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1 Introduction

In this paper, we extend a multi-class Lighthill-Whitham-Richards traffic flow model [21,23,28] to

deal with inhomogeneous road conditions. The variable road conditions are the number of lanes a(x)

and the free flow (maximum) velocities {vl,f (x)}m
l=1 of m types of vehicles. Let ρl(x, t) be the density

per lane of the lth type, and let

ρ(x, t) =

m
∑

l=1

ρl(x, t)

be the total density per lane. The velocity of the lth type of vehicles is a function of ρ, which is

denoted by vl(ρ). Furthermore we assume that {vl}
m
l=1 are related by

vl = bl(x)v(ρ), v′(ρ) < 0, bl(x) = vl,f(x)/vf , vf = max
x

max
1≤l≤m

(vl,f (x)). (1.1)
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Accordingly, the velocity differences between m vehicle types are reflected by the functions {bl(x)}m
l=1

and 0 ≤ bl(x) ≤ 1.

The model equations are acquired from the mass conservation of m types of vehicles, which read

(a(x)ρl)t + (a(x)ρlbl(x)v(ρ))x = 0, 1 ≤ l ≤ m. (1.2)

We introduce the conservative solution variables ul = a(x)ρl, the vector u = (u1, . . . , um)T , and

the flux vector f = (f1, . . . , fm)T with fl = blulv(Σul/a). Accordingly, the model equations can be

written as

ut + f(u, θ(x))x = 0, (1.3)

where the vector function θ(x) represents all inhomogeneous factors on the road, namely,

θ(x) = (a(x), b1(x), . . . , bm(x)).

In this traffic flow problem, each density ρl and the total density ρ are bounded by a jam density

ρjam, and thus

u/a ∈ D̄, D̄ = {u/a| ρl ≥ 0, l = 1, . . . ,m; Σm
l=1ρl ≤ ρjam}. (1.4)

Moreover, the function v(ρ) of (1.1) satisfies

v(0) = vf , v(ρjam) = 0.

The study of this extended traffic flow system is significant both for practical application and

theoretical interest. In real traffic, the drop or increase in traffic capacity that is reflected by θ(x)

is frequent in many locations, such as on curves and slopes and near ramps and traffic accidents.

In particular, by extension bl = bl(x, t) can serve as a switch function in signal traffic or the like.

However, it is very difficult to solve the eigen-polynomial of system (1.3) explicitly. Moreover, the

existence of spatially varying fluxes poses significant difficulties for both analytical and numerical

studies (see [1-2], [10], [14-15], and [24-27] for relevant discussions).

In this paper, some important features of the model are discussed under a modified equivalent

system of (1.3), in which all of the components of θ are solution variables. Analytically, the hy-

perbolicity of the system is proven, and the wave-breaking patterns of the Riemann problem are

predicted. We note that these descriptions are mostly based on the relevant studies in [24] and [28].

The maximum absolute value of all of the eigenvalues is estimated, which is an essential parameter

in the proposed numerical schemes. We note that these eigenvalues cannot be explicitly solved (see

Section 2 for this discussion).

In developing the numerical schemes, it may not be efficient to apply the standard methods (e.g.,

TVD, RKDG, and WENO schemes) to system (1.3) directly due to its spatially varying fluxes. It

2



should be mentioned that a wave propagation method was recently developed that generated good

numerical results in solving elastic waves in heterogeneous media, which constitute a 2×2 system with

spatially varying fluxes [2]. Nevertheless, this method is limited to problems in which an eigenvalue

has a fixed sign for all involved u and θ(x), and requires that the eigenvalues can be solved explicitly.

Therefore, this method is not suitable for our problem, in which one of the eigenvalues changes sign,

and all are implicit. In [24-27], Zhang et al. developed a numerical scheme to deal with spatially

varying fluxes for the scalar case, which can also be extended to the vector case.

With a modified equivalent system of (1.3), a component-wise WENO scheme that applies the

Lax-Friedrichs numerical flux in the finite volume method and the flux splitting in the finite difference

method are discussed in Section 3. As the modification gives rise to a standard hyperbolic conser-

vation form, the scheme is theoretically sound, and thus gives good results. Although the Riemann

problem of the system generates very complicated wave structures, the numerical results are in good

agreement with the claimed wave patterns (Section 4.1). For sharp changes of bl from their maxima

to minima, which describes the sharp braking of vehicles, the resultant strong discontinuity at the

interface is well captured (Section 4.2). We note that this is the first time that the WENO scheme

has been applied to hyperbolic conservation laws with spatially varying fluxes. Similar applications

to other problems may be possible, which is addressed in Section 5 with several concluding remarks.

