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Abstract. A direct Eulerian generalized Riemann problem (GRP) scheme is derived for
compressible fluid flows. Riemann invariants are introduced as the main ingredient to re-
solve the generalized Riemann problem (GRP) directly for the Eulerian formulation. The
crucial auxiliary Lagrangian scheme in the original GRP scheme is not necessary in the
present framework. The delicate sonic cases can be easily treated and the extension to
multidimensional cases is straightforward.
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1. Introduction

The generalized Riemann problem (GRP) scheme, an analytic extension of the Godunov
scheme, was originally developed for compressible fluid dynamics [1, 4]. It will be explained
for the one dimensional system of an unsteady and inviscid flow in conservation form. The
equations are

(1.1)

∂U

∂t
+
∂F (U)

∂x
= 0,

U =











ρ

ρu

ρ(e+
u2

2
)











, F (U) =











ρu

ρu2 + p

ρu(e+
u2

2
) + pu











,

where ρ, u, e are density, velocity and internal energy, respectively, and p = p(ρ, e) is the
pressure. As is customary, we use the equally spaced grid points xj = j∆x, the interface
points xj+1/2 = (xj + xj+1)/2 defining the cells Cj = [xj−1/2, xj+1/2], j ∈ Z. Let Un

j be the
average value of U over the cell Cj at time tn = n∆t, and assume that the data at time
t = tn are piesewise linear with a slope σnj , i.e. on Cj we have.

(1.2) U(x, tn) = Un
j + σnj (x− xj), x ∈ (xj−1/2, xj+1/2).

Then the second order Godunov-type scheme for (1.1) takes the form

(1.3) Un+1
j = Un

j −
∆t

∆x

(

F (U
n+1/2
j+1/2 ) − F (U

n+1/2
j−1/2 )

)

,

where U
n+1/2
j+1/2 is the mid-point value or the value of U at the cell interface x = xj+1/2 averaged

over the time interval [tn, tn+1]. The GRP scheme proceeds to derive the mid-point value

U
n+1/2
j+1/2 analytically by resolving the generalized Riemann problem at each point (xj+1/2, tn)
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with accuracy of second order. More specifically, the mid-point value U
n+1/2
j+1/2 is computed

with the formulae

(1.4) U
n+1/2
j+1/2 = Un

j+1/2 +
∆t

2

(

∂U

∂t

)n

j+1/2

, Un
j+1/2 = RA(0;Un

j+1/2,−, U
n
j+1/2,+),

where RA((x−xj+1/2)/(t− tn);U
n
j+1/2,−, U

n
j+1/2,+) is the solution of the Riemann problem for

(1.1) centered at (xj+1/2, tn), and Un
j+1/2,− and Un

j+1/2,+ are the limiting values of initial data

U(x, tn) on both sides of (xj+1/2, tn). With the Godunov scheme or the Riemann solution
Un
j+1/2 in mind, it is clear that only (∂U/∂t)nj+1/2 needs to be defined.

The GRP scheme was developed in [1, 4] and designed to deal with this problem. The
main ingredient there is the analytic integration in time of the conservation laws (1.1). Two
related versions, the Lagrangian and the Eulerian, are developed, and the Eulerian version
is always derived by using the Lagrangian case. This approach has the advantage that the
contact discontinuity in each local wave pattern is always fixed with speed zero and the
rarefaction waves and/or shock waves are located on either side. The main issue is how
to use characteristic coordinates in resolving centered rarefaction waves at the singularity
point. However, the passage from the Lagrangian to the Eulerian version is sometimes quite
delicate, particularly for sonic cases. An alternative approach by asymptotic analysis can
be found in [5]. When just the Eulerian scheme is required, e.g., in the two-dimensional
computation, it would be useful to have a direct derivation of the Eulerian scheme.

The purpose of this paper is to present a direct and simple derivation of the Eulerian
generalized Riemann problem (GRP) scheme for compressible fluid flows. We indicate how
to get the integration in time of the conservation laws (1.1) more directly and simply. Our
approach is to apply Riemann invariants in order to resolve the singularity at the jump
discontinuity. The new point enables us to get rid of the auxiliary Lagrangian scheme and
has already been successfully applied to the shallow water equations with bottom topography
[13]. The extension of this scheme to multidimensional cases is straightforward.

To be more precise, the main feature of the GRP scheme is the resolution of centered
rarefaction waves. We first observe the following property of the Riemann invariants; they
are constant throughout an isentropic rarefaction wave. This property implies that they are
still regular inside the nonisentropic rarefaction wave occurring in the generalized Riemann
problem, even though the derivatives of the flow variables u, p and ρ become singular at
the initial discontinuity. Furthermore, the entropy is invariant along a streamline. When
characteristic coordinates are used, the entropy equation is decoupled from the continuity
and momentum equations so that we are able to solve it first. Then we are left with the
Riemann invariants for the remaining two equations. Next we observe that the flow variables
u and p are continuous across the contact discontinuity in the intermediate region so that
we can first treat the directional derivatives of u and p and then proceed to calculate the
derivatives of the density ρ regardless of the location of the contact discontinuity. In addition,
in the sonic case, one of the characteristic curves inside the rarefaction wave is tangential
to the t-axis. This property enables us to apply the information already obtained for the
rarefaction wave in order to compute the time derivatives of all flow variables. We recall
that in the original GRP scheme [1], the sonic case is more delicate due to the nature of the
transformation from the Lagrangian to the Eulerian framework.
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For the shock wave side, we just use the usual approach in order to resolve the discontinuity
[1, 22]. Thus we can obtain the instantaneous values of time derivatives in (1.4), simply
through solving a linear algebraic system containing two equations in terms of material
derivatives of u and p. Therefore, this GRP scheme for (1.1), roughly speaking, consists of
two steps: (i) Solving the Riemann problem at the discontinuity. (ii) Solving a linear system
of two algebraic equations, where the coefficients only depend on the Riemann solution and
the treatment of the GRP. In particular, the multidimensional extension is very simple. To
summarize, the present approach has the following advantage over the original scheme [1].
(i) The transformation from the Lagrangian scheme is not necessary. (ii) We do not need to
treat the sonic cases in a complicated way. (iii) The extension to the multidimensional cases
is straightforward.

This paper is organized as follows. In Section 2 we first present some preliminaries and
notations, including some basic relations among the flow variables and Riemann invariants.
The resolution of rarefaction waves is treated in Section 3 and shocks are treated in Section
4. We conclude the solution of the generalized Riemann problem in Section 5 and the
acoustic case in Section 6. The two dimensional extension is discussed in Section 7. It is
the straightforward combination of our GRP scheme and the Strang splitting method. We
outline the implementation of the GRP scheme in Section 8 and various standard 1-D and
2-D numerical test cases are presented in Section 9.

2. Preliminaries and Notations

In this section we present some preliminaries for the resolution of the generalized Riemann
problem, particularly for rarefaction waves. Then we summarize the notations we use in the
present paper for the reader’s easy reference.

As is well-known [7], the system of Euler equations (1.1) takes the following form equiva-
lently for smooth flows,

(2.1)
Dρ

Dt
+ ρ

∂u

∂x
= 0, ρ

Du

Dt
+
∂p

∂x
= 0,

DS

Dt
= 0,

where D/Dt = ∂/∂t+ u∂/∂x is the material derivative, and the entropy S is related to the
other variables through the second law of thermodynamics

(2.2) de = TdS +
p

ρ2
dρ,

and T is the temperature. Regard p as a function of ρ and S, p = p(ρ, S). Then the local
sound speed c is defined as

(2.3) c2 =
∂p(ρ, S)

∂ρ
.

Thus the first or third equation of (2.1) can be replaced equivalently by

(2.4)
Dp

Dt
+ ρc2

∂u

∂x
= 0.

