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Abstract

We consider Euler equations with a friction term that describe an isentropic gas flow in

a porous domain. More precisely, we consider the transition between low and high friction

regions. In the high friction region the system is reduced to a parabolic equation, the porous

media equation. In this paper we present a hyperbolic approach based on a finite volume

technique to compute numerical solutions for the system in both regimes. The Upwind

Source at Interfaces (USI) scheme we propose satisfies the following properties. Firstly it

preserves the nonnegativity of gas density. Secondly and this is the motivation, the scheme

is asymptotically consistent with the limit model (porous media equation) when the friction

coefficient goes to infinity. We show analytically and through numerical results, that the

above properties are satisfied. We shall also compare results given with the use of USI,

hyperbolic-parabolic coupling and classical centered sources schemes.

AMS subject classifications. 65M12, 76M12, 35L65.
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1 Introduction

The 2 × 2 Euler system describes an isentropic gas flow at a time t ≥ 0 and at a point x ∈ R

through the gas density %(t, x) ≥ 0 and its velocity u(t, x) ∈ R by the hyperbolic equations



















∂

∂t
% +

∂

∂x
(%u) = 0, t ≥ 0, x ∈ R,

∂

∂t
(%u) +

∂

∂x

(

%u2 + p(%)
)

= −α%u,

(1)

where α is the friction coefficient. We consider only polytropic gases, hence the pressure is given

by the equation of state

p(%) = κ%γ , 1 < γ ≤ 3, κ > 0. (2)

A classical approach for solving systems of conservation laws consists in using finite volume

technique which requires to compute fluxes at the control volumes interfaces, and the overall

stability of the method requires some upwinding in the interpolation of the fluxes.

In this paper we restrict our study to the one dimensional case and consider a heterogeneous

domain composed mainly of two areas. The first is transparent, i.e., the friction coefficient

vanishes, whereas the second is porous and characterized by a very large friction coefficient α(x)

(α � 1). It was proved in [18] that in this area, the system is reduced in an appropriate time

scale to a parabolic equation called porous media equation

∂

∂τ
% − ∂2

∂x2
p(%) = 0, τ =

t

α
, t ≥ 0, x ≥ x0, (3)

where x0 is the interface separating the two regions.
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Several approaches to compute such a transition low to large friction can be proposed. At

first, one can try to use a classical solver with centered friction term, but it is in practice compu-

tationally too expensive, we will show that the mesh size should be smaller than 1/α! A second

approach is to couple the hyperbolic homogeneous scheme to parabolic scheme in the regions

where they apply; this has the drawback not to capture the transition but it copes with extreme

cases. A third approach, this is our contribution in this paper, consists in designing a hyperbolic

method that copes with the two regimes, in particular it preserves Darcy steady states. Being

given a finite volume solver for the homogeneous problem with a certain consistency prorperty

(32) below, we show that the source term can be discretized at interfaces and upwinded so as to

be consistent with both regimes. We prove that this numerical scheme not only preserves non-

negativity of the gas density, but also it is asymptotically consistent with the limit system when

α takes very large values.We compare via numerical tests results given by the three approaches.

Thus, our main point is to derive a finite volume scheme which incorporates an appropriate

discretization of the source term α%u. It is known, and widely used, since several years that

an accurate method to achieve this is to upwind the source at interface. Generally this method

follows from the fact of balancing the source term so as to preserve steady states. It was intro-

duced independently by several authors Roe[23], LeRoux and coauthors [6], [9], and now is well

understood in various contexts [2], [24], [5], [11]. For shallow water system and when focusing on

steady states of a lake at rest, such a balancing can be achieved with a unique method whatever

is the hyperbolic solver, and with nonlinear stability properties, see [1]. Here we will follow the

spirit of this construction for the problem of transition hyperbolic/parabolic. Notice however an

important difference: there is no balancing here because non trivial steady states do not exist

for a fixed friction term. Our guide line is to preserve the steady states of the limiting porous

media equation.

Hyperbolic balance laws with stiff source terms often lead to parabolic asymptotics. Of course,

their numerical treatment requires specific schemes. The most famous cases arise in kinetic

theory as in Rooseland approximation of neutron or radiative transfer, see [8, 12, 4, 10]. The

idea to dicretize the source at interfaces already appears here.

This paper begins with the diffusive limit of the system (1) where we show the relation be-

tween high friction and porous media equation and the hyperbolic-parabolic coupling approach

(section 2). In section 3, we present a hyperbolic approach namely the so-called USI scheme

used to compute solutions for (1). And finally, in section 4, we present numerical results to

compare various approaches.
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2 Diffusive limit

In this section we recall the relation between high friction and porous media equation. We also

recall the general framework of finite volume schemes and introduce the hyperbolic-parabolic

coupling method that will serve later for comparison between various possible approaches.

