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Abstract:  We prove the existence of global weak solutions to the
Navier-Stokes equations for compressible isentropic fluids for any v > 1
when the Cauchy data are helically symmetric, where the constant ~
is the specific heat ratio. Moreover, a new integrability estimate of the
density in any neighborhood of the symmetry axis (the singularity axis)
is obtained.
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1 Introduction

This paper is mainly concerned with the global existence of weak solutions to the Cauchy problem
for the compressible isentropic Navier-Stokes with helically symmetric initial data in R3:

Qt—i-div(gm =0,

(oU); +div (oU® U) + aV(0") = pAU + jiVdiv U,

(1.1)

with initial data

o(x,0) = 00, (oU)(z,0) = My, zeR3 (1.2)

that are helically symmetric, i.e., go and My are periodic in z3 of period 27/a (0 < a € R),
where g and U = (Uy, Us, Us) are the density and velocity, respectively, ag? is the pressure with
~v > 1 being the specific heat ratio and @ > 0 being constant, u, i > 0 are constant viscosity
coefficients.

For helically symmetric flow, in cylindrical coordinates (r,60,z) (0 < r < 00, 0 < 6 <
2w, —00 < z < ), the velocity vector U and the pressure ap? do not depend on 6 and z
independently, but only on the linear combination £ = nf + az where n is a given even integer.
Namely, for helically symmetric flow,
ot @) = p(t,r,§). Ult@) = (Tua(t,r8) = Pua(t,r, &), (b, €) + “rualtr ), us(t1,6))

(1.3)
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for some p(t,r, &) and wu(t,r, &) = ( ), ua(t, 7, €), ug(t r, 5)), where p and w are periodic

in & of period 27, © = (z1,22,23) € R nd r = /27 + x3. Then, the helical symmetry of the
initial data (g9, Mp) means that

e0(a) = polr. ), Mo(a) = (Zmi(r,€) = Zm§(r.), Zm{(r.) + Zml(r, ), m§(r.)) (14)

for some po(r, &) and (m§, m9, m)(r,€) = my(r,€), where po(r, &) and mg(r, £) are periodic in &
of period 2.

The Navier-Stokes equations for compressible fluids have been studied by many authors.
The question concerning the global existence and the time-asymptotic behavior of solutions for
large initial data has been largely solved in one dimension. The mathematical theory, however,
is far from being complete in more than one dimension. In the case of sufficiently small initial
data, there is an extensive literature on the global existence and the asymptotic behavior of
solutions which is originated by the papers of Matsumura and Nishida[15, 16] (also see, e.g., [7]
on recent progress). For large initial data, Lions[13] used the weak convergence method and first
obtained the existence of global weak solutions for isentropic flow under the assumption that
v > 3/2 if the dimension N =2 and v > 9/5 if N = 3. In [6, 9, 10, 11] the global existence of
spherically symmetric and axisymmetric weak solutions (without swirls) to the Cauchy problem
for any v > 1 are proved (also cf. [8] on an exterior problem for the full compressible Navier-
Stokes equations). By modifying Lions’ arguments, and using delicately the Div-Curl Lemma
and an idea from [9], Feireisl, Novotny and Petzeltova extended Lions’ global existence result
in R? to the case v > 3/2 (see [4]). We also mention that the existence of weak time-periodic
solutions was proved in [3] under a condition on 7 similar to that of Lions [13] and the global
existence of strong large solutions in [18] under the condition that the viscosity depends on p in
a very specific way, while in [19], non-existence results of global smooth solutions were discussed
for initial density with vacuum.

In this paper, we shall combine the ideas in [4, 9, 13] to prove the global existence of helically
symmetric weak solutions to the 3-D compressible isentropic Navier-Stokes equations for any ~ >
1. Comparing with the axisymmetric case in [9], the difficulties here lie in the following: First,
for helically symmetric flows, there are three components in the velocity field and some swirls are
allowed in the flows, and hence, the equations in the symmetric form become much more complex
and contain the new cross terms, such as % (pu;u;) (i, = 1,2,3) and = 82% (i =1,2,3), which
induce new difficulties and have to be dealt with carefully in weak convergence; then, in the
first glance, when using the effective viscous pressure Pog = P — N(VggA;Vm) : Az U to derive
higher estimates for the density o, one should use three equations for the velocities (2.2)—(2.4).
Unfortunately, this could bring difficulties in defining properly the inverse of a (degenerate)
elliptic operator needed in the derivation of the higher estimates. Instead, we actually use only
two equations (2.2), (2.4) to obtain the higher estimates for p (cf. Section 3).

For the sake of the simplicity of the presentation, we may assume i = 0 without loss of
generality. It is easy to see, from the proof of this paper, that the case fi # 0 will not arise any
new difficulties.

Now we modify the definition of the so-called finite energy solutions to the system (1.1),
(1.2) in [4] in the following way (the notation below will be given at the end of this section):

Definition 1.1 We call (o, U) a finite energy weak solution of %”—pem’od in x3 to (1.1) and
(1.2), if



(1) 0> 0 a.e., and for any T > 0,

0 € L®(0,T; L(G)), Ue L*(0,T; Hy,(G)),
0 € CO0,T); LY (G) —w), oUe CO0,T); L/ (@) —w), (1.5)

loc

(0, 0U)(,0) = (00, Mo)(x) weakly in L], (@) x LY/ O(@),

and (o, U) is periodic in x3 of period 2m/a, where G = {x € R3 | 0 < x3 < 2rw/a} and
G={xecR}|0<ax3<2n/a}.

(2) Eqs. (1.1) are satisfied in D'((0,T) x R3); moreover for any b € C*(R) such that |b(s)| +
|b/(s)s| < C for all s € R, there holds:

9b(o) + div (b(0) U) + (V' ()0 — b(o)) divU =0 (1.6)

in D'((0,T) x R3), i.e., (o, U) is a renormalized solution of (1.1); (see DiPerna and Lions [1]).
(3) The following energy inequality

d Y
£ (g| U + a@) (z,t)dz + / (1Y U + fldiv UP?)(z, t)da < 0 (1.7)
dt G Y — 1 G

holds in the sense of distributions.
Thus, the main result of this paper reads:

Theorem 1.1 Let v > 1. Assume that go, My are helically symmetric (i.e., (1.4) holds), and
that 0 < pg € LYRT x (0,2m)) N LY(RT x (0,27)), mo//po € L2RT x (0,27)) and py, my
are periodic in & of 2m-period. Then, there exists a global finite energy weak solution (o, U) of
2% _period to (1.1), (1.2) which is helically symmetric, i.e., (1.8) holds for some (p,u) that is a
weak solution of (2.1)-(2.7). Moreover, for any T > 0 and 3 € (0, 1), we have

T r1 p2m
/ / / (p" + pu? + pud)rPdrdedt < C. (1.8)
o Jo Jo

Remark 1.1 A similar existence of strong solutions in the incompressible fluid case has been
proved by Mahalov, Titi and Leibovich in [14].

We will prove Theorem 1.1 by showing first that there exists a global weak solution (p, u)
0 (2.1)-(2.7), and then that (o, U) of the form (1.3) satisfies Definition 1.1, thus obtaining a
global helically symmetric weak solution.
The paper is organized as follows: In Section 2 we derive a priori estimates for the approx-
imate weak solutions of (2.1)-(2.7) and give the proof of Theorem 1.1 in Section 3. Section 4 is
devoted to the study of the global existence of the approximate weak solutions to (2.1)-(2.7).

Notation (used throughout this paper): Let m be an integer and 1 < p < co. By W™P(Q)
(Wy"P(O)) we denote the usual Sobolev space defined over a domain 0. W™2(0) = H™(O)
(WS”’Q((’)) = H"(0)), WO = LP(O) with norm || - | zr(0)- For Q C R? we define

()= {1 € Lhel@): [ |7rOPrdrdg <o} - lwoy = ([ 17 oPraras) ™"



L () and H} () are defined similarly to L (Q) and H}..(Q), respectively. In particular, we

use the following abbreviations:

R := (0,00), Ry :=[0,00), |- llce = I - lerex2myy |- lze = - ot x(0,2m))
V= (0, gag,aag), A=+, Vi=(0,ad) = (91,0),
u=: (ul, U3), diva:= Oruy + Oz@gUg.