Observe that the entropy S is constant along a streamline. As the entropy is fixed, the
continuity and momentum equations in (2.1) have the well-known feature of strictly hyper-
bolic conservation laws of two equations that Riemann invariants exist, see [18]. Therefore
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let us introduce the Riemann invariants φ and ψ,

(2.5) φ = u−

∫ ρ c(ω, S)

ω
dω, ψ = u+

∫ ρ c(ω, S)

ω
dω,

which play a pivotal role in the present study. Note that the entropy variable S is automat-
ically a Riemann invariant associated with u− c or u+ c. In terms of total differentials we
can write, with all thermodynamic variables considered as functions of ρ and S,

(2.6) dψ =
c

ρ
dρ+

∂ψ

∂S
dS + du =

1

ρc
dp+ du+K(ρ, S)dS,

where, since ∂ψ
∂S

=
∫ ρ 1

ω
·
∂c(ω,S)
∂S

dω, we have

(2.7) K(ρ, S) = −
1

ρc
·
∂p

∂S
+

∫ ρ 1

ω
·
∂c(ω, S)

∂S
dω.

Recall [4, Eq. (4.67)] that along the characteristic C+ : x′(t) = u+ c we have 1
ρc
dp+ du = 0,

so that in this direction we get

(2.8) dψ = K(ρ, S)dS.

Observe that this can be further simplified if we note that, by ∂S/∂t+u∂S/∂x = 0, we have
(along C+),

(2.9) dS = c
∂S

∂x
dt.

Similarly, since ∂φ
∂S

= −
∫ ρ 1

ω
·
∂c(ω,S)
∂S

dω, we have

(2.10) dφ = du−
1

ρc
dp−K(ρ, S)dS,

and, along C− : x′(t) = u− c,

(2.11) dφ = −K(ρ, S)dS, and dS = −c
∂S

∂x
dt.

In particular, in the important case of polytropic gases, we have

(2.12) p = (γ − 1)ρe, γ > 1,

where e is a function of S alone. Then the Riemann invariants are

(2.13) φ = u−
2c

γ − 1
, ψ = u+

2c

γ − 1
,

where c2 = γp/ρ. It follows that

(2.14) 2c
∂c

∂S
=
γ

ρ

∂p

∂S
, and

∂ψ

∂S
=

2

(γ − 1)

∂c

∂S
=

γ

(γ − 1)ρc

∂p

∂S
.

In this case, by (2.7), we obtain

(2.15) K(ρ, S) =
1

(γ − 1)ρc

∂p

∂S
=
T

c
.

In view of (2.13), we have

(2.16) dφ = du−
γ

(γ − 1)ρc
dp+

c

(γ − 1)ρ
dρ, dψ = du+

γ

(γ − 1)ρc
dp−

c

(γ − 1)ρ
dρ.
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(a) Wave pattern for the GRP. The initial data U0(x) = UL+
xU ′

L
for x < 0 and U0(x) = UR + xU ′

R
for x > 0.

x

t

β = βL

shock

rarefaction

UL UR

U1

U2

α = ᾱ

ᾱ

α = ¯̄α
contactβ = β∗

U∗

0¯̄α
(b) Wave pattern for the associated Riemann problem

Figure 2.1. Typical wave configuration.

Also we note, combining (2.2) and (2.12),

(2.17) TdS =
dp

(γ − 1)ρ
−

c2

(γ − 1)ρ
dρ.

The GRP scheme assumes piecewise linear data for the flow variables. This leads to the
generalized Riemann problem for (1.1) subject to the initial data

(2.18) U(x, 0) =

{

UL + xU ′

L, x < 0,

UR + xU ′

R, x < 0,

where UL, UR, U ′

L and U ′

R are constant vectors. The initial structure of the solution
U(x, t) to (1.1) and (2.18) is determined by the associated Riemann solution, denoted by
RA(x/t;UL, UR), and

(2.19) lim
t→0

U(λt, t) = RA(λ;UL, UR), λ = x/t.

The local wave configuration is usually piecewise smooth and consists of rarefaction waves,
shocks and contact discontinuities, as the schematic description in Figure 2.1. We refer to
[7, 4] for more details. The rarefaction wave as a part of the solution RA(x/t;UL, UR), is
referred to as the associated rarefaction wave.
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The flow is isentropic for the associated rarefaction waves. So ψ (resp. φ) and S are
constant inside the rarefaction wave associated with u− c (resp. u+ c) and their derivatives
vanish. As the general (curved) rarefaction waves are considered, the initial data (2.18) can
be regarded as a perturbation of the Riemann initial data UL, UR. We still expect ψ (resp.
φ) and S to be regular inside the (u− c)-rarefaction wave (resp. (u+ c)-rarefaction wave) at
the singularity. As a key ingredient in this paper, we use the Riemann invariants to resolve
the rarefaction waves at the singularity point.

Now we consider the wave configuration in Figure 2.1, a rarefaction wave moves to the
left and a shock moves to the right. The intermediate region is separated by a contact
discontinuity. The intermediate states in the two subregions are denoted by U1 and U2,
respectively. Note that the pressure p and velocity u are continuous, p1 = p2, u1 = u2, and
only the density has a jump across the contact discontinuity ρ1 6= ρ2. Finally, we denote by
U∗ the limiting state at x = 0, as t→ 0+. Otherwise stated, it is the result of the Riemann
solution of the associated problem at x = 0, with states UR, UL.

In the following table, we list some notations we will use in this paper.

TABLE I: Basic notations

Symbols Definitions

ρ, (u, v), p, S density, velocity componets, pressure, entropy

φ, ψ Riemann invariants

QL, QR limQ(x, 0) as x→ 0−, x→ 0+

Q′

L, Q
′

R, constant slopes
∂Q

∂x
for x < 0, x > 0

RA(·;QL, QR) solution of the Riemann problem subject to data QL, QR

Q∗ RA(0;QL, QR)

Q1, Q2 the value of Q to the left, the right of contact discontinuity

Q−(x, t), Q+(x, t) the solution in the left, the right
(

∂Q

∂t

)

∗

∂Q

∂t
(x, t) at x = 0 as t→ 0+

DQ/Dt the material derivative of U ,
∂Q

∂t
+ u

∂Q

∂x
(DQ/Dt)∗ the limiting value of DQ/Dt at x = 0 as t→ 0+

u− c, u, u+ c three eigenvalues

β, α two characteristic coordinates

σL, σR shock speed at time zero, corresponding to u− c, u+ c

µ2 =
γ − 1

γ + 1
γ > 1 the polytropic index, γ = 1.4 for air
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3. The resolution of centered rarefaction waves

As already pointed out, the important feature of the GRP scheme is the treatment of the
resolution of centered rarefaction waves with characteristic coordinates. Our objective is to
obtain the time derivatives of the flow variables at the singularity point (0, 0).

Consider the rarefaction wave associated with u−c and denote by U−(x, t) (resp. U1(x, t))
the states (regions of smooth flows) ahead (resp. behind) the rarefaction wave, see Figure
2.1(a), where U−(x, t) is determined by the left initial data UL +U ′

Lx. Characteristic curves
throughout the rarefaction wave are denoted by β(x, t) = β and α(x, t) = α, β ∈ [βL, β∗],
−∞ ≤ α < 0, βL = uL − cL, β∗ = u∗ − c∗. They are the integral curves of the following
equations, respectively,

(3.1)
dx

dt
= u− c,

dx

dt
= u+ c.

Here β and α are denoted as follows: β is the initial value of the slope u−c at the singularity
(x, t) = (0, 0), and α for the transversal characteristic curves is the x-coordinate of the
intersection point with the leading β-curve, which may be properly normalized, see below
for polytropic gases. Then the coordinates (x, t) can be expressed as

(3.2) x = x(α, β), t = t(α, β),

which satisfy

(3.3)
∂x

∂α
= (u− c)

∂t

∂α
,

∂x

∂β
= (u+ c)

∂t

∂β
,

and the characteristic equations for ψ in (2.8) and S in (2.9) become

(3.4)
∂S

∂β
=
∂t

∂β
· c
∂S

∂x
,

∂ψ

∂β
=

∂t

∂β
·K(ρ, S)

∂S

∂x
.

