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Abstract. In the paper we consider the same problem as in [4]. We propose
simpler procedure for describing the shock wave formation process in the case
of scalar conservation law. We cleared up most of the questions appearing

when using the weak asymptotic method. The procedure proposed here can
be generalized on examining the problem of singularity formation for a class
of system of conservation law considered in [6].

1. Introduction

In the paper, we describe the shock wave formation process for the equation

ut + (f(u))x = 0, t ∈ R
+, x ∈ R,(1)

where f ∈ C3(R) and f ′′(x) > 0, with the initial condition

u|t=0 = û0(x),(2)

for û0(x) such that (below, u0
0 and U are constants):

û0(x) =











U, x < a2

u0(x), a2 ≤ x ≤ a1

u0
0, x > a1

and f ′(u0(x)) = −Kx + b, for the constants K and b determined by the equations
f ′(u0

0) = −Ka1 + b and f ′(U) = −Ka1 + b.
It is well known that in some moment characteristics of equation (1) originating

from the points a1 and a2 will intersect (we say a1 and a2 interact). We will denote
that moment with t∗. The equations of characteristics are:

ϕ10(t) = f ′(U)t + a2(3)

ϕ20(t) = f ′(u0
0)t + a1,(4)
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and the moment of the interaction is

t∗ =
a1 − a2

f ′(U) − f ′(u0
0)

.

From that moment we do not have classical solution any more since the shock
wave is formed. From the choice of the initial condition it follows that the formed
shock wave will remain unchanged for every t > t∗. Therefore, the points a1

and a2 continue to move according to Rankine-Hugoniot condition. Our aim is to
find smooth trajectories approximating generalized characteristics ([1], p.204.) of
problem (1), (2).

To achieve this we will use the weak asymptotic method. We remind on the
basic definitions of the method (see [4, 2]).

Definition 1. By OD′(εα) ⊂ D′(R) we denote the family of distributions depend-
ing on ε ∈ (0, 1) and t ∈ R

+ such that for any test function η(x) ∈ C1
0 (R), the

estimate
〈OD′(εα), η(x)〉 = O(εα)

holds, where the estimate on the right-hand side is understood in the usual sense
and locally uniform in t, i.e., |O(εα)| ≤ CT εα for t ∈ [0, T ].

Definition 2. The function uε = uε(x, t) is called a weak asymptotic solution of
problem (1), (2) if

∂uε

∂t
+

∂f(uε)

∂x
= OD′(ε), uε

∣

∣

∣

∣

t=0

− u

∣

∣

∣

∣

t=0

= OD′(ε).

We search the weak asymptotic solution of problem (1), (2). We will need the
following theorem (proved in [4]).

Theorem 3. Let θiε(x) = ωi(x/ε), i = 1, 2, where lim
z→+∞

ωi(z) = 1, lim
z→−∞

ωi(z) =

0 and dω(z)
dz

∈ S(R) where S(R) is the space of quickly decreasing functions. For
the bounded functions a, b, c depending on (x, t) ∈ R

+ × R we have

(5) f (a + bθ1ε(ϕ1 − x) + cθ2ε(ϕ2 − x)) =

f(a) + θ1ε(ϕ1 − x) (f(a + b + c)B1 + f(a + b)B2 − f(a + c)B1 − f(a)B2) +

θ2ε(ϕ2 − x) (f(a + b + c)B2 − f(a + b)B2 + f(a + c)B1 − f(a)B1) + OD′(ε),

where for ρ ∈ R we have

B1(ρ) =

∫

ω̇1(z)ω2(z + ρ)dz and B2(ρ) =

∫

ω̇2(z)ω1(z − ρ)dz,(6)

and
B1(ρ) + B2(ρ) = 1.

2. The main result

We introduce the main theorem of the paper. The functions θiε, i = 1, 2, ap-
pearing there represent weak approximations of the Heaviside function.

Theorem 4. The weak asymptotic solution of problem (1), (2) we have in the form

(7) uε(x, t) = u0
0 + (u1(x, t, ε) − u0

0)θ1ε(ϕ1(t, ε) − x)+

(U − u1(x, t, ε))θ2ε(ϕ2(t, ε) − x).
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The functions ϕi(t, ε) are given by:

ϕi(t, ε) =

∫ t

0

[(B2(ρ) − B1(ρ))(−Kai + b) + cB1] dt + ai, i = 1, 2.

where B1 and B2 are given by (6), ρ by (12) and c by (18).
The function u1 is given by (9).

