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Abstract

A commodity-type graphics card (GPU) is used to simulate nonlinear water waves
described by a system of balance laws called the shallow-water system. To solve this
hyperbolic system we use explicit high-resolution central-upwind schemes, which are
particularly well suited for exploiting the parallel processing power of the GPU. In
fact, simulations on the GPU are found to run 15–30 times faster than on a CPU.
The simulated cases involve dry-bed zones and non-trivial bottom topographies,
which are real challenges to the robustness and accuracy of the discretization.
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1 Introduction

The introduction of programmable GPUs made it feasible to exploit the com-
putational power of the GPU for non-graphical purposes. In [1] a method for
physically-based visual simulation using some of the earliest programmable
GPUs was proposed. Recently, fragment processors with floating-point preci-
sion have become available. This has opened up a wide variety of usages of
the GPU including more advanced methods for solving PDEs such as complex
explicit and implicit schemes. Methods for employing GPUs to solve linear sys-
tems of equations, which is required when using implicit schemes, have been
proposed in [2] and [3]. Here we use the GPU for physically-based simulations
by applying state-of-the-art explicit schemes to solve systems of balance laws
known as the shallow water equations.

Free-surface flow over a variable bottom topography under the influence of
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gravity can be modeled by the shallow-water (or Saint–Venant) equations
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which we write on short form as

Qt + F (Q)x + G(Q)y = H(Q,∇B).

Here B(x, y) is the bottom topography, h(x, y, t) is the distance from the
bottom to the (wavy) surface, [ u, v ] is the depth-averaged velocity, and g is
the gravitational acceleration. The shallow-water equations are derived from
the depth-averaged incompressible Navier–Stokes equations for the case where
the surface perturbation is much smaller than the typical horizontal length
scale.

To compute solutions of (1) it is common to use high-resolution schemes [4]
with explicit temporal discretization. Such schemes have an obvious and natu-
ral parallelism in the sense that each grid cell can be processed independently
of its neighbors and are therefore ideal candidates for an implementation us-
ing data-based stream processing on a graphics processing unit (GPU). In
this paper we shall compute and compare approximate solutions to (1) using
the GPU and the CPU. We demonstrate that the GPU gives a speedup of
more than one order of magnitude, while retaining sufficient accuracy to make
the GPU an interesting and inexpensive alternative to high-performance com-
puters for qualitative and quantitative simulations of physical phenomena on
large grid models. Although our main focus is on the usability and applicabil-
ity of GPUs in scientific computing, we also try to demonstrate that numerical
solution of the shallow-water equations can be used to create semi-realistic,
nonlinear wave effects in interactive visual applications. To get a sufficiently
high framerate, it is necessary to use small grid models, viz. 104–105 grid
points, and/or simple schemes of low order.

2 Numerical Methods

The system (1) has two key features that makes it difficult to solve numer-
ically. First of all, the solution may contain discontinuities that correspond
to breaking waves. Classical schemes will therefore typically either smear the
discontinuous parts or introduce spurious oscillations that pollute computed
solutions. A common approach is therefore to use high-resolution schemes [4].
Here we will use a semi-discrete finite-volume scheme [5] to ensure high or-
der of approximation for smooth waves and sharp resolution of discontinuities
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without the creation of spurious oscillations.

The second difficulty with (1) is that this system of balance laws admits
steady-state solutions in which the source terms are exactly balanced by
nonzero flux gradients. Capturing such balances is a challenging task for any
numerical scheme. Here we will use a well-balanced treatment of the source
terms [6] to accurately resolve surfaces that are steady-state solutions or small
perturbations thereof.

The finite-volume scheme is defined over a regular Cartesian grid with grid cells
Ωij and seeks approximations in the form of cell-averages, Qij = 1

|Ωij |
∫
Ωij

Q.

The simplest possible scheme is the first-order Lax–Friedrichs scheme

Qn+1
ij =

1

4

(
Qn

i+1,j + Qn
i−1,j + Qn

i,j+1 + Qn
i,j−1

)
+ ∆tSn

ij

− ∆t

2∆x

[
F

(
Qn

i+1,j

)
− F

(
Qn

i−1,j

)]
− ∆t

2∆y

[
G

(
Qn

i,j+1

)
−G

(
Qn

i,j−1

)]
.

