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Abstract

We construct a class of Hamiltonian-preserving numerical schemes for a

Liouville equation of geometrical optics, with transmissions and reflections.

This equation arises in the high frequency limit of the linear wave equation,

with discontinuous local wave speed. In our previous work [23], we introduced

the Hamiltonian-preserving schemes for the same equation when only com-

plete transmissions or reflections occur at the interfaces. These schemes are

extended in this paper to the general case of coexistence of both transmission

and reflection satisfying the Snell Law of Refraction, with the correct trans-

mission and reflection coefficients. This scheme allows a hyperbolic stability

condition, under which positivity, and stabilities in both l
1 and l

∞ norms, are

established. Numerical experiments are carried out to study the numerical

accuracy.

∗Research supported in part by NSF grant No. DMS-0305080, NSFC under the Project

10228101 and the Basic Research Projects of Tsinghua University under the Project JC2002010,

and the Institute for Mathematics and its Applications (IMA) under a New Direction Visiting

Professorship.
†Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA, and Depart-

ment of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China. Email address:

jin@math.wisc.edu.
‡Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P.R. China. Email

address: wenx@mail.tsinghua.edu.cn.
0draft, May 9, 2005

1



1 Introduction

In this paper, we construct and study a numerical scheme for the Liouville equation
in d-dimension:

ft + H
v
· ∇

x
f − H

x
· ∇

v
f = 0 , t > 0, x,v ∈ Rd , (1.1)

where the Hamiltonian H possesses the form

H(x,v) = c(x)|v| = c(x)
√

v2
1 + v2

2 + · · ·+ v2
d (1.2)

with c(x) being the local wave speed. f(t,x,v) is the density distribution of particles
depending on position x, time t and the slowness vector v. In this paper we are
concerned with the case when c(x) contains discontinuities due to different media.
This discontinuity will generate an interface, and as a consequence waves crossing
this interface will undergo transmissions and reflections.

The bicharacteristics of this Liouville equation (1.1) satisfies the Hamiltonian
system:

dx

dt
= c(x)

v

|v| ,
dv

dt
= −c

x
|v| . (1.3)

In classical mechanics the Hamiltonian (1.2) of a particle remains a constant along
particle trajectory, when it is being transmitted or reflected by the interface.

This Liouville equation arises in phase space description of geometrical optics.
It is the high frequency limit of the wave equation

utt − c(x)2∆u = 0, t > 0, x ∈ Rd . (1.4)

Recently several phase space based level set methods are based on this equation, see
[15, 20, 27]. Semiclassical limit of wave equations with transmissions and reflections
at the interfaces were studied in [1, 26, 32]. A Liouville equation based level set
method for the wave front, but with only reflection, was introduced in [7].

In our previous work [23] two classes of numerical schemes that are suitable
for the Liouville equation (1.1) with a discontinuous local wave speed c(x) are con-
structed. The designing principle there was to build the behavior of a particle at the
interface–either cross over with a changed velocity or be reflected with a negative ve-
locity (or momentum) according to a constant Hamiltonian–into the numerical flux.
See also earlier works [29, 22]. These schemes were called Hamiltonian-preserving
schemes. It gives a selection criterion for a unique solution to the governing equa-
tion, which is linearly hyperbolic with singular (discontinuous or measure-valued)
coefficients. For a plane wave hitting a interface, it selects the solution that de-
scribes the interface condition in geometrical optics governed by Snell’s Law of

refraction when the wave length is much shorter than the width of the interface
while both lengths go to zero. However, this is not the only physically relevant
possibility to choose a solution across the interface. When the wave length is much
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longer than the width of the interface, while both lengths go to zero, the reflection
and transmission waves coexist.

This paper is to construct the numerical scheme which is suitable to deal with the
case when both transmission and reflection occur at the same time, with computable
transmission and reflection coefficients. As in [23], we still use the Hamiltonian pre-
serving principle to determine the velocity across the interface. The new contribution
of this paper in to incorporate the transmission and reflection coefficients into the
numerical flux, in order to treat both transmission and reflection simultaneously.
This new, explicit scheme, like those in [22, 23], allows a typical hyperbolic stability
condition ∆t = O(∆x, ∆v), under which we also establish the positivity, and l1 and
l∞ stability theory for the scheme.

In geometrical optics applications, one has to solve the Liouville equation like
(1.1) with measure-valued initial data

f(0,x,v) = ρ0(x)δ(v − u0(x)) , (1.5)

see for example [31, 11, 20]. The solution at later time remains measure-valued
(with finite or even infinite number of concentrations-corresponding to multivalued
solutions in the physical space). Computation of multivalued solutions in geomet-
rical optics and more generally in nonlinear PDEs has been a very active area of
research, see [2, 3, 5, 4, 8, 14, 9, 10, 12, 16, 17, 15, 21, 27, 30, 34].

Direct numerical methods(DNM) for the Liouville equation with measure-valued
initial data (1.5), which approximating the initial delta function first and then evolv-
ing the Liouville equation, could suffer from poor resolution due to the numerical
approximation of the initial data as well as numerical dissipation. The level set
method proposed in [19, 20] decomposes the density distribution f into the bounded
level set functions obeying the same Liouville equation, which greatly enhances the
numerical resolution. The moments can be recovered through some numerical delta
integrals. Thus one only involves numerically the delta-function at the output time.

However, the extension of this density distribution decomposing approach to
the case when both transmission and reflection coexist is not straightforward. In
particular, when the number of transmissions and reflections increase in time, so
does the number of needed level set functions satisfying 1.1. This difficulty was
already pointed out in [7]. In this paper, when dealing with the measure-valued
initial data (1.5) we will just use the DNM. This does not offer the same resolution
as those in [23]. It remains an open question on how to extend the decomposition
idea of [19, 20] to the case when both transmission and reflection coexist.

