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Abstract

When numerically solving the Liouville equation with a discontinuous po-

tential, one faces the problem of selecting a unique, physically relevant so-

lution across the potential barrier, and the problem of a severe time step

constraint due to the CFL condition. In this paper, We introduce two classes

of Hamiltonian-preserving schemes for such problems. By using the constant

Hamiltonian across the potential barrier, we introduced a selection criterion

for a unique, physically relavant solution to the underlying linear hyperbolic

equation with singular coefficients. These scheme have a hyperbolic CFL con-

dition, which is a significant improvement over a conventional discretization.

We also establish the positivity, and stability in both l
1 and l

∞ norms, of these

discretizations, and conducted numerical experiments to study the numerical

accuracy.

This work is motivated by the well-balanced kinetic schemes by Perthame

and Simeoni for the shallow water equations with a discontinuous bottom

topography, and has applications to the level set methods for the compu-

tations of multivalued physical observables in the semiclassical limit of the

linear Schrödinger equation with a discontinuous potential, among other ap-

plications.
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1 Introduction

In this paper, we construct and study a class of numerical schemes for the d-
dimensional Liouville equation in classical mechanics:

ft + v · ∇
x
f −∇

x
V · ∇

v
f = 0 , t > 0, x,v ∈ Rd , (1.1)

where f(t,x,v) is the density distribution of a classical particle at position x, time
t and traveling with velocity v. V (x) is the potential. The Liouville equation is a
different formulation of Newton’s second law:

dx

dt
= v ,

dv

dt
= −∇

x
V , (1.2)

which is a Hamiltonian system with the Hamiltonian

H =
1

2
|v|2 + V (x) (1.3)

It is known from classical mechanics that the Hamiltonian remains constant across
a potential barrier.

The Liouville equation is a linear wave equation, with the characteristic speed
determined by the Newton’s equation (1.2)–which is usually called the bicharacter-
istic. If V (x) is smooth, then the initial value problem to (1.2) is well-posed, and a
standard numerical method (for example, the upwind scheme and its higher order
extensions) for linear wave equation gives satisfactory results. However, if V (x)
is discontinuous–which corresponding to a potential barrier–then the characteristic
speed of the Liouville equation given by (1.2) is infinity at the discontinuous point.
When numerically approximating Vx across the interface, the numerical derivative
of V is of O(1/∆x), with ∆x the mesh size in the physical space. Thus an explicit
scheme needs time step ∆t = O(∆x∆ξ) with ∆ξ the mesh size in particle veloc-
ity space. This is very expensive. Moreover, a conventional numerical scheme in
general does not preserve a constant Hamiltonian across the interface, usually leads
to poor or even incorrect numerical resolutions by ignoring the discontinuities of
V (x). Theoretically, there is a uniqueness issue for weak solutions to these linear
hyperbolic equations with singular wave speeds [2, 4, 7, 20, 21]. It is not clear which
weak solution a standard numerical discretization that ignores the discontinuity of
V (x) will select.

Potential barriers appear in many important physical problems, such as the
quantum tunneling (and quantum dots) in semiconductor device modeling, plasmas,
and geometrical optics through different materials. Liouville or Vlasov equations
describes the density distribution of particles in such a heterogeneous medium. For
some recent mathematical study of discontinuous potentials in high frequency waves
see [1, 17, 22].

In this paper, we construct a class of numerical schemes that are suitable for
the Liouville equation (1.1) with a discontinuous potential. An important feature of
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these schemes is that they are consistent to the constant Hamiltonian across a po-
tential barrier for the Liouville equation (1.1). We call such schemes Hamiltonian-

preserving schemes. A key idea in this paper is to use the behavior of a classical
particle at the potential barrier–either cross over if its kinetic energy is sufficiently
large– or be reflected with a negative velocity. We build this mechanics into the
numerical scheme to construct the Hamiltonian-preserving schemes. This work is
motivated by the well-balanced kinetic scheme of Perthame and Simeoni [19] for
the shallow water equations with a (discontinuous) bottom topography, in which
the similar mechanics was built into a hydrodynamic scheme for the shallow water
equations in order to capture the steady state solutions–corresponding to a constant
energy– of the shallow water equations. However, the work of Perthame and Sime-
oni was focused on a kinetic scheme for the shallow water equations defined in the
physical space, thus the numerical discretization in the phase space was not stud-
ied. The phase space discretization is an important issue for the Liouville equation
with a discontinuous potential. As shown by this work, if designed properly, the ex-
plicit Hamiltonian-preserving schemes allow a standard hyperbolic CFL condition
∆t = O(∆x,∆ξ). More importantly, by using the a constant Hamiltonian condition
across the potential barrier, these schemes select a unique, and physically relevant,
solutions for the underlying linear hyperbolic equation with singular coefficients.

Another application of the Liouville equation like (1.1) is the level set method
for the computation of multivalued solutions to quasilinear PDEs, see [12, 3]. Such
problem arises in the semiclassical limit of the linear Schrödinger equation, which
yields the Liouville equation (1.1) with the initial data

f(x,v, 0) = ρ0(x)δ(v − u0(x)) , (1.4)

see for example [16, 9]. In the physical space, the moments of f :

ρ(x, t) =

∫
f(x,v, t)dv, (1.5)

u(x, t) =
1

ρ(x, t)

∫
f(x,v, t)vdv (1.6)

may become multivalued, see [10, 25] and the relevant numerical methods [8, 6]. The
level set method proposed in [11] solves the Liouville equation (1.1) with the initial
data (1.4) by decomposing f into φ and ψi(i = 1, · · · , d) where φ and ψi solve the
same Liouville equation (1.1) with initial data

φ(x,v, 0) = ρ0(x) , ψi(x,v, 0) = vi − ui0(x) , (1.7)

respectively. This allows the numerical computations for a bounded solution rather
than measure-valued solution of the Liouville equation with singular initial data
(1.4), which greatly enhancing the numerical resolution. The moments can be re-
covered through

ρ(x, t) =

∫
φ(x,v, t)Πd

i=1δ(ψi)dv, (1.8)
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u(x, t) =

∫
φ(x,v, t)vΠd

i=1δ(ψi)dv/ρ(x, t) (1.9)

Numerical computations of multivalued solution for smooth potential using this
technique were given in [11] for smooth potentials. In this article we will also apply
the Hamiltonian-preserving schemes for the level set computations of multivalued
solution of the physical observables ρ,u, etc.

In Sections 2, we first point out the problems with the usual finite difference
scheme to solve the Liouville equation with discontinuous potentials. We then
present the designing principle of our Hamiltonian-preserving schemes using the
behavior of classical particles at a potential barrier. In Section 3, a 1d Hamiltonian-
preserving scheme based on a finite difference approach (called Scheme I) is given,
and its positivity and l∞ are established. In Section 4, a 1D Hamiltonian-preserving
scheme based on a finite volume approach (called Scheme II) is given. We extend
these schemes to higher dimension in Section 5. In Section 6, we study the l1-
stability of Scheme I. We prove that the scheme is l1-stable for suitable initial data,
while for other (such as the measure-valued (1.4)) initial data the solution may be-
come unbounded. In Section 7, we prove that Scheme II is positive, l∞-stable ,
and l1-contracting (for more general l1 initial data then Scheme I). In Section 8, we
show that even for smooth initial data, the solution to the Liouville equation (1.1)
could become discontinuous in the downstream part of the potential barrier. This
contributes to the reduced numerical convergence rate to 1/2 for a formally first
order scheme, as in any shock capturing method for a linear wave equation with
discontinuous initial data. Numerical examples are given in Section 9 to verify the
accuracy of the two schemes constructed in this paper. We conclude the paper in
Section 10.

2 The designing principle of the Hamiltonian-preserving

schemes

2.1 Deficiency of the usual finite difference schemes

We consider the numerical solution of the 1D Liouville equation

ft + ξfx − Vxfξ = 0 (2.1)

with a discontinuous potential V (x).
Without loss of generality, we employ an uniform mesh with grid points at

xi+ 1

2

, i = 0, · · · , N, in the x-direction and ξj+ 1

2

, j = 0, · · · ,M in the ξ-direction. The

cells are centered at (xi, ξj), i = 1, · · · , N, j = 1, · · · ,M with xi = 1
2
(xi+ 1

2

+ xi− 1

2

)

and ξj = 1
2
(ξj+ 1

2

+ ξj− 1

2

). The mesh size is denoted by ∆x = xi+ 1

2

− xi− 1

2

,∆ξ =
ξj+ 1

2

−ξj− 1

2

. We also assume a uniform time step ∆t and the discrete time is given by
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0 = t0 < t1 < · · · < tL = T . We introduce mesh ratios λt
x = ∆t

∆x
, λt

ξ = ∆t
∆ξ
, λξ

x = ∆ξ
∆x

,
assumed to be fixed. We define the cell averages of f as

fij =
1

∆x∆ξ

∫ x
i+ 1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x, ξ, t)dξdx.

The 1-d average quantity fi+1/2,j is defined as

fi+1/2,j =
1

∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

f(xi+1/2, ξ, t)dξ .

f1,j+1/2 is defined similarly.
A typical semi-discrete finite difference method for this equation is

∂tfij + ξj
fi+ 1

2
,j − fi− 1

2
,j

∆x
−DVi

fi,j+ 1

2

− fi,j− 1

2

∆ξ
= 0, (2.2)

where the numerical fluxes fi+ 1

2
,j, fi,j+ 1

2

are defined by the upwind scheme, and DVi

is some numerical approximation of Vx at x = xi.
Such a discretization suffers from at least two problems:

• The above discretization in general does not preserve a constant Hamiltonian
H = 1

2
ξ2 + V across the discontinuities of V . Such a numerical approximation

may lead to unphysical problem or poor numerical resolution.

• If an explicit time discretization is used, the CFL condition for this scheme
requires the time step to satisfy

∆t

[
maxj |ξj|

∆x
+

maxi |DVi|
∆ξ

]
≤ 1. (2.3)

Since the potential V (x) is discontinuous at some points, maxi |DVi| ==
O(1/∆x), so the CFL condition (2.3) requires ∆t = O(∆x∆ξ).

2.2 Behavior of a classical particle at a potential barrier

In classical mechanics, a particle will either cross a potential barrier with a changing
momentum, or be reflected, depending on its momentum and on the strength of the
potential barrier. The Hamiltonian H = 1

2
ξ2 + V should be preserved across the

potential barrier:
1

2
(ξ+)2 + V + =

1

2
(ξ−)2 + V − (2.4)

where the superscripts ± indicate the right and left limits of the quantity at the
potential barrier.

For example, consider the case when, at a potential discontinuity, the character-
istic on the left of the potential discontinuity is given as a constant velocity ξ− > 0.
There are three possibilities (see Figure 2.1) :
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1) V − > V +. In this case, the potential decreases, so the particle will cross
the potential barrier and gain momentum in order to maintain a constant
Hamiltonian. (2.4) implies

ξ+ =
√

(ξ−)2 + 2(V − − V +) .

2) V − < V + and 1
2
(ξ−)2 > V +−V −. If the kinetic energy of the particle is bigger

than the potential jump then the particle will cross the barrier with a reduced
momentum. (2.4) implies

ξ+ =
√

(ξ−)2 − 2(V + − V −)

3) V − < V + and 1
2
(ξ−)2 < V + − V −. In this case, the kinetic energy is not large

enough for the particle to cross the potential barrier, so the particle will be
reflected with a negative velocity −ξ−.

1)
2)

3)

V− V+ V−
V+

ξ

−ξ

ξ

ξ[ξ2−2(V+ − V−)]1/2

[ξ2+2(V− − V+)]1/2

Figure 2.1 Change of particle momentum across a potential barrier for the case
when ξ− > 0.

If ξ− < 0, similar behavior can also be analyzed using the constant Hamiltonian
condition (2.4). See Fig.2.1.

The main ingredient in the well-balanced kinetic scheme by Perthame and Sime-
oni [19] for the shallow water equations with topography was to build in the above
mechanism into the numerical scheme in order to preserve the steady state solution
of the shallow water equations when the water velocity is zero. Note that the density
distribution f remains unchanged across the potential barrier, thus

f(t, x+, ξ+) = f(t, x−, ξ
−) (2.5)

at a discontinuous point x of V (x), where ξ+ and ξ− are related by the constant
Hamiltonian condition (2.4). This was used in constructing the numerical flux in
[19].
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In this paper, we use this mechanism for the numerical approximation to the Li-
ouville equation with a discontinuous potential. This approximation, by its design,
maintains a constant Hamiltonian up to approximation error across the potential
barrier. The new issue faced here, not explored in [19], is the discretization in the
ξ-direction. Given ξ− as a grid point, the ξ+ constructed from the constant Hamilto-
nian condition (2.4) may not be a grid point, thus some appropriate interpolations
in the ξ-direction is needed here. The approximation in the ξ-direction, and its
consequent numerical properties, constitutes the main body of this paper.

3 Scheme I: a finite difference approach

3.1 The Hamiltonian-preserving numerical flux

We now describe our first finite difference scheme for the Liouville equation with a
discontinuous potential. We call this scheme as Scheme I.