2 Hyperbolicity and wave structure of the model equations

To study the hyperbolicity and solution structure of the system, we rewrite (1.3) in the “standard”

conservation form, which means that we add the identity θt = 0 to (1.3). For convenience, we treat

θ as a scalar in the following discussions, but the results are equally applicable to the vector case.

Accordingly, (1.3) and the added identity can be viewed as the following equivalent (m+1)× (m+1)

system:

Ut + Fx = 0, (2.1)

where U = (u, θ)T and F = (f(u, θ), 0)T . We note that the construction of equivalent forms of

the conservation laws with spatially varying fluxes is widely applied, for example in [1,10,15,25].

According to this standard conservation form, we study the hyperbolicity of the system. We write

the Jacobian FU and the matrix for solving the eigen-pairs as follows:

FU =





fu fθ

0 0



 , FU − λIm+1 =





fu − λIm fθ

0 −λ



 , (2.2)

where 0 = (0, . . . , 0) has m components, fθ = (f1θ, . . . , fmθ)
T and Im is the unit matrix. Let

|fu − λIm| = Pm(λ),
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and then the eigen-polynomial of FU is

|FU − λIm+1| = −λPm(λ). (2.3)

2.1 Hyperbolicity of the model equations

For the discussed system, it is not difficult to obtain [28]

Pm(λ) = Q(λ)
m
∏

l=1

(vl − λ), Q(λ) = 1 +
m

∑

l=1

ρl

vl − λ

∂vl

∂ρ
. (2.4)

For u/a ∈ D, where D is the open domain that corresponds to D̄ of (1.4), we suppose that {vl}
m
l=1

are distinct, namely,

v1 < . . . < vm, (2.5)

then it is easy to verify that, by (2.4),

sgn(Pm(vl)) = (−1)l, sgn(Pm(v1 +
m

∑

l=1

ρl
∂vl

∂ρ
)) = 1. (2.6)

By the intermediate value theorem, (2.6) suggests m distinct real eigenvalues {λ}m
l=1 of the Jacobian

fu, which are separated by m velocities as follows:

v1 +
m

∑

l=1

ρl
∂vl

∂ρ
< λ1 < v1 < λ2 < . . . < vl−1 < λl < vl < . . . < vm−1 < λm < vm. (2.7)

For u/a ∈ ∂D, m real eigenvalues of fu are also ensured, and some inequalities of (2.7) change to

equalities. The hyperbolicity of this latter case is rather complicated, but to a degree can be viewed

as the limiting case of the former (see [28] for more details). For simplicity, this case is excluded

from this section and from Section 2.2.

By (2.3), therefore, we conclude that the Jacobian Fu has m + 1 real eigenvalues {λl}
m
l=1 and

that λ̃ = 0, and thus that (2.1) is a hyperbolic system. Furthermore, by (2.7) it is obvious that these

m + 1 eigenvalues are distinct if and only if λ1 6= λ̃ = 0, in which case (2.1) is strictly hyperbolic. As

is shown in the following, it is possible to have λ1 = λ̃ = 0, in which case system (2.1) is generally

non-strictly hyperbolic.

Substituting λ with λ1 = 0 in (2.4) and with all vl being given by (1.1), we have

Q(0) =
q′(ρ)

v(ρ)
, sgn(Pm(0)) = sgn(q′(ρ)), (2.8)

where q(ρ) = ρv(ρ). Usually, q(ρ) is supposed to be strictly concave [21,23,28], q′′(ρ) < 0. Assume

that q(ρ∗) is the maximum of q(ρ), such that

q′(ρ∗) = 0, q′(ρ) > 0 for ρ < ρ∗, q′(ρ) < 0 for ρ > ρ∗,
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where ρ∗ is the critical density, as it is called in many traffic flow models. Accordingly, (2.8) and

(2.6) give the following conclusion:

λ1















> 0, if ρ < ρ∗,

= 0, if ρ = ρ∗,

< 0, if ρ > ρ∗.

(2.9)

This is again derived by the intermediate value theorem.

Suppose that (rT
l , zl)

T is an eigenvector that corresponds to λl, where rl is a m× 1 vector and zl

is a scalar, then we have

λ = λl : (FU −λlIm+1)





rl

zl



 =





fu − λlIm fθ

0 −λl









rl

zl



 =





(fu − λlIm)rl + zlfθ

−λlzl



 = 0.