This paper is organized as follows. In Sections 2, we present the behavior of
waves at an interface, which guides the designing of our scheme. We present the
scheme in 1d in Section 3 and study its positivity and stability in both l∞ and l1

norms. We extend the scheme to the two space dimension in Section 4 in the simple
case of interface aligning with the grids and a plane wave. Numerical examples are
given in Section 5 to verify the accuracy of the scheme. We make some concluding
remarks in Section 6.
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2 The behavior of waves at an interface

In geometrical optics, when a wave moves with its density distribution governed by
the Liouville equation (1.1), its Hamiltonian H = c|v| should be preserved across
the interface:

c+|v+| = c−|v−| (2.1)

where the superscripts ± indicates the right and left limits of the quantity at the
interface. The wave can be partly reflected and partly transmitted. The condition
(2.1) can be used to determine the particle velocity on one side of the interface from
its value on the other side. When a plane wave hits an interface, this condition is
equivalent to Snell’s Law [23] for refraction

sin θi

c−
=

sin θt

c+

(2.2)

and the reflection law
θr = θi, (2.3)

where θi, θt and θr stand for angles of incident, transmitted and reflected waves. See
Fig. 2.1. The reflection coefficient is given by [?]

αR =

(

c+ cos θi − c− cos θt

c+ cos θi + c− cos θt

)2

(2.4)

while the transmission coefficient is αT = 1 − αR. See for example [1, 26, 32].

θ
i

θ
r θ

t

c− c+

(ξ−,η−)

(−ξ−,η−)

(ξ+,η−)

Figure 2.1 Wave transmission and reflection at an interface.
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We will discuss this behavior in more details in 1D and 2D respectively.

• The 1D case

The 1D case is simpler. Consider the case when, at an interface, the charac-
teristic on the left of the interface is given by ξ− > 0. Then with probability

αR =

(

c+ − c−

c+ + c−

)2

the wave is reflected by the interface with a new velocity

−ξ−, and with probability αT = 1 − αR it will cross the interface with new

velocity ξ+ =
c−

c+
ξ− determined by (2.1).

• The 2D case, when a plane incident wave hits a vertical interface (see Fig.
2.1).

Let x = (x, y),v = (ξ, η). Assume the incident wave has velocity (ξ−, η−) to
the left side of the interface, with ξ− > 0. Since the interface is vertical (1.3)
implies that η is not changed when the wave crosses the interface. There are
two possibilities:

1)
(

c−

c+

)2

(ξ−)2 +

[

(

c−

c+

)2

− 1

]

(η−)2 > 0. In this case the wave can partially

transmit and partially be reflected. With probability αR =

(

c+γ− − c−γ+

c+γ− + c−γ+

)2

the wave is reflected with a new velocity (−ξ−, η−), where

γ+ = cos(θt) =
ξ+

√

(ξ+)2 + (η−)2
, γ− = cos(θi) =

ξ−
√

(ξ−)2 + (η−)2
,

With probability αT = 1 − αR it will be transmitted with new velocity
(ξ+, η−) where

ξ+ =

√

√

√

√

(

c−

c+

)2

(ξ−)2 +

[

(

c−

c+

)2

− 1

]

(η−)2,

is obtained using (2.1).

2) c− < c+ and
(

c−

c+

)2

(ξ−)2 +

[

(

c−

c+

)2

− 1

]

(η−)2 < 0. In this case, there is

no possibility for the wave to transmit, so the wave will be completely
reflected with velocity (−ξ−, η−).

If ξ− < 0, similar behavior can also be analyzed using the constant Hamiltonian
condition (2.1).

The solution to the Liouville equation (1.1), which is linearly hyperbolic, can be
solved by the method of characteristics. Namely, the density distribution f remains
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a constant along a bicharacteristics. However, when transmission and reflection both
occur, this is no longer true, since f needs to be determined from two bicharacteris-
tics, one accounting for the transmission and the other for reflection. Therefore, we
use the following condition at the interface:

f(t, x+, ξ+) = αT f(t, x−, ξ−) + αRf(t, x+,−ξ+) (2.5)

where ξ− is defined from ξ+ through the constant Hamiltonian condition (2.1). This
is the main idea in this paper, and will be used in constructing the numerical flux
across the interface in the next section.

3 The scheme in one dimension

3.1 The numerical flux

We now describe our finite difference scheme for the 1D Liouville equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0 . (3.1)

We employ an uniform mesh with grid points at xi+ 1

2

, i = 0, · · · , N, in the x-
direction and ξj+ 1

2

, j = 0, · · · , M in the ξ-direction. The cells are centered at

(xi, ξj), i = 1, · · · , N, j = 1, · · · , M with xi = 1
2
(xi+ 1

2

+xi− 1

2

) and ξj = 1
2
(ξj+ 1

2

+ξj− 1

2

).
The uniform mesh size is denoted by ∆x = xi+ 1

2

− xi− 1

2

, ∆ξ = ξj+ 1

2

− ξj− 1

2

. We also
assume a uniform time step ∆t and the discrete time is given by 0 = t0 < t1 < · · · <
tL = T . We introduce mesh ratios λt

x = ∆t
∆x

, λt
ξ = ∆t

∆ξ
, assumed to be fixed. The cell

average of f is defined by

fij =
1

∆x∆ξ

∫ x
i+ 1

2

x
i− 1

2

∫ ξ
j+ 1

2

ξ
j− 1

2

f(x, ξ, t)dξdx.

Assume that the discontinuous points of the wave speed c are located at the grid
points. Let the left and right limits of c(x) at point xi+1/2 be c+

i+ 1

2

and c−
i+ 1

2

respec-

tively. Note that if c is continuous at xj+1/2, then c+
i+ 1

2

= c−
i+ 1

2

. We approximate c

by a piecewise linear function

c(x) ≈ c+
j−1/2 +

c−j+1/2 − c+
j−1/2

∆x
(x − xj−1/2) .