Differentiating the first equation in (3.3) with respect to β, the second with respect to α,
and subtracting, we see that the function t = t(α, β) satisfies,

(3.5) 2c
∂2t

∂α∂β
= −

∂(u + c)

∂α
·
∂t

∂β
+
∂(u− c)

∂β
·
∂t

∂α
.

As pointed out in Section 2, the initial structure of (1.1) and (2.18) is determined by the
associated Riemann problem. So the rarefaction wave in Figure 2.1 (a) is asymptotically
the same as the associated rarefaction wave RA in Figure 2.1(b) at the origin. The latter is
expressed by using

(3.6) x/t = u− c, ψ = const = ψL, S = SL.

Note that the flow is isentropic throughout this associated rarefaction wave and recall (2.5)
for the definition of ψ. Then it is reasonable to denote

(3.7) fL(c) :=

∫ ρ

c(ω, SL)ω
−1dω + c,

which is invertible. Note that in view of (2.5), (3.6), we have

(3.8) ψ ≡ ψL = fL(c) + x/t

throughout the rarefaction wave of the associated Riemann problem. Hence, we obtain

(3.9) c = f−1
L (ψL − x/t).
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Therefore we get the characteristic coordinates for this associated rarefaction wave as follows:
β = x/t and α(x, t) = α is the integral curve

(3.10)
dx

dt
= u+ c = x/t+ 2f−1

L (ψL − x/t),

subject to the initial condition x(t = α/βL) = α. Correspondingly, we denote x and t as
functions of α and β,

(3.11) x = xass(α, β), t = tass(α, β).

They are the leading terms (in powers of α) of the transformation (3.2), as α → 0,

(3.12) x(α, β) = xass(α, β) +O(α2), t(α, β) = tass(α, β) +O(α2).

In particular, for the general rarefaction wave, see Figure 2.1(a), we have

(3.13)
∂(u− c)

∂β
(0, β) = 1,

∂t

∂α
(0, β) =

∂tass
∂α

(0, β),
∂t

∂β
(0, β) ≡ 0, βL ≤ β ≤ β∗.

For the case of polytropic gases, it follows from (2.13) that fL(c) = µ−2c, where µ2 = γ−1
γ+1

so that throughout the rarefaction wave, we have

(3.14) u = µ2ψL + (1 − µ2)x/t, c = µ2(ψL − x/t).

The corresponding characteristic curves are

(3.15) β(x, t) = x/t, α(x, t) = t(ψL − x/t)1/(2µ2) · (cL/µ
2)

−
1

2µ2 · βL.

Denote α′ = α · (cL/µ
2)

1

2µ2 /βL. Then we have

(3.16) β(x, t) = x/t, α′(x, t) = t(ψL − x/t)1/(2µ2).

We use (α′, β) as the characteristic coordinates from now on, and replace α′ by α. Therefore,
for the polytropic gases, we have

(3.17) tass(α, β) =
α

(ψL − β)1/(2µ2)
, xass(α, β) =

αβ

(ψL − β)1/(2µ2)
.

The total derivatives Du/Dt and Dp/Dt are functions of α, β throughout the rarefaction
wave. A key ingredient in the resolution of the centered rarefaction wave (and, in fact, the
GRP in general) is the fact that their limiting values, as α → 0, satisfy a simple linear
relation, as expressed in the following lemma.

Lemma 3.1. The limiting values (Du/Dt)(0, β) and (Dp/Dt)(0, β) satisfy the linear relation

(3.18) aL
Du

Dt
(0, β) + bL

Dp

Dt
(0, β) = dL(β),

for all βL ≤ β ≤ β∗, where

(3.19) (aL, bL) =

(

1,
1

ρ(0, β)c(0, β)

)

,
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and dL = dL(β) is a function just depending on the initial data UL, U
′

L, and the Riemann
solution RA(x/t, ;UL, UR). For polytropic gases, dL is
(3.20)

dL =

[

1 + µ2

1 + 2µ2

(

c(0, β)

cL

)1/(2µ2)

+
µ2

1 + 2µ2

(

c(0, β)

cL

)(1+µ2)/µ2
]

TLS
′

L−cL

(

c(0, β)

cL

)1/(2µ2)

ψ′

L.

Note that the limiting values ρ(0, β), c(0, β) are obtained from the solution to the associated
Riemann problem. Also, TLS

′

L, ψ
′

L are given by the formula (2.17) and (2.16), respectively.

Proof. The equation for ψ in (2.6) and the equation for S in (2.1) yield

(3.21)
Du

Dt
+

1

ρc

Dp

Dt
=
Dψ

Dt
.

So we only need to compute Dψ/Dt at (0, β). From (2.8) we have

(3.22)
Dψ

Dt
= cK(ρ, S)

∂S

∂x
− c

∂ψ

∂x
.

Denote

(3.23) A(α, β) := cK(ρ, S) ·
∂S

∂x
(α, β).

It follows that we just need to compute A(0, β) and c(0, β)
∂ψ

∂x
(0, β) separately.

(i) The computation of A(0, β). Note that ∂S/∂x is regarded as a function of α and β
although the derivative with respect to x is involved. Since it vanishes identically in the
case of the associated Riemann solution, it is a regular function of α and β. Then the
characteristic equation for S in (3.4) implies

(3.24)
∂2S

∂α∂β
(α, β) =

∂2t

∂α∂β
· c
∂S

∂x
+
∂t

∂β

∂

∂α

(

c
∂S

∂x

)

.

Setting α = 0 and using (3.5), (3.13), one obtains

(3.25)
∂

∂β

(

∂S

∂α
(0, β)

)

=
1

2c(0, β)
·
∂t

∂α
(0, β) · c(0, β) ·

∂S

∂x
(0, β).

Thus with the fact that

(3.26)
∂S

∂α
=

∂t

∂α

(

∂S

∂t
+ (u− c)

∂S

∂x

)

= −c
∂t

∂α

∂S

∂x
,

we arrive at

(3.27)
∂

∂β

(

∂S

∂α
(0, β)

)

= −
1

2c

∂S

∂α
(0, β).

Integrating this equation from βL to β yields

(3.28)
∂S(0, β)

∂α
=
∂S(0, βL)

∂α
exp

(

−

∫ β

βL

1

2c(0, ξ)
dξ

)

.

It follows, by using (3.26), that

(3.29) c
∂S

∂x
(0, β) =

(

∂tass
∂α

)

−1

(0, β)

(

∂tass
∂α

)

(0, βL) · cLS
′

L exp

(

−

∫ β

βL

1

2c(0, ξ)
dξ

)

.
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That is, we get
(3.30)

A(0, β) = K(ρ(0, β), SL) ·

(

∂tass
∂α

)

−1

(0, β)

(

∂tass
∂α

)

(0, βL) · cLS
′

L exp

(

−

∫ β

βL

1

2c(0, ξ)
dξ

)

.

Particularly, for the polytropic gases, we have, by using (3.14) and (3.17),

(3.31)
∂tass(0, β)

∂α
=

1

(ψL − β)
1

2µ2

=
1

(c/µ2)
1

2µ2

, exp

(

−

∫ β

βL

1

2c(0, ξ)
dξ

)

=

(

c

cL

)
1

2µ2

.

We use (2.2) and (2.12) to get T/TL = c2/c2L. Therefore, we conclude, by recalling (2.15),
for the case of polytropic gases,

(3.32) A(0, β) =

(

c

cL

)(1+µ2)/µ2

TLS
′

L,

where TLS
′

L is given by (2.17).