(2)

This is a very robust scheme, which unfortunately gives excessive smearing of
nonsmooth parts of the solution.

To obtain better accuracy for nonsmooth solutions, we introduce a high-
resolution scheme based upon a semi-discrete formulation where the cell av-
erages are evolved in time according to

dQij

dt
= −

(
Fi+1/2,j − Fi−1/2,j

)
−

(
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)
+ Sij, (3)

and the fluxes over the edges are approximated using a numerical quadrature.
In [5,6], the authors use the three-point Simpson rule. Here we will use a
standard two-point Gaussian quadrature (see Figure 1)
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(4)

which is more accurate and reduces the number of flux computations from
three to two for each edge. To evaluate the integrand, we start with the cell-
averages Qij and reconstruct a function that is piecewise polynomial inside
each grid cell, see [5,7]. A componentwise, piecewise linear function is used:

Qij(x, y) = Qij + L
(
Qi+1,j−Qi,j, Qi,j −Qi−1,j

)x− xi

∆x

+ L
(
Qi,j+1 −Qi,j, Qi,j −Qi,j−1

)y − yj

∆y
.

(5)

Here L is a so-called limiter function, whose purpose is to construct the linear
slope within each grid cell as a nonlinear average of the forward and the
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Fig. 1. (Left) Integration points in the Gaussian quadrature. (Right) Reconstruction
of a piecewise linear function based upon the cell averages and the limiter (6) with
θ = 1. The horizontal lines indicate the cell averaged values and the piecewise linear
function is formed by the segments with small circles at the ends. The effect of the
limiter is clearly visible: given two candidate slopes based upon a right-sided and a
left-sided estimate, the limiter chooses the slope giving the least steep reconstruction
if the signs of the two slopes are equal, and chooses a zero slope otherwise.

backward differences, and prevent the creation of overshoots at local extrema;
see the right-hand part Figure 1. In this paper, we use the family of generalized
minmod limiters

L(a, b) = MM(θa, 1
2
(a + b), θb)

where the minmod function MM is given by

MM(z1, . . . , zn) =


maxi zi, zi < 0 ∀i,
mini zi, zi > 0 ∀i,
0, otherwise.

(6)

At each integration point (xi+1/2, yj±α), we have a left-sided and a right-sided
point value, QL and QR (cf. Figure 1). To compute the flux, we could use the
average of the flux evaluated at the two one-sided point values. However, to
get a high-resolution scheme, we use the central-upwind flux-function [5]

F(QL, QR) =
a+F (QL)− a−F (QR)

a+ − a−
+

a+a−

a+ − a−
(QR −QL),

a+ = max
(
0, λ+(QL), λ+(QR)

)
, a− = min

(
0, λ−(QL), λ−(QR)

)
,

(7)

where λ±(Q) = u±
√

gh denotes the eigenvalues of dF/dQ.

The ordinary differential equations (3) for the cell averages are integrated
using a second-order TVD Runge–Kutta method [8],

Q
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where Rij denotes the right-hand side of (3). The time step is restricted by
a CFL-condition, which states that disturbances can travel at most one half
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grid cell each time step, i.e., max(a+,−a−)∆t ≤ ∆x/2, and similarly in y.

As noted above, (1) admits steady-state solutions where non-zero flux gradi-
ents are balanced by the topographical source terms, i.e.,

[hu2 +
1

2
gh2]x + [huv]y = −ghBx,

and similarly in the y-direction. Many physically interesting phenomena are
perturbations of steady states. To accurately compute the time evolution of
such perturbations, we must ensure that our scheme does not produce errors of
the same magnitude as the waves we want to resolve. We would therefore like
the spatial truncation error to be zero at steady states. This is an important
and challenging problem.

Lake-at-rest is the name given to an important family of steady states for (1);
it is characterized by the relations hu = hv = 0 and h + B = Const. By
reconstructing the surface elevation w = h + B rather than the water depth
h, and by a choosing a special quadrature rule for the cell-averaged source
term Sij, the spatial part of the truncation error vanishes at these states. The
scheme thus preserves steady states numerically, see [6]. The quadrature rule
for the second component of the source term is given by

S
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(9)

and a similar construction is used for the third component of Sij.