We also define the averaged wave speed as ci = 1
2
(c+

i− 1

2

+ c−
i+ 1

2

). We will adopt

the flux splitting technique used in [29, 22, 23]. The semidiscrete scheme (with time
continuous) reads

(fij)t +
cisign(ξj)

∆x
(f−

i+ 1

2
,j
− f+

i− 1

2
,j
) −

c−
i+ 1

2

− c+
i− 1

2

∆x∆ξ
|ξj|(fi,j+ 1

2

− fi,j− 1

2

) = 0, (3.2)
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where the numerical fluxes fi,j+ 1

2

are defined using the upwind discretization. Since
the characteristics of the Liouville equation may be different on the two sides of the
interface, the corresponding numerical fluxes should also be different. The essential
part of our algorithm is to define the split numerical fluxes f−

i+ 1

2
,j
, f+

i− 1

2
,j

at each cell

interface. We will use (2.5) to define these fluxes.
Assume c is discontinuous at xi+ 1

2

. Consider the case ξj > 0. Using upwind

scheme, f−

i+ 1

2
,j

= fij. However,

f+
i+ 1

2
,j

= αTf(t, x−

i+ 1

2

, ξ−j) + αRf(t, x+
i+ 1

2

,−ξ+)

while ξ− is obtained from ξ+
j = ξj from (2.1). Since ξ− may not be a grid point, we

have to define it approximately. One can first locate the two cell centers that bound
this velocity, and then use a linear interpolation to evaluate the needed numerical
flux at ξ−. The case of ξj < 0 is treated similarly. The detailed algorithm to generate
the numerical flux is given below.

Algorithm I

• if ξj > 0

f−

i+ 1

2
,j

= fij ,

ξ′ =
c+
i+ 1

2

c−
i+ 1

2

ξj

❏ if ξk ≤ ξ′ < ξk+1 for some k

αR =

(

c+
i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2

, αT = 1 − αR

f+
i+ 1

2
,j

= αT

(

ξk+1 − ξ′

∆ξ
fi,k +

ξ′ − ξk

∆ξ
fi,k+1

)

+ αRfi+1,k′

where ξk′ = −ξk

❏ end

• if ξj < 0

f+
i+ 1

2
,j

= fi+1,j ,

ξ′ =
c−
i+ 1

2

c+
i+ 1

2

ξj

❏ if ξk ≤ ξ′ < ξk+1 for some k

αR =

(

c+
i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2

, αT = 1 − αR
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f−

i+ 1

2
,j

= αT

(

ξk+1 − ξ′

∆ξ
fi+1,k +

ξ′ − ξk

∆ξ
fi+1,k+1

)

+ αRfi,k′

where ξk′ = −ξk

❏ end

The above algorithm for evaluating numerical fluxes is of first order. One can
obtain a second order flux by incorporating the slope limiter, such as the van Leer
or minmod slope limiter [25], into the above algorithm. This can be achieved by
replacing fik with fik + ∆x

2
sik, and replacing fi+1,k with fi+1,k− ∆x

2
si+1,k in the above

algorithm for all the possible index k, where sik is the slope limiter in the x-direction.
After the spatial discretization is specified, one can use any time discretization

for the time derivative.

3.2 Positivity and l∞ contraction

Since the exact solution of the Liouville equation is positive when the initial profile
is, it is important that the numerical solution inherits this property.

We only consider the scheme using the first order numerical flux, and the forward
Euler method in time. Without loss of generality, we consider the case ξj > 0
and c−

i+ 1

2

< c+
i− 1

2

for all i (the other cases can be treated similarly with the same

conclusion). The scheme reads

fn+1
ij − fn

ij

∆t
+ ci

fij − (d1fi−1,k + d2fi−1,k+1 + αRfi,k′)

∆x
−

c−
i+ 1

2

− c+
i− 1

2

∆x
ξj

fij − fi,j−1

∆ξ
= 0,

where d1, d2, α
R are non-negative and d1+d2 = αT = 1−αR. We omit the superscript

n of f . The above scheme can be rewritten as

fn+1
ij =



1 − ciλ
t
x −

∣

∣

∣
c−
i+ 1

2

− c+
i− 1

2

∣

∣

∣

∆x
|ξj|λt

ξ



 fij + ciλ
t
x

(

d1fi−1,k + d2fi−1,k+1 + αRfi,k′

)

+

∣

∣

∣
c−
i+ 1

2

− c+
i− 1

2

∣

∣

∣

∆x
|ξj|λt

ξfi,j−1 . (3.3)

Now we investigate the positivity of scheme (3.3). This is to prove that if fn
ij ≥ 0

for all (i, j), then this is also true for fn+1. Clearly one just needs to show that all
the coefficients before fn are non-negative. A sufficient condition for this is clearly

1 − ciλ
t
x −

∣

∣

∣
c−
i+ 1

2

− c+
i− 1

2

∣

∣

∣

∆x
|ξj|λt

ξ ≥ 0,

or

∆t max
i,j









ci

∆x
+

˛

˛

˛

˛

c−
i+1

2

−c+
i− 1

2

˛

˛

˛

˛

∆x
|ξj|

∆ξ









≤ 1. (3.4)
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The quantity

˛

˛

˛

˛

c−
i+1

2

−c+
i− 1

2

˛

˛

˛

˛

∆x
now represents the wave speed gradient at its smooth

point, which has a finite upper bound. Thus our scheme allows a time step ∆t =
O(∆x, ∆t).

According to the study in [28], our second order scheme, which incorporates a
slope limiter into the first order scheme, is positive under the half CFL condition,
namely, the constant on the right hand side of (3.4) is 1/2.

The above conclusion are analyzed based on forward Euler time discretization.
One can draw the same conclusion for the second order TVD Runge-Kutta time
discretization [33].

The l∞-contracting property of this scheme:

‖fn‖∞ ≤ ‖f 0‖∞

follows easily, because the coefficients in (3.3) are positive and the sum of them is 1.

