
Explicit solutions of a convection-reaction

equation and defects of difference schemes

Youngsoo Ha a and Yong Jung Kim a,∗

aDivision of Applied Mathemtics, KAIST (Korea Advanced Institute of Science
and Technology), 373-1 Gusong-dong, Yusong-gu, Taejon, 305-701, South Korea

Abstract

We introduce two kinds of explicit solutions to the convection-reaction equation,

ut + (|u|q/q)x = u, u, x ∈ R, t ∈ R
+, q > 1,

and employ them to test properties of various computational schemes. From this
test we observe that computed solutions using Lax-Friedrichs, MacCormack and
Lax-Wendroff schemes break down in a finite time. On the other hand some other
schemes including WENO, NT and Godunov show more stable behavior and the
tests provide their detailed behaviors. It is discussed that if a numerical scheme
is applied to this problem together with the splitting method, certain defects of
the scheme can be magnified exponentially and observed easily. Sometimes such
a behavior destroys the numerical solution completely and hence one need to pay
extra caution to deal with reaction dominant systems.
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1 Introduction

The scientific computation for the solutions of systems of hyperbolic conserva-
tion laws has been successful thanks to the development of accurate numerical
schemes (see [2,12,19,20] for example). The unfortunate situation we still have
here is that there is no meaningful progress in the analysis of such schemes due
to their complexity and it is hard to find any useful error estimate. Further-
more, each scheme has features quite its own and produces numerical results
that require proper interpretations. For example, Figures 4.7 and 4.8 in [14]
show quite different characters of each schemes considered and it is hard to
decide which one is more physically meaningful. Therefore, it is desirable to
know the qualitative properties of schemes since one is always forced to choose
a proper scheme to a specific problem under consideration.

The main goal of this paper is to develop a method to survey the prop-
erty of numerical schemes. Our method starts with a Cauchy problem for
a convection-reaction equation

ut + uux = u, u(x, 0) = u0(x) ∈ L1(R). (1.1)

This equation models the roll wave [7] and several analytic properties have
been studied in [8,16]. We introduce a more general case (2.1) by considering
the flux function as a general convex power law (2.2). In Section 2 we derive
two kinds of explicit solutions of the problem, (2.8) and (2.11), which enable
us to compare computed solutions with an exact one.

The linear reaction term plays the role of a source which produces an exponen-
tial growth. One of the simplest way to treat this source term is a fractional
step splitting method which is discussed in Section 3. The main advantage of
employing the splitting method in this paper is that the defects of the scheme
are magnified exponentially (see Proposition 1) which serves our main goal of
this work.

In the rest of the paper several numerical schemes are tested comparing with
the exact solutions of the convection-reaction equation (2.1). In Sections 4 and
5 we examine the Lax-Friedrichs, the MacCormack’s and the Lax-Wendroff
schemes. It is quite surprising that these three well known schemes show un-
expected behaviors and the computed solutions break down in a finite time
(see Figures 1–5). As mentioned the source of these strange behavior is not
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from splitting method but from the numerical schemes for the convection. This
observation shows that a small undesired defect of the scheme can be simply
magnified and finally destroy the computed solution completely. These exam-
ples indicate that one need should take extra caution to deal with a reaction
dominant system.

Note that one may consider a method to handle the source term in a way
that such a defect of the scheme is neutralized but not magnified. For that
purpose the convection-reaction equation (2.1) can be used as a simple model
equation. One may also modify the scheme curing the symptoms observed.
However the goal of this paper is simply to survey the property of numerical
schemes and hence such possibilities are not pursued here.

In Sections 6, 7 and 8 several other schemes such as NT, NTK, Godunov and
WENO schemes are tested. These schemes do not show such bizarre behaviors
observed previously and hence we could survey their properties in detail. The
first test is for the accuracy of the shock location of computed solutions.
In this study the second order Godunov scheme showed the most excellent
performance among others (see Figures 15 and 16). Even the first order one
showed better results than others for certain cases.

The other test is to compute the roll wave given explicitly by (2.11), which
shows clearly how does a scheme approximate the rarefaction wave. In this
study the approximation error given by (6.5) is an increasing function away
from shock discontinuities (see the second row of Figure 8 for example). The
only exceptions are the first and the second order Godunov schemes, Figures
14 and 17. For certain cases the error function decreases which means that
the Godunov scheme gave slightly overestimated numerical flux for the cases.

2 Exact solutions

We consider the entropy solution of a scalar conservation law with a linear
source term

ut + f(u)x = u, u(x, 0) = u0(x) ∈ L1(R), x, u ∈ R, t > 0, (2.1)

where the flux is given by the convex power law

f(u) =
1

q
|u|q, q > 1. (2.2)
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Since the flux considered is convex, f ′′(u) ≥ 0, the entropy solution is simply
the one that satisfies

u(x−) ≥ u(x+), for all x ∈ R. (2.3)

Under the change of variables

w = e−t/qu, ξ = e(1−q)t/qx, (2.4)

one can easily check that the convection-reaction equation (2.1) is transformed
to

wt +
1

q
(|w|q − (q − 1)ξw)ξ = 0, w(ξ, 0) = u0(ξ). (2.5)

