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Abstract: In this paper we study the fundamental mathematical aspects of a class of multi-

population partial differential equations. We thoroughly discuss the hyperbolicity of the system.

The admissible waves of the Riemann problem are also investigated in detail. We present some

interesting results and interpret their physical meanings. Numerical examples are also given to

support our conclusions.

1 Introduction

In dealing with hyperbolic conservation laws, the Lighthill-Whitham [1] and Richards [2]
(LWR) traffic flow model has played an important role for better understanding of linear
and nonlinear waves. This model reads:

ρt + (ρve(ρ))x = 0, (1.1)

where ρ denotes the density, and the velocity is determined by the state equation v = ve(ρ),
with v′e(ρ) < 0. To interpret shock and rarefaction waves, model (1.1) was intensively
studied in Whitham’s masterpiece [3]. Actually, by the transformation c = q′(ρ), where
q(ρ) = ρve(ρ) is strictly concave, (1.1) becomes the following Burgers equation:

ct + (
1

2
c2)x = 0. (1.2)

It is well known that (1.2) is most critical for the study of hyperbolic differential equations,
and we note that (1.1) and (1.2) are equivalent also in the distribution sense for linear
function ve(ρ).
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the National Natural Science Foundation of China (10472064, 10371118), and the China Postdoctoral
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Based on (1.2), or more likely on (1.1) in the physical sense, extensions could be made
for the study of many properties of hyperbolic PDEs, which in return serve for application
purpose; see e.g., [4, 5, 6]. To learn about more complicated kinematic waves, one may
consider a continuum flow with heterogeneous (m) media, in which the fields of the velocity
vi of the i-th class is a function of all density {ρj}

m
j=1, governed by the state equation

vi = vi(ρ1, . . . , ρm). Thus, by the mass conservation for each class, a multi-population
system can be written as

(ρi)t + (ρivi)x = 0, i = 1, . . . ,m. (1.3)

In general, (1.3) might model some flow phenomena [7, 8, 9, 10] at least at the level of
an analogue. However, the proof or disproof of its being hyperbolic would be difficult for
m > 2, and more would be the study of its wave propagation properties. This is because
the eigen-polynomial might be implicit, and more likely would be the eigenvalues. For
example, in [7, 9], the state equation is set to be

vi = vi(ρ), v′i(ρ) < 0, i = 1, . . . ,m, (1.4)

where ρ is the total density, i.e., ρ = Σm
i=1ρi. Furthermore, in some problems the ‘fluid’ is

considered compressible so that the total density is no greater than some ρmax. That is,
the solution vector is bounded in D̄ ⊂ Rm, where the corresponding open domain is given
by

D = {u|ρi > 0, i = 1, . . . ,m; Σm
i=1ρi < ρmax}. (1.5)

In addition, all velocities of (1.4) are bounded such that

vi(0) = bi, vi(ρmax) = 0, ∀ i. (1.6)

We note that system (1.3) and (1.4) is precisely an extension of scalar hyperbolic conser-
vation equation (1.1), such that they are identical for m = 1, ρ1 ≡ ρ, and v1 ≡ ve. For this
reason and mostly for theoretical curiosity, the present paper firstly provides a detailed
discussion on the hyperbolicity of this system. In [11], the hyperbolicity remains unknown
and has been taken as a conjecture. In [9], this was shown by means of a symmetriser for
the special case that vi = vi(ρ) are linear functions, but the approach cannot be applied
to the general case. Based on a thorough study of the hyperbolicity for the general case,
we derive a clear mathematical structure of the system.

The discussion of the present paper is organized as follows. In Section 2, a concise
mathematical expression of the eigen-polynomial is derived. By the intermediate value
theorem and mathematical induction, m properly bounded real eigenvalues are implicitly
ensured, and thus the system is hyperbolic (Section 2.1, Theorem 2.1). Further, classi-
fication of being hyperbolic is made over the entire solution domain D̄; accordingly, the
eigenvectors are solved, depending on the corresponding eigenvalues (Section 2.1, Lemma
2.1, Theorem 2.2 and 2.3). It is concluded that the system is strongly hyperbolic wherever
the solution involves intersections by two or more velocity curves, and that the system
is non-strictly hyperbolic somewhere at a boundary ρi = 0 (∀ i). Meanwhile, the sys-
tem is strictly hyperbolic in other solution regions in general. The characteristic fields
are defined in Section 2.2. Their continuity is guaranteed in the whole solution domain
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D̄ (Theorem 2.4), whereas a multiple eigenvalue is not differentiable in some (m − 1) or
(m − 2) dimensional subsets in which the hyperbolicity of the system also degenerates.

In Section 3, the k-shock and k-rarefaction waves of the Riemann problem are thor-
oughly investigated. These waves are either ‘compressive’ or ‘expansive’ (Theorem 3.1 in
Section 3.1, and Theorem 3.3 in Section 3.2), subject to the velocity fields. However, it is
indicated that the compressive shock and expansive rarefaction should be regular. That
is, all densities increase after passing through the k-shock, whereas they decrease after
entering the k-rarefaction fan. Note here that the first (k − 1) classes travel slower than
the k-wave, but the last (m−k+1) flows are faster. The above descriptions are guaranteed
for certain types of velocity fields (Theorem 3.2 in Section 3.1, and Theorem 3.4 in Section
3.2). In Section 3.3, we indicate that a contact merely arises from an eigenvalue that is
identical to the velocities of at least two flows. For such a contact, all necessary Riemann
invariants are obtained.

In Section 4, the fifth-order accurate WENO scheme is introduced for numerical ap-
proximations, based on Lax-Friedrichs flux-spitting (Section 4.1). All numerical examples
are designed to examine the main conclusions in Section 3, namely to observe all waves of
the Riemann problem (Section 4.2).

The final results are summarized in Section 5.

2 Hyperbolicity and characteristic fields

We rewrite the system (1.3) and (1.4) in the following conservation form:

ut + f(u)x = 0, (2.1)

where the solution vector u = (ρ1, . . . , ρm)T , the flux f(u) = (ρ1v1(ρ), . . . , ρmvm(ρ))T .
The Jacobian of f(u) is written as

fu =













v1 + c1 c1 · · · c1 c1

c2 v2 + c2 · · · c2 c2

· · · · · · · · · · · · · · ·
cm−1 cm−1 · · · vm−1 + cm−1 cm−1

cm cm · · · cm vm + cm













, ci = ρiv
′
i(ρ) ≤ 0.

Here, we note that ci = 0 if and only if ρi = 0. To concisely express the eigenpolynomial
Pm(λ) ≡ det(fu − λI), namely the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 + v1 − λ c1 · · · c1 c1

c2 c2 + v2 − λ · · · c2 c2

· · · · · · · · · · · · · · ·
cm−1 cm−1 · · · cm−1 + vm−1 − λ cm−1

cm cm · · · cm cm + vm − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.2)
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we proceed as follows. First, let (vi − λ) be taken out as a factor from the i-th row,
i = 1, . . . ,m, so that (2.2) has the form

m
∏

i=1

(v1 − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + K1 K1 · · · K1 K1

K2 1 + K2 · · · K2 K2

· · · · · · · · · · · · · · ·
Km−1 Km−1 · · · 1 + Km−1 Km−1

Km Km · · · Km 1 + Km

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, Ki =
ci

vi − λ
. (2.3)

Then let the first (m−1) rows be added to the last row, hence, all its elements are identical.
We then have

Pm(λ) =
m
∏

i=1

(vi − λ)Qm(λ), Qm(λ) = 1 +
m

∑

i=1

Ki(λ). (2.4)

Note that only row transformations are involved in the above arguments.

2.1 Hyperbolicities of the model equation

¿From (2.4), the hyperbolicities of system (2.1) are clearly discussed below.

Theorem 2.1 The Jacobian fu has m bounded real eigenvalues for u ∈ D̄; thus system
(2.1) is hyperbolic on D̄.