3.3 The l1-stability of the scheme

In this section we prove the l1-stability of the scheme (with the first order numerical
flux and the forward Euler method in time). For simplicity, we consider the case
when the wave speed has only one discontinuity at grid point xm+ 1

2

with c−
m+ 1

2

>

c+
m+ 1

2

, and c′(x) > 0 at smooth points. The other cases, namely, when c′(x) ≤ 0,

or the wave speed having several discontinuity points with increased or decreased
jumps, can be discussed similarly. Denote λc ≡ c+

m+ 1

2

/c−
m+ 1

2

< 1.

We consider the general case that ξ1 < 0, ξM > 0. For this case, as adopted in
[20, 23], the computational domain should exclude a set Oξ = {(x, ξ) ∈ R

2 |ξ = 0}
which causes singularity in the velocity field. For example, we can exclude the
following index set

Do =

{

(i, j)
∣

∣

∣
|ξj| <

∆ξ

2

}

,

from the computational domain.
Since c(x) has a discontinuity, we also define an index set

D4
l = {(i, j)|xi ≤ xm, ξj < λcξ1}.

Due to the slowness change across at x = xm+ 1

2

, D4
l represents the area where

waves come from outside of the domain [x1, xN ]× [ξ1, ξM ]. In order to implement our
scheme conveniently, this index set is also excluded from the computational domain.
Thus the computational domain is chosen as

Ed = {(i, j)|i = 1, · · · , N, j = 1, · · · , M} \
{

Do ∪ D4
l

}

. (3.5)
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As a result of excluding the index set Do from the computational domain, the
computational domain is split into two non-overlapping parts

Ed = {(i, j) ∈ Ed|ξj > 0} ∪ {(i, j) ∈ Ed|ξj < 0} ≡ E+
d ∪ E−

d .

We define the l1-norm of a numerical solution uij in the set Ed to be

|f |1 =
1

Nd

∑

(i,j)∈Ed

|fij|

with Nd being the number of elements in Ed.
Given the initial data f 0

ij , (i, j) ∈ Ed. Denote the numerical solution at time T
to be fL

ij , (i, j) ∈ Ed. To prove the l1-stability, we need to show that |fL|1 ≤ C|f 0|1.
Due to the linearity of the scheme, the equation for the error between the an-

alytical and the numerical solution is the same as (3.3), so in this section, fij will
denote the error. We assume there is no error at the boundary, thus fn

ij = 0 at
the boundary. If the l1-norm of the error introduced at each time step in incoming
boundary cells is ensured to be o(1) part of |fn|1, our following analysis still applies.

Now denote

Ai =
1

∆x

∣

∣

∣
c−
i+ 1

2

− c+
i− 1

2

∣

∣

∣
. (3.6)

Assume there exists an Au > 0, such that Ai < Au, ∀i. Assume also that there is an
Cm > 0 such that Cm, ci > Cm, ∀i. The finite difference scheme is given by

• When ξj > 0

1) if i 6= m + 1,

fn+1
ij =

(

1 − Ai|ξj|λt
ξ − ciλ

t
x

)

fij + Ai|ξj|λt
ξfi,j+1 + ciλ

t
xfi−1,j , (3.7)

2)

fn+1
m+1,j =

(

1 − Am+1|ξj|λt
ξ − cm+1λ

t
x

)

fm+1,j + Am+1|ξj|λt
ξfm+1,j+1

+ cm+1λ
t
x(dj1fm,k + dj2fm,k+1 + αRfm+1,k′), (3.8)

• When ξj < 0

3) if i 6= m,

fn+1
ij =

(

1 − Ai|ξj|λt
ξ − ciλ

t
x

)

fij + Ai|ξj|λt
ξfi,j+1 + ciλ

t
xfi+1,j , (3.9)

4)

fn+1
mj =

(

1 − Am|ξj|λt
ξ − cmλt

x

)

fmj + Am|ξj|λt
ξfm,j+1

+ cmλt
x(dj1fm+1,k + dj2fm+1,k+1 + αRfm,k′), (3.10)
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where 0 ≤ dj1, dj2 ≤ 1 and dj1 + dj2 = αT = 1 − αR = 1. In (3.8) k is determined

by ξk ≤ λcξj < ξk+1 and ξk′ = −ξk. In (3.10) k is determined by ξk ≤ ξj

λc
< ξk+1 and

ξk′ = −ξk.
When summing up all absolute values of fn+1

ij in (3.7)-(3.10), one typically gets
the following inequality

|fn+1|1 ≤
1

Nd

∑

(i,j)∈Ed

αij |fn
ij|, (3.11)

where the coefficients αij are positive. One can check that, under the CFL condition
(3.4), αij ≤ 1 except for possibly (i, j) ∈ D−

m+1

⋃

D+
m, where

D−

m+1 = {(i, j) ∈ E−

d |i = m + 1}, D+
m = {(i, j) ∈ E+

d |i = m}.

We next derive the bounds for M−, M+ defined as

M− = max
(m+1,j)∈D−

m+1

αm+1,j , M+ = max
(m,j)∈D+

m

αm,j.

Define the set

Sm+1
j =

{

j′
∣

∣

∣
ξj′ < 0,

∣

∣

∣

∣

ξj′

λc
− ξj

∣

∣

∣

∣

< ∆ξ

}

for (m + 1, j) ∈ D−

m+1.

Let the number of elements in Sm+1
j be Nm+1

j . One can check that Nm+1
j ≤ 2λc+1

because every two elements j′1, j
′
2 ∈ Sm+1

j satisfy
∣

∣

∣

ξj′
1

λc
−

ξj′
2

λc

∣

∣

∣
≥ ∆ξ

λc
.

On the other hand, one can easily check from (3.8) and (3.10), for (m + 1, j) ∈
D−

m+1,

αm+1,j < 1−cm+1λ
t
x+cmλt

x (2λc + 1)αT +αRcm+1λ
t
x = 1+αT (cm+cm+1)λ

t
x+O(∆x),

so for sufficiently small ∆x, M− can be bounded by

M− < 1 + 2αT (cm + cm+1)λ
t
x.