LP(1, B) respectively | - ||r»(7,3) denotes the space of all strongly measurable, pth-power inte-
grable (essentially bounded if p = co) functions from I to B respectively its norm, I C R an
interval, B a Banach space. C(I, B —w) is the space of all functions which are in L*>°(I, B) and
continuous in t with values in B endowed with the weak topology.

The same letter C' (sometimes used as C(X) to emphasize the dependence of C' on X) will
denote various positive constants which do not depend on € and 9.

2 Approximate solutions and a priori estimates

The helically symmetric form of the compressible Navier-Stokes equations (1.1) for the unknowns
p(t,r, &) and wu(t,r, &) reads (cf. [14] for a derivation in the incompressible fluid case):

1 n
Oep + —0r(rpur) + —O¢(puz) + ade(pus) =0, (2.1)

1 9, N pu3
O(pur) + ;87”(7’/)151) + ;ag(pulug) + ad¢(purusz) — o + 0pP

1 5 M3\ o up  2n
= ,u[;&n(r&«ul) + (a + ﬁ)agul —2 ﬁaqu}, (2.2)
1 n UIU n
O(pu2) + ;&(rpuluz) + ;8§(pug) + a0 (pugus) + pits ;8§P =
1 5 N2\ o uy  2n
,u,[;&n(rarug) + <a + ﬁ)aéug ~ 2 + ﬁagul}, (2.3)
1 n
O(pus) + ;&(rpulu;;) + ;85(pU2U3) + ade(pu3) + ade P
1 9 n? 9
= ,u[;@r(raru?,) + <a + T—2)8€U3}, (2.4)
together with initial values
p(0,7,6) = po(r,€),  (pu)(0,7,€) = mo(0,7,€),  (r,€) €RT xR, (2.5)
and boundary conditions
ul(t,O,g) = UQ(t, 0,5) = 8Tu;3(t, 0,&) =0, t>0, R, (2.6)
p and w are periodic in £ of period 2. (2.7)

Here P = ap”, my = (m(l), mg, mg), and for simplicity, we have assumed that n is an even integer

(cf. Remark 2.1).

Remark 2.1 (i) The choice of the boundary conditions (2.6) follows from the fact that when n is
even, a smooth helically symmetric solution to (1.1), (1.2) satisfies (2.6) at r = 0 automatically.
Furthermore, test functions with 2w /a-period in x3 in (2) of Definition 1.1 automatically satisfy



(2.6) when (o, U) is helically symmetric (cf. the calculations at the end of Section 3).
(ii) When n is odd, we have to impose the following boundary conditions, instead of (2.6),

(w1 +nogu2)(t,0,8) = (ug — ndeur)(t,0,§) = Ocus(t,0,§) =0

because of the same reason as in (i). In this case, we have to modify (2) in Definition 2.1
appropriately (cf. Remark 2.2). A similar theorem can be obtained without essential changes in
the arguments for n being even.

In this section we first construct the approx1mate solutions of (2.1)—(2.7) by adding an
artificial pressure term e*p? (8 > max{4,7}, A > 22 —3) and cutting off the singularity induced
by the axis r = 0 in (2.1)-(2.4), then we derive a prlorl estimates for the approximate solutions.
Before we do this, we first give the definition of the global weak solution to problem (2.1)-(2.7).

Definition 2.1 Let Q = R" x [0,27], we call (p, w)(r,€) a finite energy weak solution of (2.1)-
(2.7), if
(1) p >0 a.e., and for any T > 0,
p € L™(0,T;L7(Q)), we L2(0, T; Hho(Q),
p e CO0, T L7, () —w), pue C°0,T]: £/ (@) — w), (2:8)

(p, pu)(r,€,0) = (po, wo)(r,€)  weakly in L (Q) x L2/OFV(Q),

loc

where (p,u) is 2m-periodic in the variable & for all & € R.
(2) For any ty > t1 > 0, and the test functions (, ¢, € CF(Q x [t1,t2]) with $(t,0,£) =
O0rp(t,0,8) = 0ecp(t,0,8) = Ocp(t,0,€) = 0, there hold:

to
[ ocraragtiz = [ [ 106+ puree + (22 + apup)ierardgar =0, (29)
Q t1 JQ r

to
| pusoraraciz - [ / {purd+ pun(ann + ("2 + ) yrdrde

/ /{ap Or¢ + qﬁ w(Opurdp + (72 + ?0gur) e + %(]ﬁ)}rdrd{dt, (2.10)

to
/ puwrdrdem - / [ (s + puatuns + ("2 o+ qus)og)}rdraas

to
/ / {ap? == = P26 — pu(Drundy + (SF + a’Deun)de — —26)}rdrdgdt, (2.11)
t1

t2 nu
[ pusgrarasiiz = [ [ tourin+ pustusior + ("2 + aug)ioe) b
Q t1 Q

to 2
= / /{ozap“’cpf — ((Oruspr + (%agu;g + &?Oguz) e yrdrdédt, (2.12)
t1 Q

ndeus nag'ua

where we denote wy = + 5wy = + 5

(3) For any b € C*(R) such that |b(s)| + \b'( )s| STC for all s € R, there holds:
1 n
O(p) + L0, (rb{p)ur) + " 0e(b{p)uz) + 0 (b(p)us)

0 (p)p — b(p)){%&n(rul) + Z0cus + adug} = 0.



in D'((0,T) x Q), i.e., (p,u) is a renormalized solution of (2.1);.
(4) The following energy inequality

27r
‘|‘ ,U/ /+/ ‘8 'u,‘2 + a2\85u|2 2 ’8&’&3‘2
R

Uz

+( n aqu> + (7 - fagul) }( yrdrdédr < E(0), Vt>0,  (2.13)

2m 2
plyl a
E(t) = + Nrdrde.

Remark 2.2 If n is odd, we modify (2) in Definition 2.1 in the following way: For any to >
t1 >0, and test functions ¢,¢', (% € C3H(Q x [t1,t2]) of 2m—period in the variable &, (¢(t,0,€) =
(¢ = ndeC?)(t,0,8) = (€% +ndeCh)(t,0,€) =0, the equations (2.1) and (2.4) are satisfied in the

weak sense with test function ¢, and the following holds.

1s satisfied, where

/ (pur¢t — pus¢?yrrde]”
QO t

1

t2 U U
- /t / {ounct = pusG? + ()¢} — purunG? + P22 (¢ nd)
1

2 to
satpunnsct -~ manacd) + 2 6t a@ypavasan = [ [ a4 S

r

—p[(Brur Gy — Opuag?) + o (Oeuald — Deual?) + T(C —ng) — 7(42 + an)]}Tdeﬁdt

pUIU2

/ (purc? + pusch)
Q

to
- / /Q{pumf + pusG + p(u1)?¢E + puruaCy — (¢'=ned)
t1

2 1 pw)? s 1 _ (" 2 ¢ HnG
ralpunusG? + puas) + P 4 n gt = [ [ a2 4 S

—ul(@rnQ? + 0,usC)) + 02 (DgunGE + Deuacd) + (4 n¢d) + =2(¢" = n@)l}rdrdgt,

t2
/ pu%rdrdﬂif - / /{,OusCt + pugur G + (% + aus) (el prdtdrdé
Q t Q
to ' n2
= / /{aap'ygg — pl[orusr + (ﬁagu;g + a?O¢us)Ce| Yrdtdrde.
t1 Q

We start with the construction of approximation to the initial data pp, mgy. Let x{,x5 €
C>®(R) satisfy x{(z) = 1 forx < €2, x5(r) = 1 for r > 3¢, and x§(z) = 0 for ¥ > 272, x5(r) =0
for r < 2e. Similar to [11], we define

Py, €) =17 (1Y po) * iea) (, )X (),
[(’I’no/\/%) * ]e] (T’ 5) pa(rv 6)’ PO(Ta 6) >0
07 pU(Tv f) = 07

mg(r, §) i= x5(r) -

where j. = j] i(r/€,&/€) with fo i(r,§)rdrd§ = 1. It is easy to see that (pf, mf) is periodic
in £ of period 2.