Assume that the discontinuous points of potential V are located at the grid
points. Let the left and right limits of V at point xi+1/2 be V +

i+ 1

2

and V −
i+ 1

2

respectively.

Note that if V is continuous at xj+1/2, then V +
i+ 1

2

= V −
i+ 1

2

. We approximate V by a

piecewise linear function

V (x) ≈ V +
i−1/2 +

V −
i+1/2 − V +

i−1/2

∆x
(x− xi−1/2) .

We will adopt the flux splitting technique used in [19]. The semidiscrete scheme
(with time continuous) reads

∂tfij + ξj
f−

i+ 1

2
,j
− f+

i− 1

2
,j

∆x
−
V −

i+ 1

2

− V +
i− 1

2

∆x

fi,j+ 1

2

− fi,j− 1

2

∆ξ
= 0, (3.1)

where the numerical fluxes fi,j+ 1

2

are defined using the upwind discretization. Since
the characteristics of the Liouville equation may be different on the two sides of a
potential discontinuity, the corresponding numerical fluxes should also be different.
The essential part of our algorithm is to define the split numerical fluxes f−

i+ 1

2
,j
, f+

i− 1

2
,j

at each cell interface. We will use (2.5) to define these fluxes.
Assume V is discontinuous at xi+1/2. Consider the case ξj > 0. Using upwind

scheme, f−
i+ 1

2
,j

= fij. However,

f+
i+1/2,j = f(x+

i+1/2, ξ
+
j ) = f(x−i+1/2, ξ

−
j )

while ξ− is obtained from ξ+
j = ξj from (2.4). Since ξ− may not be a grid point, we

have to define it approximately. The first approach is to locate the two cell centers
that bound this velocity, then use a linear interpolation to evaluate the needed
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numerical flux at ξ−. The case of ξj < 0 is treated similarly. The detailed algorithm
to generate the numerical flux is given below.

Algorithm I

• ξj > 0

f−
i+ 1

2
,j

= fij ,

❏ if V −
i+ 1

2

> V +
i+ 1

2

,

✰ if ξj >

√
2
(
V −

i+ 1

2

− V +
i+ 1

2

)
,

ξ− =

√
ξ2
j + 2

(
V +

i+ 1

2

− V −
i+ 1

2

)

if ξk ≤ ξ− < ξk+1 for some k

then f+
i+ 1

2
,j

=
ξk+1−ξ−

∆ξ
fik + ξ−−ξk

∆ξ
fi,k+1

✰ else

f+
i+ 1

2
,j

= fi+1,k where ξk = −ξj
✰ end

❏ if V −
i+ 1

2

< V +
i+ 1

2

ξ− =

√
ξ2
j + 2

(
V +

i+ 1

2

− V −
i+ 1

2

)

if ξk ≤ ξ− < ξk+1 for some k

then f+
i+ 1

2
,j

= ξk+1−ξ−

∆ξ
fik + ξ−−ξk

∆ξ
fi,k+1

❏ if V −
i+ 1

2

= V +
i+ 1

2

f+
i+ 1

2
,j

= f−
i+ 1

2
,j

❏ end

• ξj < 0

f+
i+ 1

2
,j

= fi+1,j ,

❏ if V −
i+ 1

2

< V +
i+ 1

2

,

✰ if |ξj| >
√

2
(
V +

i+ 1

2

− V −
i+ 1

2

)
,

ξ+ = −
√
ξ2
j + 2

(
Vi − V +

i+ 1

2

)

if ξk ≤ ξ+ < ξk+1 for some k
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then f−
i+ 1

2
,j

= ξk+1−ξ+

∆ξ
fi+1,k + ξ+−ξk

∆ξ
fi+1,k+1

✰ else

f−
i+ 1

2
,j

= fik where ξk = −ξj
✰ end

❏ if V −
i+ 1

2

> V +
i+ 1

2

ξ+ = −
√
ξ2
j + 2

(
V −

i+ 1

2

− V +
i+ 1

2

)

if ξk ≤ ξ+ < ξk+1 for some k

then f−
i+ 1

2
,j

= ξk+1−ξ+

∆ξ
fi+1,k + ξ+−ξk

∆ξ
fi+1,k+1

❏ if V −
i+ 1

2

= V +
i+ 1

2

f−
i+ 1

2
,j

= f+
i+ 1

2
,j

❏ end

The above algorithm for evaluating numerical fluxes is of first order. One can
obtain a second order flux by incorporating the slope limiter, such as van Leer or
minmod slope limiter [15, 26], into the above algorithm. This can be achieved by
replacing fik by fik + ∆x

2
sik, and replacing fi+1,k by fi+1,k − ∆x

2
si+1,k in the above

algorithm for all the possible index k, where sik is the slope limiter in the x-direction.
After the spatial discretization is specified, one can use any time discretization

for the time derivative.

3.2 Positivity and l∞ contraction

Since the exact solution of the Liouville equation is positive when the initial profile
is, it is important that the numerical solution inherits this property.

We only consider the scheme using the first order numerical flux, and the forward
Euler method in time. Without loss of generality, we consider the case ξj > 0
and V −

i+ 1

2

< V +
i− 1

2

for all i (the other cases can be treated similarly with the same

conclusion). The scheme reads

fn+1
ij − fij

∆t
+ ξj

fij − (c1fi−1,k + c2fi−1,k+1)

∆x
−
V −

i+ 1

2

− V +
i− 1

2

∆x

fij − fi,j−1

∆ξ
= 0,

where c1, c2 are positive and c1 + c2 = 1. We omit the possible superscript n of f .
The above scheme can be rewritten as

fn+1
ij =


1 − |ξj|λt

x −

∣∣∣V −
i+ 1

2

− V +
i− 1

2

∣∣∣
∆x

λt
ξ


 fij + |ξj|λt

x (c1fi−1,k + c2fi−1,k+1)

+

∣∣∣V −
i+ 1

2

− V +
i− 1

2

∣∣∣
∆x

λt
ξfi,j−1 . (3.2)
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Now we investigate the positivity of scheme (3.2). This is to prove that if fn
ij ≥ 0

for all (i, j), then this is also true for fn+1. Clearly one just needs to show that all
the coefficients before fn are non-negative. A sufficient condition for this is clearly

1 − |ξj|λt
x −

|V −
i+ 1

2

− V +
i− 1

2

|
∆x

λt
ξ ≥ 0,

or

∆t




maxj |ξj|
∆x

+

maxi

∣∣∣∣
V −

i+ 1
2

−V +

i− 1
2

∆x

∣∣∣∣
∆ξ


 ≤ 1. (3.3)

This CFL condition is similar to the CFL condition (2.3) of the usual finite

difference scheme except that the quantity

∣∣∣∣
V −

i+ 1
2

−V +

i− 1
2

∆x

∣∣∣∣ now represents the gradient

of potential at its smooth point, which has a finite upper bound. Thus our new
scheme has a hyperbolic CFL condition.

According to the study in [18], our second order scheme, which incorporates
slope limiter into the first order scheme, is positive under the half CFL condition,
namely, the constant on the right hand side of (3.3) is 1/2.

The above conclusion are analyzed based on forward Euler time discretization.
One can draw the same conclusion for the second order TVD Runge-Kutta time
discretization [24].

The l∞-contracting property of this scheme follows easily with the same hyper-
bolic CFL condition, because the coefficients in (3.2) are positive and the sum of
them is 1.

4 Scheme II: a finite volume approach

In this section another flux which results in an l1-contracting scheme is proposed.
We call this scheme Scheme II.

By integrating the Liouville equation (2.1) over the cell [xi−1/2, xi+1/2]×[ξj−1/2, ξj+1/2],
one gets the following equation

∂tfij + ξj
f−

i+ 1

2
,j
− f+

i− 1

2
,j

∆x
−
V −

i+ 1

2

− V +
i− 1

2

∆x

fi,j+ 1

2

− fi,j− 1

2

∆ξ
= 0. (4.1)

The upwind discretization depends on the sign of ξj and
V −

i+ 1
2

−V +

i− 1
2

∆x
. To illustrate

the basic idea, we assume ξj > 0,
V −

i+ 1
2

−V +

i− 1
2

∆x
< 0 and V −

i+ 1

2

< V +
i+ 1

2

(this is the case
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when the particle loses momentum from left to right at the barrier). In this case

f−
i+ 1

2
,j

=
1

ξj∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

ξf
(
x−

i+ 1

2

, ξ, t
)
dξ,

fi,j+ 1

2

=
1

V −
i+ 1

2

− V +
i− 1

2

∫ x
i+1

2

x
i− 1

2

Vxf
(
x, ξ−

j+ 1

2

, t
)
dx

By using the condition (2.5):

f+
i+ 1

2
,j

=
1

ξj∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

ξf
(
x+

i+ 1

2

, ξ, t
)
dξ,=

1

ξj∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

ξf
(
x−

i+ 1

2

, ξ, t
)
dξ, (4.2)

where f is defined as

f
(
x−

i+ 1

2

, ξ, t
)

= f

(
x−

i+ 1

2

,

√
ξ2 + 2

(
V +

i+ 1

2

− V −
i+ 1

2

)
, t

)
.

Using a change of variable on (4.2) leads to

f+
i+ 1

2
,j

=
1

ξj∆ξ

∫ ξ
j+ 1

2

ξ
j− 1

2

ξf

(
x−

i+ 1

2

,

√
ξ2 + 2

(
V +

i+ 1

2

− V −
i+ 1

2

)
, t

)
dξ

=
1

ξj∆ξ

∫ ξ′
2

ξ′
1

ξf
(
x−

i+ 1

2

, ξ, t
)
dξ. (4.3)

where

ξ′1 =
√
ξ2
j− 1

2

+ 2(V +
i+ 1

2

− V −
i+ 1

2

) , ξ′2 =
√
ξ2
j+ 1

2

+ 2(V +
i+ 1

2

− V −
i+ 1

2

) . (4.4)

The integral in (4.3) will be approximated by a quadrature rule. Since the end
point ξ′1 and ξ′2 may not be grid points in the ξ-direction. We first need to locate
the grid points that bound ξ′1 and ξ′2. There are two possibilities,namely, either ξ′1
and ξ′2 fall into the same cell, or they are in separate cells. In the former case, we
use the midpoint rule. In the second case, the composite midpoint rule is used.

We propose the following evaluation of the split fluxes f±
i+ 1

2
,j

in (4.1)

Algorithm II

• if ξj > 0

f−
i+ 1

2
,j

= fij ,

❏ if V −
i+ 1

2

> V +
i+ 1

2

,

✰ if ξj− 1

2

≥
√

2
(
V −

i+ 1

2

− V +
i+ 1

2

)
,

11



ξ′1 =

√
ξ2
j− 1

2

− 2
(
V −

i+ 1

2

− V +
i+ 1

2

)

ξ′2 =

√
ξ2
j+ 1

2

− 2
(
V −

i+ 1

2

− V +
i+ 1

2

)

❄ if ξk− 1

2

≤ ξ′1 < ξ′2 ≤ ξk+ 1

2

for some k

f+
i+ 1

2
,j

= 1
ξj

ξ′
2
−ξ′

1

∆ξ
ξkfik

❄ else ξk− 1

2

≤ ξ′1 < ξk+ 1

2

< · · · < ξk+s− 1

2

< ξ′2 ≤ ξk+s+ 1

2

for some
k, s

f+
i+ 1

2
,j

= 1
ξj

{
ξ
k+1

2

−ξ′
1

∆ξ
ξkfik + ξk+1fi,k+1 + · · ·

+ξk+s−1fi,k+s−1 +
ξ′
2
−ξ

k+s− 1
2

∆ξ
ξk+sfi,k+s

}

❄ end

✰ else

f+
i+ 1

2
,j

= fi+1,k where ξk = −ξj
✰ end

❏ if V −
i+ 1

2

< V +
i+ 1

2

ξ′1 =

√
ξ2
j− 1

2

+ 2
(
V +

i+ 1

2

− V −
i+ 1

2

)

ξ′2 =

√
ξ2
j+ 1

2

+ 2
(
V +

i+ 1

2

− V −
i+ 1

2

)

❄ if ξk− 1

2

≤ ξ′1 < ξ′2 ≤ ξk+ 1

2

for some k

f+
i+ 1

2
,j

= 1
ξj

ξ′
2
−ξ′

1

∆ξ
ξkfik

❄ else ξk− 1

2

≤ ξ′1 < ξk+ 1

2

< · · · < ξk+s− 1

2

< ξ′2 ≤ ξk+s+ 1

2

for some k, s

f+
i+ 1

2
,j

= 1
ξj

{
ξ
k+1

2

−ξ′
1

∆ξ
ξkfik + ξk+1fi,k+1 + · · ·

+ξk+s−1fi,k+s−1 +
ξ′
2
−ξ

k+s−1
2

∆ξ
ξk+sfi,k+s

}

❄ end

❏ if V −
i+ 1

2

= V +
i+ 1

2

f+
i+ 1

2
,j

= f−
i+ 1

2
,j

❏ end

• if ξj < 0

f+
i+ 1

2
,j

= fi+1,j ,

12



❏ if V −
i+ 1

2

< V +
i+ 1

2

,

✰ if |ξj+ 1

2

| >
√

2
(
V +

i+ 1

2

− V −
i+ 1

2

)
,

ξ′1 = −
√
ξ2
j− 1

2

+ 2
(
V −

i+ 1

2

− V +
i+ 1

2

)