Proof Given u ∈ D̄, we first deal with one special case in which no two vi are equal and
no ρi is zero. For this case we assume that

v1 < v2 < · · · < vm−1 < vm, ρi > 0, ∀i. (2.5)

We can verify that, by (2.4)-(2.5),

sgn(Pm(vi)) = (−1)i, i = 1, . . . ,m; sgn(Pm(v1 +
m

∑

i=1

ci)) = 1. (2.6)

By the intermediate value theorem, (2.6) implies that the polynomial Pm(λ) has m distinct
eigenvalues {λi}

m
i=1 bounded such that

v1 +

m
∑

i=1

ci < λ1 < v1 < λ2 < v2 · ·· < vi−1 < λi < vi < · · · < vm−1 < λm < vm. (2.7)

We then apply mathematical induction to other cases in which at least two vi’s are
equal or at least one ρi (or ci) is zero. The conclusion is obvious for m = 1. Assuming
that this is true for all l, where 1 ≤ l < m, we prove it is also true for l = m.

Obviously, by (2.4) this case is equivalent to having an eigenvalue λ = vi. We can
always arrange the sequence of {vi}

m
i=1 to reset λ = vm−k = · · · = vm (0 ≤ k < m). Here,

vm is not equal to any other vi, and {vi}
m
i=1 do not necessarily follow the sequence of (2.5).

For the case we rewrite (2.4) to be

Pm(λ) = (vm − λ)kP̃m−k(λ), (2.8)
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where

P̃m−k(λ) =

m−k
∏

i=1

(vi − λ)Q̃m−k(λ), Q̃m−k(λ) = 1 +

m−k
∑

i=1

K̃i,

and

K̃i = Ki, for i ≤ m − k − 1, K̃m−k =
c̃m−k

vm−k − λ
, c̃m−k =

m
∑

i=m−k

ci ≤ 0.

For k ≥ 1, we claim that all roots of Pm(λ) are real, simply by applying either (2.7) or
the assumption for l on the polynomial P̃m−k(λ) of (2.8). For k = 0, that λ = vm is an
eigenvalue is equivalent to having cm = 0. This means that

Pm(λ) = (vm − λ)Pm−1(λ),

and we have the same conclusion. �

The above arguments lead to the following conclusion.

Corollary 2.1 For u ∈ D̄, some vj ∈ {vi}
m
i=1 is an eigenvalue of fu, if and only if ρj = 0,

or ∃ l 6= j, s.t. vl = vj .

Corollary 2.2 For u ∈ D̄, Pm(λ) has a multiple root λ only if λ ∈ {vi}
m
i=1.

Further identification of system (2.1) must involve multiple eigenvalues, which could be
some λ = vm. With reference to (2.8), we start with the following lemma.

Lemma 2.1 For u ∈ D̄, suppose that λ = vm is a real root of Pm(λ) satisfying vm−k =
· · · = vm (0 ≤ k < m), and vm is not equal to any other vi. We have

(i) if c̃m−k < 0, then the multiplicity of λ is k (k ≥ 1);

(ii) if c̃m−k = 0 and Q̃m−k(vm) 6= 0, then the multiplicity of λ is (k + 1) (k ≥ 0); and

(iii) if c̃m−k = 0 and Q̃m−k(vm) = 0, then the multiplicity of λ is (k + 2) (k ≥ 0).

Proof Because P̃m−k(vm) = c̃m−k 6= 0, (2.8) implies conclusion (i). For c̃m−k = 0, we
rewrite (2.8) to be

Pm(λ) = (vm − λ)k+1
m−k−1

∏

i=1

(vi − λ)(1 +

m−k−1
∑

i=1

Ki) = (vm − λ)k+1Pm−k−1(λ).

We reach conclusion (ii) because Q̃m−k(vm) 6= 0 implies Pm−k−1(vm) 6= 0, and Pm−k−1(vm) <
∞. Finally, we reach conclusion (iii) because Q̃m−k(vm) = 0 implies Pm−k−1(vm) = 0,
and λ = vm is just a single root of Pm−k−1(λ) by Corollary 2.2. �

With reference to Lemma 2.1 and by the theorem below, we investigate whether the
multiplicity of each eigenvalue λ = vj coincides with the maximum number of its linearly
independent eigenvectors. A positive answer ensures a complete set of linearly independent
eigenvectors of fu, thus system (2.1) is at least strongly hyperbolic; otherwise it is non-
strictly hyperbolic.
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Theorem 2.2 For u ∈ D̄, the Jacobian fu has a complete set of linearly independent
eigenvectors and thus system (2.1) is at least strongly hyperbolic if and only if Qm(vi) 6= 0,
i = 1, . . . ,m. Here Qm(λ) is defined in (2.4).

Proof For any vj, Qm(vj) = 0 implies that vj is an eigenvalue. Therefore, we only need to
prove that the multiplicity of an eigenvalue λ = vj coincides with the maximum number of
its linearly independent eigenvectors if and only if Qm(vj) 6= 0. Here, we again set j = m
and follow Lemma 2.1. Hence, there are three cases for consideration.

Also note that Qm(λ) = Q̃m−k(λ) by (2.4) and (2.8), and that we can track back to
(2.2) (but not (2.3)) to continue row transformations on the corresponding matrix fu−λI.
The common step for these transformations is to divide the first (m− k− 1) rows of (2.2),
respectively by (v1 − λ), . . . , (vm−k−1 − λ), to have

fu − λI ∼





















1 + K1 · · · K1 · · · K1 K1
...

. . .
...

...
...

Km−k−1 · · · 1 + Km−k−1 · · · Km−k−1 Km−k−1

cm−k · · · cm−k · · · cm−k cm−k
... · · ·

... · · ·
...

...
cm · · · cm · · · cm cm





















. (2.9)

For case (i) of Lemma 2.1, we sum up the last k rows of (2.9) to its (m−k)-th row, and
all elements in the row become

∑m−k
i=1 ci = c̃m−k 6= 0. The further transformations follow

so that we have

fu − λI ∼

























1 · · · 0 0 · · · 0 0
...

. . .
...

...
...

...
...

0 · · · 1 0 · · · 0 0
0 · · · 0 1 · · · 1 1
0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0

























.

By this, we have rank(fu − λI) = m − k, and k linearly independent eigenvectors,

pm1
= (0, · · · , 0,−1, 1, 0, · · · , 0)T , . . . , pmk

= (0, · · · , 0,−1, 0, 0, · · · , 1)T , (2.10)

where the −1 is in the (m − k)-th position.

For case (ii) of Lemma 2.1, c̃m−k = 0 implies ci = 0, i = m − k, . . . ,m. We sum up all
of the first (m− k− 2) rows to the (m− k− 1)-th row, thus the first (m− k− 1) elements
in the row become Qm(vm) 6= 0. Then, similar row transformations give

fu − λI ∼





















1 · · · 0 K̄1 · · · K̄1
...

. . .
...

...
...

0 · · · 1 K̄m−k−1 · · · K̄m−k−1

0 · · · 0 0 · · · 0
... · · ·

...
... · · ·

...
0 0 0 0 · · · 0





















,
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where K̄i = Ki(vm)/Qm(vm), i = 1, · · · ,m−k−1. Accordingly, rank(fu−λI) = m−k−1,
and we have k + 1 linearly independent eigenvectors,

pm1
= (−K̄1, · · · ,−K̄m−k−1, 1, 0, · · · , 0)T , . . . , pmk+1

= (−K̄1, · · · ,−K̄m−k−1, 0, 0, · · · , 1)T .
(2.11)

In the above two cases, Qm(vm) = ∞ (6= 0) and the multiplicity of eigenvalue λ = vm

is truly equal to the number of the solved linearly independent eigenvectors. Therefore,
we only need to verify that the two numbers are not equal for case (iii) of Lemma 2.1.
We sum up the last (m − k − 2) rows of (2.9) to its (m − k − 1)-th row, which yields, by
Qm(vm) = 0,

fu − λI ∼

























1 + K1 · · · K1 K1 K1 · · · K1
...

. . .
...

...
...

...
...

Km−k−2 · · · 1 + Km−k−2 Km−k−2 Km−k−2 · · · Km−k−2

0 · · · 0 0 −1 · · · −1
0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0

























.

(2.12)
As Qm(vm) = 0 also implies that at least one element of the set {Ki}

m−k−1
i=1 is not zero,

we assume that Km−k−1 6= 0 as well. We then sum up the first (m− k − 3) rows of (2.12)
to its (m−k−2)-th row, thus the first (m−k−2) elements in the row become −Km−k−1.
Let the row be divided by −Km−k−1, then the further transformations give

fu − λI ∼

























1 · · · 0 α1 0 · · · 0
...