This indicates that we can take zl to be zero and rl to be the eigenvector of fu that corresponds to

λl.

Suppose that (r̃T , z̃)T is an eigenvector that corresponds to λ̃ = 0. Similarly, we have

λ̃ = 0 : (FU − λ̃Im+1)





r̃

z̃



 =





fu fθ

0 0









r̃

z̃



 =





fur̃ + z̃fθ

0



 = 0,

which implies that r̃ is the solution of the algebraic equations

fur̃ = −z̃fθ. (2.10)

Denote by r = (r1, . . . , rm) a non-singular matrix of right-eigenvectors of fu. The matrix of the

right-eigenvectors of FU then reads

R ≡





r r̃

0 z̃



 .

If λ1 6= 0, then fu is non-singular. We choose z̃ 6= 0 in (2.10), and thus r̃ is uniquely determined as

r̃ = −z̃f−1
u fθ. In this case R is non-singular and

R =





r −z̃f−1
u fθ

0 z̃



 , R−1 =





r−1 r−1f−1
u fθ

0 1/z̃



 .

If λ1 = 0, then fu is singular. Consequently, R must be singular. This is obvious for z̃ = 0. For z̃ 6= 0,

if Eq.(2.10) has a solution to r̃, then we would read rank(fu,−z̃fθ) = rank(fu) = rank(fu−λ1Im) =

m−1, for which an identity is required. This is generally unlikely under the assumption that fθ 6= 0.

For the discussed traffic flow problem, the required identity can be arranged as

m
∑

l=1

∂fl

∂x

1

vl
≡ 0, or a

m
∑

l=1

b′l
bl

ρl −
v′

v
ρ2a′ ≡ 0, for λ1 = 0, or ρ = ρ∗.

However, it is obvious that this condition does not hold for the traffic flow model.

In summary, system (2.1) is strictly hyperbolic for λ1 6= 0, but non-strictly hyperbolic for λ1 = 0.
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2.2 Wave structure of the model equations

We consider the Riemann problem

u =







u1, if x < 0,

um+1, if x > 0,
θ =







θL, if x < 0,

θR, if x > 0,
(2.11)

where the expression for θ means that a(x) and bl(x) are discontinuous of x at the interface, with

θL = (aL, bL
1 , . . . , bL

m), and θR = (aR, bR
1 , . . . , bR

m).

The Riemann problem was solved exactly for a general scalar form of (1.3) (m = 1) in [24]. For

the case m = 2, λ1 and λ2 are explicit, but the solution is very complicated. For m > 2, no λl can

be solved explicitly in the discussed traffic flow problem, and thus it is very difficult to derive the

analytical results [28]. However, some predictions of the wave structure are possible, because the

wave breaking near the interface would be similar to that for the scalar case that is discussed in

[24]. Moreover, the monotone changes across or within the waves other than the interface are well

understood for the system in which θ(x) is constant [28], and these conclusions are still applicable

in each of the regions D+ = {(x, t)|x > 0, t > 0} and D− = {(x, t)|x < 0, t > 0}. The claimed wave

structure in this section serves as a comparison for the numerical results in Section 3.

We call a wave that corresponds to the λl- (or λ̃-) characteristic field the λl- (or λ̃-) wave. In

accordance with (2.7), these {λl}
m
l=2-waves must be in the region D+ = {(x, t)|x > 0, t > 0}, and

the λ̃-wave can be easily verified as a contact at the interface x = 0. See [11-13,18-20] for detailed

accounts of the basic properties of hyperbolic waves. Let uL = u(0, t−) and uR = u(0, t+), which

are, respectively, the left and right solution states that are adjacent to the interface, and we then

have, by the Rankine-Hugoniot jump condition,

f(uL, θL) = f(uR, θR). (2.12)

As indicated in [24], the two states uL and uR should be also “connected” by the λl characteristics.

This argument implies that the propagation of the λ1-characteristics may change the angle across

the interface, and should satisfy

λ1(u
L, θL)λ1(u

R, θR) ≥ 0. (2.13)

Here, the equality means that λ1(u
L, θL) or λ1(u

R, θR) coincides with the contact λ̃ = 0, in which

case system (2.1) must be non-strictly hyperbolic. We have, by (2.12),

aLbL
l ρL

l v(ρL) = aRbR
l ρR

l v(ρR), l = 1, . . . ,m.