Similarly, one can prove for sufficiently small ∆x, M+ is also bounded by

M+ < 1 + 2αT (cm + cm+1)λ
t
x.

Denote M ′ = 2αT (cm + cm+1)λ
t
x. From (3.11),

|fn+1|1 < |fn|1 +
M ′

Nd

∑

(m+1,j)∈D−

m+1

|fn
m+1,j| +

M ′

Nd

∑

(m,j)∈D+
m

|fn
m,j | . (3.12)
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Consecutively using (3.12) gives

|fL|1 < |f 0|1 +
M ′

Nd

L−1
∑

n=0







∑

(m+1,j)∈D−

m+1

|fn
m+1,j |







+
M ′

Nd

L−1
∑

n=0







∑

(m,j)∈D+
m

|fn
m,j|







. (3.13)

Define

S1 =

L−1
∑

n=0







∑

(m+1,j)∈D−

m+1

|fn
m+1,j |







, S2 =

L−1
∑

n=0







∑

(m,j)∈D+
m

|fn
m,j|







. (3.14)

These two terms can be proved in the same way as in [23] that

S1, S2 < CT Nd|f 0|1, (3.15)

where

CT ≡ exp

(

2Au

Cm

(xN − x1)

)

1

Cmλt
x

. (3.16)

Combing (3.13) and (3.15),

|fL|1 < |f 0|1 + 2CT M ′|f 0|1
= [1 + 2CT M ′] |f 0|1
≡ C|f 0|1

where C ≡ 1 + 2CTM ′.
Thus we have proved the following theorem

Theorem 3.1. Under the hyperbolic CFL condition (3.4), the scheme (3.7)-(3.10)

is l1-stable:

|fL|1 < C|f 0|1 .

4 The scheme in two space dimension

Consider the 2D Liouville equation

ft +
c(x, y)ξ
√

ξ2 + η2
fx +

c(x, y)η
√

ξ2 + η2
fy − cx

√

ξ2 + η2fξ − cy

√

ξ2 + η2fη = 0. (4.1)

We employ an uniform mesh with grid points at xi+ 1

2

, yj+ 1

2

, ξk+ 1

2

, ηl+ 1

2

in each

direction. The cells are centered at (xi, yj, ξk, ηl) with xi = 1
2
(xi+ 1

2

+ xi− 1

2

), yj =
1
2
(yj+ 1

2

+ yj− 1

2

), ξk = 1
2
(ξk+ 1

2

+ ξk− 1

2

), ηl = 1
2
(ηl+ 1

2

+ ηl− 1

2

). The mesh size is denoted
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by ∆x = xi+ 1

2

− xi− 1

2

, ∆y = yj+ 1

2

− yj− 1

2

, ∆ξ = ξk+ 1

2

− ξk− 1

2

, ∆η = ηl+ 1

2

− ηl− 1

2

. We
define the cell average of f as

fijkl =
1

∆x∆y∆ξ∆η

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ ξ
k+1

2

ξ
k− 1

2

∫ η
l+ 1

2

η
l− 1

2

f(x, y, ξ, η, t)dηdξdydx.

Similar to the 1D case, we approximate c(x, y) by a piecewise bilinear function, and
for convenience, we always provide two interface values of c at each cell interface.
When c is smooth at a cell interface, the two potential interface values are identical.
We also define the averaged wave speed in a cell by averaging the four cell interface
wave speed values

cij =
1

4
(c+

i− 1

2
,j

+ c−
i+ 1

2
,j

+ c+
i,j− 1

2

+ c−
i,j+ 1

2

).

The 2D Liouville equation (4.1) can be semi-discretized as

(fijkl)t +
cijξk

∆x
√

ξ2
k + η2

l

(

f−

i+ 1

2
,jkl

− f+
i− 1

2
,jkl

)

+
cijηl

∆y
√

ξ2
k + η2

l

(

f−

i,j+ 1

2
,kl

− f+
i,j− 1

2
,kl

)

−
c−
i+ 1

2
,j
− c+

i− 1

2
,j

∆x∆ξ

√

ξ2
k + η2

l

(

fij,k+ 1

2
,l − fij,k− 1

2
,l

)

−
c−
i,j+ 1

2

− c+
i,j− 1

2

∆y∆η

√

ξ2
k + η2

l

(

fijk,l+ 1

2

− fijk,l− 1

2

)

= 0,

where the interface values fij,k+ 1

2
,l, fijk,l+ 1

2

are provided by the upwind approxima-

tion, and the split interface values f−

i+ 1

2
,jkl

, f+
i− 1

2
,jkl

, f−

i,j+ 1

2
,kl

, f+
i,j− 1

2
,kl

should be ob-

tained using similar but slightly different algorithm for the 1D case. For example,
to evaluate f±

i+ 1

2
,jkl

we can extend Algorithm I as

Algorithm I in 2D

• if ξk > 0

f−

i+ 1

2
,jkl

= fijkl, ξk1
= −ξk

✰ if

(

C+

i+ 1
2

,j

C−

i+ 1
2

,j

)2

(ξk)
2 +

[

(

C+

i+ 1
2

,j

C−

i+ 1
2

,j

)2

− 1

]

(ηl)
2 > 0

ξ− =

√

√

√

√

(

C+

i+ 1
2

,j

C−

i+ 1
2

,j

)2

(ξk)
2 +

[

(

C+

i+ 1
2

,j

C−

i+ 1
2

,j

)2

− 1

]

(ηl)
2
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❏ if ξk′ ≤ ξ− < ξk′+1 for some k′

γ+ =
ξk

√

(ξk)
2 + (ηl)

