × Sd−1

)

is
called an entropy solution to (1.1) with (2.1) if

(2.3)

∫

Rd×[0,∞)

[η(uc)ψt + q(uc) · ∇ψ] dxdt

≥ −

∫

Rd

η(u0)ψ(., 0) dx−

∫

Rd×[0,∞)

η′(uc)ψ

∫

Sd−1

(

Ic(., ω) −B(uc)
)

dω,

∫

Rd×[0,∞)

[c−1Ic(., ω)ξt + Ic(., ω)ω · ∇ξ] dxdt

= −

∫

Rd

c−1I0(., ω)ξ(., 0) dx−

∫

Rd×[0,∞)

(

B(uc) − Ic(., ω)
)

ξ dxdt

hold for all ψ, ξ ∈ C∞
0 (Rd × [0,∞)) with ψ ≥ 0 and all entropy pairs (η, q). The equality in

(2.3) means that two sides are equal as measures on Sd−1. An entropy pair (η, q) consists
of a convex function η ∈ C1 and the entropy flux q = (q1, . . . , qd)

T ∈ C1 satisfying the
compatibility relation

η′q′j = f ′
j , j = 1, . . . , d.(2.4)

An entropy solution to (1.2) with initial data u0 is a function u∞ ∈ L∞
loc(R

d × [0,∞)) such
that

(2.5)

∫

Rd×[0,∞)

[η(u∞)ψt + q(u∞) · ∇ψ] dxdt

≥ −

∫

Rd

η(u0)ψ(., 0) dx−

∫

Rd×[0,∞)

η′(u∞)ψ
(

φ ∗B(u∞) − B(u∞)
)

dxdt

holds for all nonnegative ψ ∈ C∞
0 (Rd × [0, T )) and all entropy pairs (η, q).

The proof of Theorem 2.1 starts with discrete-ordinate approximations for (1.1), which
we introduce here. Let L be a positive integer and partition the d-dimensional unit sphere
Sd−1 into L simply-connected sets Ω1,Ω2, . . . ,ΩL of the same size, that is,

(2.6)

Sd−1 =
⋃

l∈{1,...,L}

Ωl,

Ωl ∩ Ωk = ∅ ∀ k 6= l,

σL := |Ωl| = L−1|Sd−1| .
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Here |A| denotes the (d− 1)-dimensional Hausdorff-measure of set A. For each l, we choose
an arbitrary but fixed vector ωl ∈ Ωl, this is the ordinate. For (1.1) with (2.1), the discrete-
ordinate approximations are Cauchy problems of the form:

(2.7)

ut + divf(u) = σL

L
∑

l=1

(

Il − B(u)
)

,

c−1Il,t + ωl · ∇Il = B(u) − Il,

u(., 0) = u0, Il(., 0) = Īl0.

Here

Īl0(x) =
1

|σL|

∫

Ωl

I0(x, ω) dω.

We will show the existence of entropy solutions for (2.7). As in (2.3) and (2.5), an entropy
solution is a function (u, I1, . . . , IL) ∈ L∞

loc(R
d × [0,∞))L+1 such that

(2.8)

∫

Rd×[0,∞)

[η(u)ψt + q(u) · ∇ψ] dxdt

≥ −

∫

Rd

η(u0)ψ(., 0) dx−

∫

Rd×[0,∞)

η′(u)ψσL

L
∑

l=1

(

Il − B(u)
)

dxdt,

∫

Rd×[0,∞)

[η(Il)ψt + cη(Il)ωl · ∇ψ] dxdt

≥ −

∫

Rd

η(Īl0)ψ(., 0) dx− c

∫

Rd×[0,∞)

η′(Il)
(

B(u) − Il
)

ψ dxdt

holds for all nonnegative ψ ∈ C∞
0 (Rd × [0,∞)) and all entropy pairs (η, q).

3. Discrete-Ordinate Models

This section is devoted to the discrete-ordinate models in (2.7). In Sec. 3.1, we study a
difference scheme for (2.7) and establish a number of a priori estimates of difference solutions.
With the estimates, we show in Sect. 3.2 the convergence of the difference solutions to an
entropy solution of the Cauchy problem (2.7).