When water depths approach zero, reconstructing w will not guarantee non-
negative point-values for h. Negative h-values are both physically incorrect
and very undesirable in the numerics. On the other hand, by reconstructing
h rather than w, the scheme is guaranteed to yield nonnegative water depths
(under a more restrictive time step). Therefore, as a reasonable compromise,
one can choose a threshold K, and use the following strategy: reconstruct
point values from the physical variables [h, u, v] if h < K and from [w, hu, hv]
otherwise. A version of this scheme is presented in [6]. Notice that this com-
promise is not well-balanced in the first component, i.e., it produces nonzero
flux terms for lake-at-rest.
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Fig. 2. Flow chart for the GPU implementation of the semi-discrete finite-volume
scheme. Gray boxes are executed on the GPU and white boxes on the CPU.

3 Implementation on the GPU

We have implemented the method presented above using OpenGL and Cg
to utilize the GPU’s capabilities for floating-point processing. Using GPUs
for non-graphical computations are generally known as GPGPU (General-
Purpose Computation using Graphics Hardware), and an introduction to tech-
niques commonly used in this field can be found in [9]. The general setup is
to render a triangle that covers the entire viewport, and employ a fragment
shader as the computational kernel. A fragment shader is a program, which
the GPU executes for each pixel. For a quadrilateral domain it is more natural
to render a quad than a triangle. However, the GPU is optimized for rendering
triangles, and this choice results in a performance gain.

Algorithms must be divided into steps in such a way that each data cell can
be calculated independently within a step in the algorithm. Each step can
be executed by rendering a triangle covering the viewport—which causes the
fragment processor to execute the fragment shader, thereby calculating the
new cell values. Figure 2 illustrates the different steps and the data flow in
the implemented algorithm.

Initial data ➀ are created either by using height maps of the bottom topog-
raphy and water level or by procedural textures. The CFL stability condition
is determined by the global maximum of eigenvalues ➁ in the grid cells. To
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find this maximum we use an ‘all-reduce’ operation utilizing the depth buffer
combined with read-back to the CPU for the final calculations ➂. Here we
divide the domain into smaller sub-domains and render the eigenvalues of
each sub-domain into the depth buffer. The depth buffer used has the same
dimension as the sub-domains. The effect of this is that one of the values of
the depth buffer must be the largest eigenvalue. This depth buffer is then
read back to the CPU, which picks the global maximum. We did not use the
GPU to determine the global maximum because the application requires the
maximum value to be read back to the CPU anyway. Compared to a linear
search through all eigenvalues by the CPU, the depth buffer technique gives a
performance gain—which mainly is due to the efficiency of the GPU’s depth
test. With this method, this part of the algorithm represents less than 5% of
the total computational cost.

The Runge–Kutta method for advancing the solution in time is comprised
of two iterations. Each iteration begins with a fragment shader that sets the
boundary conditions ➃. The next step is to reconstruct point values ➄ from
the cell averages. For cases with positive water depth, it is only necessary to
run the fragment shader for the variables [w, hu, hv]. For computations with
dry states, we also need to reconstruct point values of [h, u, v]. In this case we
precompute [h, u, v] at step ➇, and then apply the reconstruction shader to
both sets of variables.

The most computationally intensive step is the evaluation of edge fluxes and
source terms ➅. The time step ∆t is passed to this shader by the CPU when
the stability calculations of step ➂ are done. For the simplest case with con-
stant bottom topography, ∇B = 0, the source terms are zero, and the shader
computes only the flux integrals (4). For the more complex case of varying
bottom topography, the source-term integrals (9) are also needed. When the
simulation involves dry states, branching is needed at this step to determine
if one should use the reconstruction of [w, hu, hv] or reconstruction of [h, u, v]
for the calculations. The design of the graphics hardware is not optimal for
handling branching efficiently, so generally one should aim at using algorithms
with as few branches as possible. Eliminating the branch in the scheme used
in this paper seems rather difficult—for cases with dry states, computational
performance may therefore be better with other schemes; see e.g., [10].