Remark 5. In the sequel we will use the following notations (as usual x ∈ R,
t ∈ R

+):

u1 = u1(x, t, ε), Bi = Bi(ρ), ϕi = ϕi(t, ε),

θiε = θiε(ϕi − x), δiε = −
d

dx
θiε(ϕi − x), i = 1, 2,

τ =
f ′(U)t + a2 − f ′(u0

0)t − a1

ε
, ρ =

ϕ2(t, ε) − ϕ1(t, ε)

ε
.

The function τ is called ”fast variable” and, thanks to small parameter ε, it can be
considered independent on so called ”slow variable” t.

Proof: Substituting assumed solution into (1), using (5) and definition of the
weak asymptotic solution we obtain:

[

∂u1

∂t
+ B2f

′(u1)
∂u1

∂x
+ B1f

′(U + u0
0 − u1)

∂u1

∂x

]

θ1ε+

[

−
∂u1

∂t
− B2f

′(u1)
∂u1

∂x
− B1f

′(U + u0
0 − u1)

∂u1

∂x

]

θ2ε+

(

(u1 − u0
0)ϕ1t − B2

(

f(u1) − f(u0
0)

)

− B1

(

f(U) − f(U + u0
0 − u1)

))

δ1ε+
(

(U − u1)ϕ2t − B2 (f(U) − f(u1)) − B1

(

f(U + u0
0 − u1) − f(u0

0)
))

δ2ε = OD′(ε).

In order to pass to limit when ε → 0 in the previous expression, the coefficients
multiplying δiε = − d

dx
θiε have to be continuous in x when ε → 0 for every t ∈ R

+.
Roughly speaking, we have the following situation fε(x)δε(x) where δε represents
weak approximation of the Dirac distribution δ(x). If the function fε → f /∈ C({0}),
ε → 0, then, letting ε to zero we would have the product f(x)δ(x) := f(0)δ(x) and
f(0) is not uniquely defined. To overcome this problem we can use an approach
from [5]. There, they assign appropriate value at the discontinuity point of a step
function. Considering such an object as an element of a measure space one can
write f(x)δ(x) := f(0)δ(x) (since they assigned needed value at x = 0). Still, that
approach is useless in describing passage of the solution of our problem from the
continuous to discontinuous state.

Therefore, we have to combine coefficients in some way, to obtain the products
of the form fε(x)δε(x) where fε → f ∈ C({0}), ε → 0 for every t ∈ R

+. In [4] the
special ansatz is used to obtain such situation.

For an unknown constant c we add and subtract the term cB1
∂u1

∂x
in the coeffi-

cient multiplying (θ1ε − θ2ε) and then we rewrite the last expression in the following
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form:

(

∂u1

∂t
+ [(B2 − B1)f

′(u1) + cB1]
∂u1

∂x

)

(θ1ε − θ2ε) +

B1[
d

dx

(

f(U + u0
0 − u1) + f(u1) − cu1

)

] (θ1ε − θ2ε) +
(

(u1 − u0
0)ϕ1t − B2

(

f(u1) − f(u0
0)

)

− B1

(

f(U) − f(U + u0
0 − u1)

))

δ1ε+
(

(U − u1)ϕ2t − B2 (f(U) − f(u1)) − B1

(

f(U + u0
0 − u1) − f(u0

0)
))

δ2ε = OD′(ε).

(8)

We put

(9)
∂u1

∂t
+ [(B2 − B1)f

′(u1) + cB1]
∂u1

∂x
= 0, u1(x, 0, ε) = u0(x), x ∈ [a2, a1].

Out of the segment [a2, a1] initial function is constant and we define the solution u1

of problem (9) to be equal to U on the left-hand side of the characteristic emanating
from a2 and to be equal to u0

0 on the right-hand side of the characteristic emanating
from a1 (see figure 1).

dj1.lpSystem of characteristics for u1fig1
For the functions ϕ1 and ϕ2 as the characteristics emanating from a1 and a2

respectively, we have

ϕ1t = (B2 − B1)(−Ka1 + b) + cB1,(10)

ϕ2t = (B2 − B1)(−Ka2 + b) + cB1.(11)

Since before the interaction ρ → −∞ (and consequently B1 = O(εN ), N ∈ N) we
see that the expressions for ϕit, i = 1, 2, for t < t∗ coincides up to O(εN ), N ∈ N,
with the expressions for standard characteristics (3), (4).