. . .
...

...
... · · · 0

0 · · · 1 αm−k−2 0 · · · 0
0 · · · 0 0 1 · · · 1
0 · · · 0 0 0 · · · 0
... · · ·

...
... · · ·

...
...

0 · · · 0 0 0 · · · 0

























,

where αi = Ki/Km−k−1, i = 1, · · · ,m − k − 2. It is easy to see that rank(fu − vm) =
m− k − 1, and we can only solve for at most k + 1 linearly independent eigenvectors, i.e.,

pm1
= (0, · · · , 0, 0,−1, 1, · · · , 0)T , . . . , pmk

= (0, · · · , 0, 0,−1, 0, · · · , 1)T ,

and
pmk+1

= (K1, · · · ,Km−k−2,Km−k−1, 0, 0, · · · , 0)T . (2.13)

In this case the multiplicity of λ = vm is (k + 2). This completes the proof. �

Finally, some sufficient conditions for system (2.1) to be strictly hyperbolic can be
derived directly from the above. In a stronger sense, (2.5) guarantees m distinct eigenvalues
for u ∈ D, and the corresponding eigenvectors can be solved similarly. This is concluded
by the following theorem.
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Theorem 2.3 Suppose that the inequalities of (2.5) hold for all u ∈ D. Then, system
(2.1) is strictly hyperbolic in D with m distinct eigenvalues, being in the sequence of
inequality (2.7). Moreover, the m linearly independent eigenvectors are

pi(λi) = (K1(λi), · · · ,Km(λi))
T , i = 1, . . . ,m, (2.14)

where Kj(λi) is given by (2.3).

2.2 General descriptions on characteristic fields

Based on the previous discussion, we define the characteristic fields of system (2.1), on
which some heuristic comments and conclusions are also presented. Primarily, we define
the velocity fields s̃ = {ṽi(ρ)}m

i=1 as follows.

Given u and denote by s0 = {vi(ρ)}m
i=1, then (i) set ṽ1(ρ) = minvj∈s0

{vj(ρ)} and s1 =
s0−{ṽ1(ρ)}; and (ii) for i = 2, . . . ,m, set ṽi(ρ) = minvj∈si−1

{vj(ρ)} and si = si−1−{ṽi(ρ)}.
The definition directly gives the following lemma.

Lemma 2.2 The function set s̃ = {ṽi(ρ)}m
i=1 is in the sequence of inequalities:

ṽ1(ρ) ≤ · · · ≤ ṽi−1(ρ) ≤ ṽi(ρ) ≤ · · · ≤ ṽm(ρ), ∀ρ; (2.15)

and each function ṽi(ρ) is continuous and strictly decreasing.

The proof of the continuity of ṽi(ρ) is trivial. Take m = 3, for example, the continuity
is evident since

ṽ1(ρ) = min(v1, v2, v3), ṽ3(ρ) = max(v1, v2, v3), ṽ2(ρ) =

3
∑

i=1

vi − ṽ1 − ṽ3.

We then define m characteristic fields simply by numbering the m eigenvalues from the
smaller to the larger for a fixed u ∈ D̄, which implies that

λ1(u) ≤ · · · ≤ λi−1(u) ≤ λi(u) ≤ · · · ≤ λm(u). (2.16)

By the definition, we also have

Lemma 2.3 The function sets {λi(u)}m
i=1 and s̃ = {ṽi(ρ)}m

i=1 form the following interlaced
sequence of inequalities:

λ1(u) ≤ ṽ1(ρ); ṽi−1(ρ) ≤ λi(u) ≤ ṽi(ρ), for i = 2, . . . ,m, u ∈ D̃. (2.17)

Proof For a certain u, we can always arrange the sequence of {vi(ρ)}m
i=1 such that vi(ρ) =

ṽi(ρ) for all i. Thus (2.17) is implied from the proof of Theorem 2.1. �

We have several comments on the cases when equality holds in (2.15)-(2.17), which
means an eigenvalue acquired by the intersection of some curves of {vi(ρ)}m

i=1, or at a
boundary ρi = 0. For the former case, the intersection is denoted by ρ = ρI in Fig.1(a)
(m = 2), where the curves ṽ1(ρ) and ṽ2(ρ) are respectively the lower and upper parts of
v1(ρ) ∪ v2(ρ).
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2f

1, 2

ρ=ρ ρ ρ0
I max

v

v
1f

v

1

2

ρ+ρ=ρ

ρ+ρ=ρ

ρ0
I

m
ax

1 2

ρ

ρ
s

1

2∗

Fig.1(a) Intersection by velocity curves. Fig.1(b) Involved (m − 1)d subset on D̄.

If all of these intersections are isolated, that is they are finite or infinitely denumerable,
then such a representative eigenvalue λ = vm(ρI) (see the proof of Theorem 2.1) only
involves an m−1 dimensional subset of D̄, as shown by ρ1+ρ2 = ρI in Fig.1(b) (m = 2). If
the intersections form a continuous section of a curve, then such λ = vm(ρI) involves an m-
dimensional domain. The former case should be trivial in affecting the strict hyperbolicity
of the system in D. However, λ = vm(ρI) is not differentiable when involving such an
single intersection. This is also shown by Fig.1, where ṽ1(ρ) and ṽ2(ρ) are generally not
smooth at ρI , so λ1,2(u) must not be differentiable in ρ1 +ρ2 = ρI . For the latter case, the
eigenvalue λ = vm(ρ) is differentiable in the involved open domain, where the hyperbolicity
is essentially different. See the further discussion in Section 3.3.

For the case at a boundary ρi = 0, the eigenvalue that arises is not differentiable on
some subset that is just (m − 2) dimensional. It is in this subset where Qm(vi) = 0 and
thus system (2.1) is non-strictly hyperbolic (Theorem 2.2). This argument is illustrated
by the case of m = 2 below.

Assume that v1(ρ) < v2(ρ) (ρ 6= ρmax), it is easily shown that

λ1 = 0.5(v1 + c1 + v2 + c2 −
√

(v1 + c1 − v2 − c2)2 − 4c1c2),

λ2 = 0.5(v1 + c1 + v2 + c2 +
√

(v1 + c1 − v2 − c2)2 − 4c1c2).

At the boundary ρ1 = 0 (also c1 = 0),

λ1(u) =

{

v1(ρ), if v1 ≤ v2 + c2,
v2 + c2, otherwise,

λ2(u) = v1 + v2 + c2 − λ1. (2.18)

Clearly, λ1(u) and λ2(u) are not partially differentiable at (0, ρs) that is intersected by
v1 = v2 + c2, shown in Fig.1(b). At this same point, we have λ1(u) = λ2(u) = v1(ρ), and
the corresponding eigen-matrix reads

fu − λI =

(

v1 + c1 − λ ρ1 + c1

ρ2 + c2 v2 + c2 − λ

)

=

(

0 0
c2 0

)

.

For c2 6= 0, no two linearly independent eigenvectors exist, and (2.1) is thus non-strictly
hyperbolic.
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In addition, for ρi = 0, whether vi = λi or vi = λi−1 depends on data u at the boundary
ρi = 0. Again, this is easily shown by (2.18). In general, we remark that it is just in the
critical subset {u | vi(ρ) = λi(u) = λi−1(ρ)} where λi(u) is not differentiable and where
system (2.1) is non-strictly hyperbolic.

¿From the above, we argue that the loss of the differentiability of some λi(u) corresponds
to the transitions at which the strict hyperoblicity of system (2.1) fails. However, λi(u)
is always differentiable in an open domain in which it is never identical to any velocity,
and thus system (2.1) is strictly hyperbolic. The latter statement is obvious because such
an eigenvalue is always derived from Qm(λ) = 0. See the discussion on Theorem 2.1 and
Lemma 3.2 for this argument.

Finally, it is our opinion that the non-strict hyperbolicity is inherent in the system. At
a whole boundary ρi = 0, system (2.1) actually reduces to an (m − 1) × (m − 1) system
because its i-th equation becomes an identity. This reduction means that any discussion
must be made separately, as is done in (2.12)-(2.13). More significantly, the handling is
more complex for characteristic decomposition (if it is possible); i.e., the decomposition
can only be proceeded on the reduced system.