Thus, the approximate solutions of (2.1)-(2.7) are obtained by solving the following initial
boundary value problem in the domain (e, 00) x R:

1 n
Orp® + ~0r(rpfuf) + —0e(p us) + adg(pfuf) =0, (2.14)

1 n
Oup°us) + 0, rpf (u5)?) + 0% (pFusus) + ade(pFugus) —

€ € 1 € n2 € uE 2n €
+ad, (p) + €20, (p°)? = u[;&n(r&«ul) + (o + T—2)8€2u1 — T—; - T—285u2}, (2.15)

pruus

OL(pu5) + - 0n(rpFufus) + 0" (u5)?) + adkpFusus) +
+20 (alp ) + 67 = u[%ar(rarug) +(a®+ ﬁ)agug - % + i—gaguﬂ, (2.16)
Oy (p“u3) + %&(WGUEUE) + Ef}s(ﬁﬂ%ﬂ%) + ade(p(us)?) + ade (a(p)” + € (p°)”)
_ u[%&(r&nug) +2+ " )ag u§) (2.17)
together with initial values:
p(0,7,8) = po(r,€), (p°u)(0,7,8) = mg(r,€), (r,§) € (,00) xR, (2.18)
and boundary conditions:
ui(t,e,€) = us(t,e,&) = 0rus(t,e,§) =0, t>0, £ €R, (2.19)
p° and u° are periodic in £ of period 27, (2.20)

where u¢ = (uf,u3,us), 8 > max{4,v} and A > % — 3 are constants.

From the construction of p§, mf), one easily sees that p§ € cl (R* x [0,27]), p§ > 0 a.e.,

loc
and
16 = poll > x 02 — O H i mg 0, ase—0,
(RFx( ) \/fTO Vpo L2(RF % (0,27)) (2 21)

/ pordrdé < C pordrd§.
(e,00) % (0,27) R+ x(0,27)

Therefore, by virtue of Theorem 4.3 in Section 4, the problem (2.14)—(2.20) has a global
weak solution (p¢, u¢) on R{ x [¢, 00) x R with p¢ > 0 a.e., such that

2
+u/ / / {,uf? + 02w + ﬂ%%?

( + 8§u2) + (“7 - fagul) }( yrdrdédr < E.(0) Yt>0, (2.22)

o0 2m
/ / perdrdé < / pordrd€ Vit>0, (2.23)
€ 0 R+ x(0,27)

0= [ [T o 0 e

where




Notice that § > 2, then by the proof in [13], p¢ is in fact a renormalized solution of (2.14),
i.e., for any b € C1(R), |b(s)| < C and |b'(s)s| < C, one has

€ 1 € € € € € €
Ob(pF) + 0 [rb(p°Jus] + Olb( us) + adelb(p)us)
€ € € 1 € n € €
+ [ (00" — b(p)] [;&(rul) + = deus + adeus| = 0. (2.24)
Moreover, using Holder’s inequality and recalling A > 30 _ 3, one concludes that

AHPon( (e,00)x[0,27]) <Ce _;+ H(Tpg) *je/QHIi{;//’Y

338 — .
< CE pollz Mrad) * egell
35
<CeT Y pollfy =0, ase—0, (2.25)
which combined with (2.21) and (2.22) gives the energy estimate:

2 v
LS. of (2.22) < C 1+/ ('"’O‘ + 2P0 )rdrd§ . Vt>0. (2.26)
R+ x(0,27) 2po v—1

Using the estimate (2.22) and approximating the function b(p) in (2.24) by p? with 0 < 6 <
v —1 (i.e., taking some |bg(s)| + [b(s)s| < C and br(s) — p’ as R — o0), we find that (also cf.
[13, pp. 25,19)),

1 n
a(p)’ + O [r(p°) uf] + ;35[(,06)%5] + ade](p) us]
1
+ (6 — 1)(/)6)‘9 [T&n(rui) + %85115 + aagug =0. (2.27)

Then, if we multiply the equation (2.15), (2.17) by ¢(r) € C3°(e,00) and employ the equation
(2.27), we obtain by calculations similar to those in [13, Chapter 5] that
o(r)(p)’{a(p) + € (p°)” — p(rur + adeus)}
= 0{(p)"(=2) [0, (6(r)pus) + ade((r) pus)]}
(

() D000 uS) + 00 (U] 0 () ] + "0l u5] + 00
HO = 1) [0r(ru) + " 0pus + adeus] } + (5 (—8) {0 (6(r)°(u)?)
+ 202 (0(r)ptusus) + a0F(o(r)ptusus) + aPOR(o(r) (u5)) + " Do) usus) |

~ € (us 2
)-8 o frowion @) + P a4 eW)ﬂ)w(m]

€, €, € ? _ N0/ A\—1 n72 2 €
+ade (rpufusd, () | = ()’ (~8) {0, [*5 02 (9us)] + ade [ agwug)]}
) (-3) o, [r@rui&a(%) (% 2 0cu5) 0] + ade [royus ar(%
+0,(8/ (1)) | - 0202 ()u) ) (0<8<y-1), (2.28)

where (—A)~! stands for the inverse of the operator A = §2 + a28§2 on R x [0,27]. To handle
the terms on the right hand side of the equation (2.28), we set
€ ’LL1 € u2

wy =+ 8& 2, Wy 5—7—*86“1



to see that by virtue of (2.26), w$, w§ € L%(0,T; L2((e, +00) x (0,27)). Thus,

n? . uj  2n, . N, M, o U u§  2n, .
72852(%1) - (7% + 5 0cup)¢ = —0¢(—Oui — 72)45 - (T% + 5 0cuz)o
wi n
= = (S5 + ~0gwd)o(r). (2.29)

On the other hand,
(~3)7' O + ade(#(r)p"u5)|{ 0, 1(p) ) + =0el(p°) 5] + ade (%) us) |
= div {(~A)7" 2. (6(r)puf) + ad(d(r)pfus) | (o) u }
—(p") ' V{(=B)7 9 (6(r)puf) + ade(B(r)pfus)| | (2:30)

So, multiplying (2.28) with # = v — 1 by r and integrating, and following the same process
as in the proof of Theorem 7.1 in [13, Chapter 7], we can deduce that

T
I/ B(r){a(p ) + M) Y rdrde < C, 0= —1, (2.31)
0 JR+x(0,27)

where C' is a positive constant depending only on 0, pg and my.

Next, we exploit the pressure term in (2.15) to derive a (better) integrability estimate (2.33)
of p¢ near r = 0, which will be needed in the exclusion of singularity concentration on the axis
r =0 at the end of Section 3.

For h > 0, let p € CL(R* xR* x[0,27]) be the 2r—periodic function in ¢ and x* € C* (e, c0)
be non-negative such that

p(t,r,§) =1 for (t,r¢&) €[0,T] % [0,1] x [0, 27],
, 0, e<r<e+h, 0<dx"(r)<ch™,
X"'(r) =

1, e+2h<r.

Taking ¢ (t,r, &) = r(r — €)23p(t,r,£)x"(r) as a test function for (2.15), i.e., multiplying (2.15)
by % and integrating over (0,7) x G, with G, := (¢,00) x (0, 27), we deduce that

T
/0 / {”)E(“i)Z@r(%) + [a(p)" + ()] + pf(u )Qw}drdfdt
t t
— /GF pﬁu§¢‘odrd§ Jr/o /GF { — p%ﬁ@tqp — [;pﬁuiug + apeuiug]wé}drdé_dt
T . w 2 . € 9 )
+u/0 /G {rowuio, [£] + (5 + a?)deuive + (2 + S5 0cus) v |drdedt.