Let α1l = aLbL
l /(aRbR

l ) and α2l = 1/α1l, and the aforementioned equation is then equivalent to

ρR
l v(ρR) = α1lρ

L
l v(ρL), ∀l; ρRv(ρR) = v(ρL)

m
∑

l=1

α1lρ
L
l , (2.14)
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where the second equation is obtained by the summation of the first over l. Similarly, we obtain

ρL
l v(ρL) = α2lρ

R
l v(ρR), ∀l; ρLv(ρL) = v(ρR)

m
∑

l=1

α2lρ
R
l . (2.15)

In the discussed traffic flow problem, it is reasonable to assume that

if α1k > 1 for some k, then α1l ≥ 1 ∀ l, (2.16)

which indicates a non-increase or non-decrease (α1l ≥ 1 or α1l ≤ 1) in traffic capacity for all types of

vehicles. Otherwise, the problem would be unrealistic, because the capacity drops for some vehicle

types but increases for others in the same location.

Whether system (2.1) is strictly hyperbolic will be subject to (2.13), because θ(x) is only change-

able across the interface. Let u2 be the left solution state of the λ2-wave (Figs.1 and 2), and we then

have the following description.

u u
u

L

= u
1 R

2

t
λ1 wave−

wave−λ2

x0
(a)

u u uL

=

u1

R 2

t

λ1 wave− wave−λ2

x0
(b)

Fig.1 Wave patterns that correspond to a strictly hyperbolic system (2.1): (a) the λ1-characteristics pass through the interface

from left to right; (b) the λ1-characteristics pass through the interface from right to left.

(1) Suppose that λ1(u
L, θL)λ1(u

R, θR) > 0, then system (2.1) is strictly hyperbolic and we would

expect m + 1 waves. In addition to the λ̃-contact at the interface, only one λ1-wave is needed before

the λ2-wave. This λ1-wave is either in D+ or D− for the consideration of the following three cases.

(a) If λ1(u
1, θL) > 0 and λ1(u

2, θR) ≥ 0, then it is natural to have uL = u1 and λ1(u
L, θL) > 0. As

λ1(u
R, θR) > 0, it is inferred by (2.9) that ρR < ρ∗. Such a unique ρR and the components of uR are

solvable by (2.14) if and only if

v(ρL)

m
∑

l=1

α1lρ
L
l < ρ∗v(ρ∗) = q(ρ∗). (2.17)
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In this case we can say that the propagation of λ1(u
1, θL) is able to pass through the interface and

then change to λ1(u
R, θR), in which state uR forms the λ1-wave with u2 in D+. Fig.1(a) shows this

wave pattern, where a wave is represented simply by a radial.

(b) If λ1(u
1, θL) ≤ 0 and λ1(u

2, θR) < 0, then similarly we have uR = u2 and λ1(u
R, θR) < 0, and

thus λ1(u
L, θL) < 0 and ρL > ρ∗. By (2.15), ρL and {ρL

l }
m
l=1 are uniquely solvable if and only if

v(ρR)

m
∑

l=1

α2lρ
R
l < ρ∗v(ρ∗) = q(ρ∗). (2.18)

In this case, we can say that the propagation of λ1(u
2, θR) is able to pass through the interface and

then change to λ1(u
L, θL), in which state uL forms the λ1-wave with u1 in D−. This wave pattern

is shown in Fig.1(b).

(c) If λ1(u
1, θL) > 0 and λ1(u

2, θR) < 0, then we have either uL = u1 or uR = u2. Accordingly,

the wave pattern is similar to that of (1)(a) or (b), as is shown in Figs.1(a) and (b). We note that

at least one of Eqs. (2.14) (with uL = u1) and (2.15) (with uR = u2) is solvable, because at least

one of conditions (2.17) (with uL = u1) and (2.18) (with uR = u2) must hold under assumption (2.16).

ρu

u

L
=

u1

R

2

t

λ1 rarefaction−

wave−λ2

x0
(a)

λ1 wave

ρ ∗

−

ρ u

u

L

=

u1

R

2

t

λ1 rarefaction−

wave−λ2

x0
(b)

λ1 wave−

ρ∗

Fig.2 Wave patterns that correspond to a non-strictly hyperbolic system (2.1): (a) the λ1-characteristics of u = u1 are reflected

from the interface, forming an extra λ1-wave in D−; (b) the λ1-characteristics of u = u2 are reflected from the interface,

forming an extra λ1-wave in D+.