The forward Euler step ➆ corresponds to equation (8). By repeating the execu-
tion of the shaders inside the forward Euler box, one arrives at the second-order
Runge–Kutta scheme. A number of different shaders are used for output ➈ to
the screen, exemplified in Figure 3.
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Table 1
Runtime in milliseconds per time step and speedup factor ν for a CPU versus a GPU
implementation of the Lax–Friedrichs and the second-order central-upwind scheme,
both without source terms and dry states. The case is the circular dambreak problem
run on a set of uniform grids with N ×N cells.

Lax–Friedrichs 2nd order central-upwind

N CPU [ms] GPU [ms] ν CPU [ms] GPU [ms] ν

128 2.22 0.23 9.53 30.6 1.27 24.2

256 9.09 0.46 19.8 122 4.19 29.1

512 37.1 1.47 25.2 486 16.8 28.9

1024 148 5.54 26.7 2050 68.3 30.0

4 CPU versus GPU

In this section we compare CPU and GPU implementations of the two schemes
presented in Section 2. We measure runtimes and explore the factors that affect
the relative speedup. The GPU is a NVIDIA Geforce 7800 GTX and the CPU
is a 2.8 GHz Intel Xeon (EM64T).

Case 1. The first test case is presented in [11], and we give the results here
for the convenience of the reader. We consider a simple circular dambreak
problem over the domain [−1.0, 1.0] × [−1.0, 1.0] with absorbing boundary
conditions. Th water surface is initially at rest with height h = 1.0 inside a
circle of radius 0.3 and height h = 0.1 outside.

We compute the solution using both the first-order Lax–Friedrichs scheme
(2) and the second-order central-upwind scheme described in Section 2. Run-
times for CPU and GPU implementations are reported in Table 1. The Lax–
Friedrichs scheme requires a smaller number of arithmetic operations per grid
cell than does the central-upwind scheme. The timings reported here therefore
show that the speedup is better for schemes with a high count of arithmetic
operations per time step (similar behavior has been observed by the authors
for numerous other cases; a few of these are reported in [11]).

Case 2. We consider lake-at-rest defined by a variable bottom topography
B(x, y) = max(0, 1− x2 − y2) and a stationary flat water surface h(x, y, 0) =
max(w0 − B(x, y), 0). For w0 = 1.01, the water depth is strictly positive and
the solution is stationary and exactly preserved by the central-upwind scheme.
Runtimes per time step for the CPU and the GPU are reported in Table 2
along with corresponding speedup factors ν. Compared with Table 1, we no-
tice a slight increase in runtimes, yet the speedup factor ν does not change.
This indicates that the added complexity by introducing the well-balanced
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Table 2
Runtime in milliseconds per time step and speedup factor ν for a CPU versus a
GPU implementation of the second-order central-upwind scheme. The case is ‘lake-
at-rest’ with surface level w0, computed on a set of uniform grids with N ×N cells.
For w0 = 1.01 we used the simpler scheme without the switch for dry-regions.

without dry states, w0 = 1.01 with dry states, w0 = 0.9

N CPU [ms] GPU [ms] ν CPU [ms] GPU [ms] ν

128 32.7 1.35 24.2 35.2 2.38 14.7

256 130 4.40 29.5 143 8.09 17.7

512 518 17.2 30.1 599 31.9 18.8

1024 2140 69.8 30.6 3270 142 23.0

treatment of the variable bottom topography in Table 2 has more or less the
same effect on the CPU and on the GPU.

For w0 = 0.9, we have zero water depth in parts of the domain. The mea-
sured runtimes and speedup factors are reported in Table 2. In this case,
the branching described in Section 2 is needed to ensure nonnegative water
depth. As pointed out in Section 3, branching is not as natural on the GPU
as on the CPU and may therefore increase the runtime per time step. To
avoid data-dependent branching in the reconstruction of point values, both
sets of variables are reconstructed in the GPU implementation; compare with
the right-hand part of Table 1, and notice that the branching almost doubles
the runtime. The CPU implementation, on the other hand, only reconstructs
the needed variables. Though computations are relatively inexpensive, this
contributes to the reduced speedup.