In view of ¢, > 2r2/3px" 4 ?“(7" —)x"pr, [ﬁ]r > (r—e)?3x o + 3(r — ) 7/3x"p, and

T

/ / uy + ( %3§U§)¢}drd£dt

n us € ug 2n .
_ /O /G ~ 20¢(%2 — i) + (45 + 5 Ocus)w pdrdedt

=/OT/E{Zw5wg+iwiw},

9



we see that
/ / {pr(u ) +XNp )ﬂ}r2/3goxhdrd§dt+/ / (u$)*(r — e)%cpxhdrdﬁdt

<2 sup /G plusol(tr yards + [ [ {olasonnl +Eptuss + apusus i
€ O €

0<t<T

n 1
+ha”|Gguidey| + u(l;wéwd + | Swit]) fdrdgdt
20y
/ e + e ) + ulorailonen) + 5725 1 2 pravaar

<C suwp / () + Xpo)® + o + o[ [Py rdrde
0<t<T

2
+c// Va4 fuf? + fusl? + [0 (0] + 2] - )4/3}rdrdfdt
27 2h+e 4/3 27
<c+c / / / V=97 ordrdedt + / / / o wdrdgdt}
h+ /3

with C' being independent of € and h. Hence letting h — 0 in (2.32), we obtain

///% (1) T*Sdrdfd”///%{ T+ N p) + p(u§)P i drdedt < O (2.33)

for any T' > 0, where the constant C' is independent of e.

(2.32)

3 Proof of the precompactness

In this section we extract a subsequence from the approximate weak solution sequence (p€, u¢) of
(2.14)—(2.17) and prove that its weak limit (p, u) is indeed a global weak solution of (2.1)—(2.7).

First we extend (p¢, u¢) to the whole domain Rt x R by setting p¢ as well as u§, u§ to be zero
and u§ to be u§(t,€,€) for (t,r,&) € RY x [0,€) x R. For simplicity, we still denote by (p¢, u¢)
this extension, we note that (p, u°) is periodic with period 27 in the variable . Throughout
this section, we denote Q :=R™ x [0, 27].

It follows from (2.26) and (5.91) in [13, p. 43] that ||u[|12( 71 (q)) is uniformly bounded
with respect to €, and hence, we can extract a subsequence of (p¢, u®), still denoted by (p¢, u°),
with

pf e L0, T: L7 ()N L)),  Vu e L30,T;L%Q)),

such that
w§ — wy, w§— wy weakly in L2(0,T; L%(Q)),
p¢ — p weak-x in  L*>(0,T;L7(Q)), (3.1)

u* — u weakly in  L?(0,T; Hi.(Q)).

Using (2.14) and (2.26), we see that d;p¢ € L*(0,T; VVlgclp(Q)) for any 1 < p < 7. So, by
Appendix C in [12], one obtains

p—p in C°([0,T); LY

loc

(Q) —w) for any 1 < p < 7. (3.2)

10



On the other hand, since v > 1, we can take 1 < p < v such that Lj (Q) —— ngg(ﬂ) Hence,
for any T' < oo, p¢ — p in CO([0, T]; H; }()) as € — 0. This together with (3.2) implies that

loc

pfut —pu in  D(0,T) x Q). (3.3)
Moreover, by (2.26), (2.15)—(2.17),

pfut € L0, T; £2/0+)(Q)) N L2(0,T; L. (), for any p < 7,

loc

and
Ay (pcu) € L2(0,T; W, 2P(Q))  for some 1 < j < min{2,~}.

loc

Hence, Appendix C of [12] and (3.3) imply immediately

pfut — pu weak-x in L>(0, T} [,2“//(v+1)(Q))

and weakly in L2(0,T; L () for any 1 < p < 7, (3.4)

loc

pfut — puin CO([0,T); LY () —w) for any p < 27v/(y +1).

loc
From (3.1), (3.3) and (3.4), we get

2
pPrut @ut — pu®u  weakly in L2(0,T; LY .(Q)) for any 1 <p < le (3.5)

Furthermore, from (3.1), (3.5), and (2.21), (2.22), (2.25) and the lower semicontinuity of weak
convergence, the estimate (2.8) follows.
By (2.31) and Holder’s inequality, we conclude that for any K CC RT x R,

T T B/(8+6)
2 / / (p°)Pdrdedt < C(K)eWW”){eA / / (p€)5+9rdrd§dt} —0 ase—0. (3.6)
0 K 0 K

If we sum up (3.1)—(3.6) and take € — 0 in (2.14)—(2.17), we deduce that

( 1
Owp + ;&(Tpul) + ;85(/)”2) +ade(puz) = 0,

1 n u2 _
Oy (pu1) + ;@(TW%) + ;3§(PU1U2) + e (puruz) — % + adypp?

1 5  n% up  2n
= u[;&«(r&m) + (" + ﬁ)ﬁgul — 2 T—Qagug],

1 _
Or(pu2) + ;&(rpuluQ) + ;8§(pu%) + a0¢ (pugus) + s agﬁgm (3.7)
1 9 n? 9 us  2n
= ,u[;&«(rarm) + (Oé + ﬁ)ag’U/Q — sz + ﬁ@é'dl],

1 _
Ou(pus) + =0, (rpurus) + = Oe(puzus) + ad(pud) + aadepT

1 5 N2
{ = u[;@r(rﬁru:g) + (o + ﬁ)agug

in the sense of D'(R* x RT x [0,27]), and the weak limit (p, u) is obviously periodic in ¢ of

period 2m. Here and in what follows, we denote by f(p) the weak limit of f(p¢) (in the sense of
distributions) as € — 0.

11



Moreover, by the similar arguments to those in the proof of Lemma 4.4 in [4], we find that
the weak limit (p, u) solves (3.7); in the sense of renormalized solutions, i.e.,

O(p) + ~0n(rb(p)ur) + 0 [“blp)us + ab(p)us]

= (¥ ()p— b(p)) [ia (run) + 0 (M + ) | =0 (3.8)

holds in D'((0,T) x Q) for any b € C*(R) satisfying |V/(2)z| + |b(2)| < C.

Thus, to show that the weak limit is indeed a finite energy 2w-periodic in-¢ weak solution of
(1.1)—(1.4), we need first to prove that p7 = p7. To this end, we apply the same argument as the
one in the derivation of (3.3) to (3.4), taking into account that the Riesz operator (—A)~19;0;
(4,7 = 1,2) is bounded from LP to LP for any 1 < p < oo, to deduce that

5V (—A)10, [raruiar(f)] Aﬁa,n [rarular(?)],

)(-A)
p><>{ui¢} PP (=) HFus (r)},

p)? (= A) 0% [us0r¢] — p?(— A) 0% [u30, )], (3.9)
)(-A)

©-

V(A ’185 (rous0n (D)) — 7P(~A) o royuson (L)),

(0 (~B) 0 (Do)} = P (-A) o { Lo(r))
() u" = pPu in LQ(O T, Ih(Q), Vp<~/6,
(R?) — L (R?) for any 1 < g < oo.