By the following theorem, however, all states of D̄ can be connected continuously by the
eigenvalues, and thus by their corresponding eigenvectors. This continuity may explain
the successful numerical simulations in Section 4.2, even when they involve non-differential
states.

Theorem 2.4 All functions of {λi(u)}m
i=1 are continuous on D̄.

Proof We denote by Λ(u) ≡ (λ1(u), . . . , λm(u)). Given u ∈ D̄ and the increment ∆u,
u + ∆u ∈ D̄, suppose that Λ(u + ∆u) does not converge on Λ(u) as ∆u → 0. That is, to
have ∆un → 0, such that the sequence {Λ(u + ∆un)} along with all its subsequences does
not converge on Λ(u). As {λi(u + ∆un)} are all bounded (see (2.7) and (2.17)), hence
{Λ(u + ∆un)} must have one convergent subsequence {Λ(u + ∆unk

)}, i.e.,

lim
k→∞

{Λ(u + ∆unk
)} = Λ̃ ≡ (λ̃1, . . . , λ̃m), Λ̃ 6= Λ(u).

First, by (2.17), we have

λ1(u + ∆unk
) ≤ ṽ1(ρ + ∆ρnk

), ṽi−1(ρ + ∆ρnk
) ≤ λi(u + ∆unk

) ≤ ṽi(ρ + ∆ρnk
); (2.19)

then we re-denote by Pm(λ, u) the eigenpolynomial (2.4), which gives

Pm(λi(u + ∆unk
), u + ∆unk

) = 0. (2.20)

Note that λ̃i = lim
k→∞

λi(u+∆unk
), and that Pm(λ, u) and all functions ṽi(ρ) are continuous

(Lemma 2.2). Hence, as k → ∞, (2.19)-(2.20) become

λ̃1 ≤ ṽ1(ρ), ṽi−1(ρ) ≤ λ̃i ≤ ṽi(ρ); (2.21)

Pm(λ̃i, u) = 0, i = 1, . . . ,m. (2.22)

Eq. (2.22) indicates that all {λ̃i}
m
i=1 are m eigenvalues that correspond to u. By

comparison between (2.21) and (2.17), we must have λ̃i = λi(u), i = 1, . . . ,m, namely
Λ̃ = Λ(u). But this is a contradiction. �
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We now explain the physical meanings of the characteristic fields in the motion, assum-
ing that (2.5), (2.7) and u ∈ D.

First, for i ≤ k, λi < vk indicates that the k-th flow from some x = x0 are influenced
by {λi}

k
i=1 from the downstream. Meanwhile, they are influenced by {λi}

m
i=k+1 from the

upstream because λi > vk for i ≥ k + 1: see Fig.2, where lk denotes the trajectory of the
k-th flow, and {λi}

m
i=1 denotes the propagations of the m characteristic fields. Note that

all trajectories can be approximated as straight lines by means of local linearization.

Next, we say that the last m − 1 characteristic fields all arise from velocity differences
among the flow media. Precisely, the k-th field (k ≥ 2) arises from the (k−1)-th flow being
overtaken by the k-th. This is true by reduction to absurdity. If there is no overtaking
between the two flows, namely we reassume vk−1 ≡ vk in D, then the k-th characteristic
field becomes λk(u) = vk(ρ): see the proof of Theorem 2.1. For the case, ρk−1, ρk and
λk(u) disappear after merging the (k−1)-th and k-th equations of (2.1), and (2.1) reduces
to an (m− 1)× (m− 1) system with new variable ρ̃k−1 ≡ ρk−1 + ρk. Also see Section 4.3,
where the system remains being m×m but the wave by λk = vk is explained as a contact
across which ρk−1 + ρk is a Riemann invariant.

k

1

0

m

k+1

xx0

t

λ

λ

λ
λ lk

...

...

k

1

0

m

k+1

xx0

t

λ

λ

λ
λ lk

...

...

Fig.2(a) lk is met by k propagations ahead. Fig.2(b) lk is met by m − k propagations behind.

Finally, λ1(u) < v1(ρ) is the fundamental characteristic field. Its influence flows from
the downstream. This has nothing to do with “overtaking” because it never disappears
even when we reset all velocities to be identical and thus (2.1) reduces to the scalar case
of (1.1).

Incidentally, for ρ = ρmax, we have v1(ρmax) = . . . = vm(ρmax) = 0 and λ2 = . . . =
λm = 0. This means that the whole flow is stagnant. Hence, “overtaking” is impossible.
For ρi = 0, which means the absence of the i-th flow, the eigenvalue λ = vi is a multi-
ple root, and its multiplicity equals the reduction in the number of equations of the system.

3 Kinematic waves and solution properities

We are mainly concerned with a strictly hyperbolic admissible system (2.1)−a system that
consists of either nonlinear or linearly degenerate fields. This is achieved by assuming (2.5)
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and (2.7) for u ∈ D; thus the strict hyperbolicity is ensured by Theorem 2.3. Of course, the
boundary ∂D is excluded from this discussion in Section 3.1 and Section 3.2. In addition,
the investigation of the strong hyperbolicity is also briefed in Section 3.3, where ρ = ρjam

can be included. The related Riemann problem is given by

u(x, 0) =

{

ul, if x < 0,
ur, if x > 0.

(3.1)

It is well known that local admissible solutions of strictly hyperbolic systems (2.1) and
(3.1) are existent, namely for sufficiently small ur−ul. That is, the initial data (3.1) break
into m simple waves in the sense of Lax, corresponding to the defined m characteristic
fields. Moreover, these waves divide the x-t upper plane into m + 1 constant regions of
all solution variables. For detailed accounts of strictly hyperbolic systems, see [12, 13, 14]
and [15, 16, 3].

Global admissible solutions of the same problem are definitely a great concern. Indeed,
for considerable functions vi(ρ), this existence is strongly supported by many of our con-
clusions, especially by the numerical results in Section 4.2. However, the main difficulty
for the strict proof remains the same− all λi(u) are implicit for m > 2.

Therefore, it is important to investigate how to connect a wave and how solution vari-
ables change in or across the wave. These changes are regular, as is shown in the discus-
sion. In Section 3.1 and 3.2, only shocks and rarefactions are considered, because Section
3.3 shows that a contact is possible only by reassuming, such that some λ = vm holds
continuously in a domain Dc ⊆ D. Such a contact is also investigated.

For all of these discussions, the left and right constant states of the studied k-wave
(k = 1, . . . ,m) are represented by the superscripts “−” and “+”, respectively.

3.1 Shock waves

Let sk (or simply s) be the speed of the k−shock that arises from λk; the Rankine-Hugoniot
conditions read

s =
ρ+

i vi(ρ
+) − ρ−i vi(ρ

−)

ρ+
i − ρ−i

=

∑m
i=1 ρ+

i vi(ρ
+) −

∑m
i=1 ρ−i vi(ρ

−)

ρ+ − ρ−
, ∀i. (3.2)

These equalities of (3.2) also imply that

v+
i − s = ρ−i

v−i − v+
i

ρ+
i − ρ−i

, v−i − s = ρ+
i

v−i − v+
i

ρ+
i − ρ−i

,
v−i − s

v+
i − s

=
ρ+

i

ρ−i
> 0, v±i ≡ vi(ρ

±). (3.3)

For a valid shock, the Lax entropy conditions must be satisfied, i.e.,

λ−
k > s > λ+

k , λ+
k+1 > s > λ−

k−1, λ± ≡ λ(u±). (3.4)

Here note that some invalid expressions in the above and in the following, namely λk+1

for k = m, and λk−1 for k = 1. They should be removed automatically.