(ii) The computation of c(0, β) ·
∂ψ

∂x
(0, β). First we observe, using (2.8),

(3.33)

∂ψ

∂α
(0, β) =

∂t

∂α
(0, β)

[

∂ψ

∂t
+ (u− c)

∂ψ

∂x

]

(0, β)

=
∂t

∂α
(0, β)

[

∂ψ

∂t
+ (u+ c)

∂ψ

∂x
− 2c

∂ψ

∂x

]

(0, β)

=
∂t

∂α
(0, β)

[

A(0, β) − 2c(0, β) ·
∂ψ

∂x
(0, β)

]

.

That is

(3.34) c(0, β)
∂ψ

∂x
(0, β) = −

1

2

[

(

∂tass
∂α

)

−1

(0, β) ·
∂ψ

∂α
(0, β) − A(0, β)

]

.

Note that A(0, β), as function of β, is already known in (3.30). Therefore we are left with
the calculation of (∂ψ/∂α)(0, β). The characteristic equation for ψ in (3.4) gives

(3.35)
∂2ψ

∂α∂β
=

∂2t

∂α∂β
·A(α, β) +

∂t

∂β

∂A(α, β)

∂α
.

Setting α = 0 and recalling (3.5), (3.13), we obtain

(3.36)
∂

∂β

(

∂ψ

∂α
(0, β)

)

=
1

2c(0, β)
·
∂tass
∂α

(0, β) · A(0, β).

The integration from βL to β gives,

(3.37)
∂ψ

∂α
(0, β) =

∂ψ

∂α
(0, βL) +

∫ β

βL

1

2c(0, ξ)
·
∂tass
∂α

(0, ξ) · A(0, ξ)dξ.

where the initial data (∂ψ/∂α)(0, βL) is obtained from (3.33) by setting β = βL and
(∂ψ/∂x)(0, βL) = ψ′

L.
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For the polytropic gases, by using (3.14), (3.17) and (3.32) and noting T/TL = c2/c2L, we
obtain

(3.38)
∂ψ

∂α
(0, β) =

∂ψ

∂α
(0, βL) −

2B

1 + 2µ2

(

c(1+2µ2)/(2µ2) − c
(1+2µ2)/(2µ2)
L

)

.

where

(3.39) B =
1

2
(µ2)1/(2µ2)c

−(µ2+1)/µ2

L TLS
′

L.

Inserting (3.32) and (3.38) into (3.22), we get the right-hand side of (3.21), as given by (3.20)
(for the polytropic gases). �

4. The resolution of shocks

In this section, we follow the idea of [22] in order to resolve the shock at the origin. Our
objective is to get an equation, which is analogous to (3.18). In other words, we look for
another linear relation for the time derivatives of u and p, which can be used to obtain the
limiting values (Du/Dt)∗ and (Dp/Dt)∗ at (x, t) = (0, 0+) (see Theorem 5.1).

Let x = x(t) be the shock trajectory which is associated with the u + c characteristic
family and assume that it propagates with the speed σ = x′(t) > 0 to the right, see Figure
2.1(a). We use Q(t) = Q(x(t) + 0, t) and Q(t) = Q(x(t) − 0, t) to denote the preshock and
post shock values of Q, respectively. Along this shock, the (p, u)-Rankine-Hugoniot relation
is written in the form,

(4.1) u = u+ Φ(p; p, ρ),

and the (ρ, p)-Rankine-Hugoniot relation takes the form,

(4.2) ρ = H(p; p, ρ).

The shock velocity is given by

(4.3) σ =
ρu− ρu

ρ− ρ
.

We take the directional derivative along the shock trajectory x = x(t) to get,

(4.4)

(

∂

∂t
+ σ

∂

∂x

)

Γ = 0,

where either Γ = u−u−Φ(p; p, ρ) or Γ = ρ−H(p; p, ρ). The continuity property of solutions
adjacent to the shock front implies that we can replace the time derivatives of U by the x-
derivatives in the preshock region, and similarly we replace the x-derivatives of U by the
time derivatives in the post shock region, for which (2.1), (2.4) are used. In the setup of
Figure 2.1(a), U is given by U+(x, t) and U is given by U2. Note that the variables u and
p are continuous across the contact discontinuity with the speed u and thereby the total
derivatives Du/Dt and Dp/Dt are also continuous in the intermediate region between the
rarefaction wave and the shock. Therefore, by taking the limit t→ 0+, we get,

(4.5)
Du

Dt
→

(

Du

Dt

)

∗

,
Dp

Dt
→

(

Dp

Dt

)

∗

,
∂U

∂x
→ U ′

R,

and also

(4.6) (ρ, u, p) → (ρ2∗, u∗, p∗), (ρ, u, p) → (ρR, uR, pR).
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Note again that ρ undergoes a jump across the contact discontinuity. This is why we write
ρ2∗ in (4.6), which is the limiting value of the density between the contact discontinuity and
the shock. The same thing applies to the limiting value of c2∗.

Lemma 4.1. The limiting values (Du/Dt)∗ and (Dp/Dt)∗ satisfy

(4.7) aR

(

Du

Dt

)

∗

+ bR

(

Dp

Dt

)

∗

= dR,

where aR, bR, dR are constant, depending only on the right hand of initial data (2.18), UR,
U ′

R, and the solution RA(0;UL, UR) to the associated Riemann problem. They are given by
the following expressions,

(4.8)

aR = 1 + ρ2∗ · (σ − u∗) · Φ1, bR = −

[

1

ρ2∗ · c22∗
· (σ − u∗) + Φ1

]

,

dR = LRp · p′R + LRu · u′R + LRρ · ρ′R,

and

(4.9)

LRp = −
1

ρR
+ (σ − uR) · Φ2,

LRu = σ − uR − ρR · c2R · Φ2 − ρR · Φ3,

LRρ = (σ − uR) · Φ3.

Here Φi, i = 1, 2, 3, are

(4.10) Φ1 =
∂Φ

∂p
(p∗; pR, ρR), Φ2 =

∂Φ

∂p
(p∗; pR, ρR), Φ3 =

∂Φ

∂ρ
(p∗; pR, ρR).

Proof. We follow the differentiation (4.4) for Γ = u− u− Φ(p, p, ρ) to get

(4.11)

∂u

∂t
+ σ

∂u

∂x
=

∂u

∂t
+ σ

∂u

∂x
+
∂Φ

∂p
·

(

∂p

∂t
+ σ

∂p

∂x

)

+
∂Φ

∂p
·

(

∂p

∂t
+ σ

∂p

∂x

)

+
∂Φ

∂ρ
·

(

∂ρ

∂t
+ σ

∂ρ

∂x

)

.

Using (2.1) and (2.4), we have

(4.12)

∂u

∂t
+ σ

∂u

∂x
=
Du

Dt
−

1

ρc2
(σ − u)

Dp

Dt
,

∂p

∂t
+ σ

∂p

∂x
=
Dp

Dt
− ρ(σ − u)

Du

Dt
.

Then we use (2.1) and (2.4) again to replace the time derivatives of p, ρ by the corresponding
space derivatives and proceed to take the limit t → 0+ for the resulting equation to finally
obtain (4.7). �
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Remark 4.2. (γ-law case.) In the polytropic case, we have (see [14, Chapter 5] for the
definition of Φ)

(4.13)

Φ(p; p, ρ) = (p− p)

√

1 − µ2

ρ(p+ µ2p)
,

Φ1 =
1

2

√

1 − µ2

ρR(p∗ + µ2pR)
·
p∗ + (1 + 2µ2)pR

p∗ + µ2pR
,

Φ2 = −
1

2

√

1 − µ2

ρR(p∗ + µ2pR)
·
(2 + µ2)p∗ + µ2pR

p∗ + µ2pR
,

Φ3 = −
p∗ − pR

2ρR

√

1 − µ2

ρR(p∗ + µ2pR)
.