(2) Suppose that λ(uL, θL)λ(uR, θR) = 0, then system (2.1) is non-strictly hyperbolic and we predict

a total of m+2 waves in the following. For all of the cases under consideration, we need two λ1-waves

that are separated by the interface. This wave structure is also characterized by a λ1-rarefaction,

which is either in D− or in D+, and is distinguished by two wave patterns that are shown in Figs.2(a)

and (b), respectively.
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(a) If λ1(u
1, θL) > 0, λ1(u

2, θR) ≥ 0, and (2.17) is not satisfied for uL = u1 so that (2.14) is

unsolvable (except possibly for ρR = ρ∗), then by the assumption we can only choose λ1(u
R, θR) = 0,

namely ρR = ρ∗. Moreover, by (2.14) and (2.15), we have

v(ρL)

m
∑

l=1

α1lρ
L
l = ρ∗v(ρ∗) = q(ρ∗), ρLv(ρL) = v(ρ∗)

m
∑

l=1

α2lρ
R
l . (2.19)

Comparing the first equation of (2.19) with (2.17), we can see that a maximal principle is applied.

The second equation of (2.19) is solvable, because it is implied that α2l ≤ 1 (α1l ≥ 1) for all l, and

thus v(ρ∗)Σm
l=1α2lρ

R
l ≤ v(ρ∗)ρ∗ = q(ρ∗). Otherwise, by (2.16), we have α1l ≤ 1 for all l, and (2.17)

will be satisfied by uL = u1. However, this contradicts our assumption.

In this case, ρL is chosen such that λ(uL, θL) ≤ 0, namely ρL ≥ ρ∗. Therefore, the propagation

of λ1(u
1, θL) is unable to pass through the interface, and reflects backward so that u1 and uL form a

λ1-wave in D−. Meanwhile, uR and u2 form another λ1-wave that can be identified as a rarefaction

(see Proposition 2.2), because ρR = ρ∗ > ρ2. This wave pattern is shown in Fig.2(a).

(b) If λ1(u
1, θL) ≤ 0, λ1(u

2, θR) < 0, and (2.18) is not satisfied for uR = u2 so that (2.15) is unsolv-

able (except possibly for ρL = ρ∗), then we have λ(uL, θL) = 0 or ρL = ρ∗. This case is parallel to

(1)(a), and the wave structure is shown in Fig.2(b), where two predicted λ1-waves are also separated

by the interface. In contrast to 2(a), here it is the λ1-wave in D− that is identified as a rarefaction

(also see Proposition 2.2), because ρ1 > ρL = ρ∗.

(c) If λ1(u
1, θL) < 0 and λ1(u

2, θR) > 0, which suggests that λ1(u, θ) changes sign across the inter-

face, then we have λ1(u
R, θR) = 0 for α1l ≥ 1. In this case, the wave structure is similar to that of

(2)(a), and is also shown in Fig.2(a). For α2l ≥ 1, we have λ1(u
L, θL) = 0, and the wave pattern is

similar to that of (2)(b), as shown in Fig.2(b). We have the trivial case of this for λ1(u
1, θL) = 0 or

λ1(u
2, θR) = 0.

For the scalar case m = 1, in which the λl-waves disappear for l > 1 and u2 = um+1 becomes

known initially, the wave patterns as shown in Figs.1 and 2 are identical to those that were solved

exactly and proved to be unique in [24]. Furthermore, the conclusions for all of the λl-waves in [28]

can be directly applied in this Riemann problem, because each of the waves is either in D− or in D+,

where θ(x) is constant. In general, all of these λl-characteristic fields are genuinely nonlinear, and

thus they correspond to either shocks or rarefactions. Let u− and u+ be the left and right states of

a certain λl-wave, respectively, and, supposing that the function v(ρ) is concave, namely, v′′(ρ) ≤ 0,

then the following two propositions in [28] may be cited.

Proposition 2.1 A λl-shock is characterized by the following: ρ− < ρ+, ρ−k < ρ+
k for k ≥ l and

ρ−k > ρ+
k for k < l.
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Proposition 2.2 A λl-rarefaction is characterized by the following: ρ− > ρ+, ρ−k > ρ+
k for k ≥ l

and ρ−k < ρ+
k for k < l. Moreover, all of the functions ρ(θ) and ρk(θ) are monotone in the rarefaction

fan, where θ = x/t.