2
, γ− =

ξ−
√

(ξ′)2 + (ηl)
2

αR =

(

c+
i+ 1

2

γ− − c−
i+ 1

2

γ+

c+
i+ 1

2

γ− + c−
i+ 1

2

γ+

)2

, αT = 1 − αR

f+
i+ 1

2
,jkl

= αT

(

ξk′+1 − ξ−

∆ξ
fij,k′,l +

ξ− − ξk′

∆ξ
fij,k′+1,l

)

+αRfi+1,j,k1,l

❏ end

✰ else

f+
i+ 1

2
,jkl

= fi+1,j,k1,l

✰ end

• if ξk < 0

f+
i+ 1

2
,jkl

= fi+1,jkl, ξk1
= −ξk

✰ if

(

C−

i+ 1
2

,j

C+

i+ 1
2

,j

)2

(ξk)
2 +

[

(

C−

i+ 1
2

,j

C+

i+ 1
2

,j

)2

− 1

]

(ηl)
2 > 0

ξ+ = −

√

√

√

√

(

C−

i+ 1
2

,j

C+

i+ 1
2

,j

)2

(ξk)
2 +

[

(

C−

i+ 1
2

,j

C+

i+ 1
2

,j

)2

− 1

]

(ηl)
2

❏ if ξk′ ≤ ξ+ < ξk′+1 for some k′

γ+ =
|ξ+|

√

(ξ+)2 + (ηl)
2
, γ− =

|ξk|
√

(ξk)
2 + (ηl)

2

αR =

(

c+
i+ 1

2

γ− − c−
i+ 1

2

γ+

c+
i+ 1

2

γ− + c−
i+ 1

2

γ+

)2

, αT = 1 − αR

f−

i+ 1

2
,jkl

= αT

(

ξk′+1 − ξ+

∆ξ
fi+1,j,k′,l +

ξ+ − ξk′

∆ξ
fi+1,j,k′+1,l

)

+αRfij,k1,l

❏ end

✰ else

f−

i+ 1

2
,jkl

= fi,j,k1,l where ξk1
= −ξk

✰ end

The flux f±

i,j+ 1

2
,kl

can be constructed similarly.

As introduced in section 2, the essential difference between 1D and 2D split flux
definition is that in 2D case, the phenomenon that a wave is completely reflected at
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the interface does occur. While in 1D, the transmission and reflection waves always
coexist at the interface.

Since the gradient of the wave speed at its smooth points are bounded, this
scheme similar to the 1D scheme, is also subject to a hyperbolic CFL condition
under which the scheme is positive.

5 Numerical examples

In this section we present numerical examples to demonstrate the validity of the pro-
posed scheme and to study the numerical accuracy. In the numerical computations
the second order TVD Runge-Kutta time discretization [33] is used.

Example 5.1. A 1D problem with the exact L∞-solution. Consider the 1D
Liouville equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0 (5.1)

with a discontinuous wave speed given by

c(x) =

{

0.6 x < 0

0.2 x > 0
.

The initial data is given by

f(x, ξ, 0) =















1 x < 0, ξ > 0,
√

x2 + 4ξ2 < 1,

1 x > 0, ξ < 0,
√

x2 + ξ2 < 1,

0 otherwise,

(5.2)

In this example the physically relevant values for the reflection and transmission

coefficients αR, αT at the interface are αR =
1

4
, αT =

3

4
. The exact phase space

solution at t = 1 is given by

f(x, ξ, 1) =



















































































αT 0 < x < 0.2,
√

1 − (0.2 − x)2 < ξ < 1.5
√

1 − (3x − 0.6)2;

1 0 < x < 0.2, 0 < ξ <
√

1 − (0.2 − x)2;

1 0 < x < 0.8, −
√

1 − (x + 0.2)2 < ξ < 0;

1 − 0.4 < x < 0, 0 < ξ <
1

2

√

1 − (x − 0.6)2;

1 − 0.6 < x < 0, −1

3

√

1 − (
x

3
+ 0.2)2 < ξ < 0;

αR − 0.6 < x < 0, −1

2

√

1 − (x + 0.6)2 < ξ < −1

3

√

1 − (
x

3
+ 0.2)2;

0 otherwise,

(5.3)
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as shown in Figure 5.1.
We are also interested in computing the moments of the phase space solution,

which is the density

ρ(x, t) =

∫

f(x, ξ, t)dξ

and the averaged slowness

u(x, t) =

∫

f(x, ξ, t)ξdξ

/

ρ(x, t).

At t = 1, the exact density is

ρ(x, 1) =























































































√

1 − (x + 0.2)2 0.2 < x < 0.8;

1.5αT
√

1 − (3x − 0.6)2 + αR
√

1 − (0.2 − x)2

+
√

1 − (x + 0.2)2 0 < x < 0.2;

αT

3

√

1 − (
x

3
+ 0.2)2 +

αR

2

√

1 − (x + 0.6)2 − 0.6 < x < −0.4;

αT

3

√

1 − (
x

3
+ 0.2)2 +

αR

2

√

1 − (x + 0.6)2

+
1

2

√

1 − (x − 0.6)2 − 0.4 < x < 0,

0 otherwise
(5.4)

and in the interval [−0.6, 0.8], the exact averaged slowness is

u(x, 1) =
1

2ρ(x, 1)











































































− [1 − (x + 0.2)2] 0.2 < x < 0.8;

2.25αT [1 − (3x − 0.6)2] + αR [1 − (0.2 − x)2]
− [1 − (x + 0.2)2] 0 < x < 0.2;

−αT

9

[

1 − (
x

3
+ 0.2)2

]

− αR

4

[

1 − (x + 0.6)2
]

− 0.6 < x < −0.4;

−αT

9

[

1 − (
x

3
+ 0.2)2

]

− αR

4

[

1 − (x + 0.6)2
]

+
1

4

[

1 − (x − 0.6)2
]

− 0.4 < x < 0.