Consider a time independent function

Wa,b(ξ) =











g(ξ) , −a < ξ < b,

0 , otherwise,
(2.6)

where a, b ≥ 0 and the function g(ξ) is the rarefaction profile given by

g(ξ) = sign(ξ) q−1

√

(q − 1)|ξ| . (2.7)

Then Wa,b is clearly a piecewise smooth function that satisfies the entropy
condition (2.3) everywhere and the equation (2.5) piecewise. Furthermore, one
can easily compute that the discontinuities at x = −a and x = b are stationary
using the Rankine-Hugoniot jump condition. Therefore, w(ξ, t) = Wa,b(ξ) is
a steady solution of (2.5). If we return to the original variables, then we may
obtain our first explicit solution of (2.1), which is a time dependent N-wave:

Na,b(x, t) =











g(x) , −ae(q−1)t/q < x < be(q−1)t/q,

0 , otherwise.
(2.8)

Notice that the support of this explicit solution grows exponentially in time.
Consider another set of variables:

v = e−tu, s =
1

q − 1

(

e(q−1)t − 1
)

. (2.9)
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Then the convection-reaction equation (2.1) is transformed to the usual scalar
conservation law:

vs + f(v)x = 0, v(x, 0) = u0(x). (2.10)

The behavior of this homogeneous conservation law is well understood. One of
the simplest case is that when the initial value is given by rarefaction waves.
Suppose that the initial value is given by so called a roll wave:

R1(x) =



























g(x + 1) , −1 < x < 0,

g(x − 1) , 0 < x < 1,

0 , otherwise.

(2.11)

Then, the solution of (2.10) is given explicitly by two rarefaction waves cen-
tered at x = 1 and x = −1 and a stationary shock wave at x = 0. If we return
back to the original variable, then we may check that the roll wave in (2.11)
is a steady solution of (2.1), which is our second explicit solution. We can also
check that it is a piecewise smooth solution with zero shock speed satisfying
the entropy condition (2.3).

Notice that there is a sensitivity issue related to steady states. To see such a
structure consider the total mass M(t) =

∫

u(x, t)dx. Then its derivative is

d

dt
M(t) =

d

dt

∫

udx =
∫

utdx = −
∫

f(u)xdx +
∫

udx = M(t).

Therefore, the total mass M grows exponentially,

M(t) = M(0)et (2.12)

and hence all the integrable steady states should have exactly zero total mass.
The roll wave in (2.11) is the case. However, even a small deviation such as
rounding off errors will grow exponentially and the solution will diverge even-
tually. Therefore a numerical computation for the steady state is meaningful
only for a certain period of time depending on the precision of the computa-
tion.

In the rest of this paper these explicit solutions are used to test properties of
several numerical schemes.
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3 Splitting Method

In numerical computations a convection-reaction equation such as (2.1) is
usually treated by a fractional step splitting method, in which one alternates
between solving the convection equation

ut + f(u)x = 0 (3.1)

and the ordinary differential equation

ut = u (3.2)

in each time step. First we introduce our notations. Consider a uniform mesh
points xj+1/2 and a fixed width ∆x > 0, where xj+1/2 = (j + 1/2)∆x, j ∈ Z.
Since the actual wave speed of an N -wave type solution increases exponentially
in time, the time step ∆tn := tn+1 − tn, n = 0, 1, · · ·, and time mesh tn =
∑n−1

k=0 ∆tk are decided by setting the CFL number to a constant 0 < ν ≤ 1,
i.e.,

∆tn

∆x
f ′(ũn) = ν, (3.3)

where ∆x/∆tn is the numerical wave speed, and ũn is the maximum of the
exact solution, ũn = maxx |u(x, tn)|. In the case that the exact solution is
unknown this maximum is usually replaced by the maximum of its approxi-
mation maxj |U

n
j |. However, in our case the exact solution is given explicitly

by the formula (2.8) and (2.11) and hence the maximum ũn = maxx |u(x, tn)|
is easily obtained. We view the approximation Un

j as the cell average of the
true solution, i.e.,

Un
j ≃

1

∆x

xj+1/2
∫

xj−1/2

u(x, tn)dx. (3.4)

We also view un
j+1/2 as the approximation of u(x, t) at the interface xj+1/2 of

each cells. In a conservative numerical scheme the interface un
j+1/2 is approxi-

mated from its neighboring cell averages and we may set

un
j+1/2 ≡ I(Un

j−p, · · · , U
n
j+q) ∼ u(xj+1/2, t), tn ≤ t ≤ tn+1. (3.5)

Then, after integrating (3.1) over the mesh [xj−1/2, xj+1/2], we obtain

∂

∂t
(Un

j ) =
f(un

j−1/2) − f(un
j+1/2)

∆x
≡ L(Un; j). (3.6)
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Note that in many numerical schemes an approximation of the flux at the in-
terface, f(un

j+1/2), is considered instead of the interface approximation, un
j+1/2,

itself. In either cases the numerical scheme is based on (3.6) and the operator
L is well defined.