Now, we apply standard procedure (see [2, 3, 4])). Subtracting (10) from (11)
and passing from the ”slow” variable t to the ”fast” variable τ we obtain the Cauchy
problem:

ρτ = 1 − 2B1(ρ),
ρ

τ

∣

∣

∣

τ→−∞

= 1.(12)

From the standard theory of ODE we see that ρ → ρ0 as τ → +∞ where ρ0 is
constant such that B1(ρ0) = B2(ρ0) = 1/2. That means that after the interaction
we have ϕ1 = ϕ2 + O(ε) (see definitions of ρ and τ). Now, we can prove global
resoluteness of Cauchy problem (9).

Problem (9) is globally solvable if characteristics emanating from the interval
[a2, a1] do not intersect. To prove that we will use the inverse function theorem. We
will prove that for every t we have ∂x

∂x0

> 0 which means that for every x = x(x0, t),

x0 ∈ [a2, a1], we have unique x0 = x0(x, t) and we can write u1(x(x0, t), t) = u0(x0).
The appropriate equation of characteristics reads (we use f ′(u0(z)) = −Kz + b):

ẋ = (B2 − B1)(−Kx0 + b) + cB1, x(0) = x0.

As in [4] we will solve this problem with perturbed initial data:

(13) ẋ = (B2 − B1)(−Kx0 + b) + cB1, x(0) = x0 + εAx0.

Differentiating (13) in x0 and integrating from 0 to t we obtain:

(14)
∂x

∂x0
= 1 + εA − K

∫ t

0

(B2 − B1)dt′
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for arbitrary fixed positive constant A. It is clear that this perturbation changes
the solution of (1), (2) for OD′(ε) since initial condition (2) is continuous.

For t ∈ [0, t∗] we have

∂x

∂x0
= 1 + Aε − K

∫ t

0

dt + K

∫ t

0

2B1dt ≥

1 + Aε − K

∫ t∗

0

dt + K

∫ t∗

0

2B1dt = Aε + K

∫ t∗

0

2B1dt > 0.

So, everything is correct for t ≤ t∗.
To see what is happening for t > t∗, initially we estimate ρτ when τ → ∞. From

equation (12) we have (we use Taylor expansion):

ρτ = 1 − 2B1(ρ) = −2(ρ − ρ0)B
′

1(ρ̃),

for some ρ̃ belonging to the interval with ends in ρ and ρ0. From here we see:

ρ − ρ0 = (ρ(τ0) − ρ0)exp(

∫ τ

τ0

−2B′

1(ρ̃)dτ ′) = (ρ(τ0) − ρ0)exp((τ − τ0)2B
′

1(ρ̃1))

for some fixed ρ0 ∈ R and ρ̃1 ∈ (ρ(τ0), ρ(τ)) ⊂ [ρ(τ0), ρ0]. We remind that
B′

1(ρ̃1)) ≥ c > 0, for some constant c, since B1 is increasing function and ρ̃1

belongs to the compact interval [ρ(τ0), ρ0], letting τ → ∞ we conclude that for any
N ∈ N

ρ − ρ0 = O(1/τN ), τ → ∞.

From here we have ρτ = O(1/τN ), τ → ∞, since:

(15) lim
τ→∞

ρτ

ρ − ρ0
= lim

τ→∞

1 − 2B1(ρ)

ρ − rho0
= lim

τ→∞
−2B′

1(ρ) = −2B1(ρ0) = const. < 0

This, in turn, means that for every N ∈ N and t > t∗ we have

ρτ = O(εN ), ε → ∞.

Now we can prove resoluteness of problem (14) for t > t∗. We differentiate
equation from (14) in ε. We obtain

(

∂x

∂x0

)′

ε

=

∫ t

0

2KB′

1(ρ)ρτ τεdt′.

For t < t∗ we have B′

1(ρ) = O(εN ), N ∈ N, and for t > t∗ we have B′

1 > 0 (since
then ρ → ρ0 6= ±∞ and B1 is increasing function). Also, for t > t∗ from (15) we
see that for every N ∈ N we have ρτ = O(εN ), ε → 0. From here:

(

∂x

∂x0

)′

ε

= A +

∫ t
∗

0

2KB′

1(ρ)ρτ τεdt′ +

∫ t

t∗

2KB′

1(ρ)ρτ τεdt′ =

A + O(εN ) + O(εN ) > 0,

for ε small enough. This means that the function ∂x

∂x0

increases in ε for t > t∗ and

it reaches its minimal value when ε → 0. Letting ε → 0 in (14) and taking into
account that for t > t∗ we have B1, B2 → 1/2, and for t < t∗ we have B1 → 0 we
obtain

∂x

∂x0
|ε→0 = 1 − K

∫ t
∗

0

dt′ = 0.