Theorem 3.1 For s satisfying (3.2), ∃k ∈ {i}m
i=1, such that v±k−1 < s < v±k . Moreover,

we must have either

(i). ρ− < ρ+, ρ−i > ρ+
i for i < k, and ρ−i < ρ+

i for i ≥ k; or

(ii). ρ− > ρ+, ρ−i < ρ+
i for i < k, and ρ−i > ρ+

i for i ≥ k.
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Proof We change the third equality of (3.3) to

ρ+
i =

v−i − s

v+
i − s

ρ−i > 0, (3.5)

then summation over i yields

ρ+ =
m

∑

i=1

v−i − s

v+
i − s

ρ−i =
m

∑

i=1

(1 +
v−i − v+

i

v+
i − s

)ρ−i =
m

∑

i=1

v−i − v+
i

v+
i − s

ρ−i + ρ−,

which is equivalent to

1 +
1

ρ+ − ρ−

m
∑

i=1

v+
i − v−i
v+
i − s

ρ−i = 0.

It is easy to verify that the left hand side of the above would be positive or ∞ if s ≥ v+
i

for all i. This suggests some k, such that v+
k−1 < s < v+

k . Thus we have, by (3.5),

v±k−1 < s < v±k . (3.6)

Suppose that ρ− < ρ+, namely v−i > v+
i (∀i), then we have (i) by (3.3), (3.6), and (2.5).

Similarly, we derive (ii) if ρ− > ρ+. Finally, ρ− = ρ+ is possible only at ρ = ρmax, such
that s = vi = 0 for all i. �

In the proof, we see that the second inequality of (3.4) is implied in the first, provided
that the Rankine-Hugoniot conditions of (3.2) hold. Therefore, it is unnecessary in the
consideration for a valid shock.

k

i

0

-

x

t

for i>k-1: k-shock

sk

for i<k:

v >v > s

s >v > vi

i

i

k

- +

+

Fig.3 Changes in density and velocity of all flows across the compressive k-shock.

Importantly, we show that the k-shock which is characterized by ρ− < ρ+ is truly
compressive for all flow media in the following sense. By setting the shock as stationary, a
certain flow increases in density and decreases in velocity after it passes through the shock.
Actually, for the i-th flow of i ≥ k, v±i − s > 0 (see (3.6) and (2.5)), so it travels across
the k-shock from the flow direction, such that ρ−i < ρ+

i and v−i − s > v+
i − s (Theorem
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3.1.(i)). For the i-th flow of i ≤ k − 1, we have s − v±i > 0. This suggests that the flow
crosses the k-shock from the inverse direction, such that ρ−i > ρ+

i and s − v−i > s − v+
i .

See Fig.3 for the illustration.

In general, we argue that these compressive shocks occur frequently. This is absolutely
true for the scalar case (m = 1) with strictly concave flux f(ρ) = ρv(ρ). Here, the strict
concavity f ′′(ρ) < 0 also means the genuine nonlinearity of the waves [15, 3]. For the
cases m > 1, it is difficult to define a similar ‘concavity’ of the flux, namely to define its
properties sufficient and necessary to guarantee that all shocks are compressive. However,
we can see the high frequency of these shocks in our problem, by its analogy to the scalar
case, especially by the numerical simulations (Section 4.2). In contrast, the k-shock that
is characterized by ρ− > ρ+ (Theorem 3.1.(ii)) must be expansive in the same sense; it is
unlikely to occur but cannot be completely excluded.

As an important evidence of the argument, a range of velocity functions of certain
types are verified to ensure that all shocks are compressive. For this proof and more, two
Lemmas are derived from our previous discussions.

Lemma 3.1 For u ∈ D, λ(u) is an eigenvalue if and only if

Q(λ, u) = 0, (3.7)

where we denote by Q(λ, u) ≡ Qm(λ), which is given by (2.4).

Lemma 3.2 For u ∈ D, the function G(λ, u) is strictly decreasing in λ in the m+1 open
intervals divided by λ 6= vk(ρ), k ∈ {i}m

i=1. Moreover, a certain λk(u) that is determined
by (3.7) is differentiable in D.

Proof We rewrite

Q(λ, u) = 1 +

m
∑

i=1

ci(u)

vi(ρ) − λ
. (3.8)

Recall that ci(u) = ρiv
′
i(ρ) < 0, so it is obvious that

∂Q(λ, u)

∂λ
=

m
∑

i=1

ci

(vi − λ)2
< 0, λ 6= vk(ρ), k = 1, . . . ,m. (3.9)

Note that λk(u) ∈ (vk−1(ρ), vk(ρ)) in D, and it is valid to write, by (3.9),

∂λk

∂ρi
= −

∂Q

∂ρi
/

∂Q

∂λk
; (3.10)

and the differentiability of λk(u) is ensured by the implicit function theorem. �

We now define all velocity fields from a concave function v(ρ), namely we have

vi(ρ) = biv(ρ), 0 < bi < bi+1, ∀i; v′(ρ) < 0, v′′(ρ) ≤ 0, ∀ρ ∈ [0, ρmax], (3.11)

Compared with (1.6), this definition implies that v(0) = 1 and v(ρmax) = 0.

Theorem 3.2 Suppose that the velocities are given by (3.11), and the two states u− and
u+ of D satisfy (3.2). Then, u− and u+ form a valid k-shock if and only if ρ− < ρ+.
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Proof By Theorem 3.1, there exists k ∈ {i}m
i=1, v±k−1 < s < v±k (see (3.6)). We only need

to prove that ρ− < ρ+ if and only if we have the first inequality of (3.4). As mentioned,
the second inequality of (3.4) is self-evident in the proof.

Suppose that ρ− < ρ+. By Theorem 3.1, we then have

ρ+
i

ρ−i

{

< 1, if i < k,
> 1, if i ≥ k.

(3.12)

Note that s, λ+
k ∈ (v+

k−1, v
+
k ), in which Q(λ, u+) is strictly decreasing in λ (Lemma 3.2).

Therefore, we prove Q(s, u+) < 0, and thus s > λ+
k is implied by Q(s, u+) < 0 ≡ Q(λ+

k , u+)
(Lemma 3.1). For this estimation of Q(s, u+), we replace all denominators of (3.8) with
the first equality of (3.3) to have

Q(s, u+) = 1 +

m
∑

i=1

[v′i(ρ
+)

ρ+
i − ρ−i

v−i − v+
i

]
ρ+

i

ρ−i
< 1 +

m
∑

i=1

v′i(ρ
+)

ρ+
i − ρ−i

v−i − v+
i

.

The above inequality is achieved by (3.12) because the terms in [·] are positive for i < k
and negative for i ≥ k. The substitution of vi by (3.11) makes further estimation,

Q(s, u+) < 1 − v′(ρ+)
ρ+ − ρ−

v+ − v−
= 1 −

v′(ρ+)

v′(ρ̃)
≤ 0, ρ− < ρ̃ < ρ+. (3.13)

We can similarly prove that Q(s, u−) > 0 to have s < λ−
k .

In a similar manner, it can be verified that all of the inequalities above will be inverse
if ρ− > ρ+, so is the first inequality of the Lax entropy conditions (3.4). �

Note that the estimation of (3.12) can be altered to be closer, replaced by

ρ+
i

ρ−i

{

< v−i /v+
i , if i < k,

> v−i /v+
i , if i ≥ k.

(3.14)

This is due to the last inequality of (3.3), but only for s > 0. Accordingly, (3.13) is altered
to be

Q(s, u+) < 1 − v′(ρ+)
ρ+ − ρ−

v+ − v−
·
v−

v+
< 1 −

v′(ρ+)/v(ρ+)

v′(ρ̃)/v(ρ̃)
≤ 0, ρ− < ρ̃ < ρ+.

The last inequality above is acquired by reassuming v(ρ) of (3.11), namely that v′(ρ)/v(ρ)
is decreasing or v′′ ≤ (v′)2/v. The new assumption is weaker but so will be the new
conclusion (for s > 0). This indicates that the proof of Q(s, u+) < 0 is very difficult for
weaker settings of {vi(ρ)}m

i=1. However, we stress that this cannot exclude the compressive
shocks that are widely observed in the numerical simulations (Section 4.2).