3.1. A Difference Scheme. In this subsection, we analyse a difference scheme for the
Cauchy problem (2.7). The parameter c is kept constant throughout the section.

First of all, for h > 0 and α = (α1, α2, . . . , αd) ∈ Z
d we define

Rα :=

d
∏

j=1

[

(

αj −
1

2

)

h,
(

αj +
1

2

)

h

)

.(3.1)
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Let ∆t > 0 and denote by ej the j-th column of the unit matrix of order d. Our difference
scheme reads as

(3.2)

uk+1
α − uk

α

∆t
+

1

h

d
∑

j=1

(

gj(u
k
α, u

k
α+ej

) − gj(u
k
α−ej

, uk
α)
)

= σL

L
∑

l=1

(

Ik+1
lα −B(uk+1

α )
)

,

Ik+1
lα − Ik

lα

∆t
+

1

h

d
∑

j=1

(

hlj(I
k
lα, I

k
l,α+ej

) − hlj(I
k
l,α−ej

, Ik
lα)
)

= c
(

B(uk+1
α ) − Ik+1

lα

)

,

(u0
α, I

0
lα) =

1

hd

∫

Rα

(

u0(x), Īl0(x)
)

dx.

for k = 0, 1, 2, · · · . This is the usual semi-implicit upwind scheme for first-order equations
of balance laws. For more details on numerical schemes, we refer to the text books [5, 9]. In
(3.2), the numerical flux function

gj(u, v) = f+
j (u) + f−

j (v)

for u is defined according to the well-known splitting

f±
j (u) =

∫ u |f ′
j(w)| ± f ′

j(w)

2
dw.

For the radiation intensity Il, it is

hlj(u, v) = c
(

min{ωlj, 0}v + max{ωlj, 0}u
)

Set

(3.3)

Gα = G(uk
α, u

k
α±e1

, . . . , uk
α±ed

)

= uk
α −

∆t

h

d
∑

j=1

(

gj(u
k
α, u

k
α+ej

) − gj(u
k
α−ej

, uk
α)
)

,

Glα = Gl(I
k
lα, I

k
lα±e1

, . . . , Ik
lα±ed

)

= Ik
lα −

∆t

h

d
∑

j=1

(

hlj(I
k
lα, I

k
l,α+ej

) − hlj(I
k
l,α−ej

, Ik
lα)
)

.

Then the scheme in (3.2) can be rewritten as

(3.4)
uk+1

α = G(uk
α, u

k
α±e1

, . . . , uk
α±ed

) + σL∆t

L
∑

l=1

(

Ik+1
lα −B(uk+1

α )
)

,

Ik+1
lα = Gl(I

k
lα, I

k
lα±e1

, . . . , Ik
lα±ed

) + c∆t
(

B(uk+1
α ) − Ik+1

lα

)

.

By definition, it is obvious that

G(u, . . . , u) = u, Gl(I, . . . , I) = I.(3.5)

Moreover, it is straightforward to verify
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Proposition 3.1. Under the conditions of Theorem 2.1, let a < b be two real numbers such
that

(

u0(x), I0(x, ω)
)

∈ [a, b] × [B(a), B(b)]

for almost every (x, ω). The functions G : [a, b]2d+1 → R and Gl : [B(a), B(b)]2d+1 → R, as
defined in (3.3), are increasing with respect to their arguments, provided that ∆t satisfies the
following CFL-like condition

(3.6) max
{

max
u∈[a,b]

{|f ′
1(u)|, . . . , |f

′
d(u)|}, c

}∆t

h
≤ 1.

Remark 3.1. The CFL condition (3.6) depends singularly on the light speed c which is large.
Therefore, the scheme (3.2) is not useful for practice. We use it only for analysis. Moreover,
we won’t let c go to infinity before ∆t and h tend to zero.

Since the scheme (3.2) is not completely explicit, it is not clear whether (3.2) can be solved
in terms of the given quantities at the previous time t = k∆t. The following remark clarifies
this point.

Remark 3.2. Applying the operation c−1σL

∑L

l=1 to the second equation in (3.4) and then
adding it to the first equation, we obtain

uk+1
α + c−1σL

L
∑

l=1

Ik+1
lα = Gα + c−1σL

L
∑

l=1

Glα.