For the time discretization we mostly employ the forward time difference,

Ūn+1
j = Un

j +
∆tn

∆x

(

f(un
j−1/2) − f(un

j+1/2)
)

(= Un
j + ∆tnL(Un; j) ), (3.7)

which completes the computation of the first part (3.1). On the other hand
the ordinary differential equation (3.2) can be exactly solved and we obtain

Un+1
j = e∆tnŪn+1

j . (3.8)

Combining these two steps we obtain a fully discrete numerical scheme

Un+1
j = e∆tn

(

Un
j −

∆tn

∆x
(f(un

j+1/2) − f(un
j−1/2))

)

. (3.9)

Notice that the second equation (3.2) is treated exactly and hence the numer-
ical error will be caused from the first step (3.7) only. Since the focus of this
paper is to study the behavior of the numerical schemes such as (3.7), this
approach serves our goal well.

We may employ a 3rd-order TVD Runge-Kutta discretization for time step-
ping (see [18]). In the case the scheme is written as

U
(1)
j = Un

j + ∆tnL(Un; j)

U
(2)
j =

3

4
Un

j +
1

4
U

(1)
j +

1

4
∆tnL(U (1); j)

Un+1
j = e∆tn

(1

3
Un

j +
2

3
U

(2)
j +

2

3
∆tnL(U (2); j)

)

, (3.10)

where the finite difference operator L is given by (3.6). This kind of semi-
discrete schemes usually provide better performance than the fully discrete
methods (3.9). However the unexpected behaviors of schemes presented in
this paper are observed from both of fully and semi discrete methods.

Finally, we provide a proposition which indicates that any unexpected be-
havior of the numerical approximation based on (3.9) is just a mirror image
of such a behavior of the numerical scheme (3.7) for the convection equation
(3.1).
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Proposition 1 Let V n
j ∼ v(x, sn) be the approximation of the solution to the

homogeneous problem (2.10) obtained by the scheme

V n+1
j = V n

j −
∆sn

∆x
(f(vn

j+1/2) − f(vn
j−1/2)),

∆sn

∆x
f ′(max

x
|v(x, sn)|) = ν,

where ∆sn = sn+1 − sn, 0 < ν < 1 is a fixed CFL number, and v is the exact
solution of (2.10). If the interface approximation (3.5) satisfies

I(CUj−p, · · · , CUj+q) = CI(Uj−p, · · · , Uj+q), C > 0, (3.11)

then the approximation Un
j ∼ u(x, tn) given by (3.9) with (3.3) satisfy

Un
j = etnV n

j for any n ≥ 0. (3.12)

PROOF. We use inductive arguments. The relation (3.12) holds for n = 0
since U0

j and V 0
j are the initial discretization of the same initial value u0(x).

Now we show (3.12) for n + 1 assuming that it holds for n. Let Un
j = CV n

j by
setting C = etn . Then the relation between ∆tn and ∆sn is given by

∆tn =
ν∆x

f ′(maxx |u(x, tn)|)
=

ν∆x

f ′(maxx |Cv(x, tn)|)
=

ν∆x

Cq−1f ′(maxx |v(x, tn)|)
=

∆sn

Cq−1
,

where ν is the fixed CFL number. Then under the assumption on the interface
approximation (3.11) the numerical scheme (3.9) becomes

Un+1
j = e∆tn

(

CV n
j − ∆sn

Cq−1∆x
(f(Cvn

j+1/2) − f(Cvn
j−1/2))

)

= e∆tnC
(

V n
j − ∆tn

∆x
(f(vn

j+1/2) − f(vn
j−1/2))

)

= etn+1

V n+1
j ,

(3.13)

which implies (3.12) for n + 1. 2

Notice that the relation between V n
j and Un

j in (3.12) exactly reflects the
change of variable u = etv in (2.9). The second part of the change of variable
for the time variable is not immediate. However, assuming ∆tn’s are constant
and small, ∆tn = k ≪ 1, we can easily check that

sn = k′

1 + · · · k′

n−1 =
n−1
∑

i=0

ei(q−1)kk ∼

tn
∫

0

e(q−1)tdt =
1

q − 1

(

e(q−1)tn − 1
)

,

which approximates the other half of the change of variables in (2.9).

The assumption (3.11) on the interface approximation is natural since it only
implies that the interface approximation of Cu(x, t) should be simply C times
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the interface approximation of u(x, t). One can easily check that the interface
of the Godunov method (7.1) clearly satisfies this interface assumption.

However, unfortunately, most of other schemes do not satisfy this assumption.
It seems that, if a numerical scheme is consistent, this assumption should be
satisfied up to the leading order (see an example in Section 5). Furthermore,
for the Lax-Friedrichs scheme, the assertion (3.12) of the proposition holds
(see Section 4).

Finally we discuss about initial values. In this paper we consider three kinds of
exact solutions discussed in Section 2. The first example comes with a positive
initial value u(x, 0) = N0,1(x, 0). Then the exact solution is the positive N -
wave

u(x, t) = N0,1(x, t), (3.14)

which is given explicitly by (2.8). Since the numerical approximation is for the
cell average (3.4), the discretization of the initial data is taken as

U0
j :=

1

∆x

xj+1/2
∫

xj−1/2

N0,1(x, 0)dx. (3.15)

In the second example the initial value is given by u(x, 0) = N1,1(x, 0) which
has both of negative and positive parts. Then the exact solution is the sign-
changing N -wave

u(x, t) = N1,1(x, t). (3.16)

We may take the initial discretization in the same way as in (3.15). Let
P (t) =

∫

∞

0 u(x, t)dx which give the total mass of the positive part. Then
as we obtained (2.12) we can easily show

P (t) = P (0)et.