ξ′2 = −
√
ξ2
j+ 1

2

+ 2
(
V −

i+ 1

2

− V +
i+ 1

2

)

❄ if ξk− 1

2

≤ ξ′1 < ξ′2 ≤ ξk+ 1

2

for some k

f−
i+ 1

2
,j

= 1
ξj

ξ′2−ξ′1
∆ξ

ξkfi+1,k

❄ else ξk− 1

2

≤ ξ′1 < ξk+ 1

2

< · · · < ξk+s− 1

2

< ξ′2 ≤ ξk+s+ 1

2

for some
k, s

f−
i+ 1

2
,j

= 1
ξj

{
ξ
k+1

2

−ξ′1

∆ξ
ξkfi+1,k + ξk+1fi+1,k+1 + · · ·

+ξk+s−1fi+1,k+s−1 +
ξ′2−ξ

k+s−1
2

∆ξ
ξk+sfi+1,k+s

}

❄ end

✰ else

f−
i+ 1

2
,j

= fik where ξk = −ξj
✰ end

❏ if V −
i+ 1

2

> V +
i+ 1

2

ξ′1 = −
√
ξ2
j− 1

2

+ 2
(
V −

i+ 1

2

− V +
i+ 1

2

)

ξ′2 = −
√
ξ2
j+ 1

2

+ 2
(
V −

i+ 1

2

− V +
i+ 1

2

)

❄ if ξk− 1

2

≤ ξ′1 < ξ′2 ≤ ξk+ 1

2

for some k

f−
i+ 1

2
,j

= 1
ξj

ξ′2−ξ′1
∆ξ

ξkfi+1,k

❄ else ξk− 1

2

≤ ξ′1 < ξk+ 1

2

< · · · < ξk+s− 1

2

< ξ′2 ≤ ξk+s+ 1

2

for some k, s

f−
i+ 1

2
,j

= 1
ξj

{
ξ
k+1

2

−ξ′1

∆ξ
ξkfi+1,k + ξk+1fi+1,k+1 + · · ·

+ξk+s−1fi+1,k+s−1 +
ξ′
2
−ξ

k+s−1
2

∆ξ
ξk+sfi+1,k+s

}

❄ end

❏ if V −
i+ 1

2

= V +
i+ 1

2

f−
i+ 1

2
,j

= f+
i+ 1

2
,j

❏ end

13



• end

Remark 4.1. The above Algorithm uses a first order quadrature rule at the ends of

the interval (4.3), thus it is of first order even if the slope limiters in x-direction are

incorporated into the algorithm. One can also use a second order quadrature rule

at the ends of intervals (4.3).

5 The schemes in higher dimensions

Our 1D schemes can be easily extended to higher dimension using a dimension-by-
dimension approach. For example, consider the 2D Liouville equation

ft + ξfx + ηfy − Vxfξ − Vyfη = 0. (5.1)

We employ a uniform mesh with grid points at xi+ 1

2

, yj+ 1

2

, ξk+ 1

2

, ηl+ 1

2

in each

direction. The cells are centered at (xi, yj, ξk, ηl) with xi = 1
2
(xi+ 1

2

+ xi− 1

2

), yj =
1
2
(yj+ 1

2

+ yj− 1

2

), ξk = 1
2
(ξk+ 1

2

+ ξk− 1

2

), ηl = 1
2
(ηl+ 1

2

+ ηl− 1

2

). The mesh size is denoted
by ∆x = xi+ 1

2

− xi− 1

2

,∆y = yj+ 1

2

− yj− 1

2

,∆ξ = ξk+ 1

2

− ξk− 1

2

,∆η = ηl+ 1

2

− ηl− 1

2

. We
define the cell average of f as

fijkl =
1

∆x∆y∆ξ∆η

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ ξ
k+1

2

ξ
k− 1

2

∫ η
l+ 1

2

η
l− 1

2

f(x, y, ξ, η, t)dηdξdydx.

Similarly to the 1D case, we approximate the potential by a piecewise bilinear func-
tion, and for convenience, we always provide two interface values of potential at each
cell interface. When the potential is smooth at a cell interface, the two potential
interface values are identical.

The 2D Liouville equation (5.1) can be semi-discretized as

∂tfijkl + ξk
f−

i+ 1

2
,jkl

− f+
i− 1

2
,jkl

∆x
+ ηl

f−
i,j+ 1

2
,kl

− f+
i,j− 1

2
,kl

∆y

−
V −

i+ 1

2
,j
− V +

i− 1

2
,j

∆x

fij,k+ 1

2
,l − fij,k− 1

2
,l

∆ξ
−
V −

i,j+ 1

2

− V +
i,j− 1

2

∆y

fijk,l+ 1

2

− fijk,l− 1

2

∆η
= 0,

where the interface values fij,k+ 1

2
,l, fijk,l+ 1

2

are provided by the upwind approxima-

tion, and the split interface values f−
i+ 1

2
,jkl
, f+

i− 1

2
,jkl
, f−

i,j+ 1

2
,kl
, f+

i,j− 1

2
,kl

can be obtained

using essentially the same algorithm described in subsection 2.3 or 2.5 for the 1D
case. Since the gradient of the potential at its smooth points are bounded, this
scheme similar to the 1D scheme, is also subject to a hyperbolic CFL condition un-
der which the scheme is positive, and Hamiltonian preserving (if the discontinuity
of V aligns with the grids).
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6 The l1-stability theory of Scheme I

In this section we prove the l1-stability of Scheme I (with the first order numerical
flux and the forward Euler method in time) under a suitable assumption on the
initial data. We also show that if this assumption does not hold, the numerical
solution can grow unbounded in l1. We consider the simple case when V (x) is a step
function, with a jump −D,D > 0 at xm+ 1

2

. Namely

V −
m+ 1

2

− V +
m+ 1

2

= D, V ±
i+ 1

2

= V −
m+ 1

2

, i < m, V ±
i+ 1

2

= V +
m+ 1

2

, i > m.

We consider the typical situation that ξ1 < −
√

2D, ξM >
√

2D, so that all the
three situations discussed in Section 2 are included. We also choose the mesh such
that 0 is a grid point in the ξ-direction.

Define an index set

D4
l = {(i, j)|xi ≤ xm, ξj < −

√
ξ2
1 − 2D}.

Due to velocity change across the potential jump at xm+ 1

2

, D4
l represents the

area where particles come from outside of the domain [x1, xN ]× [ξ1, ξM ]. In order to
implement Scheme I conveniently, we need to choose the computational domain as

Ed = {(i, j)|i = 1, · · · , N, j = 1, · · · ,M} \D4
l . (6.1)

Figure 6.1 depicts Ed and D4
l .

We define the l1-norm of a numerical solution fij to be

|f |1 =
1

Nd

∑

(i,j)∈Ed

|fij|

with Nd being the number of elements in Ed.

6.1 l1-stability under an assumption on the initial data

Given the initial data f 0
ij , (i, j) ∈ Ed. Denote the numerical solution at time T to

be fL
ij , (i, j) ∈ Ed. To prove the l1-stability, we need to show that |fL|1 ≤ C|f 0|1.

Due to the linearity of the scheme, the equation for the error between the an-
alytical and the numerical solution is the same as (3.2), so in this section, fij will
denote the error. We assume there is no error at the boundary, thus fn

ij = 0 at
the boundary. If the l1-norm of the error introduced at each time step in incoming
boundary cells is ensured to be o(1) part of |fn|1, our following analysis still applies.

Since Vx(x) = 0 except at x = xm+1/2, Scheme I is given by:
1) if ξj > 0, i 6= m+ 1,

fn+1
ij = (1 − ξjλ

t
x)fij + ξjλ

t
xfi−1,j ; (6.2)

15



2) if ξj < 0, i 6= m,

fn+1
ij = (1 − |ξj|λt

x)fij + |ξj|λt
xfi+1,j ; (6.3)

3) if ξj >
√

2D,

fn+1
m+1,j = (1 − ξjλ

t
x)fm+1,j + ξjλ

t
x(cj,kfm,k + cj,k+1fm,k+1) ; (6.4)

4) if 0 < ξj ≤
√

2D,

fn+1
m+1,j = (1 − ξjλ

t
x)fm+1,j + ξjλ

t
xfm+1,k ; (6.5)

5) if ξj < 0,

fn+1
mj = (1 − |ξj|λt

x)fmj + |ξj|λt
x(cjkfm+1,k + cj,k+1fm+1,k+1), (6.6)

where 0 ≤ cjk ≤ 1 and cjk+cj,k+1 = 1. In (6.4) k is determined by ξk ≤
√
ξ2
j − 2D <

ξk+1, in (6.6) ξk = −ξj, and in (6.5) ξk ≤ −
√
ξ2
j + 2D < ξk+1. We omit the

superscript n of fij on the right hand side.
Using the triangle inequality in (6.2)-(6.6), one typically gets the following

|fn+1|1 ≤
1

Nd

∑

(i,j)∈Ed

αij |fn
ij|, (6.7)

where the coefficients αij are positive. One can check that, under the hyperbolic CFL
condition (3.3), αij ≤ 1 except for possibly (i, j) ∈ D2

m ∪D4
m+1 with the definitions:

D2
m = {(m, j)|0 < ξj <

√
ξ2
N − 2D + ∆ξ},

D4
m+1 = {(m+ 1, j)|ξj < −

√
∆ξ2/4 + 2D + ∆ξ}.
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Figure 6.1 Sketch of the index sets D2
m, D

4
m+1, D

4
l .

Denote
M1 = max

(i,j)∈D2
m

αij , M2 = max
(i,j)∈D4

m+1

αij .

Our next step is to prove that M1,M2 are bounded independent of the mesh size.
Let us first examine M1.

Define the set

Sm
j =

{
j′
∣∣∣ξj′ >

√
2D,

∣∣∣
√
ξ2
j′ − 2D − ξj

∣∣∣ < ∆ξ
}

for (m, j) ∈ D2
m.

Let the number of elements in Sm
j be Nm

j . One can check that Nm
j ≤ 2 because

every two elements j′1, j
′
2 ∈ Sm

j satisfy |
√
ξ2
j′
1

− 2D−
√
ξ2
j′
2

− 2D| ≥ |ξj′
1
− ξj′

2
| ≥ ∆ξ.

On the other hand, one can easily check from (6.4), for (m, j) ∈ D2
m,

αmj < 1 +Nm
j ≤ 3,

so the boundedness of M1 is proved.
Next we study M2. Define the set

Sm+1
j =

{
j′
∣∣∣| −

√
ξ2
j′ + 2D − ξj| < ∆ξ

}
for (m+ 1, j) ∈ D4

m+1.
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Let ξmax = max{|ξ1|, |ξM |}. Using the CFL condition, ξmax∆t
∆x

≤ 1. So from (6.6)
one can get, for (m+ 1, j) ∈ D4

m+1, the estimate for αm+1,j :

αm+1,j < 1 +
∑

j′∈Sm+1

j

|ξj′|λt
x ≤ 1 +

1

ξmax

∑

j′∈Sm+1

j

|ξj′|. (6.8)

Since ξj′, for j′ ∈ Sm+1
j , are in fact an arithmetic progression with increment ∆ξ.

Denote the minimum and maximum element in Sm+1
j to be m1, m2 respectively.

Since ξm1
, ξm2

< 0, one has |ξm2
| ≤ |ξm1

|. The last summation in (6.8) turns out to
be

∑

j′∈Sm+1

j

|ξj′| =
|ξm1

| + |ξm2
|

2

( |ξm1
| − |ξm2

|
∆ξ

+ 1

)
≤ ξ2

m1
− ξ2

m2

2∆ξ
+ ξmax. (6.9)

On the other hand, because m1, m2 ∈ Sm+1
j ,

√
ξ2
m1

+ 2D −
√
ξ2
m2

+ 2D ≤ 2∆ξ ,

⇒
√
ξ2
m1

+ 2D ≤
√
ξ2
m2

+ 2D + 2∆ξ ,

⇒ ξ2
m1

≤ ξ2
m2

+ 2
√
ξ2
m2

+ 2D∆ξ + 4∆ξ2 ,

⇒ ξ2
m1

− ξ2
m2

2∆ξ
≤
√
ξ2
m2

+ 2D + 2∆ξ ≤ ξmax + 2∆ξ. (6.10)

Combine (6.8)-(6.10), we get

αm+1,j < 1 +
1

ξmax

(2ξmax + 2∆ξ) = 3 + 2
∆ξ

ξmax

with (m+ 1, j) ∈ D4
m+1. Therefore the boundedness of M2 is proved.