2.1 Parabolic rescaling

We recall the theorem proved by Marcati and Milani in [18] which we summarize as

Theorem 2.1 With the equation of state (2), consider for all ε > 0 the system of equations










































∂

∂τ
%ε + ∂x(%εvε) = 0, τ = εt, t ≥ 0, x ∈ R,

ε2 ∂

∂τ
(%εvε) +

∂

∂x

(

ε2%ε(vε)2 + p(%ε)
)

= −c%εvε.

%ε(0, x) = %0(x) ≥ 0, vε(0, x) = v0(x), pε = p(%ε), vε =
uε

ε
.

(4)

with c > 0. Then there exist limit functions % and v such that as ε → 0, %ε → % in Lp
loc, vε → v

in L2 weak and
√

εvε → 0 in Lp
loc, for all p ∈]1,+∞[. Moreover, % satisfies, in the sense of

distribution, Darcy’s law

∂

∂x
p(%) = −c%v. (5)

As a consequence, % is a weak solution of the porous media equation

∂

∂τ
% − ∂2

∂x2

p(%)

c
= 0, τ ≥ 0, x ≥ x0. (6)

Notice that, as usual for compressible flows, one of the difficulties in this result is to deal with

vacuum. Now we consider the system (1), according to physics, when the friction becomes very

high the flow velocity tends to zero, this result is justified by the following

Theorem 2.2 Consider the system (1), when α → ∞, then u → 0 in Lp strongly in the sets

% ≥ %min > 0.

Proof The gas dynamics system admits a convex entropy, namely the physical energy given by

E = %u2/2 + %e(%), e′(%) =
p(%)

%2
,

where e represents the internal energy. The entropy flux associated is

G =
(

%u2/2 + %e(%) + p(%)
)

u.
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It follows that the system (1) satisfies the following entropy inequality

∂tE(%, u) + ∂xG(%, u) ≤ −α%u2, (7)

which implies that
∫ ∞

0

∫

x∈R

α%u2dxdt ≤
∫

x∈R

E0(x)dx.

On the other hand, we know from [17] that u is bounded in L∞ therefore the result follows.2

When α → ∞, u can be written (at least formally) in smooth regions

u =
v

α
+ o(

1

α
),

and with this notation and τ = t/α, for α large, the system (4) is another version of (1), we

refer to [18] for more details.

2.2 Numerical Scheme

For a later purpose, we consider a standard finite volume scheme for

∂

∂t
% − ∂

∂x

(

b(x)
∂

∂x
F (%)

)

= 0, (8)

with F ∈ C1(R+, R+) a non decreasing function such that F (0) = 0 and b ∈ L∞ with b ≥ b > 0.

We approximate the solution of (8) by discrete values %n
i , i ∈ Z, n ∈ N. In order to do so, we

consider a grid of points xi+1/2, i ∈ Z,

... < x−1/2 < x1/2 < x3/2...

We define also cells and their lengths

Ci =]xi−1/2, xi+1/2[, hi = xi+1/2 − xi−1/2, hi+1/2 =
hi + hi+1

2
, h = sup

i∈Z

hi.

Here, we will always consider grids which are regular enough. An explicit, three points, finite

volume scheme for (8) is

%n+1
i − %n

i +
∆t

hi
(Fn

i+1/2 − Fn
i−1/2) = 0, ∀n ∈ N,∀i ∈ Z (9)

where Fn
i+1/2 is given by

Fn
i+1/2 =

bi+1/2

hi+1/2
F(%n

i , %n
i+1), bi+1/2 ≈ 1

hi+1/2

∫ xi+1

xi

b(x)dx. (10)

where the flux function F is defined as

F(u, v) = F (u) − F (v), ∀u, v ∈ R+. (11)

We request that the above scheme satisfies two basic properties: it is consistent with (8) and it

preserves nonnegativity of gas density under a CFL condition .
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2.2.1 Consistency

Definition 2.3 We say that the scheme (9)-(10)-(11) is consistent with (8) if the numerical

flux function F (11) satisfies

lim
u→u0,v→u0

F(u, v)

u − v
= F ′(u0). (12)

So when the function F is C1 the scheme presented above is consistent.