This shows the sensitivity of the wave propagation on the initial discretization.
We want to assign U0

j the same sizes of positive and negative parts as those
of the initial value and hence take

U0
j :=

1

∆x

xj+1
∫

xj

N1,1(x, 0)dx. (3.17)

In this way we may remove all the other source of computation error and
observe the properties of numerical schemes. We may observe that some nu-
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merical schemes provide the shock place equally well for both of the cases.
However, some schemes show poor approximation for a sign-changing case.

The initial value of the last example is the roll wave u(x, 0) = R1(x). We
consider the problem under a periodic boundary condition, u(x, t) = u(x+2, t),
t > 0. Then the exact solution is the time invariant roll wave,

u(x, t) = R1(x), −1 < x < 1, t > 0. (3.18)

The initial value is discretize in the same manner as the one in (3.17) that is

U0
j :=

1

∆x

xj+1
∫

xj

R1(x)dx. (3.19)

We may also consider initial discretization of type the (3.17) for this example.
In the case same phenomena are observed. The difference is specific properties
of numerical schemes are reduced due to the extra zero points which suppress
the solution at the boundary. Since our goal is to observe the property of
numerical schemes we employ (3.19). This example is particularly good to
observe how does the scheme approximates rarefaction waves.

To test properties of numerical schemes we also consider three different powers
in the flux function, which are q = 1.5, 2 and 3. In the following sections
we have selected a few examples from these nine possible cases which show
interesting properties of each schemes. A more comprehensive list of numerical
examples can be found in [3].

4 Lax-Friedrichs (LxF) type schemes

In this section we consider the Lax-Friedrichs (LxF for short) scheme and
its second order modification. The numerical flux of the LxF scheme at the
interface xj+1/2 is given by

f(un
j+1/2) =

∆x

2∆tn
(Un

j − Un
j+1) +

1

2
(f(Un

j ) + f(Un
j+1)). (4.1)

Then the numerical scheme (3.9) is written as

Un+1
j = e∆tn

(1

2
(Un

j+1 + Un
j−1) −

∆tn

2∆x
(f(Un

j+1) − f(Un
j−1))

)

. (4.2)
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Fig. 1. LxF Scheme (4.2) for the positive solution (3.14) with q = 2. The computed
solution evolves into two separated N-waves. (× : Numerical,− : exact).
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Fig. 2. Second order LxF scheme (4.3) for the positive solution (3.14) with q = 2.
The same phenomenon of separation is observed. The numerical viscosity is smaller.

Unfortunately, the interface approximation given by (4.1) does not satisfy the
assumption (3.11). However, one can easily check that the inductive arguments
in the proof of Proposition 1 still hold. For example, the key step (3.13) can
be replaced by

Un+1
j = e∆tn

(1

2
(CV n

j+1 + CV n
j−1) −

∆sn

2Cq−1∆x
(f(CV n

j+1) − f(CV n
j−1))

)

= e∆tnC
( 1

2
(V n

j+1 + V n
j−1) −

∆sn

2∆x
(f(V n

j+1) − f(V n
j−1))

)

= etn+1

V n+1
j .

Therefore, the assertion of the Proposition 1 is valid for the LxF scheme.

In Figure 1 exact and computed solutions to the reaction-convection equation
(2.1) are given using the LxF method. In figures exact and computed solutions
are always displayed using lines and dots, respectively. In the figure at time
t = 1 one can observe a kind of oscillation. However it is not exactly an
oscillation. It is a separation. In the scheme (4.2) only odd numbered cells are
used to compute the even numbered ones. Hence even numbered grids and odd
numbered ones generate two different solutions. In the figure at time t = 10
we may clearly observe a separation of two N-waves.

High resolution central schemes were proposed by Nessyahu and Tadmor in
1990 in [17], which is based on the Lax-Friedrichs method. Modified from the
LxF scheme using Van Leer’s MUSCL-type interpolant [21] a direct second
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order modification of LxF scheme for (2.1) can be written as

U
n+1/2
j = Un

j − ∆tn

2∆x
f ′

j

Un+1
j+1 = e∆tn

(

1
2
[Un

j−1 + Un
j+1] −

1
4
[U ′

j−1 − U ′

j+1] −
∆tn

2∆x
[f(U

n+1/2
j+1 ) − f(U

n+1/2
j−1 )]

)

,
(4.3)

where the numerical derivatives of the flux 1
∆x

f ′

j = f(u)x|u=Uj
+ O(∆x) and

of the solution 1
∆x

U ′

j = ux|u=Uj
+ O(∆x) are given by

U ′

j = minmod(α∆Uj−1/2,
1

2
(Uj+1 − Uj), α∆Uj+1/2), (4.4)

f ′

j = minmod(α∆fj−1/2,
1

2
(fj+1 − fj), α∆fj+1/2), (4.5)

where α ∈ [1, 2], ∆Uj+1/2 = Uj+1 − Uj and

minmod(x1, x2, · · ·) =



























minj{xj} if xj > 0 for all j,

maxj{xj} if xj < 0 for all j,

0 otherwise.