<

where ¢ € C§°(0, +0c), and we have used the fact that H}.
Similarly we obtain that

(6)) (=)0 { 0w (1)} = p7(—8) 710, { =0 (w26(r)) }

~ — ~ n2
() (—8) 0 TR0} — (D)0 ToR(or )}

in the sense of D'((0,7T) x Q) for all § < /2.
From equations (2.15) and (2.17), we get

0i(—=A)"H{div (¢(r)p u)} € Lo(0,T; Liye(Q)) + L*(0,T; Lo ().
Therefore, by the classical Lions-Aubin Lemma, one obtains
(—=A)H{div (¢(r)p u)} — (=A)"H{div (¢(r)pw)} in LU0, T; LY, (2)) (3.10)
for any 1 < ¢ < oo, p < 2v. Hence, (3.9) combined with (3.10) implies that
(p)0u(—=A) " Hdiv (¢(r)puc)} = pPu(—A)~Hdiv (¢(r)pi)},
(p)?(=A) Hdiv (¢(r)puc)} = p?(—=A) " H{div ((r)pin)}, (3.11)
weakly in L9(0, T; LF

loc

(Q)) forany ¢ <2, p < —1?29,

where we have used
(p9)? — p?  weak-* in L®(0,T; £7/%(Q)) and

_ (3.12)
(p9)? — p? in CO([0,T]; L} () — w) for any 1 < p < ~/6, 0 < 0 < /2,
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which follows from the (2.26)-(2.27) and Appendix C of [12] (also cf. (3.4)2).
From (2.26) we can see that

(=D)10, [(p) ()] = (=A) 10, [p7¢ ()] in LE=D/v(0,T;Wh=D/v(Q)). (3.13)

On the other hand, the imbedding L2, (€) —— W, "0 D ) for any (4y+2)/(4y—1) <
p < min{2,v/(y — 1)}, together with (3.12) implies that

(0) = 7 in CO([0.T); Wi T 0D @), (3.14)
rJ;lhus, from (3.13), (3.14) and Sobolev’s imbedding theorem (Wloc(zy D/ L120(37—1))’ it follows
that

(0)’(=A) "0 [(p)0r0] = pP(=D)710; [p70,9)], (3.15)
weakly in L7=1/7(0,T; LF () with p = % (> 1 for § < ~/2).

If we make use of (2.26), (2.29) and W (ﬁ+9)/ﬁ L12()(f+0)/(6—9)7 we find for any K CC
and 0 < 6 < min{y — 1,7/2} that
M) (=A) 7100 0,01l L1 0,1y x k)
< CM|(p)° | 201030 (0 7y x 1) (= D) T [(0) 0 L r.401 (0.1 )

A
< Cepf ||L29(B+6)/(ﬁ+39>((0T XK)H( ) HL(/B+0)/,8((0,T)XK)
A0/ (B+6) A (B+0)
< CN TN T oy iy 1€ HY

GAH (PE)Hﬁ HLl((o,T)xK)

11— 0
< QAT DN GV B0 0, s e 0. (3.16)

P ||Lﬁ+6 OT)XK) a‘nd

From (3.1), (3.3), (3.4) and (3.5) we easily get

(~8) 70, [rp (520, (2)] = (~A) By lrplun) 6,2, (317
weakly in L2(0, T} VVéf(Q)) forall 1 < p < 2y/(y+1). So, by virtue of (3.12), (3.13), (3.16) and
Sobolev’s imbedding theorem, we obtain
() (~B) 0l (20, (D) = P (~B) 0y lrp(m)?0n( D), (318)
weakly in L?(0,T; L .
0 <v/2).
Analogously to (3.18), we can show that

(Q)) for any 1 < p < 2v/(26 4+ 1) (recall here that 2/(20 + 1) > 1 for

() (~B) 0l ususd (D)) — 27 (~A) " Belrpursdn (D),
() (~A) 0, (5 27— P~ B) 0, p(n? X0 (3.19)

weakly in L2(0,T; LY

loc

(Q)) for any 1 < p < 2vy/(260 4+ 1).
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Finally, we estimate the commutator in (2.28). Denote Ri; = (—A)™19;0; (i,j = 1,2). Let
1 € C(RT x Q) be a 2r—periodic function in the variable &, one has by symmetry of the Riesz
operator that

/]R WW,r,s){(pﬂanij(p%;d;czs(r)) — (p)’uc - V(=A) " div (p uace(r))] drdédt
= /R . {o(r)pususRi; ((0) (2, 7,€)) — ¥(p) usRij (¢ (r) pus) ydrdgdt
= /IR m{“ r)pu§Ri (1 (t, 7, €)(p)) = W (t, 7, ) (0) Rij (¢(r)p us)] drdédt,  (3.20)

where we have denoted u¢ = (u§,u$) = (u§,u§). Similarly we can show that
ot ) =By ocldiv (2 ug o)) — () "uste(~B) e (i)
= /]R {Zoptusus - V(=8) 1 (0(0)) — ~0(p) usde (—A)~div (¢p ) }drdgat

+xQ T

= /R [P lopcus - V(—A) " (9(0)?) — ()0 (—A) " div (ppcus)] bdrdEdt. (3.21)

xq T
On the other hand, from Corollary 4.1 of [5], (3.4)2 and (3.11)2 one gets
[@(r)pf s R (Wt 7€) (p)°) = (7€) (0°) R (6(r) )]
- [¢(T)pﬁ]7€m <w(ta T, g)ﬁ) - w(tu r, g)ﬁRU«b(T)pd])] 5
[0(r)p7us - V(=A) "1 (9 (p)") = 9(p) e (=A) " div (p(r)pfu)]
= [(r)pt- V(=D)" (%) = pP0g(=A) " div (¢(r) p)] (3.22)

for any 1 < s < 2y/(y + 20 + 1) with 6 < (y — 1)/2. Since £{ () —< H;;5(R), the weak
convergence in (3.22) is in fact strong convergence in C([0,T]; H,;.(€2)). Hence, combining
(3.20), (3.21) with (3.1) and (3.22), we arrive at

lim {0/ (=8) " aulaiv (pusuro)] - (p) u - V(= A) 7 [div (p°ue)] fudrdgdt
€V JRTXQ
= /R X Q{ﬁ(—A)‘lai[div(pmuw]—?u-w_A)—l[dfv (o)) Juodrdedt. (3.23)

Now, taking e — 0 in (2.28) and utilizing (3.9)-(3.19) and (3.23), we conclude
o(r)(ap®™ — pQ) = o {p°(—A)~Hdiv (6(r)p0)}

v (P (~8) i (9(r)pau) + (~A) " div (6(r)oin) (672 + (6~ 1)Q1 + (0 1)Q)
—Pu- V{(—A) v (6(r)p@)} + p7(—A) 10, {div (pitsu))

—pI(=A)~? {8 (rp(ul)Q&«[%] (;5/)( 2)’ +apTe'(r )) +0‘8§(7'Pulu3av"($))}
— P (—A) {0, % 35(¢U1)] + 0@5(7285 (¢us))}
+up(—A) o, (r%f}ar(‘b +(5+ fj%?)qb) + ad; (rarug(%

+ar(¢'(r)U3)) - a2a§(¢'(r)u1)} (3.24)
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in the sense of distributions, where 0 < 6 < (y — 1)/2 and we have denoted by Q; and Q the
weak limit of (p€)?w$ and (p°)? div ue, respectively.

Since p¢ is a renormalized solution of (2.14), approximating s? by b € C'(R) with |b(s)| < C
and |b/'(s)s| < C, one finds by (2.24) that

€ 1 € € n € € € €
On(p)" + ~0r(r(p) ui) + —0e((p°) u3) + ade((p) us)
1
+w—1mﬂ%;@@ﬁ)+§@@+a@@}:o
Thus, by applying (3.9) and (3.11) and letting € — 0 in the above equation, we conclude

— 1 — J— J—
0P+ On(rp"ur) + - D) + a0 (p7us)
+(0—1)01 + (0 —1)Q = 0. (3.25)

Therefore, using (3.7) and (3.25), following the same procedure to the one used in [13, PP. 8-9],
we deduce that o 3
o(r)p?(ap? — pdiva) = R.H.S of (3.24),

which combined with (3.24) gives

Lemma 3.1 L - )
o(r)(ap7t0 — uQ) = ¢(r)p? (ap? — pdiva)
forallO<0<%71.