It was also indicated in [28] that the two propositions should be applicable to a generally given

function v(ρ).

3 Numerical schemes

For the numerical approximation of the model equations, we follow the basic ideas that are stated

in Section 1. We first apply the modified equivalent system (2.1), which is written in two parts as

follows:

ut + f(u, θ)x = 0,

θt + ox = 0, (3.1)

where the flux o = 0. We note that θ is a solution vector for temporal evolution in the computation.

Let f̂ and ô be the two numerical flux functions that correspond to the fluxes f and o, respectively,

of (3.1). Then, a standard conservative scheme of (3.1) reads:

dui

dt
+

1

∆x
(f̂i+1/2 − f̂i−1/2) = 0,

dθi

dt
+

1

∆x
(ôi+1/2 − ôi−1/2) = 0. (3.2)

In the following, the numerical fluxes f̂i+1/2 and ôi+1/2 are reconstructed by the WENO method

through the Lax-Friedrichs flux splitting method. As the characteristic decomposition of the system

is impossible due to the implicitness of all of the λl, or the singularity of the matrix R that contains

the right eigenvectors (see discussions of (2.7)-(2.10)), the component-wise WENO reconstruction

is adopted. For a detailed account of the WENO scheme, see [9,16,17] or [23,28], which are more

relevant to the discussed model.

3.1 Component-wise finite volume (FV) WENO scheme

The fifth-order accurate WENO FV scheme applies the cell averages {(uj , θj)}
i+2
j=i−2 to reconstruct

(u−
i+1/2, θ

−
i+1/2), which are cell boundary values of xi+1/2 on the left-hand side. With {(uj , θj)}

i+3
j=i−1,

(u+
i+1/2, θ

+
i+1/2) are similarly constructed, and are cell boundary values of xi+1/2 on the right-hand

side. Thus, we use the Lax-Friedrichs numerical fluxes as follows:

f̂i+1/2 =
1

2
(f(u−

i+1/2) + f(u+
i+1/2) − α(u+

i+1/2 − u−
i+1/2))

10



ôi+1/2 = −
1

2
α(θ+

i+1/2 − θ−i+1/2). (3.3)

Eqs. (3.3) and (3.2) constitute a complete semi-discretized scheme.

3.2 Component-wise finite difference (FD) WENO scheme

In this scheme, we first use the Lax-Friedrichs flux splitting as follows:

f+ =
1

2
(f(u, θ) + αu), f− =

1

2
(f(u, θ) − αu);

o+ =
1

2
αθ, o− = −

1

2
αθ, (3.4)

where (u, θ) = (uj , θj), j = i − 2, . . . , j + 3. With (f+
j , o+

j ) = (f+(uj , θj), o
+(θj)) ≡ vj for j =

i − 2, . . . , i + 2, we proceed with the WENO reconstruction in the cell Ii to obtain v−i+1/2, and

then set (f̂+
i+1/2, ô

+
j+1/2) = v−i+1/2. Similarly, with (f−

j , o−j ) = (f−(uj , θj), o
−(θj)) ≡ vj for j =

i−1, . . . , i+3, we proceed with the WENO reconstruction in the cell Ii+1 to obtain v+
i+1/2, and then

set (f̂−
i+1/2, ô

−
j+1/2) = v+

i+1/2. The numerical fluxes are thus given by

f̂i+1/2 = f̂+
i+1/2 + f̂−

i+1/2, ôi+1/2 = ô+
i+1/2 + ô−i+1/2. (3.5)

Eqs. (3.5) and (3.2) give the scheme.

In (3.3) and (3.4), α ≡ max
(u,θ)

max
1≤l≤m

|λl(u, θ)|. As all of the λl are implicit, a slightly larger estimation

of α is made according to (2.7):

α = max
(u,θ)

max(|v1 +

m
∑

l=1

ρl
∂vl

∂ρ
|, |vm|).

The maximum is taken over the relevant region of (u, θ) = (uj , θj) for all j.

Finally, we apply the third-order accurate TVD Runge-Kutta time discretization [7], for which

the semi-discrete scheme (3.2) is written as the ODEs

ut = L(u, θ).

For the numerical stability of the described WENO scheme, considerable numerical experience

suggests the following CFL condition [6]:

α(n) ∆t(n)

∆x
≤ CFL,

where CFL can be taken as 0.6. Note that ∆t(n) and α(n) are corresponding values at time level n.
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4 Numerical examples

In Section 4.1, numerical tests are conducted to determine the waves that are described in Section 2.2.