(4.6)

In Figure 2 exact and computed solutions are similarly presented using this
second order LxF scheme. In this example we observe the same phenomenon
of separation. The reason of this separation is also based on the fact that only
the odd numbered cells are used to compute even numbered cell average of
the next time level in the scheme (4.3). To avoid such a separation both of
even numbered and odd numbered cells should be used. Therefore consider-
ing a staggering scheme in Section 6 is a natural recipe to fix this kind of
phenomenon.

5 MacCormack and Lax-Wendroff

In this section we consider two oscillatory second order schemes. In the Mac-
Cormack’s method the numerical flux at the interface is given by

f(un
j+1/2) =

1

2

(

f(Un
j+1) − f(Un

j −
∆tn

∆x
[f(Un

j+1) − f(Un
j )])

)

. (5.1)

First we check that this interface approximation does not satisfy the assump-
tion (3.11). Let Un

j = CV n
j . Then, for C = etn > 1 and q > 1,
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f(un
j+1/2) =

1

2

(

f(CV n
j+1) − f(CV n

j −
∆tn

∆x
[f(Un

j+1) − f(Un
j )])

)

=
Cq

2

(

f(V n
j+1) − f(V n

j −
∆tn

∆x
C−1[f(Un

j+1) − f(Un
j )])

)

=
Cq

2

(

f(V n
j+1) − f(V n

j −
∆tn

∆x
Cq−1[f(V n

j+1) − f(V n
j )])

)

.

However, since

f(Cvn
j+1/2) = Cqf(vn

j+1/2) =
Cq

2

(

f(V n
j+1) − f(V n

j −
∆tn

∆x
[f(V n

j+1) − f(V n
j )])

)

,

un
j+1/2 −Cvn

j+1/2 6= 0 in general. Now we show that the order of this difference
is less than the order of Cvn

j+1/2, which implies that at least the leading order
part of the interface approximation of the MacCormack’s method satisfies the
assumption on the interface approximation (3.11).

Here we consider the Burgers case q = 2 for simplicity. From the mean
value theorem, there exists ξ between V n

j − ∆tn

∆x
[f(V n

j+1) − f(V n
j )] and V n

j −
∆tn

∆x
C1[f(V n

j+1) − f(V n
j )] such that

|f(un
j+1/2) − C2f(vn

j+1/2)| =
C2

2
(C − 1)

∆tn

∆x

∣

∣

∣ [f(V n
j+1) − f(V n

j )]f ′(ξ)
∣

∣

∣

≤
∆tn

2∆x

∣

∣

∣[f(Un
j+1) − f(Un

j )]f ′(Cξ))
∣

∣

∣.

Employing the exact solutions in (2.8) and the mean value theorem again, we
obtain x0 ∈ (xj, xj + h) such that

|f(Un
j+1) − f(Un

j )| ∼=
1

2

∣

∣

∣(xj + ∆x)2 − x2
j

∣

∣

∣

∼= ∆x|x0| ≤ ∆x max
j

|Un
j |.

From the exact solution in (2.8) with q = 2 we can easily see that maxj |U
n
j | =

O(et/2) = O(C1/2). Since Cξ is between Un
j − ∆tn

∆x
C−1[f(Un

j+1) − f(Un
j )] and

Un
j −

∆tn

∆x
[f(Un

j+1)−f(Un
j )], f ′(Cξ) is of order O(C1/2). Therefore, since f(un

j+1/2)
is of order C, we obtain

|f(un
j+1/2) − C2f(vn

j+1/2)|

|f(un
j+1/2)|

= O(∆x). (5.2)

This estimate indicates that, even if the assumption (3.11) does not hold
for the MacCormack’s scheme, its leading order approximation satisfies the
assumption.

Now we examine the properties of MacCormack’s method from numerical ex-
periments. In Figure 3 exact and computed solutions to the reaction-convection
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Fig. 3. MacCormack’s scheme, (3.9) with (5.1), for the sign-changing solution (3.16)
with q = 2. A non-physical shock emerges from the sign-changing point and finally
destroys the computed solution completely.
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Fig. 4. MacCormack’s scheme for the positive solution (3.14) with q = 2. Even for
this positive case the similar non-physical shock appears due to the oscillation.
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Fig. 5. Richtmyer two-step Lax-Wendroff scheme, (3.9) with (5.3), at time t = 10.
Non-physical blowup appears at the sonic point and the computed solution collapse.

equation (2.1) are given using the fully discrete method (3.9) with the Mac-
Cormack’s numerical flux (5.1). In the figure at time t = 4 one can observe a
small discontinuity that violates the entropy condition (2.3). This non-physical
shock grows fast and eventually all the meaningful information of the solution
disappears. (See the figure at t = 7.)