As a result of Lemma 3.1, one has

pe(r)(Q — p? divir)) = ag(r)(p7+0 — p7pf). (3.26)

On the other hand, by convexity,

PR J— _0
7S O < e, (3.27)

which together with (3.25) yields
p(r)(Q — p? divar) > 0.

To exclude possible concentration on the axis r = 0, we will use the following estimate which
is a similar version of the important Lemma 3.2 in [9].

Lemma 3.2 Let 0 < 0 < min{1/2, (v —1)/2} and (1 — 0 + V1460 + 62) < ~. Then,
P —pf e L2900, T; L9 (R x (0,2n)).

Proof By Lemma 3.1 we know that

a(pr 0 —p7pf) = w(Q — pPdiva) (3.28)

R 7i€ _ —
By virtue of convexity, p7+¢ > p E ,p7 > pY and p? > p?. Hence

R ]

___ 0 —
=p1(p77 —p%)
> p7(p" = p%) > 0. (3.29)
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On the other hand, it is easy to see that (p¢)?div u¢ and p?div u are bounded in L27/(7+26) (0,75
E27/(7+26’)(Q)), which implies that p7(p? — pf) € L*/0+20)(0, T 51207(:/(7+26)(Q)). Thus,

loc

A R e L
2~6

< C(pf — )T

0

(p 2/6

J— 2+2

< (0 = )7 (L4 77

2
<O+ g7+ (o — )7 prim),
which completes the proof. O
Now, with Lemma 3.2 and the discussions similar to those in [9], we can prove that
p — p strongly in I (RT x R" x R) Vp<2y—1. (3.30)

Thus, to show that (p, u) is a weak solution of (2.1)-(2.7), we would prove that (p, w) satisfies
(2.1)-(2.4) in the sense of distributions, i.e., it need to prove (2.9)-(2.12).

By using (2.26) and (2.33), we see that for any test function ¢(r, &) € C3(Q x [0,7]) with
#(t,0,8) = 0¢9(t,0,£) = 0, there holds for i = 1,2, as h — 0,

T prh p2m T rh p2m
/ / / |0y us dy |rdtdrdé — 0, / / / ]%(ﬁg\rdtdrdf — 0,
o Jo Jo o Jo Jo
T rh p2r T rh p2m
/ / / |O¢us pe|rdtdrdé — 0, / / / | %t |rdtdrdé — 0.
0 0 0
T rh 2w 2m
/ / / |p ususdy|rdtdrdé — 0, / / / |peusus € f¢ ~lrdtdrd§ — 0, j=1,2,3.
0 0 0

(3.31)
If we employ (2.33) again, we easily infer

2T
/ / {a(p)" + Np)PYgirdrdedt < ChY3 — 0,  as h — 0.
0

where we denote that ¢1 = ¢, and ¢ = ¢¢, therefore, utilizing (3.6) and (3.30), one gets
analogously to (3.31) that

/OT /EOO /:ﬂ{a(Pe)v+€A(pe)ﬂ}¢irdrd§dt — /OT /R+ /027r ap irdrdidt, ase—0. (3.32)

Thus, by (3.30), (3.31), (3.32) we see that the equations (2.1)-(2.3) satisfied by p, pu, puse
respectively hold in the sense of distributions D'((0,7") x ). Hence, it remains to show that
equation of (2.4) satisfied by pus holds in the sense of distributions D’'((0,7) x Q).

To show this, we first notice that by (2.33) for any text function ¢(t,r, &) € C1([0,T] x Q)
with 0,¢(,0,&) = 0¢¢(t,0,£) = 0, then as h — 0 we have

T rh 2w T b p2n
/ / / |P€u§u§¢7~|7’drd§dt — 0, / / / ‘peuzue Pe ‘T’d?’d&dt -0,

DT Oh 027r T 0 h 027r 0
/0 /0 /0 [Or s br|rdrdgdt = 0, /0 /0 /0 (10cusde| + | 25 ¢ yrdrdedt — 0.
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Thus we need only to deal with the term p¢(u§)?, for this we shall use concentration compactness
arguments similar to those of Lions for the stationary isothermal case and the estimate (2.33)
to show no concentration on the axis r = 0.

To this end, notice that for any 7' > 0, p¢(u$)?r is uniformly bounded with respect to € in
LY((0,T) x RT x [0,27]) by virtue of (2.12). Therefore, p¢(u$)*rdrdédt converges weakly in the
sense of measures(on (0,7) x R x R) to a bounded non-negative Radon measure v(t,r,&):

p¢(u§)?rdrdédt — v in the sense of measure. 3.34
3

On the other hand, since v is bounded, the set {(¢,r, &)|v({t,r,&}) > 0} is at most countable
(also see [2, p.13]). Hence, by the Lebesgue decomposition and the Radon-Nikodym theorem,
there is a f € L', an at most countable set J(possibly empty), distinct points {t;,7;,&;}ics €
[0,T] x R& x [0,27] and positive constants {c; };cs, such that

v = frdrd&dt + Zcz (tiyriy &), Zc, < 00. (3.35)

ied ieJ

Moreover, by virtue of (3.5), we easily see that
f=pluz)?, i =0. (3.36)

Thus, for any ¢(¢,7,&) € C3([0,T] x Ry x [0,2n]) with ¢,(t,0,£) = 0, test equation (2.4)
with r¢ in the weak form of (2.17) and make use of (3.1), (3.4) and (3.34)—(3.36) to deduce that

t2 nug
/ pugprdrd|;? — / / {pu:;(ﬂt + puruzer + p——uszpe + Ctp(U3)2g0£}7"d7“d§dt
R+ x[0,27] t1 JRFx[0,27] r

to n?
= [T {aaloyiec— ndvuser — n(F0cunpe + a2cusge) frarsa
t1 JRFx[0,27] r

i€J
forany 0 <t <t <T.
Now, (3.37) and the fact that ¢¢(¢,0,£) = 0 show that ¢; = 0, or in the other words that
= (). Thus, we prove that (p, u) is indeed a finite energy weak solutions of (2.1)-(2.7).

Proof of theorem 1.1: In order to complete the proof of Theorem 1.1 in the case of even n,

it remains to prove that (g, U) of the form (1.3) satisfies (1.1) in the sense of distributions.
Now, let ¢ = ¢(x,t) be a C! function such that, ¢ is a periodic function in 3 with period

%”, and for 0 < t; <t < ty, supp ¢(x,t) is contained in a fixed compact set in R? with respect

to x1,x2. Denote y; = rcos (5;;7), Yo = rsin (5;;7), Yz = = &1 and for 0 <& <2, let

200
n—1
1 ¢ 4 4 -
C(t,r,é) = — qb(rcosw,rsing—i_77+ l<:7r7£ n)dn.
2no o Je—an 2n 2n 2a
Then, (2.9) with the test function ¢ becomes
T prus
/Qp(rdrdf\tl - / /Q{PCt + pui(, + (T + apug) (e prdrdédt = 0. (3.38)
t1

Observe that for ¢ fixed,

2r 2w/ 27/«
/ pCrdrdé = / / / p(r,nl + az)o(r, 0, z)rdrdfdz = / / oo(x, t)dx
Q r+Jo Jo r2 Jo
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Similarly, one has

to to 27‘(‘/&
A R A I e
t1 Q t1 R2 J0O

t2
/ / p(urC + (EUQ + aug)(e)rdrdé =
11 Q r

t2 2r  p27/a
/ / / / {(pu1)(r,nl + az,t)¢,(rcosf,rsinb, z)
ty JRT JO 0

(pu2)

+ (r,nf 4+ az,t)pg(rcosb,rsinb, z) + (pus)(r,nd + az,t)p.(rcos @, rsin b, z) }rdrdfdé

21 o 27 /o
/R?/ (U1 ¢y + 0U2dbz, + 0Us¢zy)d /R?/ oU -V yddez. (3.39)

Substituting the above identities into (3.38), we see that the first equation in (1.1) for p is
satisfied in the sense of distributions.
Now, let ¢ be the same as above and define

§+77+4k7r E+n+dknr . +n+dkm -1
e, &) = QnQZ/ ¢(r cos 57y , 7 Sin 5y o )dn
and
i £+n+4k‘7r E+n+4dkn | E+n+4dkm -1
C(t,r,€) = ZnQZ/ >————¢(rcos 57y , T sin 57, . )dn.