3.2 Rarefaction waves

The k-rarefaction wave arises from the following inequality:

λ−
k < λ+

k . (3.15)
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Wave solutions are well-known for their self-similarity, say u(x, t) = u(θ) and θ = x/t. By
the substitution, system (2.1) becomes

(fu(u(θ)) − θI)u′(θ) = 0, u′(θ) ≡ (ρ′1(θ), . . . , ρ′m(θ)T . (3.16)

In the rarefaction fan θ ∈ [λ−
k , λ+

k ], u′(θ) 6= 0 , so by (3.16) (θ, u′(θ)) is an eigen-pair. That
is, u′(θ) || pk(θ), namely

ρ′1(θ)

K1(θ)
= · · · =

ρ′i(θ)

Ki(θ)
= · · · =

ρ′m(θ)

Km(θ)
=

ρ′(θ)

−1
, u′(θ) 6= 0, (3.17)

where pk(θ) and Ki(θ) are given by (2.14) and (2.4), respectively. The last equality of
(3.17) is by Lemma 3.1, namely by

Q(θ, u(θ)) = 0, or

m
∑

i=1

Ki(θ) = −1, vk−1(ρ(θ)) < θ < vk(ρ(θ)). (3.18)

It is obvious that (3.17) and (3.18) define m + 1 nontrivial smooth curves ρ = ρ(θ) and
ρi = ρi(θ), i = 1, . . . ,m; and the k rarefaction fan including the two states must be linked
by these curves such that (3.15) holds. We describe the main features of these smooth
curves namely rarefaction curves.

θ

ρ

k field

1-field

v v

v
k

k-1 

k

k

k-1 m

1

θ< <(ρ) (ρ)

1 v v v(ρ)=θ (ρ)=θ (ρ)=θ(ρ)=θ

−

L L L Lk-1 m... ...

......

Fig.4 Division of solution fields of rarefaction curves by solving (3.17)-(3.18).

For fixed k, the curves are confined to vk−1(ρ(θ)) < θ < vk(ρ(θ)), which is called the
k-th solution field of (3.17)-(3.18). See Fig.4, we have m solution fields such that all curves
ρ = ρ(θ) of these m fields in the ρ-θ coordinate plane are completely separated by m curves
Li: vi(ρ) = θ, i = 1, . . . ,m. In the k-th (each) field, we note that vi(ρ(θ)) − θ or Ki(θ)
keep the sign unchanged for certain i. This property is stressed. Hence, we can give the
following lemma.

Lemma 3.3 For solutions of (3.17)-(3.18) in the k-th field, we have

vi(ρ(θ)) < θ or Ki(θ) < 0, for i < k; vi(ρ(θ)) > θ or Ki(θ) > 0, for i ≥ k. (3.19)

Combining the above lemma and (3.17), we directly have

16



Theorem 3.3 In the k-th field of (3.17)-(3.18), we have either

(i). ρ′(θ) < 0, ρ′i(θ) > 0 for i < k, ρ′i(θ) < 0 for i ≥ k; or

(ii). ρ′(θ) > 0, then ρ′i(θ) < 0 for i < k, and ρ′i(θ) > 0 for i ≥ k.

It is interesting (but not surprising) to note that Theorem 3.3 is parallel to Theorem
3.1, as are many of the following conclusions and comments. Likewise, we say that the
k-rarefaction that is characterized by ρ′(θ) < 0 (Theorem 3.3.(i)) is expansive in the
same sense; that is, all media accelerate and increase their densities after they enter
the rarefaction fan. Furthermore, these expansive rarefaction waves should be regular
in our problem. Compare this to the corresponding discussion for shocks. Meanwhile,
these compressive rarefactions that are characterized by ρ′(θ) > 0 (Theorem 3.3.(ii)) are
infrequent, subject to the velocity fields.

Parallel to Theorem 3.2, we prove that the monotonicity of each k curve is certain, i.e.,
ρ′(θ) < 0, provided that the velocity fields are given by (3.11). This is ascribed to the
following lemma.

Lemma 3.4 The velocities are given by (3.11). Then the solutions of (3.17)-(3.18) in the
k-th field are monotone such that ρ′(θ) < 0.

Proof Suppose that the conclusion is not true, then there exist θ1 and θ2, θ1 < θ2, such
that ρ′(θ) > 0 for θ ∈ [θ1, θ2]. As lim

θ→θ2

(vk(ρ(θ)) − θ2) = vk(ρ(θ2)) − θ2 > 0, θ1 can be

sufficiently close to θ2 such that vk(ρ(θ))− θ2 > 0, ∀θ ∈ [θ1, θ2]. Generally, for θ ∈ [θ1, θ2),
we can have,

vi(ρ(θ)) − θ2 < vi(ρ(θ)) − θ < 0, i < k; vi(ρ(θ)) − θ > vi(ρ(θ)) − θ2 > 0, i ≥ k, (3.20)

By (3.17), we always have

ρ′i(θ)

ρi(θ)
=

−(vi(ρ(θ)))′

vi(ρ(θ)) − θ
<

−(vi(ρ(θ)) − θ2)
′

vi(ρ(θ)) − θ2
, ∀i. (3.21)

Note that −(vi(ρ(θ)))′ = −v′i(ρ)ρ′(θ) > 0 in the above. By the formula (ln |ϕ|)′ = ϕ′/ϕ,
(3.21) changes to

(ρi(θ)|vi(ρ(θ)) − θ2|)
′ < 0,

which gives
ρi(θ2)|vi(ρ(θ2)) − θ2| < ρi(θ1)|vi(ρ(θ1)) − θ2|, ∀i.

More conveniently, the inequality above is rewritten as

ρi(θ2)

ρi(θ1)
<

vi(ρ(θ1)) − θ2

vi(ρ(θ2)) − θ2
, ∀i. (3.22)

The signs in | · | above are decided by (3.17)-(3.18), of which θ is replaced by θ1. In
addition, (3.22) can be written as

ρi(θ2) − ρi(θ1)

ρi(θ1)
<

vi(ρ(θ1)) − vi(ρ(θ2))

vi(ρ(θ2)) − θ2
, ∀i. (3.23)
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Furthermore we have, by Theorem 3.3 and the assumption ρ′(θ) > 0 on [θ1, θ2],

ρ(θ2) > ρ(θ1),
ρi(θ2)

ρi(θ1)

{

< 1, if i < k,
> 1, if i ≥ k,

vi(ρ(θ1)) > vi(ρ(θ2)), ∀i. (3.24)

Based on (3.8), (3.11), (3.23) and (3.24), and also noting that v′i(ρ(θ2)) < 0, we have

Q(θ2, u(θ2)) = 1 +

m
∑

i=1

ρi(θ2)v
′
i(ρ(θ2))

vi(ρ(θ2)) − θ2
< 1 +

m
∑

i=1

ρi(θ2)

ρi(θ1)

(ρi(θ2) − ρi(θ1))v
′
i(ρ(θ2))

vi(ρ(θ1)) − vi(ρ(θ2))

< 1 +

m
∑

i=1

(ρi(θ2) − ρi(θ1))v
′
i(ρ(θ2))

vi(ρ(θ1)) − vi(ρ(θ2))
= 1 +

(ρ(θ2) − ρ(θ1))v
′(ρ(θ2))

v(ρ(θ1)) − v(ρ(θ2))
< 1 −

v′(ρ(θ2))

v′(ρ̃)
≤ 0,

(3.25)
where ρ(θ1) < ρ̃ < ρ(θ2). However, this contradicts with the fact that Q(θ2, u(θ2)) = 0
from Lemma 3.1. This completes the proof. �

By Lemma 3.4, (3.15) is equivalent to having ρ− > ρ+ (and the description by Theorem
3.3(i)) for the two states at the same k curves of (3.17)-(3.18), provided that the velocities
are given by (3.11). Therefore the following theorem is self-evident.

Theorem 3.4 Suppose that the velocities are given by (3.11). Then, for two states u− and
u+ that are in the same certain curves of (3.17)-(3.18) in the k-th field, the k-rarefaction
wave is formed if and only if ρ− > ρ+, and is expansive as described by Theorem 3.3(i).

The conclusions by Lemma 3.4 and Theorem 3.4 are true for θ ∈ [λ−
k , λ+

k ] ⊂ (0, λ+
k ],

provided that v′′(ρ) ≤ 0 of (3.11) is altered to be v′′ ≤ (v′)2/v. Following the same steps
that prove Lemma 3.4, the conclusion is reached through the replacement of (3.24) by

ρi(θ2)

ρi(θ1)
<

vi(ρ(θ1))

vi(ρ(θ2))
, if i < k,

ρi(θ2)

ρi(θ1)
>

vi(ρ(θ1))

vi(ρ(θ2))
, if i ≥ k.