Moreover, from the first equation in (3.4) we deduce that

(1 + c∆t)uk+1
α + σL∆tLB(uk+1

α ) = (1 + c∆t)Gα + σL∆t
L
∑

l=1

Glα.(3.7)

Since the left-hand side is strictly increasing with respect to uk+1
α and the right-hand side

is known, uk+1
α is uniquely determined. Substituting this uk+1

α into the second equation in
(3.4), we obtain (1 + c∆t)Ik+1

lα .

The next lemma indicates an a priori L∞-bound for the difference solutions from the
scheme (3.2).

Lemma 3.2. Under the conditions of Theorem 2.1, assume the CFL-like condition (3.6) is
satisfied. Then it holds that

(uk
α, I

k
lα) ∈ [a, b] × [B(a), B(b)]

for any α ∈ Z
d , any l ∈ {1, . . . , L} and any k ≥ 0.

Proof. We use induction on k. By definition, it is clear that

(u0
α, I

0
lα) ∈ [a, b] × [B(a), B(b)]

for any α ∈ Z
d and any l ∈ {1, . . . , L}. Assume (uk

α, I
k
lα) ∈ [a, b] × [B(a), B(b)]. It follows

from Proposition 3.1 and (3.5) that the right-hand side of the equation (3.7) takes values in
the interval

[(1 + c∆t)a+ σL∆tLB(a), (1 + c∆t)b+ σL∆tLB(b)].
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Since B = B(u) is increasing, the left-hand side is strictly increasing with respect to uk+1
α .

Thus, from the structure of the left-hand side we see that uk+1
α must take values in [a, b]. On

the other hand, it follows from the second equation in (3.4) that

(1 + c∆t)Ik+1
lα = Glα + c∆tB(uk+1

α ).

Thanks to the monotonicity, the right-hand side obviously takes values in the interval

[B(a) + c∆tB(a), B(b) + c∆tB(b)] = (1 + c∆t)[B(a), B(b)].

Hence Ik+1
lα ∈ [B(a), B(b)] and the proof is complete. �

Having Lemma 3.2, we use (3.2) simply to obtain the following time-Lipschitz estimate.

Lemma 3.3. Under the conditions of Lemma 3.2, let M be a positive integer. Then we have

∑

|α|≤M

|uk+1
α − uk

α| ≤ C∆t

(

Md + h−1
∑

α,j

|uk
α+ej

− uk
α|

)

,

c−1
∑

|α|≤M

|Ik+1
lα − Ik

lα| ≤ C∆t

(

Md + h−1
∑

α,j

|Ik
l,α+ej

− Ik
lα|

)

for all k ∈ N. Here C is a generic constant depending only on d, a, b, |Sd−1| and the functions
B, f ′.

Now we turn to the L1-stability of the difference scheme (3.2).

Lemma 3.4. Let (uk
α, I

k
lα) and (ũk

α, Ĩ
k
lα) be two solutions to the difference scheme (3.2) that

satisfies the conditions of Lemma 3.2. Then the L1-contraction estimate
∑

α

|uk+1
α − ũk+1

α | + c−1σL

∑

l,α

|Ik+1
lα − Ĩk+1

lα | ≤
∑

α

|uk
α − ũk

α| + c−1σL

∑

l,α

|Ik
lα − Ĩk

lα|

holds for all k ∈ N.

Proof. From (3.4) we deduce that

uk+1
α − ũk+1

α = Gα − G̃α + σL∆t
L
∑

l=1

(

(Ik+1
lα − Ĩk+1

lα ) − B(uk+1
α ) +B(ũk+1

α )
)

,

Ik+1
lα − Ĩk+1

lα = Glα − G̃lα − c∆t
(

Ik+1
lα − Ĩk+1

lα − B(uk+1
α ) +B(ũk+1

α )
)

.

For α ∈ Z
d, define

sα = sign(uk+1
α − ũk+1

α ), slα = sign(Ik+1
lα − Ĩk+1

lα ).