Recalling that ¢(z) is periodic in @3 of period 27/a, one easily sees that 9¢¢'(¢,0,¢) =
9eC%(t,0,€) = 0. Moreover, for even n, ¢1(t,0,&) = ¢2(¢,0,€) = 0 by a straightforward calcula-
tion. Thus, we apply (2.10) and (2.11) with ¢! and ¢? respectively, to arrive that

to
/ purClrdrdg|? — / / {pmc%+pu1<u1<3+(¥+u3)<§>}rdrdfdt=

/ L@+ P (gt + (2 + a2t + ¢ prdrd, (3.40)
and
[ puaceraraei - | t | Ao+ a2+ (2 + )@y -
/ t [ et = PG 0ruac? + (%2 + 0%0eun)E — 2 v, (341)
For fixed ¢,

oo 27 2w/«
/Q(pulg‘l — pugCe)rdrd§ = / / / p(uicosl — ug sin 0)rdrdfdz
0 0 0

27/«
:// oU ¢ (x, t)dx.
R2 J0
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and similarly,

to 27/«
/ / p(ur Gl — uaCP)rdrdé = / / oU1¢(t, x)dtdz.
t1 Q R2 JO

As in (3.39), we have by a straightforward calculation that

t
2 pULUL

2
{pur(ui¢; + (% +u3)(g) — pua(urll + (% +u)(E) — %Cl ——=C*Yrdrdgdt

t1
27/«
:// oUL U - Vgo(t, x)dtde.
rR2 JO

To deal with the last two terms in (3.40) and (3.41), noticing that

/ / {a(p)7 (¢! + Cl Vyrdrdédt = /t : / )pdrdédt (3.42)
= /: /0 " /0 *a(p(t,r,n + az))" cos O, rdtdrdodz,

we obtain

to Cl ngg 271'/0(
v 1,5y _ > — 2
/tl [ atoricc+ 5 = SEparaae = [ [ ago . opivia

Applying (3.42) again, we may write that

& 1 w2 2 1, W1 2 wy 2 2 W2 .9
| [ 4@t + (2 4 a20un) + 2201 = 0ruac? + (%2 + 0%0gun)GE — “2CH)rardedt
t1

to 27r/o¢
= / / / VUi - Vgo(t, z)dtde.
t1 R2 JO

Finally, putting all the above related identities together, we find that oU; satisfies the second
equation in (1.1) in the sense of distributions.

If we use ¢? in (2.10) and ¢! in (2.11) and add these two equations together, then we can
show that oUs satisfies the third equation in (1.1) in the sense of distributions. In the same
manner, the last equation can be handled by applying ¢ to (2.12) directly. We should point out
here that for even n, the test function ¢ satisfies 9,((¢,0,£) = 0 which is used in the derivation
of the last equation of (1.1). Therefore, we see that (g, U) in the form of (1.3) satisfies (1.1) in
the sense of distributions.

Finally, for T, L,h > 0, let ¢ € C3(R?),x" € C°(R) satisfy p(t,7,£) = 1 when (¢,7,§) €
[0, 7] x [0,1] x [-L, L], x"(r) = 0 when 0 < r < h and x"(r) = 1 when 7 > 2h. Then, taking

= !Byt r, )X (r) (B > 0) in (2.32), we obtain (1.8) by the same arguments as used for
(2.33). This completes the proof of Theorem 1.1.

4 Existence of the approximate solutions

In this section we prove the existence of solutions of (2.14)—(2.20) by adapting the ideas in [13,
Theorem 7.2] and [4, 9, 11].
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The approximate solutions will be constructed by means of a three-level approximate scheme
based on a modified system of (2.14)—(2.20)

1 n 1
Orp + ;&(rpul) + ;8§(pu2) + ade(pus) = 5(;&(7“8,,/)) + 8£2p), (4.1)

1 2
O(pur) + ;&(rp(ul)Q) + ;8§(pu1u2) + al¢(puruz) — p(lf) + 6(0ru10rp 4 Ocu10¢p)

Ul

1 2n
+ad,(p)" + €9,(p)® = u(;&(r@rul) + (a? + )Ogul ﬁ(?guz) (4.2)

(6 Ugarp + 6§U26§p)

1
Ou(puz) + =0, (rpurus) + = Oe(p(uz)”) + ade(pusus)

U2

+;85(a(p)'y +eMNp)P) = ,u(%&,(rarm) + (a? + 2 )85 92— %851“) (4.3)

O (pus) + %&«(Tﬂuw:s) + %3§(PU2U3) + ade(p(u3)?) + ade (alp )V +ep)”)

1
+6(Dyu3Dhp + Beusdep) = ,,L(;ar(raru:;) +(a?+ )aguS) (4.4)

where €, 4, 3, A > 0 are constants, € and ¢ are small.

We will solve the problem (4.1)—(4.4) in the square domain Qg := (¢, R) X R in the first
step, then the second step we let the artificial viscosity & go to zero to obtain a solution of
(2.14)—(2.20) on the domain Qp, and in the final step three, we prove the existence of solutions

0 (2.14)—(2.20) by passing to the limit R — oo. In the following of this section we denote that
Cr := (¢, R) x [0, 27].

Step 1. The first level approxzimate solutions. We consider the system (4.1)—(4.4) in Qp :=

(e, R) x R, together with initial and boundary conditions:

P(()» r, 5) = P0, pu(oa r, 5) = Imy, (7’, é) € QRa (45)
Orp=u; =uz =0u3 =0, on{eR} xR, (4.6)
p(t,r,€) and u(t,r, &) are periodic in £ of periodic 2. (4.7)

We obtain in this step that

Lemma 4.1 Let § > max{4,v}. Assume that (po, mp) is periodic in & with period 2w, and
po € L7(Cgr) N LA(Cr) N L>®(CR),infc, po > 0 and my/\/po € L?(CR). Then there erists a
global weak solution (p,w) of (4.1)-(4.7) with p >0 a.e., such that p € LPY(Cr) and

sup (||P( Wiron) + € lp®llLsicr) + 1 (Vo) )l 2(0p))

te[0,T

T
[ laicngs + 190l )00t < (48)

T
[ Vb0 < € (49)

where the constant C' does not depend on § but on €, R, 3, po and my. Moreover, the energy
inequality

d plul? a e 5 ) ) ,  n )
+ + t)rdrd€ + - +
dt/cR( 2 =1 T p=ar )()TT§ “/CR{|8 ul” + a%|0gul” + 5 [O¢us]
+(U1 + Zagva) + (%2 — —agul) }rdrd§ <0 (4.10)

holds in D'(0,T).
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Proof In fact, if we multiply (4.2), (4.3), (4.4) by ru1, rug, rus respectively and integrating
the resulting equation, then integrating by parts, using the equation (4.1) and the boundary
condition (4.7), we obtain (4.10). Thus, (4.8) follows from (4.10) and the (generalized) Poincaré
inequality.

Following the same procedure as in the proof of Proposition 4.1 in [3] and the proposition
in [4], we can obtain the existence of weak solutions to (4.1)—(4.7)and the estimate (4.9) by
solving the equation (4.1) directly, then solving the equations (4.2)—(4.4) by a Faedo-Galerkin
approximate (cf. [14] for the incompressible case). The proof of Lemma 4.1 is completed. O

Step 2. The vanishing artificial viscosity limit. In this step we let the artificial viscosity ¢
in (4.1)—(4.4) go to zero, accordingly, we obtain the weak solutions to (2.1)-(2.4) in the domain
Qr with initial and boundary conditions:

p(O,r, g) = 0, pU(O,T, é.) = Uup, (7’, 5) € QRa
up =ug =0ug =0, on{e R} xR, (4.11)
p(t,r, &) and u(t,r, &) are periodic in £ of period 27.