5. Time derivative of solutions at the singularity

In this section we use the results of Sections 3 and 4 in order to calculate the instantaneous
value (∂U/∂t)∗. We assume the setup of Figure 2.1, i.e, the rarefaction wave moves to the left
and the shock moves to the right, separated by a contact discontinuity with the speed u. Due
to the continuity property of the pressure p (resp. the velocity u), the total derivative Dp/Dt
(resp. Du/Dt) is continuous across the contact discontinuity and thus the limiting values
(Dp/Dt)∗ (resp. (Du/Dt)∗) are the same in the two subregions. Hence it is convenient to
first calculate (Du/Dt)∗, (Dp/Dt)∗, and then turn to (∂u/∂t)∗, (∂p/∂t)∗. The value (∂ρ/∂t)∗
then follows immediately. For this purpose, we summarize the results in Lemmas 3.1 and
4.1 to get the following theorem.

Theorem 5.1. (Nonsonic case.) Assume that the t-axis is not included in the rarefaction
wave. Then the limiting values (Du/Dt)∗ and (Dp/Dt)∗ are obtained by solving a pair of
linear algebraic equations

(5.1)

aL

(

Du

Dt

)

∗

+ bL

(

Dp

Dt

)

∗

= dL,

aR

(

Du

Dt

)

∗

+ bR

(

Dp

Dt

)

∗

= dR,

where aL, aR, bL, bR, dL and dR are defined in Lemmas 3.1 and 4.1, and summarized for all
cases in Appendix A, respectively. These coefficients depend only on the initial data (2.18)
and the associated Riemann solution RA(0;UL, UR).

We now proceed to the basic step of the GRP solution (see (1.4), i.e, the calculation of
(∂U/∂t)∗.
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Theorem 5.2. (Nonsonic case.) The limiting values of time derivatives (∂u/∂t)∗ and
(∂p/∂t)∗ are calculated with the following formulae

(5.2)

(

∂u

∂t

)

∗

=

(

Du

Dt

)

∗

+
u∗
ρ∗c2∗

(

Dp

Dt

)

∗

,

(

∂p

∂t

)

∗

=

(

Dp

Dt

)

∗

+ ρ∗u∗

(

Du

Dt

)

∗

.

Proof. From (2.4) we get,

(5.3)
∂u

∂t
=
Du

Dt
− u

∂u

∂x
=
Du

Dt
+

u

ρc2
Dp

Dt
.

Then we get (∂u/∂t)∗ by taking the limit t→ 0+. Similarly we can get the expression from
(2.1) for (∂p/∂t)∗ in (5.2). �

Remark 5.3. Note that in the setup of Figure 2.1, ρ∗, c∗ are those obtained behind the
contact discontinuity (compare Eq. (4.6) and the paragraph after it).

When the t-axis (x = 0) is located inside a rarefaction fan, we have a sonic case, and
Theorems 5.1 and 5.2 do not apply. However, since one of the characteristic curves becomes
tangential to the t-axis, the situation becomes much simpler. Indeed, we have the following
theorem.

Theorem 5.4. (Sonic case.) Assume that the t−axis is located inside the rarefaction wave
associated with the u− c characteristic family. Then we have

(5.4)

(

∂u

∂t

)

∗

= dL(0),

(

∂p

∂t

)

∗

= ρ∗u∗dL(0),

where dL(β) is defined in Lemma 3.1.

Proof. On one hand, using (2.6), we have

(5.5)
∂u

∂t
+

1

ρc

∂p

∂t
=
∂ψ

∂t
−K(ρ, S)

∂S

∂t
=
∂ψ

∂t
+ uK(ρ, S)

∂S

∂x
.

Using (2.8) and (2.9), we proceed to get

(5.6) K(ρ, S)
∂S

∂x
=
K(ρ, S)

c

(

∂S

∂t
+ (u+ c)

∂S

∂x

)

=
1

c

(

∂ψ

∂t
+ (u+ c)

∂ψ

∂x

)

.

Then from (5.5), we obtain

(5.7)
∂u

∂t
+

1

ρc

∂p

∂t
=
u+ c

c

Dψ

Dt
.

With the results in (3.18) and (3.21), we conclude that (Dψ/Dt)∗ = dL(0). Then we get

(5.8)

(

∂u

∂t

)

∗

+
1

ρ∗c∗

(

∂p

∂t

)

∗

= 2dL(0).
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On the other hand, using the fact that at the origin the t-axis is tangential to the charac-
teristic curve defined by u∗ − c∗ and using (2.11), we have

(5.9)

(

∂φ

∂t

)

∗

=

(

∂φ

∂t

)

∗

+ (u∗ − c∗)

(

∂φ

∂x

)

∗

= −K(ρ∗, S∗)

[(

∂S

∂t

)

∗

+ (u∗ − c∗)

(

∂S

∂x

)

∗

]

= −K(ρ∗, S∗)

(

∂S

∂t

)

∗

It follows that

(5.10)

(

∂u

∂t

)

∗

−
1

ρ∗c∗

(

∂p

∂t

)

∗

=

(

∂φ

∂t

)

∗

+K(ρ∗, S∗)

(

∂S

∂t

)

∗

= 0.

where the formula (2.10) is used. Note that indeed (5.10) follows directly from the char-
acteristic relation satisfied along u-c characteristics. We combine (5.8) and (5.10) to yield
(5.4). �

Now we are left with the calculation of (∂ρ/∂t)∗. This calculation depends on whether
the contact discontinuity propagates to the left or the right. In other words, we calculate
(∂ρ/∂t)∗ in the left hand side if u∗ > 0; and in the right-hand side if u∗ < 0.

Theorem 5.5. (General Case.) The limiting value (∂ρ/∂t)∗ is calculated as follows.
(i) If u∗ > 0, it is obtained by the formula

(5.11)

(

∂ρ

∂t

)

∗

=
1

c2
∗

((

∂p

∂t

)

∗

+
∂p

∂S
(ρ∗, S∗) ·

u∗
c∗K(ρ∗, S∗)

A(0, β∗)

)

,

where A(0, β∗) is given in (3.30).

(ii) If u∗ < 0, the limiting value (∂ρ/∂t)∗ is calculated by the formula

(5.12) gRρ

(

∂ρ

∂t

)

∗

+ gRp

(

Dp

Dt

)

∗

+ gRu

(

Du

Dt

)

∗

= fR,

where gRρ , gRp , gRu and fR are constant, depending on the initial data (2.18) in the right hand

side and the Riemann solution RA(0;UL, UR). They are expressed in the following,

(5.13)

gRρ = 1 −
σ

u∗
, gRp =

σ

c2
∗
u∗

−H1, gRu = ρ∗(σ − u∗) ·H1,

fR = (σ − uR) ·H2 · p
′

R + (σ − uR) ·H3 · ρ
′

R − ρR · (H2 · c
2
R +H3) · u

′

R.

Here σ is given in (4.3), and Hi, i = 1, 2, 3, are

(5.14) H1 =
∂H

∂p
(p∗; pR, ρR), H2 =

∂H

∂p
(p∗; pR, ρR), H3 =

∂H

∂ρ
(p∗; pR, ρR).

Recall that H is defined in (4.2).
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Proof. For the first case that u∗ > 0, we use the equation of state p = p(ρ, S) and ∂S
∂t

= −u∂S
∂x

by the fact in (2.1) to get

(5.15)
∂p

∂t
= c2

∂ρ

∂t
+
∂p

∂S

∂S

∂t
= c2

∂ρ

∂t
− u

∂p

∂S

∂S

∂x
.

Then we use the definition of A(α, β) in (3.23) in order to obtain (5.11) after setting (α, β) =
(0, β∗).

For the second case that u∗ < 0, we follow the differentiation (4.4) for Γ = ρ−ρ−H(ρ; p, ρ),
exactly as was done in the proof of Lemma 4.1. �

Remark 5.6. (γ-law case.) In the case of polytropic gases, we have the explicit formulae for
(5.11) and Hi, i = 1, 2, 3, in (5.14). Indeed, using (2.12), (2.15) and (3.32), (5.11) becomes,

(5.16)

(

∂ρ

∂t

)

∗

=
1

c2
∗

(

(

∂p

∂t

)

∗

+ (γ − 1)ρ∗u∗

(

c∗
cL

)(1+µ2)/µ2

TLS
′

L

)

.