We have

|uk+1
α − ũk+1

α | = sα(Gα − G̃α) + sασL∆t
L
∑

l=1

(

(Ik+1
lα − Ĩk+1

lα ) −B(uk+1
α ) +B(ũk+1

α )
)

,

|Ik+1
lα − Ĩk+1

lα | = slα(Glα − G̃lα) − slαc∆t
(

Ik+1
lα − Ĩk+1

lα − B(uk+1
α ) +B(ũk+1

α )
)

.
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Since B = B(u) is increasing with respect to u, we see that

(slα − sα)(B(uk+1
α ) − B(ũk+1

α ))

= slα(B(uk+1
α ) −B(ũk+1

α )) − |B(uk+1
α ) −B(ũk+1

α )|

≤ 0.

Similarly, we have
(sα − slα)(Ik+1

lα − Ĩk+1
lα ) ≤ 0.

Consequently, we arrive at

(3.8)

|uk+1
α − ũk+1

α | + c−1σL

L
∑

l=1

|Ik+1
lα − Ĩk+1

lα |

≤ |Gα − G̃α| + c−1σL

L
∑

l=1

|Glα − G̃lα|

+ σL∆t
L
∑

l=1

[

(sα − slα)(Ik+1
lα − Ĩk+1

lα ) + (slα − sα)(B(uk+1
α ) −B(ũk+1

α ))
]

≤ |Gα − G̃α| + c−1σL

L
∑

l=1

|Glα − G̃lα|.

On the other hand, we may as well assume that
∑

α

|uk
α − ũk

α| + c−1σL

∑

l,α

|Ik
lα − Ĩk

lα| <∞.

(Otherwise, the lemma is trivially true). This implies that

|uk
α − ũk

α|, |Ik
lα − Ĩk

lα| −→ 0 as |α| → ∞.(3.9)

Now we follow [1] and set

ûk
α = max{uk

α, ũ
k
α}, Ĝα = G(ûk

α, û
k
α±e1

, . . . , ûk
α±ed

).

Thanks to the monotonicity of G (Proposition 3.1), we have Ĝα ≥ max{Gα, G̃α} and thereby

|Gα − G̃α| ≤ |Gα − Ĝα| + |Ĝα − G̃α|

= (Ĝα −Gα) + (Ĝα − G̃α)

= (ûk
α − uk

α) + (ûk
α − ũk

α)+

+ [(Ĝα − ûk
α) − (Gα − uk

α)] + [(Ĝα − ûk
α) − (G̃α − ũk

α)]

= |uk
α − ũk

α| + [(Ĝα − ûk
α) − (Gα − uk

α)] + [(Ĝα − ûk
α) − (G̃α − ũk

α)].

Since the scheme is conservative, it follows from (3.9) that
∑

α

[(Ĝα − ûk
α) − (Gα − uk

α)] = 0,
∑

α

[(Ĝα − ûk
α) − (G̃α − ũk

α)] = 0.

Therefore, we get
∑

α

|Gα − G̃α| ≤
∑

α

|uk
α − ũk

α|.
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Similarly, we have
∑

l,α

|Glα − G̃lα| ≤
∑

l,α

|Ik
lα − Ĩk

lα|.

By substituting the last two inequalities into (3.8), we complete the proof. �

By taking

(ũk
α, Ĩ

k
lα) = (uk

α+ej
, Ik

l,α+ej
)

in Lemma 3.4, we get the following corollary on BV -estimates of the difference solutions.

Corollary 3.5. Let (uk
α, I

k
lα) be a solution to the difference scheme (3.2) and satisfy the

conditions of Lemma 3.2. Then the BV estimate
∑

α

|uk
α − uk

α+ej
| + c−1σL

∑

l,α

|Ik
lα − Ik

l,α+ej
| ≤

∑

α

|u0
α − u0

α+ej
| + c−1σL

∑

l,α

|I0
lα − I0

l,α+ej
|

holds for k ≥ 0 and j = 1, 2, . . . , d.

We conclude this subsection with an entropy property of the difference solutions. Notice
that the coupling in system (2.7) is only due to the source terms. For such weakly coupled
systems, a proof of the next lemma can be found in [14, Lemma 4.3].