In summary, we have

M1 < 3, M2 < 3 + 2
∆ξ

ξmax
,

both are bounded independent of mesh size.
Denote M ′

1 = max(0,M1 − 1),M ′
2 = max(0,M2 − 1). From (6.7),

|fn+1|1 ≤ |fn|1 +
M ′

1

Nd

∑

(i,j)∈D2
m

|fn
ij | +

M ′
2

Nd

∑

(i,j)∈D4
m+1

|fn
ij| . (6.11)

We now impose an assumption:
Assumption 1

18



There exists a positive constant ξz such that

∀(i, j) ∈ Sz = {(i, j)| xi < xm+ 1

2

, 0 < ξj < ξz}, (6.12)

it holds that
|f 0

ij | ≤ C1|f 0|1 . (6.13)

Remark: The semiclassical limit initial data (1.4) does not satisfy this condition.
Thus Scheme I, when directly applied to this problem, may have stability problems,
as shown in the next subsection. However, if the decomposition idea mentioned in
the Introduction is used, Scheme I is still suitable, which is what will be done in the
numerical experiments of Section 9.

We now establish the following theorem:

Theorem 6.1. Under Assumption 1, there exists an h0 > 0, when ∆x < h0, the

l1-stability property

|fL|1 ≤ C|f 0|1

of the scheme (6.2)-(6.6) holds.

Proof. From (6.11),

|fL|1 ≤ |f 0|1 +
M ′

1

Nd

L−1∑

n=0





∑

(i,j)∈D2
m

|fn
ij|



+

M ′
2

Nd

L−1∑

n=0





∑

(i,j)∈D4
m+1

|fn
ij|



 . (6.14)

It remains to estimate

S1 =
L−1∑

n=0





∑

(i,j)∈D2
m

|fn
ij|



 (6.15)

and

S2 =

L−1∑

n=0





∑

(i,j)∈D4
m+1

|fn
ij |




 . (6.16)

We begin with estimating S2.

Define the set

Sr = {(i, j)| xi > xm+ 1

2

, (m+ 1, j) ∈ D4
m+1}.

∀(i, j) ∈ Sr, due to the zero boundary condition and the upwind nature of the

scheme, one has

fn
ij =

∑

(p,q)∈Sr

βijn0
pq f 0

pq, (i, j) ∈ Sr (6.17)
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with βijn0
pq ≥ 0.

Notice D4
m+1 ⊂ Sr,

S2 ≤
∑

(p,q)∈Sr




L−1∑

n=0

∑

(i,j)∈D4
m+1

βijn0
pq


 |f 0

pq| ≡
∑

(p,q)∈Sr

F (p, q)|f 0
pq|, (6.18)

where we have defined

F (p, q) =

L−1∑

n=0

∑

(i,j)∈D4
m+1

βijn0
pq , (p, q) ∈ Sr. (6.19)

The next step is to estimate these coefficients. Define

βij0
pq =

∞∑

n=0

βijn0
pq , (p, q) ∈ Sr,

then (6.19) gives

F (p, q) =
∑

(i,j)∈D4
m+1

L−1∑

n=0

βijn0
pq ≤

∑

(i,j)∈D4
m+1

βij0
pq .

Hence it is useful to evaluate βij0
pq .

Notice βij0
pq is not zero only when p ≥ i and q = j due to the upwind flux

and constant potential. We first evaluate βij0
pq when p = i and q = j. Denote

cj1 = 1 − |ξj |∆t

∆x
, cj2 =

|ξj |∆t

∆x
. From scheme (6.3)

βij0
ij =

∞∑

n=0

βijn0
ij =

∞∑

n=0

(cj1)
n =

1

1 − cj1
=

1

cj2
. (6.20)

Since (i, j) ∈ Sr and cj2 ≥
√

2Dλt
x, so

1

cj2
≤ 1√

2Dλt
x

≡ λ1.

We now evaluate βij0
pj when p > i. ¿From scheme (6.3),

βij,n+1,0
pq = cj1β

ijn0
pq + cj2β

i+1,jn0
pq , (6.21)

then a sum of n from 0 to ∞ in (6.21) gives

βij0
pq = βi+1,j0

pq , i < p. (6.22)
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We now can evaluate F (p, q) for (p, q) ∈ Sr.

F (p, q) ≤
∑

(i,j)∈D4
m+1

βij0
pq = βm+1,q,0

pq = βm+2,q,0
pq = · · · = βp,q,0

pq ≤ λ1. (6.23)

Therefore, from (6.18) we get

S2 ≤
∑

(p,q)∈Sr

F (p, q)|f 0
pq| ≤ λ1

∑

(p,q)∈Sr

|f 0
pq|

≤ λ1

∑

(p,q)∈Ed

|f 0
pq| = λ1Nd|f 0|1. (6.24)

Our next step is to estimate S1. Define the set

Sl = {(i, j)| xi < xm+ 1

2

, (m, j) ∈ D2
m}.

Similarly when (i, j) ∈ Sl, one has

fn
ij =

∑

(p,q)∈Sl

γijn0
pq f 0

pq, (i, j) ∈ Sl. (6.25)

Dividing set D2
m into two parts:

D2,1
m = {(i, j) ∈ D2

m|ξj ≥ ξz}, D2,2
m = {(i, j) ∈ D2

m|ξj < ξz},

and also define the corresponding two parts of Sl

S1
l = {(i, j) ∈ Sl|ξj ≥ ξz}, S2

l = {(i, j) ∈ Sl|ξj < ξz} .

Note that S2
l is a subset of Sz in (6.12).

Correspondingly, S1 is also divided into two parts

S1 =

L−1∑

n=0





∑

(i,j)∈D2,1
m

|fn
ij|




+

L−1∑

n=0





∑

(i,j)∈D2,2
m

|fn
ij|




 = S11 + S12. (6.26)

Similar to the previous case, we can get the upper bound of the first term

S11 ≤ λ2Nd|f 0|1 (6.27)

with λ2 ≡ 1
ξzλt

x
. Substituting (6.25) into S12 gives

S12 ≤
∑

(p,q)∈S2
l




L−1∑

n=0

∑

(i,j)∈D2,2
m

γijn0
pq



 |f 0
pq|.
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Using Assumption 1,

S12 ≤ C1|f 0|1
∑

(p,q)∈S2
l




L−1∑

n=0

∑

(i,j)∈D2,2
m

γijn0
pq




= C1|f 0|1
L−1∑

n=0

∑

(i,j)∈D2,2
m



∑

(p,q)∈S2
l

γijn0
pq


 . (6.28)

Now we evaluate
∑

(p,q)∈S2
l
γijn0

pq when (i, j) ∈ D2,2
m . Write (6.25) as

fn
ij =

∑

(p,q)∈S2
l

γijn0
pq f 0

pq, (i, j) ∈ D2,2
m . (6.29)

When the initial values are constant 1, including the ghost cells at the boundary,

the numerical solutions at the next time step still remain unchanged, while the

coefficients γijn0
pq in (6.29) do not include those corresponding to the ghost cells, thus

∑

(p,q)∈S2
l

γijn0
pq ≤ 1, ∀(i, j) ∈ D2,2

m .

Continuing from (6.28),

S12 ≤ C1|f 0|1
L−1∑

n=0

∑

(i,j)∈D2,2
m

1 ≤ C1|f 0|1LNd

N

=
C1TNd

(xN+ 1

2

− x 1

2

)λt
x

|f 0|1 ≡ λ3Nd|f 0|1 (6.30)

with λ3 = C1T
(x

N+ 1
2

−x 1
2

)λt
x

being an O(1) quantity.

Now from (6.26), (6.27) and (6.30),

S1 ≤ (λ2 + λ3)Nd|f 0|1. (6.31)

Combing (6.14), (6.24) and (6.31),

|fL|1 ≤ |f 0|1 +M ′
1λ1|f 0|1 +M ′

2(λ2 + λ3)|f 0|1
= [1 +M ′

1λ1 +M ′
2(λ2 + λ3)]|f 0|1

≡ C|f 0|1

where C ≡ 1 +M ′
1λ1 +M ′

2(λ2 + λ3). Thus Theorem 1 is proved.
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6.2 An unstable example

There arises another question about whether condition (6.13) in Assumption 1 is
necessary for the l1-stability. In this subsection we give an counter example which
shows that if this condition is violated, the solution may become unbounded in l1

norm.
Here we impose the assumption:
Assumption 2

There exists a positive constant ξz such that ∀(i, j) ∈ Sz in (6.12), it holds that

|f 0
ij| ≤

C1|f 0|1
∆xq

, q > 0 (6.32)

with C1 independent of the mesh size.
Remark: Assumption 2 reduces to Assumption 1 in the case q = 0.
We first introduce some notations.
Define the sets

S ′
m = {k|

√
2D + ∆ξ ≤ ξk ≤ 1

3

√
20D − ∆ξ},

Sm = {k|∃j ∈ S ′
m, s.t. |ξk − ξj| <

1

2
∆ξ or ξk = ξj +

1

2
∆ξ}.

Let Ns be the number of elements in Sm. We name the elements in Sm as ki, i =
1, 2, · · · , Ns such that k1 < k2 < . . . < kNs

.
Define an one-to-one map from Sm to S ′

m as

Ts(k) = j s.t. j ∈ S ′
m, |ξk − ξj| ≤

1

2
∆ξ, k ∈ Sm.

It is clear that ξTs(ki) ≥
√

2D + i∆ξ, i = 1, 2, · · · , Ns.
Let q′ = min( q

2
, 1

2
). We choose T such that Tλx

t < xm+ 1

2

− x 1

2

and Tλx
t <

xN+ 1

2

− xm+ 1

2

, thus L < m and L < N −m− 1. Let

L0 = int(L1−q′)L, (6.33)

where int(x) is the biggest integer equal to or less than x.
Define a function G(k) as

G(k) = int(Lξkλ
t
x), k ∈ Sm.

Clearly, G(k1) ≤ G(k2) ≤ · · · ≤ G(kNs
).

Since L < m, so G(k) < m for k ∈ Sm. Define the following set of index of cells

H = {(i, j)|j ∈ Sm, m−G(j) < i ≤ m}.

Let Nh be the number of elements in H . Our next step is to check the condition
under which Nh > L0.
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Lemma 6.1. Nh > L0 under the mesh size restrictions

∆x <

√
2D

96
√

10λξ
x

, (6.34)

∆x <
1

4
√

10(
√

10 − 3)
√

2Dλξ
x

Tλt
x

Tλt
x + λt

ξ

, (6.35)

∆x <
1

λt
x

(
λt

xλ
t
ξ

12
√

10T 1−q′
)

1

q′ . (6.36)

Proof. According to the definitions,

Nh =
∑

k∈Sm

G(k) =
∑

k∈Sm

int
(
Lξkλ

t
x

)
>

(
Lλt

x

∑

k∈Sm

ξk

)
−Ns

> Lλt
x

∑

k∈S′
m

(√
ξ2
k − 2D − ∆ξ

)
− 1

∆ξ

(
√

10 − 3)
√

2D

3

> Lλt
x

Ns∑

i=1

(√
(
√

2D + i∆ξ)2 − 2D

)
− 1

3
L

(
λt

x +
λt

ξ

T

)(√
10 − 3

)√
2D

>
3L√
20D

λt
x

Ns∑

i=1

[(√
2D + i∆ξ

)√(√
2D + i∆ξ

)2

− 2D

]

−1

3
L

(
λt

x +
λt

ξ

T

)(√
10 − 3

)√
2D

=
Lλt

x√
20D∆ξ

Ns∑

i=1

[
3
(√

2D + i∆ξ
)√(√

2D + i∆ξ
)2

− 2D∆ξ

]

−1

3
L

(
λt

x +
λt

ξ

T

)(√
10 − 3

)√
2D

>
Lλt

x√
20D∆ξ

∫ √
20D
3

−4∆ξ

√
2D

3x
√
x2 − 2Ddx− 1

3
L

(
λt

x +
λt

ξ

T

)(√
10 − 3

)√
2D

>
Lλt

x√
20D∆ξ



1

3

√
2D −

√
8
√

20D∆ξ

3



− 1

3
L

(
λt

x +
λt

ξ

T

)(√
10 − 3

)√
2D

(6.37)

We impose the following restriction on the mesh sizes

√
8
√

20D∆ξ

3
<

√
2D

6
, (6.38)

(1 +
λt

ξ

Tλt
x

)
(
√

10 − 3)
√

2D

3
∆ξ <

1

12
√

10
, (6.39)
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then continue from (6.37),

Nh >
Lλt

x

12
√

10∆ξ
=

Lλt
xλ

t
ξ

12
√

10∆t
.

According to (6.33), L0 < LL1−q′ = LT 1−q′

(∆t)1−q′ . Therefore, in order that Nh > L0,

one needs to impose the mesh size restriction

∆t <

(
λt

xλ
t
ξ

12
√

10T 1−q′

) 1

q′

. (6.40)

One can rewrite the mesh size restriction (6.38), (6.39) and (6.40) to that on ∆x

which are (6.34)-(6.36).

Now, under the mesh size restriction (6.34)-(6.36), it holds that Nh > L0.