The first part of the above is implied by (3.22) (θ2 > 0); the second part can be similarly
obtained such that in (3.21) θ2 is replaced by θ1 and the inequality is inverse. Compare
this to (3.14) and the associated comments.

Finally, the discussion on shock curves is similar to that of rarefaction curves, though
for simplicity they are not mentioned in Section 3.1. See [15] for a detailed account of this
issue.

3.3 Heuristic comments on nonlinearity and linearly degeneration

A linearly degenerate field of the eigen-pair (λ, p) corresponds to

▽uλ · p ≡ 0, ▽u = (∂ρ1
, · · · , ∂ρ1

), (3.26)

from which a contact discontinuity arises. If ▽uλ · p 6= 0, then the characteristic field is
genuinely nonlinear [15]. By (3.10), we proceed with the following,

(−
∂Q

∂λk
)▽λk ·pk = (−

∂Q

∂λk
)

m
∑

i=1

∂λk

∂ρi
Ki =

m
∑

i=1

∂Q

∂ρi
Ki =

m
∑

i=1

ρi(v
′
i)

2

(vi − λk)2
−

m
∑

i=1

ρiv
′′
i

vi − λk
. (3.27)
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Above, by Lemma 3.2 note that −∂Q/∂λk > 0.

Several comments are necessary on the nonlinearity of the characteristic fields. We first
have two conclusions as follows.

1. If all vi(ρ) are linear functions such that v′′i (ρ) = 0, then ▽uλk · pk > 0, and thus all

fields λk are nonlinear globally in D.

2. If v′′i (ρ) < 0, which includes those given by (3.11), then ▽uλ1 · p1 > 0, and thus λ1 field

is nonlinear globally in D.

Secondly, whether ▽uλk · pk > 0 in D and for all k is generally unclear, subject to the
velocity fields. This investigation is also difficult mainly due to the implicit λk(u). By
(3.27), however, it seems that ▽uλk · pk ≤ 0 is unlikely in D for most cases. Even that is
true, the set {u | ▽uλk · pk = 0} is only m − 1 dimensional, and not so “large” in D. In
this sense, we can say that all fields λk are essentially nonlinear.

Finally, for the above two statements, λ1 generates the main wave to connect the two
initial states ul and ur given by (3.1). As observed in numerical simulations, this means
that 1-wave is always sharp for large ur − ul, whereas other waves are very thin in con-
necting, so that ▽uλk · pk = 0 (k ≥ 2) might be avoided in the k-wave. Also see Section
4.2, where these ‘standard’ compressive shock and expansive rarefaction waves are always
observed.

These comments are merely heuristic and might be conducive to future studies.

However, a contact discontinuity is possible if the assumptions are released such that
some λ = vm(ρ) is an eigenvalue in some sub-domain say Dc ⊆ D ∪ {u | Σm

i=1ρi = ρmax}.
This is to recall the discussions in Section 2 (Lemma 2.1, Theorem 2.3 and their proofs).
We assume that

vm(ρ) = vm−1(ρ) = · · · = vm−k(ρ), ρ ∈ [ρc, ρmax], (3.28)

where vm(ρ) is not necessarily the largest velocity and not identical to any other velocity
in the same interval. This corresponds to the k multiple eigenvalue,

λm = · · · = λm−k+1 = vm, u ∈ Dc.

The k linearly independent eigenvectors that are given by (2.10) are redenoted as

pm1
= (0, · · · , 0,−1, 1, 0, · · · , 0)T , . . . , pmk

= (0, · · · , 0,−1, 0, 0, · · · , 1)T .

For u ∈ Dc, (3.26) is obviously satisfied by all eigen-pairs (λm, pmj
), i.e.,

▽uλm · pmj
≡ 0, u ∈ Dc, j = 1, . . . , k.

We show that the wave arising from λm is actually a contact discontinuity.

Note that system (2.1) is strongly hyperbolic on Dc: namely, m linearly independent
eigenvectors are guaranteed. Hence, by generalization, m − k Riemann invariants of the
wave (casually named the mk-wave here) are defined such that

li · du = 0, i = 1, . . . ,m − k.
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Here li are left eigenvectors of λi; and by scaling {li}
m
i=1 are bi-orthonormal to the set of

right eigenvectors {pi}
m
i=1, which implies that

li · pmj
= 0, i = 1, · · · ,m − k, j = 1, . . . , k.

Therefore, we have

li · (du − pmj
) = 0, i = 1, · · · ,m − k, j = 1, . . . , k. (3.29)

Clearly, (3.29) suggests that du || S, where S = {α1pm1
+ · · ·+ αkpmk

| ∀αi, i = 1, . . . , k},
and α1pm1

+ · · · + αkpmk
= (0, · · · , 0,−Σk

j=1αj, α1, · · · , αk). That is,

dρ1

0
= · · · =

dρm−k−1

0
=

dρm−k

−Σk
j=1αj

=
dρm−k+1

α1
= · · · =

dρm

αk
,

by which these m − k Riemann invariants of the mk-wave are clearly ρ1, . . ., ρm−k−1 and
Σm

j=m−kρj. As a result, ρ = Σm
j=mρj is also a Riemann invariant, as are all vi(ρ) and

λm(u) = vi(ρ). This clearly indicates that the mk-wave is a contact discontinity. Across
the wave we have

ρ−1 = ρ+
1 , . . . , ρ−m−k−1 = ρ+

m−k−1, Σm
j=m−kρ

−
j = Σm

j=m−kρ
+
j ,

ρ− = ρ+, v−i = v+
i , ∀i, λ−

m = λ+
m.

The Rankine-Hugoniot conditions of (3.2) can be easily verified.

The interpretation of such a contact is similar to what is discussed at the end of Section
2.2. Let k = m − 1, for example, then (3.28) means that all flow media are the same in
their velocity as the total density is larger than some critical value ρc. Moreover, it is easy
to see that the contact is formed if and only if, initially, ul = u− ∈ Dc or ur = u+ ∈ Dc.
Suppose that ur = u+ ∈ Dc, for example, the contact is needed to separate the original
state ur = u+ from the state u− formed behind, such that generally ρ+

i 6= ρ−i but ρ− = ρ+.
Note that we only have two waves by the assumption. Also compare this argument with
Fig.10 in Section 4.2.

4 Numerical Approximations

To confirm the conclusions that are clear (or unclear) in the previous discussions, numerical
implementation is made. High resolution schemes are adopted. However, here the main
difficulty is the characteristic decomposition: e.g., see [17] and [18]. Analytically it is
impossible for m > 2 because in this case all λi(u) are implicit. Though it could be made
for m = 2, the discussion must be separated at each boundary ρi = 0; thus the handing
will be very complex. See the comments in Section 2.2 and around Theorem 2.4.

Due to this difficulty, Lax-Friedrichs flux-splitting is applied as an alternative. Because
this compromise involves considerable numerical viscosity, the fifth order accurate WENO
(Weighted Essentially Non-Oscillatory) reconstruction is used, coupled with the third order
accurate TVD Runge-Kutta time discretization. The scheme is only briefly described. For
a detailed account of the ENO and WENO methods, see [19, 20, 21].
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4.1 Flux-splitting WENO schemes

The solution procedure consists of three major blocks: the flux-splitting, the WENO
reconstruction, and the TVD Runge-Kutta time discretization. For the first step, the flux
vector f(u) of (2.1) is split into two parts as follows:

f(u) = f+(u) + f−(u), f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u) − αu).

In the above, the constant α is given by

α0 = maxumax1≤j≤m|λj(u)|,

or greater, where the first maximum is taken over all u involved. In each of our examples,
α is well evaluated by (2.8), such that α − α0 is small enough. By such α, f+(u) and
f−(u) are guaranteed to be non-negative and non-positive, respectively, i.e.,

f+
u (u) = fu(u) + αI ≥ 0, f−

u (u) = fu(u) − αI ≤ 0.