Proposition 1 claims that this strange behavior of the numerical experiment
is due to the property of the scheme for the convection equation (3.1). In fact
this behavior is related to the well known fact of the MacCormack’s scheme
that for any c > 0 the discrete function

Un
j =











−c, j ≤ 0

c, j > 0

is a steady state of the MacCormack’s scheme for the convection equation
(2.9). This example indicates that this kind of steady state is not a rare case

14



and one should deal with such a blowup if reaction terms play a crucial role.
In fact, since the approximation is a piecewise constant function, such a dis-
continuity may appear easily across a sign-changing point. Furthermore, even
for a positive solution case this kind of inadmissible discontinuity may appear
due to the oscillating property of the scheme. In Figure 4 we may observe a
non-physical shock developed from a positive solution.

Next we consider the Richtmyer two-step Lax-Wendroff method. In this scheme
the interface approximation is given by

un
j+1/2 =

1

2
(Un

j + Un
j+1) −

∆tn

2∆x
[f(Un

j+1) − f(Un
j )]. (5.3)

As we did for the MacCormack’s scheme we can similarly show that at least
the leading order term satisfies the assumption (3.11). In Figure 5 computed
solutions of this scheme is given together with exact ones. The numerical
solution looks fine until t = 9. However, when it reaches t = 10, we can
observe a nonphysical pick around the sign changing point and the computed
solution blows up quickly.

Similar behaviors of computed solutions are observed with other powers q > 1.
One may observe such blowups more easily for the periodic cases (3.18).

6 Modified schemes based on LxF

The separation into two waves of computed solutions in Figures 1 and 2 is
due to the separation of even numbered cells and odd numbered ones in their
schemes (4.2) and (4.3). Therefore the best way to cure such a symptom is
to consider a scheme in staggered form. In this section we consider several
modified schemes introduced in [5]. A staggered form of the LxF scheme for
the convection-reaction equation (2.1) can be written as

Un+1
j+1/2 = e∆tn

(1

2
[Un

j + Un
j+1] −

∆tn

2∆x
[f(Un

j+1) − f(Un
j )]

)

. (6.1)

To eliminate the inconvenience of staggering schemes one may consider the av-
erage of two neighboring staggered cell-averages to construct a nonstaggering
scheme,

Un+1
j = e∆tn

(1

4
(Un

j+1 + 2Un
j + Un

j−1) −
∆tn

2∆x
(f(Un

j+1) − f(Un
j−1))

)

. (6.2)
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The second order modification (4.3) can be also written in a staggered form:

Un+1
j+1/2 =

1

2
[Un

j + Un
j+1] +

1

8
[U ′

j − U ′

j+1] −
∆tn

∆x
[f(U

n+1/2
j+1 ) − f(U

n+1/2
j )],(6.3)

where U ′

j and U
n+1/2
j are same as the ones in Section 4 given by (4.3)–(4.6).

This scheme is usually called the NT scheme and is employed in this section for
numerical computations. We can similarly construct a nonstaggering scheme
based on the NT scheme,

Un+1
j+1 = e∆tn

(

1
4
[Un

j−1 + 2Un
j + Un

j+1] + 1
16

[U ′

j−1 − U ′

j+1]

−λn

2
[f(U

n+1/2
j+1 ) − f(U

n+1/2
j−1 )] − 1

8
[U ′

j+1/2 − U ′

j−1/2]
)

,
(6.4)

where
U ′

j+1/2 = minmod(Un+1
j+3/2 − Un+1

j+1/2, U
n+1
j+1/2 − Un+1

j−1/2)

and Un+1
j+1/2 is given by the staggered method (6.3).

These schemes do not exhibit such bizarre behaviors as the ones observed
in previous two sections. Therefore discussing the accuracy of the scheme is
now meaningful. First we compare the shock estimation. In Figures 6 and 7
computed solutions of the NT scheme are given for the positive N -wave (3.14)
and the sign-changing N -wave (3.16), respectively. In the figures solutions are
plotted near the shock to check the performance. Most of the cases the NT
scheme provides reasonably correct shock locations. The only exception is the
case for the sign-changing case with q = 3. In this case the numerical solution
gives slow shock propagation. This behavior seems related to the numerical
viscosity and the singularity of the solution near the sign change.

Computed solutions for the roll wave (3.18) with the periodic boundary con-
dition show how the scheme approximates the rarefaction wave. In the first
row of Figure 8 computed solutions are given with exact ones using the NT
scheme (6.3). In the second row the error of computed solutions are given.
Since the computed solution is an approximation of cell averages under the
initial discretization (3.19), the error is taken as

Error = Un
j −

j+1
∫

j

u(x, tn)dx, (6.5)

where u is the exact solution. In the figures this error is plotted at the grid
point xj+1/2. From the graph of the error in the second row we observe that the
error is an increasing function away from discontinuities for all three cases.
This implies that the graph of the approximation is steeper and hence the
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Fig. 6. NT scheme (6.3) for the positive solution (3.14). The magnifications of com-
puted solution near the shock show reasonably correct shock locations.
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Fig. 7. NT scheme for the sign changing solution (3.16). Shock locations are correct
except the case q = 3 when the exact solution has a singularity at the origin.
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Fig. 8. NT scheme for the periodic solution (3.18). The error in the second row is an
increasing function away from the shock. There is no sonic glitch. The discontinuity
at the sonic point x = ±1 for the case q = 3 is due to the singularity of the exact
solution.

numerical flux is slightly weaker than the exact one. We may also say that the
sonic glitch phenomenon is not observed from all of three cases. The numerical
error for the case q = 3 shows a discontinuity at the sonic points. Notice that
the continuity is simply due to the singularity of the exact solution at the
sonic point.