2.2.2 Nonnegativity of %

The scheme (9)-(10)-(11) keeps the gas density positive thanks to the following proposition

Proposition 2.4 Assume %0
i ≥ 0,∀i ∈ Z, and the CFL condition

2∆t max
j∈Z

(bj+1/2) sup
%∈R

F ′(%) ≤ hi min
j∈Z

(hj+1/2), ∀i ∈ Z. (13)

Then we have %n
i ≥ 0 ∀i ∈ Z,∀n ∈ N.

This CFL condition is restrictive, but it is well adapted to our purposes: the coupling with the

hyperbolic regions and the transition regime.

Proof We know from (9)-(10)-(11) that

%n+1
i = %n

i − σi

[ bi+1/2

hi+1/2
[F (%n

i ) − F (%n
i+1)] −

bi−1/2

hi−1/2
[F (%n

i−1) − F (%n
i )]
]

,

with σi = ∆t/hi. As F is C1, the above equality may be written as follows

%n+1
i = %n

i − σi

[ bi+1/2

hi+1/2
F ′(ξi+1/2)(%

n
i − %n

i+1) −
bi−1/2

hi−1/2
F ′(ξi−1/2)(%

n
i−1 − %n

i )
]

,

for some ξi−1/2 and ξi+1/2. This implies that %n+1
i is a convex combination of %n

i , %n
i−1 and %n

i+1

%n+1
i =

(

1 − σi

bi+1/2

hi+1/2
F ′(ξi+1/2) − σi

bi−1/2

hi−1/2
F ′(ξi−1/2)

)

%n
i + σi

bi+1/2

hi+1/2
F ′(ξi+1/2)%

n
i+1

+ σi

bi−1/2

hi−1/2
F ′(ξi−1/2)%

n
i−1,

the two last terms of the right hand side are nonnegative since F ′ is nonnegative. Then we check

easily that the first term is also nonnegative whenever the CFL condition (13) is satisfied. 2
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2.2.3 Interface flux for hyperbolic-parabolic coupling

We now present the hyperbolic-parabolic coupling method between the hyperbolic and parabolic

region of the domain. Then, the crucial point is how to compute a flux at the interface (separating

the hyperbolic and parabolic region of the domain) that ensures density conservation. To do

so, we denote by x0 = xi0+1/2 the interface point, for x < xi0+1/2 we consider the transparent

region described by (1) with α = 0. For x > xi0+1/2 we consider (8). We construct an artificial

velocity ui0+1

un
i0+1 = −κ

minmod
(

(∂x%γ)ni0 , (∂x%γ)ni0+1

)

α%n
i0+1

, (14)

and

minmod(x, y) =











min(x, y) if x, y ≥ 0,

max(x, y) if x, y ≤ 0,

0 otherwise.

Then we compute the flux at the interface using a solver for the homogeneous problem. To

summarize, on the left transparent domain we use a classical hyperbolic scheme (see §3.1), and

on the right (porous domain) we use (9)-(10). This construction is motivated by Darcy Law, as

follows. For very large values of the friction, % and u adjusts so as to satisfy

∂xp(%) = −α%u,

and considering a discrete version we obtain (14).

3 USI Scheme

In this section, we present the defects of a classical hyperbolic approach to compute solutions

of (1) when the friction term is centered. To overcome these defects, we propose the Upwind

Source at Interfaces (USI) scheme and we show that it satisfies some stability and consistency

properties. First, we prove that this scheme is consistent with (1), that it preserves nonnegativity

of gas density and finally that it is asymptotically consistent with “Porous media” equation (8)

with b = 1/α, F (%) = p(%).
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3.1 Finite volume formalism

We consider again the system (1). The natural semi-implicit finite volume three points source

centered scheme is the following















%n+1
i − %n

i + σi (A
%,n
i+1/2 − A%,n

i−1/2) = 0,

qn+1
i − qn

i + σi (A
q,n
i+1/2 − Aq,n

i−1/2) = −αiq
n+1
i , ∀i ∈ Z, ∀n ∈ N,

(15)

with the notation in §2.2 and the following definitions; we define σi = ∆t/hi for some time step

∆t which is chosen small enough using a CFL condition. Also the principle of finite volume

methods is to use approximation in L1 sense, namely we have in mind

%n
i ≈ 1

hi

∫ xi+1/2

xi−1/2

%(n∆t, x)dx, qn
i ≈ 1

hi

∫ xi+1/2

xi−1/2

%u(n∆t, x)dx, αi ≈
1

hi

∫ xi+1/2

xi−1/2

α(x)dx.