Flood waves caused by a dambreak. In Figure 3, we have included four
snapshots of a dambreak simulation on the GPU. Initially, the water in the
upper and lower lake is at rest. When the water in the upper lake is released
through the narrow canyon, it generates flood waves and vortices in the lower
lake. The wave motion and the increased water level in the lower lake makes the
water flow into the valley below before it again comes to rest. The simulation
is interactive in the sense that it has a fly-through mode that allows the user
to inspect the solution while it is being computed.

The purpose of the simulation is to give a qualitative description of the ma-
jor flood waves according to the shallow water model. If we were to use the
simulation for visual purposes within computer animation, several approaches
could have been taken to make the water surface look more realistic. First of
all, we would have chosen a less smooth bottom topography and initial water
surface. Second, one could add artificial visual water effects, see e.g., [12].
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Fig. 3. Snapshots of a dambreak simulation in artificially constructed terrain.

5 Final Comments

In this paper we have demonstrated the applicability of the GPU as a compu-
tational resource for PDE-based simulations of gravity-driven surface waves
in shallow waters. Modern numerical schemes for such models are inherently
parallel in the sense that very little global communication is needed in the
computational domain to advance the solution forward in time. Therefore,
this application can readily exploit the parallel architecture of modern GPUs.
We have seen in practical computations that moving from a serial CPU-based
implementation to an implementation on a modern GPU decreases the run-
time by more than one order of magnitude. (The runtime of the full dambreak
simulation was reduced from two hours to five minutes!) To achieve the same
speedup using CPUs, one would have to resort to a cluster of twenty or more
processing nodes.

In our experience, numerical solution of conservation laws and balance laws
are as reliable on the GPU as on the CPU; the single-precision arithmetic of
the GPU does not negatively affect the computations. Indeed it should not,
since the methods we have examined are numerically stable. As we have seen,
the ratio of simulation speeds on the GPU and the CPU varies. It is inter-
esting to identify what causes these variations. In this paper two effects seem
clear. In the first place, the advantage of the GPU is increased if the ratio
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between arithmetic operations and memory access is well balanced. This al-
lows the application to take advantage of both the memory bandwidth and
the computational power of the GPU. In our applications, we observe that
the speedup is better for the high-resolution scheme than for the arithmeti-
cally less demanding Lax–Friedrichs scheme. The reason is probably that the
larger number of arithmetic operations allows the GPU to fetch data while
calculating.

Secondly, data dependent branching is expensive. There exist several known
methods to handle this challenge, but the results are highly dependent of
the input data and the graphics hardware. We did not invest a large amount
of time to find the best possible solution for our hardware, but aimed for a
reasonable compromise. Due to the architecture of currently available GPUs,
fragments that are being evaluated simultaneously must execute the same
branch. Thus the evaluation of some fragments must wait for its neighbors. In
our application, however, the effect of this is small because the outcome of the
conditionals are mainly the same for fragments closely related in screen space.
It seems that much of the performance loss when data dependent branching
is involved happens because the compiler looses some of its freedom to make
optimizations. Since data dependent branching in the pixel shader is a rela-
tively new feature of GPUs, compilers are likely to improve in the future when
it comes to optimization of the code. The branching intensive shader in our
application is compiled to over 400 instructions—therefore we did not make
any attempt to optimize the assembly version by hand.

It seems clear that the computing resources on the GPU have many appli-
cations outside of computer graphics. First of all, the computing power of
desktop computers can be vastly increased with modest expenses. This can
have a great impact in end-user software since one may be able to remove bot-
tlenecks in computationally expensive applications. Computations that today
are done in batch mode may with the use of the GPU become interactive. With
interactivity and fast visualization, new applications of PDE-based physics are
possible, ranging from process steering and control, to computer games and
educational simulators.

References

[1] M. J. Harris, G. Coombe, T. Scheuermann, A. Lastra, Physically-based
visual simulation on graphics hardware, in: HWWS ’02: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2002, pp.
109–118.
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