The traffic that approaches the stop line of a traffic signal is simulated in Section 4.2. These examples

are computed using the component-wise FD WENO scheme. We note that the component-wise FV

WENO scheme generates similar results.

For a clear observation of these waves, the velocities of (1.1) are set to be linear [8,22],

v(ρ) = vf (1 −
ρ

ρjam
).

In all of the illustrations, the densities ρl and ρ are scaled by ρjam so that 0 ≤ ρl, ρ ≤ 1, and the

spatial and temporal lengths L and T of the computational domain (0, L)×(0, T ) are scaled to unity.

These dimensionless variables are also used wherever they are not followed by a unit.

4.1 Resolution of the waves compared to the analytical results

The initial data in this section are given by the Riemann problem (2.11), with the translation of

x = 0 to x = x0 somewhere in (0, L). Furthermore, we set m = 3, which is small enough for a clear

observation of the wave breaking. For simplicity, bl(x) are set to be constant for all l, namely,

b1(x) = 0.5, b2(x) = 0.75, b3(x) = 1. (4.1)

The other parameters are

L = 8000m, T = 400s, ∆x = 10m, and ∆t(n) = 0.6∆x/α(n),

where T is the simulation time.

Figs.3-10 show the numerical results, which are designed to reproduce all of the analytical wave

patterns in Section 2.2, and to confirm Propositions 2.1 and 2.2. In each figure, we observe the waves

as follows.

First, we count the wave number. Four (m + 1) waves are observed in Figs.3-6 that correspond

to the wave patterns that are described in (1)(a), (b), and (c) and illustrated in Figs.1 (a) and (b).

In these cases, the system is strictly hyperbolic. In Figs.7-10, there are five (m + 2) waves, which

correspond to the wave patterns that are described in (2)(a), (b), and (c) and illustrated in Figs.2(a)

and (b). In these cases, the system must be non-strictly hyperbolic.
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Fig.3 Wave pattern (1)(a) with x0 = 0.2, aL = 3, aR = 1, u1/aL = (0.02, 0.03, 0.02)T , and um=1/aR = (0.15, 0.05, 0.1)T as

compared with Fig.1(a). (a) density ρl; (b) total density ρ.
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Fig.4 Wave pattern (1)(b) with x0 = 0.5, aL = 3, aR = 1, u1/aL = (0.2, 0.1, 0.3)T , and um+1/aR = (0.1, 0, 0.5)T as compared

with Fig.1(b). (a) density ρl; (b) total density ρ.
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Fig.5 Wave pattern (1)(c) with x0 = 0.5, aL = 3, aR = 2, u1/aL = (0.1, 0.05, 0.05)T , and um+1/aR = (0.2, 0.1, 0.3)T as

compared with Fig.1(a). (a) density ρl; (b) total density ρ.
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Fig.6 Wave pattern (1)(c) with x0 = 0.4, aL = 3, aR = 1, u1/aL = (0.2, 0.05, 0.1)T , and um+1/aR = (0.3, 0.25, 0.15)T as

compared with Fig.1(b). (a) density ρl; (b) total density ρ.

x
0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

lρ

ρ
ρ
ρ

1

2

3

(a)
x

ρ

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

λ

λ

λ

λ

λ

∼ -contact

-shock-shock

-shock
-rarefaction

1

1

2

3

Fig.7 Wave pattern (2)(a) with x0 = 0.3, aL = 3, aR = 1, u1/aL = (0.2, 0.15, 0.05)T , and um+1/aR = (0.05, 0.15, 0.2)T as

compared with Fig.2(a). (a) density ρl; (b) total density ρ.

Secondly, we identify all of the λl-waves in each figure according to Propositions 2.1 and 2.2. We

first observe the monotone change of the total density that is shown in the right part of the figure,

such that each of these waves is identified to be either a shock or a rarefaction. Accordingly, as shown

in the left part of the figure, the monotone changes for all density ρl across or in the same wave are

observed and confirmed to be in accordance with Proposition 2.1 (for a shock) or Proposition 2.2

(for a rarefaction).

Thirdly, as shown in Figs.7(b)-10(b), we note that ρR = ρ∗ = 0.5 (in Figs.7(b) and 9(b)) or

ρL = ρ∗ = 0.5 (in Figs.8(b) and 10(b)) for the λ1-rarefaction. These are the analytical results of the

wave breaking across the interface (λ̃-contact).