We now prove the following theorem:

Theorem 6.2. ∀q > 0 in Assumption 2, ∀h0 > 0, ∃∆x < h0, T > 0, ∀B > 0,

∃f 0
ij , (i, j) ∈ Ed satisfying Assumption 2, such that

|fL|1 > B|f 0|1 .

Proof. We define a function FH in H as

FH(i, j) = m−G(j) + 1 +

s−1∑

l=1

G(kl) if j = ks, (i, j) ∈ H.

FH in fact is an one-to-one map from H to (1, 2, · · · , Nh). Now define the set

HL = {(i, j)|(i, j) ∈ H,FH(i, j) ≤ L0}.

Since Nh > L0 by Lemma 5.1, the number of elements in HL is L0.

We can now introduce the initial value f 0
ij satisfying the condition of Theorem

2:

f 0
ij = c0, (i, j) ∈ HL, (6.41)

f 0
ij = 0, (i, j) ∈ Ed \HL, (6.42)

where c0 > 0 is a constant.
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We first check that these initial values satisfy Assumption 2. Since

|f 0
ij |

|f 0|1
=
Nd

L0

<
2MN

L2−q′
=

2(xN+ 1

2

− x 1

2

)(ξM+ 1

2

− ξ 1

2

)λt
x
2−q′

λξ
xT 2−q′∆xq′

,

thus Assumption 2 is satisfied if

2(xN+ 1

2

− x 1

2

)(ξM+ 1

2

− ξ 1

2

)λt
x
2−q′

λξ
xT 2−q′∆xq′

<
C1

∆xq
. (6.43)

Condition (6.43) is satisfied under the following mesh size restriction

∆x <

(
C1λ

ξ
xT

2−q′

2(xN+ 1

2

− x 1

2

)(ξM+ 1

2

− ξ 1

2

)λt
x
2−q′

) 1

q−q′

(6.44)

because we have chosen q′ < q.

Next we analyze the relation between |fL|1 and |f 0|1. Since L < N −m− 1, the

solution at the boundary cells remains zero for all the time steps. If we define the

sets

Sm
m = {(i, j)|i = m, j ∈ Sm},
Sl

m = {(i, j)|xi < xm+ 1

2

, j ∈ Sm},
Sr

m = {(i, j)|xi > xm+ 1

2

, j ∈ S ′
m},

then at each time step, only solutions at cells belonging to Sl
m or Sr

m are possibly

nonzero. Namely

fn
ij = 0 for (i, j) ∈ Ed \ {Sl

m ∪ Sr
m}. (6.45)

Since our scheme is positive preserving, and the initial values (6.41) and (6.42) are

nonnegative, the numerical solutions at each time step are always nonnegative. Then

similar to the proof of (6.7), at each time step

|fn+1|1 =
1

Nd

∑

(i,j)∈Ed

fn+1
ij

=
1

Nd

∑

(i,j)∈Ed

αijf
n
ij

=
1

Nd

∑

(i,j)∈Sl
m

αijf
n
ij +

1

Nd

∑

(i,j)∈Sr
m

αijf
n
ij +

1

Nd

∑

(i,j)∈Ed\{Sl
m∪Sr

m}

fn
ij ,

(6.46)
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Note the last term in (6.46) is zero by (6.45).

For scheme (6.2) one sees that among those αij with (i, j) ∈ Sl
m ∪ Sr

m, αij 6= 1

only when (i, j) ∈ Sm
m , so continuing from (6.46) gives

|fn+1|1 =
1

Nd

∑

(m,j)∈Sm
m

αmjf
n
mj +

1

Nd

∑

(i,j)∈Ed\Sm
m

fn
ij . (6.47)

We now estimate αmj for (m, j) ∈ Sm
m . From schemes (6.2) and (6.4), for (m, j) ∈

Sm
m , by setting j′ = Ts(j), one has

αmj = 1 − ξjλ
t
x + ξj′λ

t
xcj′j, (6.48)

where cj′j are the coefficients in (6.4).

According to the definitions of Sm and S ′
m, cj′j ≥ 1

2
, ξj <

1
3

√
2D, ξj′ >

√
2D in

(6.48). So (6.48) gives

αmj > 1 +

√
2D

6
λt

x. (6.49)

Then (6.49) together with (6.47) give

|fn+1|1 >

√
2D

6
λt

x

1

Nd

∑

(m,j)∈Sm
m

fn
mj +

1

Nd

∑

(i,j)∈Ed

fn
ij

=

√
2D

6
λt

x

1

Nd

∑

(m,j)∈Sm
m

fn
mj + |fn|1. (6.50)

Summing up (6.50) from n = 0 to L− 1, one gets

|fL|1 > |f 0|1 +

√
2D

6
λt

x

1

Nd

L−1∑

n=0

∑

(m,j)∈Sm
m

fn
mj . (6.51)

Write

fn
ij =

∑

(p,q)∈Sl
m

ηijn0
pq f 0

pq, (i, j) ∈ Sl
m. (6.52)

Since Sm
m ∈ Sl

m, substituting (6.52) into (6.51) gives

|fL|1 > |f 0|1 +
1

6

√
2Dλt

x

1

Nd

∑

(p,q)∈Sl
m




L−1∑

n=0

∑

(m,j)∈Sm
m

ηmjn0
pq


 f 0

pq

= |f 0|1 +
1

6

√
2Dλt

x

1

Nd

∑

(p,q)∈HL




L−1∑

n=0

∑

(m,j)∈Sm
m

ηmjn0
pq


 c0
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= |f 0|1 +
1

6

√
2Dλt

x

c0
Nd

∑

(m,j)∈Sm
m




∑

(p,j)∈HL

L−1∑

n=0

ηmjn0
pj




≥ |f 0|1 +
1

6

√
2Dλt

x

c0
Nd

s−1∑

l=1




∑

(p,kl)∈H

L−1∑

n=0

ηmkln0
pkl



 , (6.53)

where ks ∈ Sm is the quantity such that ∃ i satisfying m − G(ks) < i ≤ m and

FH(i, ks) = L0. Thus we need to estimate
∑

(p,j)∈H

∑L−1
n=0 η

mjn0
pj for (m, j) ∈ Sm

m .

From scheme (6.2), one has for (k, j) ∈ H ,

ηkj,n+1,0
pj =

(
1 − ξjλ

t
x

)
ηkjn0

pj + ξjλ
t
xη

k−1,jn0
pj . (6.54)

Adding (6.54) from n = 0 to L− 1 leads to

ηkjL0
pj +

L−1∑

n=0

ηkjn0
pj =

(
1 − ξjλ

t
x

) L−1∑

n=0

ηkjn0
pj + ξjλ

t
x

L−1∑

n=0

ηk−1,jn0
pj ,

therefore,

L−1∑

n=0

ηkjn0
pj =

L−1∑

n=0

ηk−1,jn0
pj − 1

ξjλt
x

ηkjL0
pj

=
L−1∑

n=0

ηk−2,jn0
pj − 1

ξjλt
x

[ηkjL0
pj + ηk−1,jL0

pj ]

= · · ·

=

L−1∑

n=0

ηpjn0
pj − 1

ξjλt
x

k∑

l=p+1

ηljL0
pj

=
L−1∑

n=0

ηkjn0
kj − 1

ξjλt
x

k−1∑

l=p

ηkjL0
lj . (6.55)

Applying (6.55) when k = m, one gets the relation

L−1∑

n=0

ηmjn0
pj =

L−1∑

n=0

ηmjn0
mj − 1

ξjλt
x

m−1∑

l=p

ηmjL0
lj . (6.56)

For a fixed j ∈ Sm, adding (6.56) for p such that (p, j) ∈ H gives

∑

(p,j)∈H

L−1∑

n=0

ηmjn0
pj = G(j)

L−1∑

n=0

ηmjn0
mj − 1

ξjλt
x

m−1∑

l=m−G(j)+1

(l −m+G(j))ηmjL0
lj . (6.57)
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According to the definition of Sm and S ′
m, when j ∈ Sm, ξj <

1
3

√
2D. The

CFL condition (3.3) implies that
√

2Dλt
x < 1, so ξjλ

t
x <

1
3

when j ∈ Sm. Define

µj = ξjλ
t
x, one has ηmjL0

lj = (1 − µj)
L+l−mµm−l

j Cm−l
L , hence,

m−1∑

l=m−G(j)+1

ηmjL0
lj =

m−1∑

l=m−G(j)+1

(1 − µj)
L+l−mµm−l

j Cm−l
L

=

G(j)−1∑

l=1

(1 − µj)
L−lµl

jC
l
L =

int(µjL)−1∑

l=1

(1 − µj)
L−lµl

jC
l
L <

1

2
.

The proof of the last inequality is in the Appendix A. Continuing from (6.57) gives

∑

(p,j)∈H

L−1∑

n=0

ηmjn0
pj > G(j)

L−1∑

n=0

ηmjn0
mj − 1

ξjλt
x

G(j)

2

= G(j)
1 − (1 − ξjλ

t
x)

L

ξjλt
x

− 1

ξjλt
x

G(j)

2
. (6.58)

By the definitions of Sm and S ′
m, for j ∈ Sm,

ξj >

√
(
√

2D + ∆ξ)2 − 2D − ∆ξ

>

√
2
√

2D∆ξ − ∆ξ. (6.59)

In order for ξjλ
t
x >

2
L

=
2λt

ξ

T
∆ξ, from (6.59),

√
2
√

2D∆ξ − ∆ξ >
2

Tλξ
x

∆ξ

⇔ ∆ξ <
2
√

2D

( 2

Tλξ
x

+ 1)2

⇔ ∆x <
2
√

2D

( 2

Tλξ
x

+ 1)2λξ
x

. (6.60)

Under mesh size restriction (6.60), ξjλ
t
x >

2
L
> 1

L
, thus

(1 − ξjλ
t
x)

L < (1 − 1

L
)L <

1

e
<

1

2.5
.

By using (6.58), one gets

∑

(p,j)∈H

L−1∑

n=0

ηmjn0
pj >

G(j)

10ξjλt
x

>
L− 1

ξjλt
x

10
>

L

20
, (6.61)
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where in the last inequality we used ξjλ
t
x >

2
L

under mesh size restriction (6.60).

Next one needs to estimate s appeared in (6.53) as the upper bound of the

summation. From the definition of s in (6.53),

s∑

l=1

G(kl) ≥ L0 . (6.62)

On the other hand, for 1 ≤ s′ ≤ Ns,

s′∑

l=1

G(kl) < Lλt
x

s′∑

l=1

ξkl
+ s′ < Lλt

x

s′∑

l=1

√
ξ2
k′

l
− 2D + s′λt

xL∆ξ + s′

<
Lλt

x

3
√

2D

s′∑

l=1

3ξk′
l

√
ξ2
k′

l
− 2D +

s′λt
xT

λt
ξ

+ s′

<
Lλt

x

3
√

2D∆ξ

∫ √
2D+(s′+1)∆ξ

√
2D

3ξ
√
ξ2 − 2Ddξ +

s′λt
xT

λt
ξ

+ s′

<
Lλt

x

3
√

2D∆ξ

[
2
√

2D (s′ + 1) ∆ξ
]3

2

+
s′λt

xT

λt
ξ

+ s′. (6.63)

By choosing s′ = sN
1− 5

6
q′, (6.63) gives

s′∑

l=1

G(kl) <
8λt

x(2D)
1

4L
√

∆ξ

3
s′

3

2 +
s′λt

xT

λt
ξ

+ s′

<
8λt

x(2D)
1

4L
√

∆ξ

3
sN

3

2
− 5

4
q′ +

sNλ
t
xT

λt
ξ

+ sN

<
8λt

x(2D)
1

4

√
TL

3
√
λt

ξ

√
L

( √
20D
3

−
√

2D

∆ξ

) 3

2
− 5

4
q′

+

( √
20D
3

−
√

2D

∆ξ

)
λt

xT

λt
ξ

+

( √
20D
3

−
√

2D

∆ξ

)

=
8λt

x(2D)
1

4

√
T
(

λt
ξ

T

(√
10
3

− 1
)√

2D
) 3

2
− 5

4
q′

3
√
λt

ξ

L2− 5

4
q′

+

(√
20D

3
−

√
2D

)
λt

xL+

(√
20D
3

−
√

2D
)
λt

ξL

T
. (6.64)
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If one imposes the mesh size restrictions

8λt
x(2D)

1

4

√
T
(

λt
ξ

T

(√
10
3

− 1
)√

2D
) 3

2
− 5

4
q′

3
√
λt

ξ

L2− 5

4
q′ <

1

4
L2−q′ ,

(√
20D

3
−
√

2D

)
λt

xL <
1

4
L2−q′ ,

(√
20D
3

−
√

2D
)
λt

ξL

T
<

1

4
L2−q′ ,

which corresponds to

∆x <
T

λt
x




3
√
λt

ξ

32λt
x(2D)

1

4

√
T
(

λt
ξ

T

(√
10
3

− 1
)√

2D
) 3

2
− 5

4
q′




4

q′

, (6.65)

∆x <
T

λt
x



 1

4
(√

20D
3

−
√

2D
)
λt

x





1

1−q′

, (6.66)

∆t <
T

λt
x


 T

4
(√

20D
3

−
√

2D
)
λt

ξ




1

1−q′

, (6.67)

then under (6.65)-(6.67) one has, for s′ = sN
1− 5

6
q′ ,

s′∑

l=1

G(kl) <
3

4
L2−q′ < L0. (6.68)

Comparing (6.68) with (6.62) gives

s > sN
1− 5

6
q′ >




1
2

(√
20D
3

−
√

2D
)
λt

ξ

T




1− 5

6
q′

L1− 5

6
q′ + 1. (6.69)

Now combining with (6.61) and (6.69), (6.53) gives

|fL|1 > |f 0|1 +

√
2D

120
λt

x

c0
Nd




1
2

(√
20D
3

−
√

2D
)
λt

ξ

T




1− 5

6
q′

L2− 5

6
q′

≥ |f 0|1 +

√
2D

120
λt

x

L0c0
Nd




1
2

(√
20D
3

−
√

2D
)
λt

ξ

T




1− 5

6
q′

L
1

6
q′ (6.70)
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=





1 +

√
2D

120
λt

x




1
2

(√
20D
3

−
√

2D
)
λt

ξ

T




1− 5

6
q′

L
1

6
q′





|f 0|1. (6.71)

So ∀B > 0, one can choose mesh size such that

1 +

√
2D

120
λt

x




1
2

(√
20D
3

−
√

2D
)
λt

ξ

T




1− 5

6
q′

L
1

6
q′ > B

or

∆x <
T

λt
ξ




√
2D

120B
λt

x




1
2

(√
20D
3

−
√

2D
)
λt

ξ

T




1− 5

6
q′



6

q′

, (6.72)

under which it holds that

|fL|1 > B|f 0|1.