Lemma 3.6. Let (uk
α, I

k
lα) be a solution to the difference scheme (3.2) that satisfies the

conditions of Lemma 3.2. Then, for any smooth convex function η = η(u), there exist
Lipschitz continuous functions rj and slj (j = 1, 2, . . . , d; l = 1, 2, . . . , L) of two variables
such that for all α ∈ Z

d and k ≥ 0, the following cell entropy inequalities hold:

η(uk+1
α ) ≤η(uk

α) −
∆t

h

d
∑

j=1

(

rj(u
k
α, u

k
α+ej

) − rj(u
k
α−ej

, uk
α)
)

+ η′(uk+1
α )σL

L
∑

l=1

(

Ik+1
lα − B(uk+1

α )
)

,

η(Ik+1
lα ) ≤η(Ik

lα) −
∆t

h

d
∑

j=1

(

slj(I
k
lα, I

k
l,α+ej

) − slj(I
k
l,α−ej

, Ik
lα)
)

+ cη′(Ik+1
lα )

(

B(uk+1
α ) − Ik+1

lα

)

.

Moreover, the Lipschitz continuous functions (numerical entropy fluxes) satisfy the following
consistency relations

rj(u, u) =

∫ u

0

η′(w)f ′
j(w) dw , slj(I, I) = cωljη(I).

3.2. Existence of Entropy Solutions. In this subsection, we show the convergence of the
difference scheme (3.2) to the Cauchy problem (2.7). To this end, we define

(3.10)
(

uh(x, t), Ih
l (x, t)

)

:=
(

uk
α, I

k
lα

)

for (x, t) ∈ Rα × [k∆t, (k + 1)∆t).

For uh and Ih
l defined thus, we have
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Lemma 3.7. Under the conditions of Lemma 3.2, the piecewise constant functions uh, Ih
l

defined in (3.10) satisfy the following estimates

(3.11)
(

uh(x, t), Ih
l (x, t)

)

∈ [a, b] × [B(a), B(b)] for all (x, t),

(3.12) |uh(., t)|BV (Rd) +
σL

c

L
∑

l=1

|Ih
l (., t)|BV (Rd) ≤ |u0|BV (Rd) +

σL

c

L
∑

l=1

|Īl0|BV (Rd),

(3.13) ‖uh(·, t)−uh(·, t1)‖L1(|x|≤R), c
−2σL

L
∑

l=1

‖Ih
l (·, t)−Ih

l (·, t1)‖L1(|x|≤R) ≤ CR(|t−t1|+∆t)

for all t, t1 ≥ 0 and all R > 0. In (3.13), the generic constant CR depends on R.

Proof. The inclusion in (3.11) follows directly from Lemma 3.2. For (3.12), we observe from
the definition of BV -seminorm (2.2) that

(3.14)
(

|uh(., t)|BV (Rd), |I
h
l (., t)|BV (Rd)

)

= hd−1

d
∑

j=1

∑

α∈Zd

(

|uk
α+ej

− uk
α|, |I

k
lα+ej

− Ik
lα|
)

,

where k is an integer such that t ∈ [k∆t, (k + 1)∆t). Thus, the inequality (3.12) simply
follows from Corollary 3.5.

To show (3.13), we let k1 be such an integer that t1 ∈ [k1∆t, (k1 + 1)∆t). Without loss of
generality, we assume k1 ≤ k. Then we deduce from Definition (3.10) and Lemma 3.3 that

‖uh(·, t)−uh(·, t1)‖L1(|x|≤R) =
∑

|α|≤Rh−1

|uk
α − uk1

α |hd

≤
k−1
∑

n=k1

∑

|α|≤Rh−1

|un+1
α − un

α|h
d

≤C(k − k1)∆t
(

Rd + hd−1
∑

j,α

|un
α+ej

− un
α|
)

≤CR(|t− t1| + ∆t),

where the last step uses (3.14) and (3.12) together with the uniform boundedness of |u0|BV (Rd)

and |I0(., ω)|BV (Rd) assumed in Theorem 2.1. Likewise, we have

c−2σL

L
∑

l=1

‖Ih
l (·, t) − Ih

l (·, t1)‖L1(|x|≤R) ≤ CR(|t− t1| + ∆t).

Thus, the inequality (3.13) is verified. This completes the proof. �

Having Lemma 3.7, we are in a position to prove the existence of entropy solutions to the
Cauchy problem (2.7).