In summary, we claim that the numerical results that are given by the developed scheme are

completely in accordance with the analytical properties that are predicted in Section 2.2.
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Fig.8 Wave pattern (2)(b) with x0 = 0.5, aL = 2, aR = 3, u1/aL = (0.3, 0.25, 0.15)T , and um+1/aR = (0.15, 0.2, 0.25)T as

compared with Fig.2(b). (a) density ρl; (b) total density ρ.
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Fig.9 Wave pattern (2)(c) with x0 = 0.4, aL = 3, aR = 1, u1/aL = (0.3, 0.2, 0.1)T , and um+1/aR = (0.15, 0.25, 0.05)T as

compared with Fig.2(a). (a) density ρl; (b) total density ρ.

In this observation, we also note that λ1(u
2, θR) and λ1(u

m+1, θR) (m = 3) share the same sign

in all of the examples. This can be seen in Figs.3(b)-10(b)(by (2.9)) and should be true in general.

Therefore, some of the predictions in Section 2.2 can also be made conveniently for the substitution

of λ1(u
2, θR) with λ1(u

m+1, θR).
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Fig.10 Wave pattern (2)(c) with x0 = 0.35, aL = 2, aR = 3, u1/aL = (0.4, 0.1, 0.2)T , and um+1/aR = (0.3, 0, 0.1)T as compared

with Fig.2(b). (a) density ρl; (b) total density ρ.

4.2 Traffic signal control

We extend the developed scheme to an application in which the functions of θ are also temporal.

This is very common in traffic problems, and signal control is a typical example of the extension. At

the stop line, the signal display turns from green to red (at t = 0s) and holds, for example, for 30

seconds, and then turns back to green for another 30 seconds. To reflect this regular change of traffic

signal, which is near x = 0.35 on a road with a section length L = 1200m and a constant a(x), we

suppose that all bl (m = 3) are given by (3.6) for the green signal, but are zero near x = 0.35 and

for the red light, as is described by the following:

(b1, b2, b3) =







(0, 0, 0), if 0.34 < x < 0.36, and 0 < t − 60[t/60] ≤ 30s,

(0.5, 0.75, 1). otherwise.
(4.2)

For the initial condition:

u(x, 0)/a = (0.05, 0.25, 0.1)T . (4.3)

The numerical result is shown in Fig.11.
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Fig.11 Traffic states during a signal cycle that is controlled by (4.2). The initial data are given by (4.3) and the other

parameters are ∆x = 1.5m and ∆t(n) = 0.3∆x/α(n). (a) Densities of all classes at t = 30s; (b) total density at t = 30s; (c)

change of total density for the simulation time T = 60s.

We also set

(b1, b2, b3, b4, b5) =







(0, 0, 0, 0, 0), if 0.34 < x < 0.36, and 0 < t − 60[t/60] ≤ 30s,

(0.6, 0.7, 0.8, 0.9, 1). otherwise,
(4.4)

and

u(x, 0)/a = (0.15, 0.05, 0.1, 0.05, 0.05)T . (4.5)

The numerical result for this case is shown in Fig.12.
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Fig.12 Change of total density for the simulation time T = 60s during a signal cycle that is controlled by (4.4). The initial data

are given by (4.5) and the other parameters are ∆x = 1.5m and ∆t(n) = 0.3∆x/α(n).

17



5 Conclusion

With the modified system, this numerical test of the multi-class traffic flow model on an inho-

mogeneous highway shows the robustness of the WENO reconstruction when combined with the

Lax-Friedrichs flux splitting or Lax-Friedrichs numerical flux. Based on this standard hyperbolic

conservation system (despite it being non-strictly hyperbolic), the Lax-Friedrichs flux gives correct

numerical viscosity for the convergence of the numerical solutions to physically relevant solutions,

whereas the WENO reconstruction reduces the surplus numerical viscosity to achieve a high level of

resolution of the claimed waves. This again indicates the robustness of the WENO reconstruction,

especially when it is combined with the Lax-Friedrichs flux to solve many complexities in application

problems.

The application of the WENO scheme in this paper can be extended to solve other hyperbolic

conservation laws with spatially varying fluxes, such as elastic waves in heterogeneous media. It

would also be interesting to investigate the use of other well-known numerical schemes, such as the

RKDG scheme [3-5].
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