The explicit formulae for H and Hi, i = 1, 2, 3, are (see [14, Chapter 5] for the definition of
H)
(5.17)

H(p; p, ρ) = ρ
p+ µ2p

p+ µ2p
, H1 =

ρR(1 − µ4)pR
(pR + µ2p∗)2

, H2 =
ρR(µ4 − 1)p∗
(pR + µ2p∗)2

, H3 =
p∗ + µ2pR
pR + µ2p∗

.

6. Acoustic Case

When UL = UR and U ′

L 6= U ′

R, the acoustic case follows. Then only linear waves emanate
from the origin. This scheme thus becomes simple and is stated in the following theorem.

Theorem 6.1. (Acoustic case.) When UL = U∗ = UR and U ′

L 6= U ′

R, we have the acoustic
case. If u∗ − c∗ < 0 and u∗ + c∗ > 0, then (∂u/∂t)∗ and (∂p/∂t)∗ can be solved to be

(6.1)

(

∂u

∂t

)

∗

= −
1

2

[

(u∗ + c∗)

(

u′L +
p′L
ρ∗c∗

)

+ (u∗ − c∗)

(

u′R −
p′R
ρ∗c∗

)]

,

(

∂p

∂t

)

∗

= −
ρ∗c∗
2

[

(u∗ + c∗)

(

u′L +
p′L
ρ∗c∗

)

− (u∗ − c∗)

(

u′R −
p′R
ρ∗c∗

)]

.

Then the quantity (∂ρ/∂t)∗ is calculated from the equation of state p = p(ρ, S),

(6.2)

(

∂ρ

∂t

)

∗

=



























1

c2
∗

[(

∂p

∂t

)

∗

+ u∗
(

p′L − c2
∗
ρ′L
)

]

, if uL = u∗ = uR > 0,

1

c2
∗

[(

∂p

∂t

)

∗

+ u∗
(

p′R − c2
∗
ρ′R
)

]

, if uL = u∗uR < 0.

Proof. First we consider the acoustic wave in the left. Denote by U−(x, t), U1(x, t) the states
in the left hand side and the right hand side of the u−c characteristic curve emanating from
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the origin, respectively. See the setup in Figure 2.1. Since the solution is continuous across
this characteristic curve, we take the differentiation along it for the variable u and get

(6.3)
∂u−
∂t

+ (u− c)
∂u−
∂x

=
∂u1

∂t
+ (u− c)

∂u1

∂x
.

Using (2.1) and (2.4), we have

(6.4)
Du−
Dt

− c
∂u−
∂x

=
∂u1

∂t
−
u− c

ρc2
·
Dp1

Dt
.

It follows, after taking the limit t→ 0+ and using (2.4) again, that

(6.5) −
1

ρ∗
p′L − c∗u

′

L =

(

∂u

∂t

)

∗

−
u∗ − c∗
ρ∗c2∗

·

(

Dp

Dt

)

∗

.

By resolving the acoustic wave moving to the right, we get

(6.6) −
1

ρ∗
p′R + c∗u

′

R =

(

∂u

∂t

)

∗

−
u∗ + c∗
ρ∗c2∗

·

(

Dp

Dt

)

∗

.

We combine (6.5) and (6.6) to yield (∂u/∂t)∗ in (6.1) and

(6.7)
2

ρ∗c∗
·

(

Dp

Dt

)

∗

= −
1

ρ∗
p′L − c∗u

′

L +
1

ρ∗
p′R − c∗u

′

R.

Then using (2.1) and (2.4) again, we obtain (∂p/∂t)∗ as follows,

(6.8)

(

Du

Dt

)

∗

=

(

∂u

∂t

)

∗

−
u∗
ρ∗c2∗

(

Dp

Dt

)

∗

,

(

∂p

∂t

)

∗

=

(

Dp

Dt

)

∗

+ ρ∗u∗

(

Du

Dt

)

∗

.

After getting (∂p/∂t)∗, we use the equation of state p = p(ρ, S) to obtain (∂ρ/∂t)∗. We
consider the case that u∗ > 0. Then we have

(6.9)

(

∂p

∂t

)

∗

= c2
∗

(

∂ρ

∂t

)

∗

+
∂p

∂S
(ρ∗, S∗) ·

(

∂S

∂t

)

∗

= c2
∗

(

∂ρ

∂t

)

∗

− u∗
∂p

∂S
(ρ∗, S∗) ·

(

∂S

∂x

)

∗

= c2
∗

(

∂ρ

∂t

)

∗

− u∗
∂p

∂S
(ρL, SL) · S

′

L

= c2
∗

(

∂ρ

∂t

)

∗

− u∗(p
′

L − c2
∗
ρ′L).

This gives (6.2).
�

Remark 6.2. We can take the limit UL = U∗ = UR for the results in Section 5 to get
Theorem 6.1. Another approach to prove Theorem 6.1 is to use a standard linearization
method around the state U∗ with the rigorous justification.
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7. Two dimensional extension

We use the Strang splitting [20, 4, Chapter 7] for the two dimensional compressible Euler
system,

(7.1)

ρt + ∇ · (ρV ) = 0,

(ρV )t + ∇ · (ρV ⊗ V + p) = 0,

(ρE)t + ∇ · (V (ρE + p)) = 0,

where, in addition to the thermodynamical flow variables ρ, p and e, V = (u, v) is the
velocity and E = (u2 + v2)/2 + e.

The Strang method splits (7.1) into two subsystems,

(7.2)
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+
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∂x
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∂(ρv)

∂t
+
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+
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= 0,











































































∂ρ

∂t
+
∂(ρv)

∂y
= 0,

∂(ρu)

∂t
+
∂(ρuv)

∂y
= 0,

∂(ρv)

∂t
+
∂(ρv2 + p)

∂y
= 0,

∂(ρE)

∂t
+
∂v(ρE + p)

∂y
= 0.

We denote by Lx(∆t), Ly(∆t) the one dimensional evolution operator for one time step for
the subsystems in (7.2) respectively. Then the evolution of one time step of the 2D Strang
splitting algorithm is given by

(7.3) Un+1 = Lx(
∆t

2
)Ly(∆t)Lx(

∆t

2
)Un.

Therefore it suffices to consider the subsystem in the x-direction in (7.2). Then, in addition
to the GRP resolution we already obtained for ρ, u and p, we just need to provide the
resolution for the velocity component v. Note that the component v is transported with the
speed u,

(7.4)
∂v

∂t
+ u

∂v

∂x
= 0.

Theorem 7.1. Assume that a rarefaction wave moves to the left and a shock wave moves
to the right, and the line x = 0 is located in the intermediate region, see Figure 2.1. Then

(i) If u∗ ≥ 0, the value (∂v/∂t)∗ is computed from the rarefaction wave (left hand) side as
follows,

(7.5)

(

∂v

∂t

)

∗

= −u∗ ·
ρ∗
ρL

· v′L.
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(ii) If u∗ < 0, the value (∂v/∂t)∗ is computed from the shock wave (right hand) side, and

(7.6)

(

∂v

∂t

)

∗

= −
u∗(σ − uR)

σ − u∗
v′R.

Proof. In the case that u∗ > 0, the contact discontinuity moves to the right, and v is
continuous in the region to the left of this contact discontinuity. Since v is constant along
particle lines, if we take x2 < x1 < 0 and let v2 and v1 be the corresponding values of v, we
get vi = v(xi(t), t), where xi(t) is the particle trajectory starting at xi, i = 1, 2. The amount

of mass ∆m(t) =

∫ x1(t)

x2(t)

ρ(x, t)dx between the two particles is also conserved, so that we get

(7.7)
v2 − v1

∆m(0)
=
v(x2(t), t) − v(x1(t), t)

∆m(t)

Letting x2 tend to zero, we obtain

(7.8)

(

∂v

∂x

)

∗

=
ρ∗
ρL

· v′L.