Theorem 3.8. Assume the conditions of Theorem 2.1. Then, as h and ∆t go to zero
but always satisfy the CFL-like condition (3.6), {(uh, Ih

1 , . . . , I
h
L)}h>0 defined in (3.10) has a

subsequence converging almost everywhere to an entropy solution (u, I1, . . . , IL) to the Cauchy
problem (2.7). Moreover, the solution fulfills the following estimates

(3.15) (u(x, t), I1(x, t), . . . , IL(x, t)) ∈ [a, b] × [B(a), B(b)]L for almost all (x, t),
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(3.16) |u(., t)|BV (Rd) +
σL

c

L
∑

l=1

|Il(., t)|BV (Rd) ≤ |u0|BV (Rd) +
σL

c

L
∑

l=1

|Īl0|BV (Rd),

(3.17) ‖u(., t) − u(., t1)‖L1(|x|≤R),
σL

c2

L
∑

l=1

‖Il(., t) − Il(., t1)‖L1(|x|≤R) ≤ CR|t− t1|

for all t, t1 > 0 and all R > 0. In (3.17), the generic constant CR depends on R.

Proof. Thanks to the estimates in (3.11) and (3.12), we deduce from the Fréchet-Kolmogorov
theorem [19] that for each t ≥ 0, set

S :=
{

(

uh(., t), Ih
1 (., t), . . . , Ih

L(., t)
)

}

h>0

is precompact in L1
loc(R

d)L+1. Then for each t ≥ 0, the set has a subsequence (denoted in
the same way) converging to a certain (u(., t), I1(., t), . . . , IL(., t)) in L1

loc(R
d)L+1. Choose

a countable and dense subset of the time interval [0,∞). By a standard diagonalization
argument, we see that the set S has a subsequence converging to (u(., t), I1(., t), . . . , IL(., t))
in L1

loc(R
d)L+1 for all t in the dense subset. Moreover, we exploit the estimates in (3.13)

and deduce that the subsequence converges to (u(., t), I1(., t), . . . , IL(., t)) in L1
loc(R

d)L+1 and
thereby almost everywhere for all t ≥ 0. Having this convergence, we follows the proof of
the Lax-Wendroff theorem (see, e.g. [5, Theorem 1.1, Chapter III]) and deduce from Lemma
3.6 that (u, I1, . . . , IL) is an entropy solution to the Cauchy problem (2.7). The estimates in
(3.15)–(3.17) follow simply from the above convergence result and the estimates in (3.11)–
(3.13). This completes the proof. �

Remark 3.3. In [15], it was proven that entropy solutions of weakly coupled systems like
(2.7) are unique if they exist. Thus, the last proof shows the convergence of the difference
scheme (3.2) to the unique entropy solution of the Cauchy problem (2.7).

4. A Proof of the Main Result

This section is devoted to proving our main result Theorem 2.1. We separate the proof into
two parts: existence and nonrelativistic limit. In the first subsection, we show the existence
of weak entropy solutions to the Cauchy problem (1.1) subject to (2.1). The definition of
entropy solutions is given in (2.3).

4.1. Existence of Entropy Solutions. To begin with, we recall that entropy solutions to
the discrete-ordinate model (2.7) depend on the parameters σL = |Sd−1|/L and c. To make
visible the dependency on σL, we denote by (uL, IL

1 , . . . , I
L
L) the unique entropy solution to

(2.7) constructed in Theorem 3.8. Moreover, we define

IL = IL(x, t, ω) = IL
l (x, t), for ω ∈ Ωl,

for each (x, t) ∈ R
d × Ωl. This definition implies

(4.1)

∫

Sd−1

IL(x, t, ω) dω = σL

∑

l

IL
l (x, t) for each (x, t),
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and, together with the estimate (3.15),

(4.2)
uL(x, t) ∈ [a, b] a.e. (x, t) ∈ R

d × [0,∞),
IL(x, t, ω) ∈ [B(a), B(b)] a.e. (x, t, ω)) ∈ R

d × [0,∞) × Sd−1.

Note that the functions uL and IL depend on the parameter c.