7 Stability theory of Scheme II

In this section we study the l1 and l∞ stability of Scheme II. Its positivity is obvious
under the hyperbolic CFL condition (3.3).

Theorem 7.1. If the forward Euler time discretization is used, then the flux is given

by Algorithm II yields the scheme (4.1) which is l1-contracting and l∞-stable.

Proof. For simplicity, we discuss the case when the potential has only one disconti-

nuity at grid point xm+ 1

2

with jump V −
m+ 1

2

−V +
m+ 1

2

= D > 0, and V ′(x) < 0 at smooth

points. The other cases, namely, when V ′(x) ≥ 0, or the potential having several

discontinuity points with increased or decreased potential jumps, can be discussed

similarly.

We consider the typical situation when ξ1 < −
√

2D, ξM >
√

2D, so that all the

three situations discussed in Section 2 are included. We assume the mesh is defined

such that 0,±
√

2D are grid points in the ξ-direction. We define some sets of indexes

D+
m = {(m, j)|ξj > 0} ,

D+
m+1 =

{
(m+ 1, j)|ξj− 1

2

≥
√

2D
}
,
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D−
m =

{
(m, j)| −

√
ξ2
1 − 2D ≤ ξj− 1

2

≤ 0

}
,

D−
m+1 =

{
(m+ 1, j)|ξj+ 1

2
≤ −

√
2D
}
,

D4
l =

{
(i, j)|xi ≤ xm, ξj+ 1

2

≤ −
√
ξ2
1 − 2D

}
.

These domains are shown in Figure (7.1).

E
d

D
l
4

x
m+1/2

x
1

x
N

v
1

v
M

D
m
+

D
m
−

D
m+1
+

D
m+1
−

Figure 7.1 Sketch of the index sets D+
m, D

+
m+1, D

−
m, D

−
m+1, D

4
l .

Again the computational domain is chosen as (6.1):

Ed = {(i, j)|i = 1, · · · , N, j = 1, · · · ,M} \D4
l .

Now denote Fi = 1
∆x

∣∣∣V −
i+ 1

2

− V +
i− 1

2

∣∣∣. Our scheme (4.1) with Algorithm II can be

made precisely as

1) if ξj > 0, i 6= m+ 1,

fn+1
ij =

(
1 − Fiλ

t
ξ − ξjλ

t
x

)
fij + Fiλ

t
ξfi,j−1 + ξjλ

t
xfi−1,j ; (7.1)

2) if ξj < 0, i 6= m,

fn+1
ij =

(
1 − Fiλ

t
ξ − |ξj|λt

x

)
fij + Fiλ

t
ξfi,j−1 + |ξj|λt

xfi+1,j ; (7.2)
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3) if ξj > 0,

fn+1
m+1,j =

(
1 − Fm+1λ

t
ξ − ξjλ

t
x

)
fm+1,j + Fm+1λ

t
ξfm+1,j−1 + ξjλ

t
xf

+
m+ 1

2
,j

; (7.3)

4) if ξj < 0,

fn+1
mj =

(
1 − Fmλ

t
ξ − |ξj|λt

x

)
fmj + Fmλ

t
ξfm,j−1 + |ξj|λt

xf
−
m+ 1

2
,j
, (7.4)

where we omit the superscript n on the right hand side.

By summing up (7.1)-(7.4) for (i, j) ∈ Ed, one typically gets the following ex-

pression

∑

(i,j)∈Ed

fn+1
ij =

∑

(i,j)∈Ed

αijfij +
∑

(m+1,j)∈D+

m+1

ξjλ
t
xf

+
m+ 1

2
,j

+
∑

(m,j)∈D−
m

ξjλ
t
xf

−
m+ 1

2
,j

≡ I1 + I2 + I3 (7.5)

As in the proof of stability of Scheme I, we assume that f satisfies the zero

boundary condition. In this situation, the coefficients αij in (7.5) satisfy

αij ≤ 1, (i, j) ∈ Ed \ {D+
m ∪D−

m+1}, (7.6)

αij ≤ 1 − |ξj|λt
x, (i, j) ∈ D+

m ∪D−
m+1. (7.7)

We now study the relation between I2 and
∑

(m,j)∈D+
m
|ξjλt

xfmj |. Let

pN+1 =
√
ξ2
N+ 1

2

− 2D,

and assume

ξk < pN+1 ≤ ξk+1 ≤ ξN+ 1

2

.

Assume ξJ2− 1

2

= 0 for some J2. Since

I2 ≤
k−1∑

j=J2

|ξjfmj | +
pN+1 − ξk

∆ξ
|ξkfmk| ≤

∑

(m,j)∈D+
m

|ξjfmj |,

thus

I2 ≤
∑

(m,j)∈D+
m

∣∣ξjλt
xfmj

∣∣ . (7.8)

Similarly, one gets

I3 ≤
∑

(m+1,j)∈D−
m+1

∣∣ξjλt
xfm+1,j

∣∣ . (7.9)
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Combining (7.5), (7.6), (7.7), (7.8) and (7.9) gives

∑

(i,j)∈Ed

|fn+1
ij | ≤

∑

(i,j)∈Ed

|fn
ij|. (7.10)

This is the l1-contracting property of this scheme.

Next we prove the l∞-stability. In the cells where ξj > 0, i 6= m+1 or ξj < 0, i 6=
m, one uses (7.1) or (7.2). Observing that the coefficients on the right hand side of

(7.1) or (7.2) are positive and the sum of them is 1, so in fact these schemes are l∞-

contracting. It remains to study the cells where ξj > 0, i = m+ 1 or ξj < 0, i = m,

corresponding to (7.3) or (7.4).

We first consider (7.3). It can be checked that when ξj− 1

2

<
√

2D, f+
m+ 1

2
,j

=

fm+1,k with k such that ξk = −ξj, thus the l∞-contracting property still holds.

When ξj− 1

2

≥
√

2D, denote

ξ′1 =

√(
ξj− 1

2

)2

− 2D, ξ′2 =

√(
ξj+ 1

2

)2

− 2D. (7.11)

Since V +
m+ 1

2

< V −
m+ 1

2

, one has ξ′2 − ξ′1 > ∆ξ. Therefore, it is impossible that

ξk− 1

2

≤ ξ′1 < ξ′2 ≤ ξk+ 1

2

for any k. Assume ξk− 1

2

≤ ξ′1 < ξk+ 1

2

< · · · < ξk+s− 1

2

< ξ′2 ≤
ξk+s+ 1

2

with s ≥ 1. In this case

f+
m+ 1

2
,j

=
1

ξj

{
ξk+ 1

2

− ξ′1

∆ξ
ξkfmk + ξk+1fm,k+1 + · · ·

+ξk+s−1fm,k+s−1 +
ξ′2 − ξk+s− 1

2

∆ξ
ξk+sfm,k+s

}
. (7.12)

Substituting (7.12) into (7.3) yields

fn+1
m+1,j =

(
1 − Fm+1λ

t
ξ − ξjλ

t
x

)
fm+1,j + Fm+1λ

t
ξfm+1,j−1

+ λt
x

{
ξk+ 1

2

− ξ′1

∆ξ
ξkfmk + ξk+1fm,k+1 + · · ·

+ξk+s−1fm,k+s−1 +
ξ′2 − ξk+s− 1

2

∆ξ
ξk+sfm,k+s

}
. (7.13)

Observing that the coefficients on the right hand side of (7.13) is still positive.

Thus it remains to check the sum of these coefficients given by

I4 = 1 − ξjλ
t
x + λt

x

{
ξk+ 1

2

− ξ′1

∆ξ
ξk + ξk+1 + · · · + ξk+s−1 +

ξ′2 − ξk+s− 1

2

∆ξ
ξk+s

}
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= 1 + ξjλ
t
x






ξ
k+1

2

−ξ′1

∆ξ
ξk + ξk+1 + · · ·+ ξk+s−1 +

ξ′2−ξ
k+s− 1

2

∆ξ
ξk+s

ξj
− 1




 . (7.14)

Let

ξ′k =
ξk + ξk+s

2
=
ξk+ 1

2

+ ξk+s− 1

2

2
,

a′1 =
ξk+ 1

2

− ξ′1

∆ξ
∈ (0, 1],

a′2 =
ξ′2 − ξk+s− 1

2

∆ξ
∈ (0, 1],

then

ξk = ξ′k −
s∆ξ

2
, ξk+s = ξ′k +

s∆ξ

2
.

Also notice

ξ′k −
1

2
(ξ′1 + ξ′2) =

1

2

[(
ξk+ 1

2

− ξ′1

)
+
(
ξk+s− 1

2

− ξ′2

)]
=

1

2
(a′1 − a′2)∆ξ,

hence one gets

1

ξj

{
ξk+ 1

2

− ξ′1

∆ξ
ξk + ξk+1 + · · ·+ ξk+s−1 +

ξ′2 − ξk+s− 1

2

∆ξ
ξk+s

}

=
1

ξj

{
ξk+ 1

2

− ξ′1

∆ξ
ξ′k + ξ′k + · · ·+ ξ′k +

ξ′2 − ξk+s− 1

2

∆ξ
ξ′k

}
+
s∆ξ

2ξj
(a′2 − a′1)

=
(ξ′2 − ξ′1)ξ

′
k

ξj∆ξ
+
s∆ξ

2ξj
(a′2 − a′1)

=
(ξ′2 − ξ′1)(ξ

′
1 + ξ′2)

2ξj∆ξ
+
s∆ξ

2ξj
(a′2 − a′1) −

(ξ′2 − ξ′1)

2ξj
(a′2 − a′1)

=
(ξ′22 − ξ′21 )(

ξj+ 1

2

− ξj− 1

2

)(
ξj+ 1

2

+ ξj− 1

2

) +
(1 − a′1 − a′2)∆ξ

2ξj
(a′2 − a′1)

< 1 +
∆ξ

8ξj
< 1 +

∆ξ

8
√

2D
. (7.15)

Substituting (7.15) into (7.14), the sum of the coefficients in (7.13) is estimated

as

I4 < 1 + ξjλ
t
x

∆ξ

8
√

2D
< 1 +

1

8λt
ξ

√
2d

∆t, (7.16)

where the last inequality is deduced by using the CFL condition.
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Now we consider case (7.4). Denote

ξ′1 = −
√(

ξj− 1

2

)2

+ 2D, ξ′2 = −
√(

ξj+ 1

2

)2

+ 2D. (7.17)

In this case, we know ξ′2 − ξ′1 < ∆ξ. So there are two cases ξk− 1

2

≤ ξ′1 < ξ′2 ≤ ξk+ 1

2

or ξk− 1

2

≤ ξ′1 < ξk+ 1

2

< ξ′2 ≤ ξk+ 3

2

corresponding respectively to

f−
m+ 1

2
,j

=
1

ξj

ξ′2 − ξ′1
∆ξ

ξkfm+1,k (7.18)

or

f−
m+ 1

2
,j

=
1

ξj

{
ξk+ 1

2

− ξ′1

∆ξ
ξkfm+1,k +

ξ′2 − ξk+ 1

2

∆ξ
ξk+1fm+1,k+1

}
. (7.19)