Remark 2 Note that the linear reaction term makes the solution grow and
the nonlinear convection term makes it flat. Therefore, if the error function
in (6.5) increases away from the discontinuity (i.e., the computed solution is
flatter than the exact one), then we may say that the flux is overestimated
numerically. Another factor that decides the signs of the error function is
so called the sonic glitch phenomenon. Note that x = ±1 are sonic points

17



for the periodic cases. Certain numerical schemes generate entropy violating
discontinuities at such points, which is called a sonic glitch.

Next we consider one more central scheme which also has the property of Go-
dunov scheme. In [9,10] a Godunov-type semi-discrete central scheme (NTK
scheme for short) was introduced. This scheme is constructed based on a piece-
wise linear approximation like the NT scheme. We compute the local speeds of
propagation at the interface x = xj+1/2 which may have discontinuities. Since
the speed of propagation is related to the CFL condition, we can estimate the
local speeds of the right and left side at the cell boundary. The local speeds
of wave propagation are bounded by an

j+1/2,r and an
j+1/2,l which are given by

an
j+1/2,r = max

C
(f ′(u), 0) , an

j+1/2,l = min
C

(f ′(u), 0), (6.6)

where C is a relevant range for u. Employing this local speed of propagation
the flux at the interface is approximated by

f(un
j+1/2) =

aj+1/2,rf(u−

j+1/2) − aj+1/2,lf(u+
j+1/2)

aj+1/2,r − aj+1/2,l

+
aj+1/2,raj+1/2,l

aj+1/2,r − aj+1/2,l

[u+
j+1/2 − u−

j+1/2], (6.7)

where u+
j+1/2 and u−

j+1/2 are computed as

u+
j+1/2 ≡ Un

j+1 −
∆x

2
(ux)j+1(t

n),

u−

j+1/2 ≡ Un
j +

∆x

2
(ux)j(t

n),

(ux)j = minmod(α
Un

j+1 − Un
j

∆x
,
Un

j+1 − Un
j−1

∆x
, α

Un
j − Un

j−1

∆x
), 1 ≤ α ≤ 2.

From Figures 9 and 10 one may observe that the NTK scheme provides pretty
correct shock approximation except the sign-changing case with q = 3. In
this case the shock location of the NTK scheme is about the middle of the
ones of the NT scheme and of the exact solution. Considering the fact that
the Godunov scheme provides almost exact shock location for this case (see
Figures 13) we may feel that the NTK scheme is placed between the NT
scheme and the Godunov scheme.

In Figure 11 computed solutions of the roll wave (3.18) are given together
with the exact ones and error functions. First we may observe sonic glitches
for the case q = 2 and q = 3 which is a property of the Godunov scheme. The
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Fig. 9. NTK scheme, (3.10) with (6.7), for the positive solution (3.14). The method
provides correct shock locations.
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Fig. 10. NTK scheme for the sign changing solution (3.16). Shock locations are
correct except the case q = 3 due to the singularity at the sonic point.
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Fig. 11. NTK scheme for the periodic solution (3.18). The error functions are in-
creasing in all three cases away from the shock. Sonic glitches are observed if q = 2
or 3.

error is an increasing away from the discontinuity and the sonic point which
is a property of the NT scheme.

7 Godunov method

Godunov schemes [1,11] are based on either the exact or an approximate
solution of the Riemann problem using characteristic information within the
framework of a conservative method. Since the flux is convex f ′′(u) > 0, the
interface approximation of the first order Godunov method is simply given by
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Fig. 12. The first order Godunov scheme, (3.9) with (7.1), for the positive solution
(3.14). The shock locations are reasonably correct even with this first order scheme.
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Fig. 13. The first order Godunov scheme for the sign changing solution (3.16). The
shock locations are correct even for the singular case q = 3.
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Fig. 14. The first order Godunov scheme for the periodic solution (3.18). Sonic
glitches are observed for q = 2, 3. The error increases if q = 1.5 or 2, but decreases
if q = 3. Godunov is the only scheme with a decreasing error function in our tests.

un
j+1/2 =



























Uj if Uj > 0 and s > 0,

Uj+1 if Uj+1 < 0 and s < 0,

0 if Uj < 0 < Uj+1.

(7.1)

Here, s = [f(Ui+1) − f(Ui)]/(Ui+1 − Ui) is the shock speed at the interface
xj+1/2. Clearly, this interface approximation satisfies the condition (3.11) and
the assertion in Proposition 1 is valid.

In Figures 12 and 13 computed solutions of the first order Godunov scheme
are given for the positive N -wave (3.14) and the sign-changing N -wave (3.16),
respectively. One can observe that the Godunov method gives equally correct
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Fig. 15. The second order Godunov (CLAWPACK) for the positive solution (3.14).
The shock locations are almost exact for all of three cases.
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Fig. 16. The second order Godunov for the sign changing solution (3.16). The shock
locations are almost exact even for the singular case q = 3.
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Fig. 17. The second order Godunov for the periodic solution (3.18). The sonic glitch
is observed for the case q = 2. The error function decreases for the case q = 1.5.

shock location for both of positive and sign-changing cases. In particular the
shock location is pretty correct even for the sign-changing case with q =
3 which is the case that all the other schemes considered give pretty poor
performance.