So, from the previous we infer that ∂x

∂x0

> 0 for each t ∈ R
+.
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Now, we have to obtain the constant c. We multiply (8) by η ∈ C1
0 (R), integrate

over R with respect to x and use (9).
∫

B1[
d

dx

(

f(U + u0
0 − u1) + f(u1) − cu1

)

] (θ1ε − θ2ε) η(x)dx+

(

(u1 − u0
0)ϕ1t − B2

(

f(u1) − f(u0
0)

)

− B1

(

f(U) − f(U + u0
0 − u1)

))

δ1ε+
(

(U − u1)ϕ2t − B2 (−f(u1) + f(U)) − B1

(

−f(u0
0) + f(U + u0

0 − u1)
))

δ2ε = O(ε).

We apply partial integration on the first integral in the previous expression to
obtain:

(16)

∫

B1[f(U + u0
0 − u1) + f(u1) − cu1] (θ1ε − θ2ε) η′(x)dx+

∫

(

(u1 − u0
0)ϕ1t − B2

(

f(u1) − f(u0
0)

)

+ B1

(

f(u1) + f(u0
0) − cu1

))

η(x)δ1εdx+

∫

((U − u1)ϕ2t − B2 (−f(u1) + f(U)) + B1 (−f(u1) − f(U) + cu1)) η(x)δ2εdx = O(ε).

From the properties of the functions Bi, i = 1, 2, we see that the coefficients
multiplying δiε are continuous in the limit as ε → 0 and we can pass to limit when
ε → 0. Using the property f(x)δ(x − a) = f(a) we obtain the following expression
from (16):

∫

B1[f(U + u0
0 − u1) + f(u1) − cu1] (θ1ε − θ2ε) η′(x)dx−(17)

B1

(

2f(u0
0) − cu0

0

)

η(ϕ1) − B1 (−2f(U) + cU) η(ϕ2) = O(ε).

We have
∫

B1[f(U + u0
0 − u1) + f(u1) − cu1] (θ1ε − θ2ε) η′(x)dx =

− ερB1

∫

[f(U + u0
0 − u1) + f(u1) − cu1]

θ1ε − θ2ε

ϕ1ε − ϕ2ε

η′(x)dx = O(ε)

since

ρB1

∫

[f(U + u0
0 − u1) + f(u1) − cu1]

θ1ε − θ2ε

ϕ1ε − ϕ2ε

η′(x)dx < ∞.

Therefore, (17) become

B1

(

2f(u0
0) − cu0

0

)

η(ϕ1) + B1 (−2f(U) + cU) η(ϕ2) = O(ε).

Rewrite this expression in the following manner:

B1

(

2(f(u0
0) − f(U)) − c(u0

0 − U)
)

η(ϕ1) + B1 (−2f(U) + cU) (η(ϕ2) − η(ϕ1)) =

B1

(

2(f(u0
0) − f(U)) − c(u0

0 − U)
)

η(ϕ1) + ερB1(ρ) (−2f(U) + cU)
η(ϕ2) − η(ϕ1)

ϕ2 − ϕ1
=

B1

(

2(f(u0
0) − f(U)) − c(u0

0 − U)
)

η(ϕ1) + O(ε).

From here, we see that the last relation is satisfied for

(18) c = 2
f(U) − f(u0

0)

U − u0
0

.

The theorem is proved. 2



SHOCK WAVE FORMATION PROCESS 7

Bibliography

[1] C. M. Dafernos Hyperbolic Conservation Laws in Continuum Physics, Berlin; Heidelberg;
New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer, 2000.

[2] V. G. Danilov, B. M. Shelkovich, Propagation and interaction of nonlinear waves, in:
Proceedings of Eight International Conference on Hyperbolic Problems. Theory-Numerics-

Applications, Univ. Magdeburg, Magdeburg, 2000, pp. 326–328.

[3] V. G. Danilov, Generalized Solution Describing Singularity Interaction, International Journal
of Mathematics and Mathematical Sciences, Volume 29, No. 22. February 2002, pp. 481-494.

[4] V. G. Danilov,D. Mitrovic, Weak asymptotic of shock wave formation process, Journal of

Nonlinear Analysis; Methods and Applications, 61(2005) 613-635.
[5] H.Yang, Riemann problems for class of coupled hyperbolic system of conservation laws, Jour-

nal of Differential Equations, 159(1999) 447-484.
[6] M.Sever, A class of nonlinear nonhyperbolic system of conservation laws with well posed

initial value problems, Journal of Differential Equations, 180(2002) no.1, 238-271.