Then (7.5) follows by using Eq. (7.4).
For u∗ < 0, the contact discontinuity moves to the left. Then we need to compute (∂v/∂t)∗

from the right-hand side (shock side). Since v is continuous across the shock x = x(t),
v(x(t)−0, t) = v(x(t)+0, t), and the directional derivative of v the shock trajectory x = x(t)
is also continuous. Hence we have

(7.9)
∂v(x(t) − 0, t)

∂t
+ σ

∂v(x(t) − 0, t)

∂x
=
∂v(x(t) + 0, t)

∂t
+ σ

∂v(x(t) + 0, t)

∂x
.

Letting t→ 0+, we have

(7.10)
∂v

∂x
(x(t) + 0, t) → v′R,

∂v

∂t
(x(t) + 0, t) → −uRv

′

R,

and

(7.11)
∂v(x(t) − 0, t)

∂t
→

(

∂v

∂t

)

∗

,
∂v(x(t) − 0, t)

∂x
= −

1

u∗
·

(

∂v

∂t

)

∗

.

Inserting them into (7.9) yields (7.6).
�

We remark at this point that although the velocity component v is continuous across a
rarefaction or a shock, the derivative of v cannot be computed simply from one side as in the
acoustic case due to the nonlinear effect. Indeed, Eqs. (7.5) and (7.6) correct the mistake in
the original GRP scheme, see the formula (7.26) in [4, Page 247].

8. Implementation of the GRP scheme

In this section we describe the one dimensional implementation of the GRP scheme through
the following four steps.

Step 1. Given piecewise initial data

(8.1) Un(x) = Un
j + σnj (x− xj), x ∈ [xj−1/2, xj+1/2],
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we solve the associated Riemann problem for (1.1) ((7.2) for 2-D splitting) to define the
Riemann solution

(8.2) Un
j+1/2 = RA(0;Un

j +
∆x

2
σnj , U

n
j+1 −

∆x

2
σnj+1).

This is the same as the classical Godunov scheme [10], i.e, in the case of piecewise constant
data σnj ≡ 0.

Step 2. Determine (∂U/∂t)nj+1/2 according to Theorems 5.2, 5.4, 5.5 and 6.1 (in the

acoustic case). All coefficients are summarized in Appendix A. Then calculate the numerical
fluxes using Eq. (1.4).

Step 3. Evaluate the new cell averages Un+1
j using Eq. (1.3).

Step 4. Update the slopes σn+1
j by the following procedure. Define

(8.3)
Un+1,−
j+1/2 = Un

j+1/2 + ∆t

(

∂U

∂t

)n

j+1/2

,

σn+1
j =

1

∆x
(∆U)n+1,−

j :=
1

∆x
(Un+1,−

j+1/2 − Un+1,−
j−1/2 ).

In order to suppress local oscillations near discontinuities, we apply to σn+1
j a monotonicity

algorithm–slope limiters, see [1, 22].

Remark 8.1. In comparison with the classical Godunov scheme (Step 1), we only need to
add Step 2 giving (∂U/∂t)nj+1/2. This is accomplished at most by solving two linear alge-

braic equations at each grid point. In most cases (sonic, acoustic etc.), the computation of
(∂U/∂t)nj+1/2 is very simple, see Theorems 5.4 and 6.1.

Remark 8.2. If the difference of Un
j+1/2,− and Un

j+1/2,+ is relatively small, the acoustic case
can be used, see Theorem 6.1. The resulting scheme is called the E1- scheme. In contrast,
if the general case in Section 5 is used, we label the resulting scheme the E∞-scheme.

9. Numerical examples

We choose several one-dimensional and two-dimensional examples to illustrate the per-
formance of our scheme. They are one-dimensional Riemann problems, the interaction of
one-dimensional waves, and three two dimensional Riemann problems. All of them were
often used as test problems to check numerical schemes.

9.1. One dimensional examples. We choose five well-understood one-dimensional exam-
ples to test our scheme.

(a) Sod problem. As commonly used, our first example is the shock tube problem by
Sod [19]. The gas is initially at rest with ρ = 1, p = 1 for 0 ≤ x ≤ 50 and ρ = 0.125, p = 0.1
for 50 < x ≤ 100. Numerical results are shown at time t=15.0 in Figure 9.1. The solid lines
represent the exact solutions, while the dots stand for numerical solutions. We can see that
our scheme does very well in the smooth region, and is comparable at discontinuities with
other schemes.

(b) Nearly stationary shock. Initially, ρ = 4.0, p = 4/3, u = −0.3 for 0 ≤ x < 20;
and ρ = 1.0, p = 10−6 and u = −1.3 for 20 < x ≤ 100. The polytropic index is taken to
be γ = 5/3. The result is shown at time T = 2000 in Figure 9.2. This example involves a
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Figure 9.1. (a) Numerical results for Sod’s problem: 100 grid points are used.

very strong nearly stationary shock, whose exact speed is 3.4052 × 10−2. This is an almost
infinite shock in the sense that the density ratio is close to its maximum. The “wavelike”
behavior can be smoothed out by enhancing the dissipative mechanism, as pointed out [1].

(c) Shock and contact interaction. This example was proposed in [4, Section 6.2.1].
The initial data are given at time t = −10, (ρ, u, p) = (2.8182, 1.6064, 5.0) for x < −24.90,
(ρ, u, p) = (1, 0, 1) for −24.90 ≤ x < 0 and (ρ, u, p) = (0.3, 0, 1.0) for x ≥ 0. A shock
emanates from (−24.90,−10) and propagates to the right. It interacts at time t = 0 with
the contact discontinuity emanating from (0,−10). Then a rarefaction wave, a contact
discontinuity and a shock are produced at (0, 0). Figure 9.3 displays numerical solutions
within [−20, 90]. We see the solution is quite accurate (of course the contact discontinuity
is obviously smeared as in most second order schemes).

(d) Interacting blast wave problem [23]. The gas is at rest and ideal with γ = 1.4,
and the density is everywhere unit. The pressure is p = 1000 for 0 ≤ x < 10 and p = 100 for
90 < x ≤ 100, while it is only p = 0.01 in 10 < x < 90. Reflecting boundary conditions are
applied at both ends. Numerical solutions are shown in Figures 9.4 and 9.5. In both Figures
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Figure 9.2. (b) Numerical results for a very strong nearly stationary shock:
100 grid points are used.

the solid lines are obtained with 3200 grid points, while we use 200 grid points for the dots
in Figure 9.4, and 800 grid points is used for the dots in Figure 9.5.

(e) Low density and internal energy Riemann problem [8, 16]. The initial data is
given with (ρ, u, p) = (1,−2, 0.4) for 0 ≤ x < 50 and (ρ, u, p) = (1, 2, 0.4) for 50 ≤ x ≤ 100.
The numerical result is shown in Figure 9.6. The solid lines are obtained with the exact
Riemann solvers in [21]. The dotted lines are obtained with 100 points. This example shows
that the GRP scheme can preserve the positivity of the density, pressure and energy.

9.2. Two-dimensional Riemann problems. We choose three two-dimensional Riemann
problems as our examples. The two-dimensional Riemann problems were proposed by T.
Zhang and Y. Zheng [24], then followed by many numerical simulations [17, 16, 6, 11] etc.
Systematic treatments can be found in [14, 25]. The flow patterns are quite complex, in-
cluding the Mach reflection, rolling up of slip lines, formation of shocks and much more.
Nowadays the two-dimensional Riemann problems have been useful tests for checking the
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Figure 9.3. (c) Numerical results for shock and contact interaction: 100 grid
points are used.

accuracy of numerical schemes in several dimensions. We present three examples with con-
tour curves of density in all three examples. The initial data for each example consists of
four constant states in the four quadrants. Furthermore, the initial data is designed so that
only one elementary wave, a shock, a rarefaction wave or a contact discontinuity, emanates
from each initial discontinuity along the coordinate axes. We use the notation (ρi, ui, vi, pi)
to express the constant state in the i-th quadrant, i = 1, 2, 3, 4.