Substituting (7.18) or (7.19) into (7.4) gives

fn+1
mj =

(
1 − Fmλ

t
ξ − |ξj|λt

x

)
fmj + Fmλ

t
ξfm,j−1 + λt

x

ξ′2 − ξ′1
∆ξ

|ξk|fm+1,k , (7.20)

or

fn+1
mj =

(
1 − Fmλ

t
ξ − |ξj|λt

x

)
fmj + Fmλ

t
ξfm,j−1

+ λt
x

{
ξk+ 1

2

− ξ′1

∆ξ
|ξk|fm+1,k +

ξ′2 − ξk+ 1

2

∆ξ
|ξk+1|fm+1,k+1

}
. (7.21)

In each case, the coefficients on the right hand side are positive. Thus it remains

to check the sum of the coefficients, which is, respectively,

1 + |ξj|λt
x

{
(ξ′2 − ξ′1)|ξk|

∆ξ|ξj|
− 1

}
(7.22)

or

1 + |ξj|λt
x

{
(ξk+ 1

2

− ξ′1)|ξk| + (ξ′2 − ξk+ 1

2

)|ξk+1|
∆ξ|ξj|

− 1

}
. (7.23)

Let Dk be
(ξ′

2
−ξ′

1
)|ξk|

∆ξ|ξj | or
(ξ

k+ 1
2

−ξ′
1
)|ξk|+(ξ′

2
−ξ

k+1
2

)|ξk+1|
∆ξ|ξj | . One has

Dk <
(ξ′2 − ξ′1)[

1
2
(|ξ′1| + |ξ′2|) + ∆ξ]

∆ξ|ξj|
=

1
2
(|ξ′1| + |ξ′2|) + ∆ξ

1
2
(|ξ′1| + |ξ′2|)

< 1 +
∆t

λt
ξ

√
2D

,

thus the sums (7.22) and (7.23) are both bounded above by

1 +
1

λt
ξ

√
2D

∆t. (7.24)
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Combining (7.16) and (7.24), and letting C0 = 1
λt

ξ

√
2D

be an O(1) quantity, we

get

|fn+1|∞ < (1 + C0∆t)|fn|∞,

thus

|fL|∞ < (1 + C0∆t)
L|f 0|∞ < eC0T |f 0|∞. (7.25)

This is the l∞-stability property of this scheme.

Similar to Scheme I, Scheme II is also positive under the CFL condition such as
(3.3).

8 Discontinuous solutions and numerical accuracy

When the solution of the Liouville equation is smooth, the formally second order
shock capturing finite difference scheme will produce second order numerical approx-
imations. Consequently the physical observables obtained by evaluating the numer-
ical δ-integral concentrated on these numerical solution, such as those in (1.8)-(1.9),
should generally be of first order. However, when the potential V is discontinuous,
the solution of the Liouville equation, even with smooth initial data, may produce
discontinuities at downstream part of the potential discontinuity. These disconti-
nuities influence the accuracy of the numerical δ-integral through which the desired
physical observables are obtained.

8.1 Discontinuities produced in the downstream part

For the Liouville equation with a discontinuous potential, if the initial data are
smooth, the level set function exhibits discontinuities in the downstream side of the
potential discontinuity.

We use a 1D example to illustrate this. Let φ be the level set function that solves
the 1d Liouville equation with the potential given by

V (x) =






A , x < −b ;

−Ax
b
, −b < x < 0 ;

0 , x > 0 ,

(8.1)

with A, b positive. Let the initial velocity profile be a constant velocity ξ0 > 0 and
the initial density is denoted by ρ0(x). The initial value of the level set function is

φ(x, ξ, 0) = ξ − ξ0.
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We consider the solution at t = T . In this example the potential is continuous,
and the initial level set function is continuous, so this level set function should still
be continuous at t = T . Now look at the set

S1 = {(x, ξ0)| − b < x < 0},

which is part of the initial zero level set. The bicharacteristic of the Liouville equa-
tion (2.1) is {

dx
dt

= ξ , x(0) = x0 ;

dξ
dt

= −V ′(x) , ξ(0) = ξ0 .
(8.2)

Denote the solution of (8.2) by

x = x(x0, ξ0, t), ξ = ξ(x0, ξ0, t),

then define the set

S2 = {(x, ξ)|x = x(x0, ξ0, T ), ξ = ξ(x0, ξ0, T ), (x0, ξ0) ∈ S1} ,
which is a subset of the zero level set of φ(x, ξ, T ).

Select an element (x1, ξ1) ∈ S2. We now want to evaluate φξ(x1, ξ1, T ). Assume
(x1, ξ1) = (x(−c, ξ0, T ), ξ(−c, ξ0, T )). Consider the case that T is large enough so
that (x1, ξ1) is a downstream point. Then the relation between x1 and c is

x1(c) = T

√
ξ2
0 +

2Ac

b
− b

A

(
ξ2
0 +

2Ac

b

)
.

The density at x = x1 at time T is the inverse of the Jacobian of x(c) multiplied by
the initial density

ρ(x1, T ) =
ρ0(−c)∣∣∣dx1(c)

dc

∣∣∣
=

bρ0(−c)∣∣∣∣
TA√

ξ2
0
+ 2Ac

b

− 2b

∣∣∣∣
.

On the other hand, it is known

ρ(x1, T ) = ρ0(−c)
∫ ξ1+ε

ξ1−ε

δ(φ(x1, ξ, T ))dξ =
ρ0(−c)

|φξ(x1, ξ1, T )| .

So we have

|φξ(x1, ξ1, T )| =

∣∣∣∣∣∣
tA√

ξ2
0 + 2Ac

b

− 2b

∣∣∣∣∣∣
b−1.

If we take the limit b→ 0, we know |φξ(x1, ξ1, T )| → ∞.
Moreover, the time needed for (x1, ξ1) to be in the downstream domain, which

is the time for the point (−c, ξ0) to reach x = 0 along its bi-characteristic, should

be T (c) = b
A

√
ξ2
0 + 2Ac

b
. Notice T (c) → 0 as b → 0, we know in this example when

taking limit to the discontinuous potential, the level set function should only contain
discontinuities in the downstream domain.
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8.2 Influence of discontinuities on the accuracy of the nu-

merical evaluation of moments

In the previous subsection, we showed that the discontinuities inevitably emerge
in the downstream part of the potential discontinuity. As is well known, the l1-
convergence rate for finite difference schemes to compute a discontinuous solution
of a linear equation is at most halfth order [14], [27]. Here we show that a halfth
order error is also introduced when evaluating the moments (1.8) (1.9) based on the
discontinuous part of the solution.

We use the 1D linear advection equation with the Riemann initial data to illus-
trate this. Consider equation

ut + aux = 0 (8.3)

with initial data

u(x, 0) =

{
1 , x < 0 ;

−1 , x > 0 .
(8.4)

Since the finite difference solution is closer to the solution of the modified equa-
tion

ut + aux = Duxx (8.5)

than the exact solution of the original linear advection equation (8.3), we check the
accuracy of the numerical moments based on the solution of the modified equation
(8.5).

If the upwind scheme is used then D = a
2
∆x(1 − aλt

x) [15, 26]. Thus D ∼ ∆x.
The exact solution of the equation (8.5) with initial data (8.4) is

ũ(x, t) = − 2√
π

∫ x−at√
4Dt

0

e−z2

dz. (8.6)

The exact solution of (8.3) with initial data (8.4) at t is

u(x, t) =

{
1 , x < at ;

−1 , x > at .
(8.7)

which has the property ∫
δ(u(x, t))dx = 0 .

When evaluating the δ-integration concentrated on (8.6), one gets

∫
δ(ũ(x, t))dx =

1

|ũ′(at, t)| =

√
4πDt

e
−( x−at√

4Dt
)2

∣∣∣∣
x=at

=
√

4πDt.

Since D ∼ ∆x, the accuracy of numerical δ-integral based on (8.6) is only halfth
order. This implies that the evaluation of δ-integration in (1.8)(1.9) based on the
finite difference solution for (8.3) is also only halfth order.
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9 Numerical examples

In this section we present three numerical examples to show the performance and
accuracy of the proposed methods. In the numerical computations the second order
TVD Runge-Kutta time discretization [24] is used.

Example 9.1. A 1D problem with an exact L∞-solution. Consider the 1D
Liouville equation

ft + ξfx − Vxfξ = 0 (9.1)

with a discontinuous potential given by

V (x) =

{
0.2 , x < 0 ;

0 , x > 0 .

The initial data is given by

f(x, ξ, 0) =





1 , x ≤ 0, ξ > 0,
√
x2 + ξ2 < 1 ;

1 , x ≥ 0, ξ < 0,
√
x2 + ξ2 < 1 ;

0 , otherwise;

(9.2)

as shown in the upper part of Figure 9.1 which depicts the non-zero part of f(x, ξ, 0).
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−1 −0.5 0 0.5 1

−0.5

0

0.5

1

Figure 9.1 Example 9.1, solution in the phase space. Upper: non-zero part of the
initial data; Lower left: non-zero part of exact solution f(x, ξ, 1); Lower right: the
part of numerical solution f(x, ξ, 1) > 0.5 computed by the 100 × 101 mesh. The

horizontal axis is the position, the vertical axis is the velocity.
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The exact solution at t = 1 is given by

f(x, ξ, 1) =





1 , x ≥ 0, ξ <
√

0.4, ξ > x;

1 , x ≥ 0, ξ < 0, x < 1, ξ > x−
√

2−x2

2
;

1 , x ≤ 0, ξ < x, ξ > −
√

0.6, x < (1 −
√

0.6−ξ2√
ξ2+0.4

)ξ;

1 , x ≤ 0, ξ > 0, x > −1, ξ < x+
√

2−x2

2
;

1 , x ≥ 0, ξ >
√

0.4, ξ > x, ξ <
√

1.4, x > (1 −
√

1.4−ξ2√
ξ2−0.4

)ξ;

0 , otherwise,

,

(9.3)
as shown in the lower left in Figure 9.1.

The numerical solution computed with a 100×101 mesh on the domain [−1.5, 1.5]×
[−1.5, 1.5] using Scheme I is shown in the lower right in Figure 9.1. It shows a good
agreement with the exact solution.

Table 9.1 compares the l1-error of the numerical solutions computed using 50×51,
100×101 and 200×201 meshes respectively. From these data, the convergence rate
of the numerical solution in the l1-norm is about 0.66 for both Scheme I and Scheme
II. This agrees with our study in section 8, and the well established theory [14], [27],
that the l1-error by a finite difference scheme for a discontinuous solution of linear
equation is at most halfth order.

Table 9.1 Example 9.1, l1 error of the numerical solutions with different meshes

mesh 50 × 51 100 × 101 200× 201

Scheme I 0.245192 0.155871 0.093817

Scheme II 0.246248 0.156963 0.094275

Example 9.2. Computing the physical observables of a 1D problem with
measure-valued solution. As mentioned in the Introduction, such problems arise
in the computation of semiclassical limit of the Schrödinger equation. Consider the
same problem as in example 9.1, with the initial data

f(x, ξ, 0) = δ(ξ − w(x)) , (9.4)
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where

w(x) =





0.9, x ≤ −2 ;

0.9 − 0.9
4

(x+ 2)2 , −2 < x ≤ 0;

−0.9 + 0.9
4

(x− 2)2 ; 0 < x < 2.

−0.9, x ≥ 2 .

(9.5)

Figure 9.2 plot w(x) with the dashed line.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

Figure 9.2 Example 9.2, velocity. Dashed line: w(x); Solid line: multivalued
velocity at t = 1.8. The horizontal axis is the position, the vertical axis is the

velocity.

In this example we are interested in the approximation of the moments, such as
the density

ρ(x, t) =

∫
f(x, ξ, t)dξ

and the averaged velocity

u(x, t) =

∫
f(x, ξ, t)ξdξ∫
f(x, ξ, t)dξ

These quantities are computed by the decomposition techniques described in the
Introduction. We first solve the level set function φ and modified density function
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ψ which satisfy the Liouville equation (9.1) with initial data ξ − w(x) and 1 re-
spectively. Then the desired physical observables ρ and u are computed from the
numerical singular integrals (1.8), (1.9), which are computed by approximating the
delta function in the integrand by a discrete delta function

δω(x) =

{
1

2ω
(1 + cos (

|πx|
ω

)), | x
ω
| ≤ 1 ;

0, | x
ω
| > 1 ,

(9.6)

and then evaluating the integral on a uniform mesh [28, 5]. The ω in (9.6) is half of
the support size of the discrete delta function. In our computation we choose

w = max (|ψv|, 1)h,

where |ψv| denotes the Jacobian of Ψ = (ψj) with respect to v:

|∂Ψ/∂(v1, · · · , vd)|,

and is approximated by the central differencing. In example 9.2 d = 1 and in
example 9.3 d = 2.

The exact velocity profile and the corresponding density at t = 1.8 are given in
Appendix B. Figure 9.2 shows the exact multivalued velocity.
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Figure 9.3 Example 9.2, density ρ(x, t) and averaged velocity u(x, t) at t = 1.8.
Solid line: the exact solutions; ’o’: the numerical solutions. Upper: density; Lower:

the averaged velocity. Left: 200 × 161 mesh; Right: 800 × 641 mesh.
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Figures 9.3 shows the calculated density ρ(x, t) and averaged velocity u(x, t)
with different meshes using Scheme I together with the exact solutions. Note in the
velocity the halfth order error produced around the discontinuity travels to the right
and stops at around x = 1.2. There are also such errors produced in density, but
they can not be observed in the figure since these errors are small compared with
the maximum density value.