Theorem 4.1. Under the conditions of Theorem 2.1, for each c > 1 the Cauchy prob-
lem (1.1) subject to (2.1) has an entropy solution (uc, Ic) =

(

uc(x, t), Ic(x, t, ω)
)

satisfying
following estimates

(4.3)
uc(x, t) ∈ [a, b] a.e. (x, t) ∈ R

d × [0,∞),
Ic(x, t, ω) ∈ [B(a), B(b)] a.e. (x, t, ω) ∈ R

d × [0,∞) × Sd−1,

(4.4) |uc(., t)|BV (Rd) ≤ |u0|BV (Rd),

(4.5) |uc(., t) − uc(., t1)|L1(|x|≤R) ≤ CR|t− t1|

for all t, t1 ≥ 0 and all R > 0. In (4.5), the generic constant CR depends on R.

Note that we have not claimed the uniqueness of the entropy solution (uc, Ic).

Proof. In this proof, the light speed c is fixed. Thus, u and I are used to stand for uc and Ic,
respectively. Thanks to (4.2), set {(uL, IL) : L = 1, 2, . . .} is bounded in L∞

(

R
d × [0,∞)

)

×

L∞
(

R
d × [0,∞) × Sd−1

)

. Thus, the set has a subsequence (denoted in the same way) such
that as L goes to infinity,

(4.6)
uL ∗

⇀ u in L∞
(

R
d × [0,∞)

)

,

IL ∗
⇀ I in L∞

(

R
d × [0,∞) × Sd−1

)

.

On the other hand, based on estimates (3.16) and (3.17) of Theorem 3.8, we follow the proof
of Theorem 3.8 to deduce that there is a further subsequence of {uL}L∈N (again denoted in
the same way) such that

(4.7) uL → u in L1
loc

(

R
d × [0,∞)

)

.

Thanks to this strong convergence, the estimates (4.4) and (4.5) follow from those of uL in
(3.16) and (3.17). Moreover, the estimate (4.3) follows from the weak-∗ convergence (4.6)
and the estimate (4.2).

Next we show that (u, I) obtained above is an entropy solution to the Cauchy problem
(1.1) subject to (2.1). In fact, the strong convergence (4.7) implies that

∫

Rd×[0,∞)

[

η(uL)ψt + q(uL) · ∇ψ
]

dxdt→

∫

Rd×[0,∞)

[

η(u)ψt + q(u) · ∇ψ
]

dxdt.
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Moreover, it follows from (4.1), (4.7) and (4.6) that

∫

Rd×[0,∞)

η′(uL)ψσL

L
∑

l=1

(

IL
l − B(uL)

)

dxdt

=

∫

Rd×[0,∞)

η′(uL)ψ

(
∫

Sd−1

(

IL − B(uL)
)

dω

)

dxdt

=

∫

Rd×[0,∞)×Sd−1

η′(uL)ψ
(

IL −B(uL)
)

dxdtdω

→

∫

Rd×[0,∞)×Sd−1

η′(u)ψ
(

I − B(u)
)

dxdtdω.

Here we have used the fact that the weak-∗ convergence (4.6) and the strong convergence
(4.7) together allow us to pass the limit for the product η′(uL)IL. Thus, we see from Theorem
3.8 that (u, I) satisfies the first inequality in (2.3).

Furthermore, for each ω ∈ Sd−1 and each L ∈ N, there is an l ∈ {1, . . . , L} such that
ω ∈ Ωl. Then by Definition we have IL(x, t, ω) = IL

l (x, t) for all (x, t). Because of Theorem
3.8, IL

l is a weak solution of the second equation in (2.7):
∫

Rd×[0,∞)

[

c−1IL(., ω)ξt + IL(., ω)ωl · ∇ξ
]

dxdt

= −

∫

Rd

(

1

cσL

∫

Ωl

I0(., ω) dω

)

ξ(., 0) dx−

∫

Rd×[0,∞)

(

B(uL) − IL(., ω)
)

ξ dxdt

(4.8)

for any ξ = ξ(x, t) ∈ C∞
0

(

R
d × [0,∞)

)

. Note that ωl → ω as L goes to infinity. Thanks to
the weak-∗ and strong convergence (4.6) and (4.7), we deduce from (4.8) that