(f) The interaction of vortex sheets and the formation of spiral. The Riemann
initial data is chosen to be ρ1 = 0.5, u1 = 0.5, v1 = −0.5, p1 = 5; ρ2 = 1.0, u2 = 0.5,
v2 = 0.5, p2 = 5; ρ3 = 2.0, u3 = −0.5, v3 = 0.5, p3 = 5; and ρ4 = 1.5, u4 = −0.5, v4 = −0.5,
p4 = 5. Initially four vortex sheets are supported on the x and y axes with the same sign,
but they have different measures. They interact and form a spiral, as shown in Figure 9.7.
In the center of the spiral, the density is very low. Compared to [14, 6, 11, 16, 17], Figure
9.7 displays a more accurate result.
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Figure 9.4. (d) Numerical results for the interacting blast wave problem:
200 grid points are used.

(g) Interaction of shocks. This is the 2-D Riemann problem for interacting shocks. It
was Configuration C in [14, Page 244]. See also [6, 11, 16, 17]. The initial data is ρ1 = 1.5,
u1 = 0.0, v1 = 0.0, p1 = 1.5; ρ2 = 0.5323, u2 = 1.206, v2 = 0.0, p2 = 0.3; ρ3 = 0.138,
u3 = 1.206, v3 = 1.206, p3 = 0.029; and ρ4 = 0.5323, u4 = 0.0, v4 = 1.206, p4 = 0.3. Initially
a single planar shock emanates from each coordinate axis. The four shock interact as time
evolves, and a very complicated wave pattern emerges. It includes the triple points, Mach
stems and contact discontinuities etc. The numerical result is displayed in Figure 9.8 and
reflects conspicuous phenomenon in the oblique shock experiments.

(h) The formation of shocks in the interaction of planar rarefactions. We check
the interaction of four 2-D planar rarefaction waves, see Figure 9.9. The Riemann initial data
are ρ1 = 1.0, u1 = 0.0, v1 = 0.0, p1 = 1.0; ρ2 = 0.5197, u2 = −0.7259, v2 = 0.0, p2 = 0.4;
ρ3 = 1.0, u3 = −0.7259, v3 = −0.7259, p3 = 1.0; and ρ4 = 0.5197, u4 = 0.0, v4 = −0.7259,
p4 = 0.4. Initially, there are four planar rarefaction wave emanating from the coordinate
axis, respectively and they interact. We observe that two symmetric compressive waves in
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Figure 9.5. (d) Numerical results for the interacting blast wave problem:
800 grid points are used.

the domain where the rarefaction waves interact. The numerical results are consistent with
those in [14, 17, 16, 6, 11]. This is a typical two dimensional phenomenon, which never
emerges in the interaction of rarefaction waves in one dimension.

Appendix A. Useful coefficients for the GRP scheme

A.1. The coefficients in Theorem 5.1 for all cases. In Table II, we collect for all cases
the coefficients of the system of the linear algebraic equations in Theorem 5.1 for the poly-
tropic gases. Here we assume that the t-axis (cell interface) is located inside the intermediate
region. In this table, the 1-shock (resp. 3-shock) refers to as the shock associated with the
u − c characteristic family (resp. u + c). Analogously for the 1-rarefaction wave and the
3-rarefaction wave.
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Figure 9.6. (e) Numerical results for the low density and energy problem:
100 grid points are used.

TABLE II

Two rarefaction waves (aL, bL) = (arareL , brareL ), dL = drareL

(aR, bR) = (arareR , brareR ), dR = drareR

Two shocks (aL, bL) = (ashockL , bshockL ), dL = dshockL

(aR, bR) = (ashockR , bshockR ), dR = dshockR

1-shock and 3-rarefaction wave (aL, bL) = (ashockL , bshockL ), dL = dshockL

(aR, bR) = (arareR , brareR ), dR = drareR

1-rarefaction wave and 3-shock (aL, bL) = (arareL , brareL ), dL = drareL

(aR, bR) = (ashockR , bshockR ), dR = dshockR



A direct Eulerian GRP scheme 27

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

TIME=20, DX=DY=100/400, CFL=0.5, 30 CONTOUR CURVES

D
E

N
S

IT
Y

FORMATION OF SPIRALS

Figure 9.7. (f) Numerical results for interaction of four contact discontinuities.
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Figure 9.8. (g) Numerical results for interaction of four planar shocks.

The coefficients for rarefaction waves are given by
(A.1)

(arareL , brareL ) = (1,
1

ρ1∗c1∗
), (arareR , brareR ) = (1,−

1

ρ2∗c2∗
),

drareL =

[

1 + µ2

1 + 2µ2

(

c1∗
cL

)1/(2µ2)

+
µ2

1 + 2µ2

(

c1∗
cL

)(1+µ2)/µ2
]

TLS
′

L − cL

(

c1∗
cL

)1/(2µ2)

ψ′

L.

drareR =

[

1 + µ2

1 + 2µ2

(

c2∗
cR

)1/(2µ2)

+
µ2

1 + 2µ2

(

c2∗
cR

)(1+µ2)/µ2
]

TRS
′

R + cR

(

c2∗
cR

)1/(2µ2)

φ′

R.
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Figure 9.9. (h) Numerical results for interaction of four planar rarefaction waves.

The coefficients for shock waves are given by
(A.2)

ashockL = 1 − ρ1∗(σL − u∗)H1(p∗; pL, ρL), bshockL = −
1

ρ1∗c
2
1∗

(σL − u∗) +H1(p∗; pL, ρL),

dshockL = LLp p
′

L + LLuu
′

L + LLρ ρ
′

L,

ashockR = 1 + ρ2∗(σR − u∗)H1(p∗; pR, ρR), bshockR = −

[

1

ρ2∗c22∗
(σR − u∗) +H1(p∗; pR, ρR)

]

,

dshockR = LRp p
′

R + LRu u
′

R + LRρ ρ
′

R,

where all quantities involved are
(A.3)

LLp = −
1

ρL
− (σL − uL)H2(p∗; pL, ρL), LLu = σL − uL + ρLc

2
LH2(p∗; pL, ρL) + ρLH3(p∗; pL, ρL),

LLρ = −(σL − uL)H3(p∗; pL, ρL), σL =
ρ1∗u∗ − ρLuL
ρ1∗ − ρL

,

LRp = −
1

ρR
+ (σR − uR)H2(p∗; pR, ρR), LRu = σR − uR − ρRc

2
RH2(p∗; pR, ρR) − ρRH3(p∗; pR, ρR),

LRρ = (σR − uR)H3(p∗; pR, ρR), σR =
ρ2∗u∗ − ρRuR
ρ2∗ − ρR

,
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and (denote (p, ρ) = (pL, ρL) or (p, ρ) = (pR, ρR)),

(A.4)

H1(p; p, ρ) =
1

2

√

1 − µ2

ρ(p+ µ2p)
·
p+ (1 + 2µ2)p

p+ µ2p
,

H2(p; p, ρ) = −
1

2

√

1 − µ2

ρ(p+ µ2p)
·
(2 + µ2)p+ µ2p

p+ µ2p
,

H3(p; p, ρ) = −
p− p

2ρ

√

1 − µ2

ρ(p+ µ2p)
.

A.2. Sonic case. When the t-axis is located inside the rarefaction waves associated with
u+ c. Then we have

(A.5)

(

∂u

∂t

)

∗

= drareR ,

(

∂p

∂t

)

∗

= ρ∗u∗d
rare
R ,

where drareR is given in (A.1).
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