For the discretization of (2.1), (f+(u))x and (f−(u))x are approximated by numerical
fluxes separately, such that

dui

dt
+

1

∆x
(f̂+

i+1/2 − f̂+
i−1/2) +

1

∆x
(f̂−

i+1/2 − f̂−
i−1/2) = 0. (4.1)

These fluxes f̂±
i+1/2 are acquired by the WENO reconstruction below.

Given all of the discrete values vj of a function v(x) in Ij , we denote by vi±1/2 the
approximate boundary values of v(x) on a fixed cell Ii. Then, vi±1/2 are obtained by
applying vi and its neighboring r + s point values. Here, r is the number of the cells
in the left side of Ii, and k = r + s + 1 cells are thus involved. Moreover, we have k
approximations of v(xi±1/2), denoted by

v
(r)
i+1/2 =

k−1
∑

j=0

crjvi−r+j, v
(r)
i−1/2 =

k−1
∑

j=0

c̃rjvi−r+j, r = 0, . . . ,m − 1. (4.2)

In (4.2), c̃rj = cr−1,j; and for k = 3, crj are given by

c−1,0 = 11/6, c−1,1 = −7/6, c−1,2 = 1/3; c00 = 1/3, c01 = 5/6, c02 = −1/6;

c10 = −1/6, c11 = 5/6, c12 = 1/3; c20 = 1/3, c21 = −7/6, c22 = 11/6.

For certainty, vi±1/2 are made to be the following weighted averages of (4.2):

v−
i+1/2

=
k−1
∑

r=0

ωrv
(r)
i+1/2

, v+
i−1/2

=
k−1
∑

r=0

ω̃rv
(r)
i−1/2

, (4.3)

with all weights given by

ωr =
αr

∑k−1
r=0 αs

, αr =
dr

(ε + βr)2
; ω̃ =

α̃r
∑k−1

r=0 α̃s

, α̃r =
d̃r

(ε + βr)2
, d̃r = dk−1−r.
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In the above, ε = 10−12; and for our application of k = 3, these constants are d0 = 0.3,
d1 = 0.6, d2 = 0.1, and

β0 =
13

12
(vj−2 − 2vj−1 + vj)

2 +
1

4
(vj−2 − 4vj−1 + 3vj)

2;

β1 =
13

12
(vj−1 − 2vj + vj+1)

2 +
1

4
(vj−1 − vj)

2;

β2 =
13

12
(vj − 2vj+1 + vj+2)

2 +
1

4
(3vj − 4vj+1 + vj+2)

2.

Now, the f̂±
i+1/2 that are applied in scheme (4.1) are determined by the following procedure:

1. let vi = f+
i and compute v−i+1/2 by (4.3), then set f+

i+1/2 = v−i+1/2; and

2. let vi = f−
i and compute v+

i+1/2 by (4.3), then set f−
i+1/2 = v+

i+1/2.

The reconstruction guarantees the (2k − 1)-th order accuracy.

Finally, for the TVD-Runge-Kutta time discretization, scheme (4.1) can be rewritten
as the following ODEs:

ut = L(u).

Given the initial values u(x, 0) ≡ u0(x) and the division {un}N
n=0 in time direction, then

for n = 0, . . . , N , we follow the steps below.

(1) Set u(0) = un.

(2) For j = 1, . . . ,K, compute the values of intermediate functions as

u(j) =

j−1
∑

l=0

(αjlu
(l) + ∆tβjlL(u(l))).

(3) Set un+1 = u(K).

This approximation achieves the K-th order accuracy in time direction. For our appli-
cation of K = 3, the coefficients are

α10 = 1, α20 = 3/4, α21 = 1/4, α30 = 1/3, α31 = 0, α32 = 2/3;

β10 = 1, β20 = 0, β21 = 1/4, β30 = 0, β31 = 0, β32 = 2/3.

4.2 Resolution of waves in the Riemann Problem

To compare with the analytical results, numerical examples are given by the Riemann
problem (3.1), with the change of the interface from x = 0 to some x = x0. To capture
these compressive shocks and expansive rarefactions, moreover, the velocity fields of (3.11)
are applied with ρmax = 1, m = 3, (b1, b2, b3) = (0.6, 0.8, 1), and

v(ρ) = 1 − ρµ, (4.4)

except that v′′(ρ) > 0 for µ < 1. The computational range is (0, 1), with division ∆x =
1/800; the temporal increment ∆t = 0.6∆x/α. In all examples, the types of all m waves
are also identified in comparison with analytical results in Section 3.
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Fig.5 Changes in all densities at t = 1.2, with ul = (0.2, 0.1, 0.1), and ur = (0.25, 0.25, 0.3).
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Fig.6 Changes in all densities at t = 1.2, with ul = (0.1, 0.08, 0.12), and ur = (0.2, 0.25, 0.3).

x

D
en

si
ty

0 0.25 0.5 0.75 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

class 1

class 2

class 3

α=0.91

x =0.30

µ=2

x

ρ

0 0.25 0.5 0.75 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 shock

2 rarefaction

3 rarefaction

total density

Fig.7 Changes in all densities at t = 1.2, with ul = (0.05, 0.1, 0.15), ur = (0.3, 0.2, 0.25).
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Fig.8 Changes in all densities at t = 1.2, with ul = (0.05, 0.09, 0.06), and ur = (0.3, 0.2, 0.25).
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Fig.9 Changes in all densities at t = 0.6, with ul = (0.4, 0.25, 0.35), and ur = (0.05, 0.08, 0.12).

In Figs.5-9, the density of all different classes are shown on the left side; whereas
the total density is shown on the right side. All waves follow the descriptions given by
Theorem 3.2.(i) or Theorem 3.4.(i); i.e., all shocks are compressive and all rarefactions are
expansive. Note that these are also true even with µ < 1 of (4.4) (Figs.8-9), which means
the convexity v′′i (ρ) > 0, ∀i.

To simulate a contact, (4.4) is altered to be

vi(ρ) =

{

v(ρ), if ρ > ρc,
bi + ρ(1 − bi − ρc)/ρc, otherwise,

i = 1, 2, 3; (4.5)

see the discussion in Section 3.3. The numerical result is shown in Fig.10. Note that the
initial state ur = (0.25, 0.25, 0.3) is in the region of Dc. On the left side, the number of
the waves reduces to two, because λ2 = λ3 for u ∈ Dc. On the right side, the second
wave disappears because the total density is a Riemann invariant for this contact. See our
comments in the end of Section 3.3.
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Fig.10 Changes in all densities at t = 1.2, with ρc = 0.5, ul = (0.2, 0.1, 0.1), ur = (0.25, 0.25, 0.3).

5 Conclusions

We have proven that system (2.1) is hyperbolic, because it has m real eigenvalues. More
precisely, it is non-strictly hyperbolic somewhere at a boundary ρi = 0, and it is only
(m − 2) dimensional. Moreover, it is strongly hyperbolic at the intersections by at least
two velocity curves, and it is just m− 1 dimensional. The system is strictly hyperbolic in
other solution regions at large.

Some important properties of the characteristic fields are also discussed. In particular,
it is confirmed that the last (m − 1) fields are due to overtaking. Precisely, the k-field is
due to the (k − 1)-th flow being overtaken by the k-th, provided that ρi 6= 0, ∀i.

All waves are investigated. In general, a characteristic field is essentially genuinely
nonlinear, and the involved wave is characterized by the so called compressive shock or
expansive rarefaction. That is, the density of each class increases after it passes through
a shock but decreases after entering a rarefaction fan. A contact is formed such that the
propagation of a certain family of characteristics coincides with at least two flows. For
this case all Riemann invariants of the wave are easily acquired and the meanings in the
motion are clearly understood.

All of the main results are verified numerically. All of the examples adopt the Lax-
Friedrichs flux-splitting WENO scheme. Their declared compressive shocks and expansive
rarefactions are always observed, along with the described contact.

In summary, this paper presents a comprehensive study and provides many important
results for the discussed system. These are of much significance for studies of hyperbolic
equations, and probably also for applications.

What is left unclear is the existence of global solution of the Riemann problem. A strict
proof for this will be more challenging, based on the conclusions in this paper, and subject
to assumptions on the velocity fields. Besides, system 2.1 can be further extended say
through combination with those factors considered in [4, 5, 6], so that more interesting
and complicated waves could be presented.
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