∫

Rd×[0,∞)

[

c−1I(., ω)ξt + I(., ω)ω · ∇ξ
]

dxdt

= −

∫

Rd

c−1I0(., ω)ξ(., 0) dx−

∫

Rd×[0,∞)

(

B(u) − I(., ω)
)

ξ dxdt

as measures on Sd−1. Hence (u, I) also satisfies the second equation in (2.3) and the proof
is complete. �

4.2. Nonrelativistic Limit. Finally, we analyse the nonrelativistic limit of (uc, Ic) obtained
in Theorem 4.1 as c → ∞, that is, the second part of Theorem 2.1. More precisely, we will
prove in this subsection the following result.

Theorem 4.2. Under the conditions of Theorem 2.1, there is a bounded measurable function
u∞ and a subsequence (denoted in the same way) of the set {(uc, Ic)}c>1 such that as c→ ∞,

uc → u∞ in L1
loc

(

R
d × [0,∞)

)

,

Ic ∗
⇀

∫ 0

−∞
esB(u∞(x+ sω, t)) ds, in L∞

(

R
d × [0,∞) × Sd−1

)

.
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Moreover, the function u∞ is an entropy solution to the Cauchy problem of (1.2) with initial
data u0 and satisfies

u∞(x, t) ∈ [a, b] a.e. (x, t) ∈ R
d × [0,∞),

|u∞(., t)|BV (Rd) ≤ |u0|BV (Rd),

|u∞(., t) − u∞(., t1)|L1(|x|≤R) ≤ CR|t− t1|

(4.9)

for all t, t1 ≥ 0 and all R > 0. In (4.9), the generic constant CR depends on R.

Proof. On the basis of the estimates (4.3)-(4.5) on (uc, Ic) constructed in Theorem 4.1,
we follow the proof of Theorem 4.1 to get analogues of (4.6) and (4.7). Namely, there exist
bounded measurable functions u∞, I∞ and a subsequence (denoted in the same way) of the
set {(uc, Ic)}c>1 such that as c→ ∞,

uc → u∞ in L1
loc

(

R
d × [0,∞)

)

,

Ic ∗
⇀ I∞ in L∞

(

R
d × [0,∞) × Sd−1

)

.

The strong convergence and the estimates on uc in Theorem 4.1 ensures the estimates in (4.9).
Moreover, it follows from the definition of entropy solutions (2.3) that (u∞, I∞) satisfies

∫

Rd×[0,∞)

[

η(u∞)ψt + q(u∞) · ∇ψ
]

dxdt

≥−

∫

Rd

η(u0)ψ(., 0) dx−

∫

Rd×[0,∞)

η′(u∞)ψ

(
∫

Sd−1

(

I∞(., ω) − B(u∞)
)

dω

)

dxdt,

∫

Rd×[0,∞)

I∞(., ω)ω · ∇ξ dxdt = −

∫

Rd×[0,∞)

(

B(u∞) − I∞(., ω)
)

ψ dxdt

(4.10)

for all nonnegative ψ ∈ C∞
0

(

R
d×[0,∞)

)

, all entropy pairs (η, q), and all ξ ∈ C∞
0

(

R
d×(0,∞)

)

.
The equality in (4.10) indicates that I∞ is a bounded weak solution of linear equation

ω · ∇I = B(u∞) − I, which is unique. Define Ĩ∞ = Ĩ∞(x, t, ω) as

Ĩ∞ =

∫ 0

−∞

esB(u∞(x+ sω, t)) ds.

It is easy to check that Ĩ∞ is also a bounded weak solution of the linear equation ω · ∇I =
B(u∞) − I. Therefore, we have I∞ = Ĩ∞ almost everywhere and

∫

Sd−1

I∞(x, t, ω) dω =

∫

Sd−1

Ĩ∞(x, t, ω) dω

=

∫

Sd−1

∫ 0

−∞

esB(u∞(x+ sω, t)) dsdω

=

∫

Rd

e−|x−y|

|x− y|d−1
B(u∞(y, t)) dy.

Substituting this into the inquality in (4.10), we show that u∞ is an entropy solution to the
Cauchy problem of (1.2) with initial data u0. This completes the proof. 2
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