Then, we have:

Lemma 4.2 Let f > max{4,~v}. Assume that (po, my) is periodic in & with period 2w, and
po € L'(CRr) N LP(CR),po > 0 a.e., and my/\/po € L?(CR). Then there exists a global weak
solution (p,w) of (2.1)-(2.4), (4.11) with p > 0 a.e., such that for any T > 0, holds that

A

plul? a . & 4 T 2 219 12
sup ( + P’ + p7)(@)rdrd€ + p |Orul” + a”[Oc u|
o<t<T Jop 2 v—1 p—1 0o Jog

n2 u n u n
5 10cusl? + (S + Z0euz)? + (52 = Z0¢w)? prdrde < Er(po,mo),  (412)

where
A

|”l’0‘2 a € B8
E , My :—/ + — 74 rdrd€.
r(po, mo) CR( %0 7_1(P0) -1 o> £

Proof Let pg be a smooth function sequence satisfying

0.< C1(0) < p < Ca(9),

V) nlon, =0, on {e, R} xR,

pS(r, €) is periodic in € of period 27,

pd = po in L7(Cg) N LA(CR) as & — 0.

Take xJ € C$°(R) such that x3(r) = 1 when € +26 <r < R—26, and x3(r) = 0 when r < e+
or r > R — 6. Then we set

[(mo/y70) % dsly /ol if po(x) > 0,
0, if po(x) = 0.

mg(r,€) == X3 (r) x

Denote by (p?, ) the solution of (4.1)—(4.7) with the initial data (pj, mJ) obtained in
Lemma 4.1. We first observe that as § — 0,

8(0r(rdrp°) +r02p°) — 0 in L2(0,T; H-(CR)),

(4.13)
§5(8,ul0,p° + Oguldep®) — 0 in L'((0,T) x Cr), j=1,2,3,
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which follows directly from (4.8) and (4.9). In the same manner as in the derivation of (2.29)
(with ¢(r) = 1) we get

T
| [ @y s &t ypdrdgae < 0, 0= -1, (4.14)
0 Qr

where C' is a positive constant independent of 6.

The estimates (4.8) and (4.9) imply that (p°, u®) — (p, u) weakly or weak-. Then, using
the fact (4.13) and the estimates (4.8), (4.9) and (4.14), by the same arguments as in Section 3
to prove the precompactness that the weak limit (p, u) just obtained is indeed a weak solution of
(2.14)—(2.17), (4.11) on [0,00) x Qg. And the estimate (4.12) follows from the equation (4.10),
the lower semicontinuity of weak convergence and the convergence of the (pd, u)).

Step 3. Passing the limit as R — 4o00. In this step, we let R — 400 in (2.14)—(2.17), (4.11) to
obtain the solution of (2.14)-(2.20). The main result we obtain in this step is the following:

Theorem 4.3 Let 3 > max{4,~}, and denote G, = [e,00) x R and G, := [e,00) x [0,27].
Suppose that (po, mg) is periodic in & with period 27, and py € L7(G)NLA(G)NLY(Ge), po > 0
a.e., and mo/\/po € L*(G.). Then there exists a global weak solution (p,wu) of (2.14)-(2.20) in

G, with initial data (ph, m) replaced by (po, uo), such that p >0 a.e., and for any T > 0 there
hold

€

P’UP a 4 A 3 T 2 2 2
sup ( + pl+ P (t)rdrdé + 1 |0rul” 4+ a”|O¢ul
G 2 1 o Ja.

0<t<T y—1 B —
n2 u n u n
+7|8§U3|2 + (71 + —Ogus)* + (j - —85u1)2}rdrd§ < Er(po, my), (4.15)
T T T T T
sup [ pltrrards < [ pulr rara (4.16)
te[0,T] J Ge Ge
where o2 \
my a € B
E. = J drd§.
(po, mo) /G€<2p0 +7_1po+6_1p0)7“7”§

Proof To prove the theorem, we first approximate the initial data (pg, up) as follows:

o (r,€) = po(r,€),  mf(r,€) := mo(r,Oxi'(r),

where x¥ € C$°(R) satisfying x(r) = 1 when e+ 1/R < r < R — 1, and x¥(r) = 0 when
r<e+1/(2R) or r > R — 1/2. Then, it is easy to see that as R — +o0,

Pl — po in L7(G) N LG N LYG),
mﬁ/\/@ —mg/\/py  in L(Ge). (4.17)

If we denote (p, uf) the solution of (2.14)—(2.17), (4.11) with the initial data (p{f, uf)

22



obtained in Lemma 4.2, then extend (p%, u?) to the domain (¢, 00) x R in the following way

[pR(tﬂdag)v (T7 5) € QR)

pli(t,r,€) =
0, otherwise,
(wi(t,r,6),  (r€) € On,
ufi(t,r,R), e<r <R, ¢>R,
all(t,r,¢) = uft(t,r,—R), e<r <R, —¢>R,
ul'(t,R,2), r>R, |£| <R,
0, otherwise.

Then, by the estimate (4.12) and the relation (4.17) as well as the arguments in Lions’ book [13,
P.43], we obtain that 4 € L?(0,T;H] .(G.) and

15" oo 0,707 (@onee @y + IV AR || e 0 1260 + 18 20,7042 6y < C
with C being independent of R. Hence, if we let R — 0o, we get

pft— p  weakl-x in L>®(0,T; £7(G.) N LP(GY)),
w® —~u  weakly in L2(0,T; Hi (GY)).

On the other hand, using the estimate (4.12) again, by the same arguments to derive the
estimate (2.29) (with ¢(r) = 1), we can deduce that there exists a constant C' which independent
of R such that for all R large enough,

T
/ / (R0 4 NP Y rdrde < C, 0= — 1, (4.18)
0 K

for any compact set K C RT x R.

To complete the proof of the theorem, we take into account that in any compact set of G,
for R large enough, there holds (5%, a'*) = (p*, u'?), thus by the same proof of Lemma 2.3 in
[4], we find that (5, @) satisfies (3.8) in D'((0,T) x G) with (p, u) replaced by (5%, #). Then
using estimates (4.12) and (4.18), following the same procedure as in the proof of precompactness
in Section 3, we see the weak limit (p, u) of (5%, @) by taking R — 0 in (2.14)(2.17), (4.11)
is indeed a weak solution of (2.14)—(2.20). Moreover, by the lower semicontinuity of weak
convergence, estimates (4.12) and (4.17), we see that for any [ > 0, there holds

plul® a 5 e 8 4 2 2 2
sup —t+——p" + PP ) () rdrdé + p |0y ul* 4+ a”|0¢u
o<t<T Jo, \ 2 v—1 g—1 o Jo,

s+ (4 P oeun)? + (2 — " eu )Z}Tdrdf<lim inf Ep(plt, md)
217608 2 r et - Rooo PO MM

Imol*  a S
< ( + )+ )rdrd,
/Ge 2 Ty 1r0t gk

where € := (¢,1) x [0, 27]. Hence, (4.15) holds by Fatou’s Lemma.
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Finally, if we apply the Lemma C.1 of [12, Appendix C] and equation (2.14), we observe
that p € CY([0,T]; L] . — w). Thus, if we integrate (2.14) over (0,¢) x Qp and take into account

the boundary condition (4.11), we infer that

sup/ perrdfz Sup/ pRTdrdfg/ pé%rdrdfg/ pordrdé.
te[0,7] J QR te[0,7] J QR Qr .

Consequently, with the help of (4.17) one has that for any [ > 0

sup / p(t,r,&)rdrd¢ < lim inf/ perrdfg/ pordrd€,
te[0,7] J R—oo Jap Ge

which yields (4.16). Thus the proof of Theorem 4.3 is completed. O
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