In the first row of Figure 14 computed solutions for the roll wave case are
given with the exact ones. The computed errors are given in the second row.
First we may observe sonic glitches for the cases q = 2 and q = 3. For the case
q = 1.5 the rarefaction wave has slope zero at the sonic point and it seems
the reason that a glitch does not develop. Another special property of the
scheme is that the error is decreasing for the case q = 3. So far all the error
functions are increasing and hence this is the first example with overestimated
numerical flux.

21



The Godunov method can be modified to a second order scheme by employing
proper limiter. For this example we simply use the CLAWPACK [13] with
monotonized centered limiter. From Figures 15 and 16 one can observe that
this second order Godunov scheme provide very accurate shock location for
all of six cases. It is almost exact. Considering the poor performance of other
schemes for the sign-changing case with q = 3, this scheme is exceptionally
good.

On the other hand, from Figure 17, one may observe a funny phenomenon.
First the sonic glitch is observed for the case q = 3. For the case q = 2 the
discontinuity observed satisfies the entropy condition. Therefore, it is hard to
call it a glitch. For this case there is no singularity in the solution. So it is
hard to explain why it happens. The overall error is smaller than most of other
schemes or is competitive with others at least. However the error function is
decreasing for the case q = 1.5 and is increasing for the case q = 3. The case
q = 2 is somewhat between of them. So q = 1.5 is the case that the flux is
over estimated numerically even if the size is small. Note that the property of
the scheme is also strongly depending on the property of the limiter. Using
different limiter one may obtain different phenomenon.

8 WENO

The last numerical scheme considered is a high-order accurate weighted essen-
tially non-oscillatory (WENO for short) method (see [4,2,6,15,18]). For this
example we employ the semi-discrete Runge-Kutta type method (3.10). To
avoid entropy violating solutions and obtain the numerical stability we split
the flux f(u) into two components f+ and f− such that

f(u) = f+(u) + f−(u), (8.1)

where ∂f+

∂u
≥ 0 and ∂f−

∂u
≤ 0. One of the simplest flux splitting is the Lax-

Friedrichs splitting which is given by

f±(u) =
1

2
(f(u) ± αu), (8.2)

where α = maxu |f
′(u)| over the pertinent range of u which can be decided

a-priori using the explicit formula for the exact solution.
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Fig. 18. WENO scheme, (3.10) with (8.3), for the positive solution (3.14). This
method provides reasonably correct shock locations.
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Fig. 19. WENO scheme for the sign changing solution (3.16). Shock locations are
correct except the case q = 3 due to the singularity at the sonic point.
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Fig. 20. WENO scheme for the periodic solution (3.18). The error functions are
increasing. There is no sonic glitch. The discontinuity at the sonic point for the case
q = 3 is due to the singularity of the exact solution at the sonic point.

The interface approximation of the fifth order WENO with Lax-Friedrichs
splitting (WENO-LF for short) is given by

f(un
j+1/2) = 1

12
(−fj−1 + 7fj + 7fj+1 − fj+2) − ΦN(∆f+

j− 3

2

, ∆f+
j− 1

2

, ∆f+
j+ 1

2

, ∆f+
j+ 3

2

)

+ ΦN(∆f−

j+ 5

2

, ∆f−

j+ 3

2

, ∆f−

j+ 1

2

, ∆f−

j− 1

2

),
(8.3)

where fj = f(un
j ), f±

j = f±(un
j ), ∆f±

i+ 1

2

= f±

i+1 − f±

i and

ΦN(a, b, c, d) =
1

3
ω0(a − 2b + c) +

1

6
(ω2 −

1

2
)(b − 2c + d). (8.4)
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The nonlinear weights ω0 and ω2 are defined by

ωj =
αj

∑k−1
l=0 αl

, αl =
dl

(ε + βl)2
, d0 =

1

10
, d1 =

3

5
, d2 =

3

10
,

where 0 < ε ≪ 1 is taken to prevent singularity and the smoothness indicators
βj’s are given by

β0 = 13
12

(fi−2 − 2fi−1 + fi)
2 + 1

4
(fi−2 − 4fi−1 + 3fi)

2

β1 = 13
12

(fi−1 − 2fi + fi+1)
2 + 1

4
(fi−1 − fi+1)

2

β2 = 13
12

(fi − 2fi+1 + fi+2)
2 + 1

4
(3fi − 4fi+1 + fi+2)

2.

(8.5)

In Figures 18 and 19 computed solutions of the WENO-LF scheme for the
solutions (3.14) and (3.16) are given using Rung-Kutta time discretization
(3.10). The scheme gives reasonable shock location except the case q = 3 for
the sign-changing solution. In this case the shock location is pretty same as
the NT scheme. In the roll wave computation, Figure 20, the sonic glitch is
not observed. In all of three cases the error functions are increasing except
near the shock place. Therefore, we may say that the flux is slightly under
estimated.
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