(5.5)
We choose the time step as ∆t = 1

2
∆ξ. The computational domain is chosen

as [x, ξ] ∈ [−1.5, 1.5] × [−1.6, 1.6]. Table 5.1 compares the l1-error of the numerical
solutions for f , rho on [−1.5, 1.5] and u on [−0.6, 0.8] computed with different meshes
respectively.
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The convergence rate of the numerical phase space solution in l1-norm is shown to
be about 0.74. This agrees with the well established theory [24], [35], that the l1-error
by finite difference scheme for a discontinuous solution of a linear hyperbolic equation
is at most half order. The convergence rate of the numerical density and averaged
slowness are shown to be about 0.74 and 0.98 respectively since the solutions also
contain discontinuities away from the interface.

Figure 5.2 shows the numerical density ρ and averaged slowness u computed with
a 400× 400 cell along with the exact solutions in the physical space.

Table 5.1 l1 error of the numerical solutions with different meshes

grid points 50 × 50 100 × 100 200× 200 400× 400

f 0.179090 0.104788 0.064989 0.038535

ρ 0.124361 0.079007 0.043248 0.025187

u 0.143083 0.063068 0.043079 0.019870

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.1 Example 5.1, the non-zero part of the exact solution f(x, ξ, 1) depicted
on the 400 × 400 mesh. The horizontal axis is the position, the vertical axis is the

slowness.
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−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

x

ρ

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

u

Figure 5.2 Example 5.1, the density ρ and averaged slowness u at t = 1. Solid
line: the exact solution; ’o’: the numerical solutions using the 400 × 400 mesh.

Left: the density ρ ; Right: the averaged slowness u.

Example 5.2. Computing the physical observables of a 1D problem with
measure-valued solution. Consider the 1D Liouville equation (5.1), where the wave
speed is a well-shaped function

c(x) =

{

0.6 − 0.4 < x < 0.4

1 else

and the initial data is a delta-function

f(x, ξ, 0) = δ(ξ − w(x)) (5.6)

with

w(x) =











































0.5, x ≤ −1.6;

0.5 − 0.4

(1.6)2
(x + 1.6)2, −1.6 < x ≤ 0;

−0.5 +
0.4

(1.6)2
(x − 1.6)2, 0 < x < 1.6;

−0.5, x ≥ 1.6 .

(5.7)

Figure 5.3 plots w(x) in dashed lines.
In this example we are interested in the approximation of the density

ρ(x, t) =

∫

f(x, ξ, t)dξ ,

and the averaged slowness

u(x, t) =

∫

f(x, ξ, t)ξdξ
∫

f(x, ξ, t)dξ
.
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In the computation, we first approximate the delta function initial data (5.6) by
a discrete delta function [13]:

δw(x) =

{

1

w

(

1 − | x
w
|
)

, | x
w
| ≤ 1

0, | x
w
| > 1

(5.8)

with w = ∆ξ to regularize the initial data (5.6). If |ξj − w(xi)| < ∆ξ, set f 0
ij =

1
∆ξ

(

1 − | ξj−w(xi)

∆ξ
|
)

, and f 0
ij = 0 otherwise. We then use the first order Hamiltonian

preserving scheme (without slope limiter) to calculate the phase space solution of Li-
ouville equation (5.1) (we noticed a nonconvergence phenomenon for such problems
with measure -valued initial data when using second order shock capturing upwind
methods with slope limiters, which is still under investigation). Then the moments
are recovered by

ρn
i =

∑

j

fn
ij∆ξ, un

i =

(

∑

j

fn
ijξj∆ξ

)

/

ρn
i .

When both transmission and reflection happen at wave speed jump, the exact
multi-valued slowness at t = 1 is depicted as the solid line in Figure 5.3.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3 Example 5.2, slowness. Dashed line: the initial slowness w(x); Solid
line: the slowness at t = 1. The horizontal axis is the position, the vertical axis is

the slowness.
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In this example the physically relevant values for the reflection and transmission

coefficients αR, αT at the wave speed interface are αR =
1

16
, αT =

15

16
. At t = 1, the

exact density and averaged slowness are given by

ρ(x, 1) =



















































































1, −1.6 < x < −1.4;

1 + αR, −1.4 < x < −0.4 − 1/3;

1 + αR + 0.6αT , −0.4 − 1/3 < x < −0.4;

1 + αR + αT/0.6, −0.4 < x < −0.2;

αT /0.3, −0.2 < x < 0.2;

1 + αR + αT/0.6, 0.2 < x < 0.4;

1 + αR + 0.6αT , 0.4 < x < 0.4 + 1/3;

1 + αR, 0.4 + 1/3 < x < 1.4;

1, 1.4 < x < 1.6;

(5.9)

and

u(x, 1) =
1

ρ(x, 1)











































































































0.5, −1.6 < x < −1.4;

0.5 − αRΥ(x + 0.2), −1.4 < x < −0.4 − 1
3
;

0.5 − αRΥ(x + 0.2) − 0.36αTΥ(0.6x − 1.16), −0.4 − 1
3

< x < −0.6;

Υ(x + 0.6) − αRΥ(x + 0.2) − 0.36αTΥ(0.6x − 1.16), −0.6 < x < −0.4;

αT

0.36
Υ( x

0.6
+ 13

15
) − Υ(x − 1) + αRΥ(x + 1.8), −0.4 < x < −0.2;

αT

0.36
Υ( x

0.6
+ 13

15
) − αT

0.36
Υ( x

0.6
− 13

15
), −0.2 < x < 0.2;

− αT

0.36
Υ( x

0.6
− 13

15
) + Υ(x + 1) − αRΥ(x − 1.8), 0.2 < x < 0.4;

−Υ(x − 0.6) + αRΥ(x − 0.2) + 0.36αTΥ(0.6x + 1.16), 0.4 < x < 0.6;

−0.5 + αRΥ(x − 0.2) + 0.36αTΥ(0.6x + 1.16), 0.6 < x < 0.4 + 1
3
;

−0.5 + αRΥ(x − 0.2), 0.4 + 1
3

< x < 1.4;

−0.5, 1.4 < x < 1.6;

(5.10)
with Υ(x) = 0.5 − 0.4

(1.6)2
x2.