Table 9.2 compares the l1-error of the numerical densities ρ(x, t) computed with
200× 161, 400× 321 and 800× 641 meshes on the domain [−2, 2]× [−1.6, 1.6]. We
notice that Scheme II has slightly larger errors than Scheme I. This is understandable
because in order to maintain the l1-contracting property, Scheme II may use more
cell values to perform the numerical interpolation in evaluating the split fluxes.

Table 9.2 l1 error of the numerical density ρ(x, t) with different meshes

mesh 200 × 161 400 × 321 800× 641

Scheme I 1.691542 0.967246 0.670656

Scheme II 1.694563 0.992385 0.679215

Table 9.3 compares the l1-error of the numerical averaged velocities u computed
with 200× 161, 400× 321 and 800× 641 meshes on the domain [−2, 2]× [−1.6, 1.6].
It shows the halfth order convergence.

Table 9.3 l1 error of the numerical averaged velocity ρ on different meshes

mesh 200 × 161 400 × 321 800× 641

Scheme I 0.170247 0.116522 0.073458

Scheme II 0.170900 0.128646 0.081642

Example 9.3. Computing the physical observables of a 2D problem with a
measure-valued solution. Consider the 2D Liouville equation

ft + ξfx + ηfy − Vxfξ − Vyfη = 0

with a discontinuous potential given by

V (x, y) =

{
0.1, x > 0, y > 0,

0, else,
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and the delta-function initial data

f(x, y, ξ, η, 0) = ρ(x, y, 0)δ(ξ − p(x, y))δ(η − q(x, y)),

where

ρ(x, y, 0) =

{
0 , x > −0.1, y > −0.1 ;
1 , else ,

p(x, y) = q(x, y) =

{
0.4 , x > 0, y > 0 ,

0.6 , else .
.

In this example we are interested in the computation of numerical density which
is the zeroth moment of this delta-type solution

ρ(x, y, t) =

∫ ∫
f(x, y, ξ, η, t)dξdη.

The computational domain is chosen to be [x, y, ξ, η] ∈ [−0.2, 0.2]× [−0.2, 0.2]×
[0.3, 0.9] × [0.3, 0.9].

The exact density at t = 0.4 is

ρ(x, y, 0.4) =






1 , x < 0 or y < 0 ;

1.5 , 0 ≤ x ≤ 14/150, y ≥ 3x
2

;

1.5 , 0 ≤ y ≤ 14/150, y ≤ 2x
3

;
0 , otherwise ,

as shown in the upper left part in Figure 9.4.
The other part in Figures 9.4 show respectively the calculated density ρ with

144, 264 and 504 meshes in the phase space using Scheme I in space.
Table 9.4 compares the l1 errors on [0, 0.2] × [0, 0.2] of numerical densities com-

puted with 144, 264 and 504 meshes in phase space. Again the error of Scheme II is
larger than Scheme I. The convergence order is about 1/2.

Table 9.4 l1 error of numerical densities

on [0, 0.2] × [0, 0.2] using different meshes

mesh 144 264 504

Scheme I 0.01851 0.01417 0.01029

Scheme II 0.01864 0.01527 0.01257
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Figure 9.4 Example 9.3, density at t = 0.4 in space. Upper left: the exact
solution; Upper right: the numerical solution using 144 mesh; Lower left: the

numerical solution using 264 mesh; Lower right: the numerical solution using 504

mesh.

10 Conclusion

In this paper, we introduce two classes of Hamiltonian-preserving schemes for the
Liouville equation with discontinuous potentials. By using the constant Hamiltonian
across the potential barrier, we introduced a selection criterion for a unique, phys-
ically relevant solution to the underlying linear hyperbolic equation with singular
coefficients. These scheme have a hyperbolic CFL condition, which is a signifi-
cant improvement over a conventional discretization. We established positivity, and
stability theory in both l1 and l∞ norms, of these discretizations, and conducted
numerical experiments to study the numerical accuracy.

This idea has also recently been extended to the Liouville equation arising from
geometrical opitcs limit of the linear wave equation with a discontinuous local wave
speed [13]. In addition, the same idea can also be extended to problems with exter-
nal fields, such as the electrical or electromagnetic fields. There Vlasov-Poission
or Valsov-Maxwell systems arise. Currently we are exploring the Hamiltonian-
preserving schemes in these more general applications, as well as the case when
the interface is a curved geometry.
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Appendix A

Lemma A.1. Assume 0 < µ < 1
2
, N is a positive integer, then

[µN ]−1∑

l=0

(1 − µ)N−lµlC l
N <

1

2
, (A.1)

where [x] represents the biggest integer equal to or less than x.

Proof. Notice that
N∑

l=0

(1 − µ)N−lµlC l
N = 1,

so proof of (A.1) is equivalent to prove

[µN ]−1∑

l=0

(1 − µ)N−lµlC l
N <

N∑

l=[µN ]

(1 − µ)N−lµlC l
N

⇔
[µN ]−1∑

l=0

(
µ

1 − µ

)l

C l
N <

N∑

l=[µN ]

(
µ

1 − µ

)l

C l
N . (A.2)

Denote k = [µN ], then 2k ≤ 2µN < N ⇒ k < N + 1 − k. Denote Υl =

( µ
1−µ

)lC l
N , l = 0, 1, · · · , N , we first compare the two terms Υk−1 and Υk:

Υk

Υk−1
=

N + 1 − k

k

µ

1 − µ
=
N + 1 − k

k

µN

N − µN
≥ N + 1 − k

k

k

N − k
> 1.

By comparing Υk−2 and Υk+1, one has

Υk+1

Υk−2
=

Υk+1

Υk

Υk

Υk−1

Υk−1

Υk−2
>

Υk+1

Υk

Υk−1

Υk−2

=
N + 1 − (k + 1)

k + 1

N + 1 − (k − 1)

k − 1

(
µ

1 − µ

)2

≥ (N + 1 − k)2 − 1

k2 − 1

(
k

N − k

)2

> 1. (A.3)

By induction, one can generally prove the following results,

Υk+l−1

Υk−l

> 1, 1 ≤ l ≤ k ⇒ Υl < Υ2k−1−l, 0 ≤ l ≤ k − 1.

Thus the inequality (A.2) is proved.
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Appendix B
This Appendix gives the exact velocity profile and density at t = 1.8 for the

problem in Example 9.2.

Set t = 1.8, X = −2 +
√

4
0.9

(0.9 −
√

0.4) +
√

0.4t.

• In domain −2 < x < −2 + 0.9t or 2 − 0.9t < x < 2, the velocity is single
phased given by

u(x) =





0.9 , −2 < x < −2 + 0.9t ;

−0.9 , 2 − 0.9t < x < 2 ,

the corresponding density is the constant 1.

• In domain −2 + 0.9t < x < −0.09150169603022, the velocity is single phased
given by

u(x) = 0.9 − 0.9

4


 2

0.9t
−

√

− 4x

0.9t
+

(
2 − 2

0.9t

)2



2

,

the corresponding density is given by

ρ(x) =
2

0.9t
√
− 4x

0.9t
+
(
2 − 2

0.9t

)2 .

• In domain −0.09150169603022 < x < 0, the velocity has three phases.

u1(x) = 0.9 − 0.9

4


 2

0.9t
−

√

− 4x

0.9t
+

(
2 − 2

0.9t

)2



2

,

while u2, u3 both satisfy the expression

−0.9t

4


−

(
2 − 2

0.9t

)2

+

(
−
√

4

0.9

(
0.9 −

√
u2

2 + 0.4

)
+ 2/0.9/t

)2

 u2√

u2
2 + 0.4

= x,

and −0.36444353343385 < u2 < 0, −0.56860919537261 < u3 < −0.36444353343385.

The first branch of the density is

ρ1(x) =
2

0.9t
√

− 4x
0.9t

+
(
2 − 2

0.9t

)2 .
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To determine densities ρ2, ρ3, denote the derivative of u2(x), u3(x) to be u′2(x), u
′
3(x)

respectively. Define the functions

W (w) = −
√
w2 + 0.4,

X(W ) = 2 −
√

4

0.9
(0.9 +W ),

Y (X) =
0.9

2
(X − 2),

then

ρ2(x) =

∣∣∣∣
u2(x)u

′
2(x)

W (u2(x))Y (X(W (u2(x))))

∣∣∣∣ ,

ρ3(x) =

∣∣∣∣
u3(x)u

′
3(x)

W (u3(x))Y (X(W (u3(x))))

∣∣∣∣ .

• In domain 0 < x < X, the velocity has three phases. u1 is determined by

0.9t

4



(

2 − 2

0.9t

)2

−
(√

4

0.9

(
0.9 −

√
u2

1 − 0.4

)
− 2

0.9t

)2

 u1√

u2
1 − 0.4

= x,

with 0.97449009909131 < u1 < 1.05986622602208, and

u2(x) = 0.9 − 0.9

4


− 2

0.9t
−

√

− 4x

0.9t
+

(
2 − 2

0.9t

)2



2

,

u3(x) = −0.9 +
0.9

4



− 2

0.9t
+

√
4x

0.9t
+

(
2 − 2

0.9t

)2



2

.

Denote the derivative of u1(x) to be u′1(x). Define the functions

W (w) =
√
w2 − 0.4,

X(W ) =

√
4

0.9
(0.9 −W ) − 2,

Y (X) = −0.9

2
(X + 2),

then the densities are

ρ1(x) =

∣∣∣∣
u1(x)u

′
1(x)

W (u1(x))Y (X(W (u1(x))))

∣∣∣∣ ,

ρ2(x) =
2

0.9t
√

4x
0.9t

+
(
2 − 2

0.9t

)2 ,

ρ3(x) =
2

0.9t
√
− 4x

0.9t
+
(
2 − 2

0.9t

)2 .
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• In domain X < x < −2 + 0.9t + 1
0.9t

, the velocity has four phases. u1 is
determined by

0.9t

4



(

2 − 2

0.9t

)2

−
(√

4

0.9

(
0.9 −

√
u2

1 − 0.4

)
− 2

0.9t

)2

 u1√

u2
1 − 0.4

= x,

with 0.96921825670040 < u1 < 0.97449009909131, and

u2(x) = 0.9 − 0.9

4


− 2

0.9t
+

√

− 4x

0.9t
+

(
2 − 2

0.9t

)2



2

,

u3(x) = 0.9 − 0.9

4



− 2

0.9t
−

√

− 4x

0.9t
+

(
2 − 2

0.9t

)2



2

,

u4(x) = −0.9 +
0.9

4


− 2

0.9t
+

√
4x

0.9t
+

(
2 − 2

0.9t

)2



2

.

Denote the derivative of u1(x) to be u′1(x). Define the functions

W (w) =
√
w2 − 0.4,

X(W ) =

√
4

0.9
(0.9 −W ) − 2,

Y (X) = −0.9

2
(X + 2),

then the densities are

ρ1(x) =

∣∣∣∣
u1(x)u

′
1(x)

W (u1(x))Y (X(W (u1(x))))

∣∣∣∣ ,

ρ2(x) =
2

0.9t
√
− 4x

0.9t
+
(
2 − 2

0.9t

)2 ,

ρ3(x) =
2

0.9t
√

4x
0.9t

+
(
2 − 2

0.9t

)2 ,

ρ4(x) =
2

0.9t
√
− 4x

0.9t
+
(
2 − 2

0.9t

)2 .

• In domain −2 + 0.9t + 1
0.9t

< x < 0.35899646920179, the velocity has two
phases. u1 is determined by

0.9t

4



(

2 − 2

0.9t

)2

−
(√

4

0.9

(
0.9 −

√
u2

1 − 0.4

)
− 2

0.9t

)2

 u1√

u2
1 − 0.4

= x,
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with 0.63245703734354 < u1 < 0.96921825670040, and

u2(x) = −0.9 +
0.9

4


− 2

0.9t
+

√
4x

0.9t
+

(
2 − 2

0.9t

)2



2

.

Denote the derivative of u1(x) to be u′1(x). Define the functions

W (w) =
√
w2 − 0.4,

X(W ) =

√
4

0.9
(0.9 −W ) − 2,

Y (X) = −0.9

2
(X + 2),

then the densities are

Density ρ2 is given by

ρ1(x) =

∣∣∣∣
u1(x)u

′
1(x)

W (u1(x))Y (X(W (u1(x))))

∣∣∣∣ .

ρ2(x) =
2

0.9t
√
− 4x

0.9t
+
(
2 − 2

0.9t

)2 .

• In domain 0.35899646920179 < x < 2−0.9t, the velocity is single phased given
by

u(x) = −0.9 +
0.9

4


− 2

0.9t
+

√
4x

0.9t
+

(
2 − 2

0.9t

)2



2

,

the corresponding density is given by

ρ(x) =
2

0.9t
√

4x
0.9t

+
(
2 − 2

0.9t

)2 .
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