The time step is chosen as ∆t = 1
2
∆ξ. Table 5.2 presents the l1-error of numerical

density ρ and averaged slowness u computed with several different meshes on the
domain [−1.6, 1.6] × [−1.2, 1.2]. It can be observed that the l1-convergence rate of
the numerical solutions is about 1/2 order.

Figure 5.4 shows the numerical solutions of density ρ and averaged slowness u
using the 797 × 640 mesh along with the exact solutions. The numerical solution
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Table 5.2 l1 error of the numerical moments with different meshes

grid points 97 × 80 197 × 160 397× 320 797× 640

ρ 0.330508 0.224384 0.161847 0.114253

u 0.114813 0.084303 0.060016 0.042667

captures the correct dynamics and discontinuities. However, without a decomposi-
tion technique proposed in [20], the resolution is poorer than those in Example 5.1.
Thus more efficient numerical methods needed to be developed in order to produce
higher resolution solution for such measured-valued data.

−1 0 1

1

1.5

2

2.5

3

x

ρ

−1 0 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

u

Figure 5.4 Example 5.2, density and averaged slowness in the physical space at
t = 1. Solid line: the exact solution; ’x’: numerical solutions using the 797 × 640

mesh. Left: density; Right: averaged slowness.

Example 5.3. Computing the physical observables of a 2D problem with a L∞

solution. Consider the 2D Liouville equation (4.1) with a discontinuous wave speed

c(x, y) =

{

2 y > 0

1 y < 0

and a smooth initial data

f(x, y, ξ, η, 0) =
1

πc3c4
exp

(

−
(

x

c1

)2

−
(

y + 0.1

c2

)2

−
(

ξ

c3

)2

−
(

η − 0.1

c4

)2
)

where c1 = 0.03, c3 = 0.05, c2 = c4 = 0.025.
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In this example we aim at computing the density which is the zeroth moment of
the density distribution

ρ(x, y, t) =

∫ ∫

f(x, y, ξ, η, t)dξdη. (5.11)

The computational domain is chosen to be [x, y, ξ, η] ∈ [−0.12, 0.12]×[−0.2, 0.2]×
[−0.2, 0.2] × [−0.2, 0.2].

In this example the physically relevant values for the reflection and transmission
coefficients αR, αT at the wave speed interface are given by (2.4). The exact phase
space solution f(x, y, ξ, η, t) can be obtained by the characteristic method, then we
numerically compute the integral (5.11) on a fine mesh in (ξ, η) space. The results
give very accurate density solution which is used as ”exact” density solution to
compare with the numerical densities computed by our finite difference scheme.

The time step is chosen as ∆t = 1
3
∆x. Figures 5.5 and 5.7 show respectively

the numerical density ρ at t = 0.12, 0.15 using different meshes along with the
exact solution. Figure 5.6,5.8 show respectively the numerical density on x = 0 at
t = 0.12, 0.15 using different meshes along with the exact solution.

Table 5.3 presents the l1 errors of the numerical density ρ computed with different
meshes in phase space at t = 0.12, 0.15. The convergence rate is slightly higher
than first order, which does not suffer from the accuracy degeneration of usual
finite difference method for solving the discontinuous solution of linear hyperbolic
equation–which is at most 1/2 order stated by the well established theory [24], [35].
This is because the only discontinuity in the solutions is at the interface, and no
linear discontinuity travels to the downstream direction like in the one-dimensional
case, which has been take care of by the Hamiltonian-preserving mechanism.

Table 5.3 l1 error of numerical density ρ using different meshes

grid points 13 × 20 × 142 25 × 40 × 262 49 × 80 × 502

t = 0.12 1.241556E-3 5.252852E-4 1.722251E-4

t = 0.15 1.244387E-3 6.621391E-4 2.617174E-4
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Figure 5.5 Example 5.3, density in the physical space at t = 0.12. Upper left:
exact solution; Upper right: 13 × 20 × 142 mesh; Lower left: 25 × 40 × 262 mesh;

Lower right: 49 × 80 × 502 mesh.
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Figure 5.6 Example 5.3, density along x = 0 at t = 0.12. Solid line: exact
solution; ’o’: 13× 20× 142 mesh; ’*’: 25× 40× 262 mesh; ’�’: 49× 80× 502 mesh.
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Figure 5.7 Example 5.3, density in the physical space at t = 0.15. Upper left:
exact solution; Upper right: 13 × 20 × 142 mesh; Lower left: 25 × 40 × 262 mesh;

Lower right: 49 × 80 × 502 mesh.
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Figure 5.8 Example 5.3, density along x = 0 at t = 0.15. Solid line: exact
solution; ’o’: 13× 20× 142 mesh; ’*’: 25× 40× 262 mesh; ’�’: 49× 80× 502 mesh.
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6 Conclusion

In this paper, we extended our previous work [23] to the Liouville equation of ge-
ometrical optics to the general case of coexistence of transmissions and reflections.
Such problems arise in geometrical optics with interfaces. While still utilizing the
constant Hamiltonian structure in constructing the numerical flux, we also account
for the transmission and reflection coefficients into the scheme. This allows an ex-
plicit scheme for time independent Liouville equation with discontinuous local wave
speeds with a hyperbolic CFL condition, under which the scheme is positive, and
stable in both l1 and l∞ norms. Numerical experiments are carried out to study the
numerical accuracy.

We only extended a finite difference version of the Hamiltonian-preserving scheme
developed in [23]. The finite volume version of the method in [23] can also be
extended in a similar fashion, but will not be given here.

In the future we will consider more complex interfaces, and more effective meth-
ods for the measure-valued initial value problem for the same equation.
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