The finite volume method is very classical and efficient, see [16, 7]. Now we shall see that the

above scheme is not well adapted for the system (1) with α very large. It was shown in the first

section that u → 0 when α → ∞. We can prove the same result in the discrete case. Indeed, if

the scheme satisfies some in-cell entropy inequalities, one has, setting En
i = %n

i (un
i )2/2 + %n

i en
i

En+1
i − En

i + σi(A
E,n
i+1/2 − AE,n

i−1/2) ≤ −α∆t%n
i (un

i )2, ∀i ∈ Z, ∀n ∈ N,

therefore

α∆t
∑

n

∑

i

hi%
n
i (un

i )2 < ∞.

Thus, we have un
i = O(1/

√
α) apart from vacuum i.e %n

i > 0. But from (15) we indeed expect

that un
i ∼ 1/α. Now, up to an extraction, let us denote by rn

i the limit of %n
i when α → ∞. The

second equation of (15) becomes

σi

(

Aq(rn
i , 0, rn

i+1, 0)−Aq(rn
i−1, 0, r

n
i , 0)

)

= − lim
α→∞

α%n+1
i un+1

i , rn
i = lim

α→∞
%n

i , n ∈ N, ∀i ∈ Z,

assuming the flux A is regular enough and (rn
i )n∈N,i∈Z are L∞ bounded, we conclude that the

quantity αiu
n
i is L∞ bounded when %n

i > 0. Now let us analyze the behavior of the numerical

flux when α → ∞. In fact given a solver A for the homogeneous system (regular enough),

numerical fluxes are given by

An
i+1/2 = A(%n

i , un
i , %n

i+1, u
n
i+1), ∀n ∈ N, ∀i ∈ Z,

when passing to the limit as α → ∞ we obtain

An,%
i+1/2 = A%(rn

i , 0, rn
i+1, 0) + O(

1

α
), ∀n ∈ N, ∀i ∈ Z.
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For a uniform grid of size h → 0, this does not go to zero in general, which means that such

schemes are not asymptotically consistent with “porous media equation” (6). These kinds of

schemes may give quite good results provided that we consider a mesh size h smaller than 1/α,

but this solution is computationally too expensive (in terms of computation time and memory

especially in the 2D case) as we consider very large values of α.

3.2 Upwinding the source at interfaces

We first recall the formalism of USI finite volume scheme and then we present our specific

reconstruction at interfaces. A general introduction and theoretical aspects can be found in

[3, 21, 13, 14].

We denote by Un
i the cell-centered vector of discrete unknowns: Un

i = (%n
i , %n

i un
i )t. A USI

finite volume scheme for (1) is the following

hi

∆t
(Un+1

i − Un
i ) + An

i+1/2 − An
i−1/2 = Sn

i , (16)

with sources given by

Sn
i = Sn

i+1/2,− + Sn
i−1/2,+ ≡

(

0

p(%n
i+1/2,−) − p(%n

i ) + p(%n
i ) − p(%n

i−1/2,+)

)

.

and numerical fluxes are computed such that

An
i+1/2 = A(Un

i+1/2,−, Un
i+1/2,+), (17)

A satisfies A(U,U) = A(U), A and Ui+1/2,± are given by

A(U) =

(

%u

%u2 + p(%)

)

, Un
i+1/2,− =

(

%n
i+1/2,−

%n
i+1/2,−un

i

)

, Un
i+1/2,+ =

(

%n
i+1/2,+

%n
i+1/2,+un

i+1

)

. (18)

The new reconstructed variables are







κ(%n
i+1/2,−)γ =

(

κ(%n
i )γ − αi(%

n
i un

i )+hi+1/2

)

+
,

κ(%n
i+1/2,+)γ =

(

κ(%n
i+1)

γ + αi+1(%
n
i+1u

n
i+1)−hi+1/2

)

+
,

(19)

where

(%n
i un

i )+ = max(0, %n
i un

i ), (%n
i un

i )− = min(0, %n
i un

i ).

The motivation of this reconstruction is that when α → ∞, % satisfies formally Darcy’s law

∂x

(

κ%γ
)

= −%v, % = lim
α→∞

%, v = lim
α→∞

αu. (20)
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When integrating the above relation between xi and xi+1/2,−, then between xi+1/2,+ and xi+1

we obtain










κ%γ
i+1/2,− = κ%γ

i
− %

i
vi

hi

2
,

κ%γ
i+1/2,+ = κ%γ

i+1
+ %

i+1
vi+1

hi+1

2
.

(21)

Notice that there is a difference between formulas (19) and (21). In fact %n
i+1/2,± must be

nonnegative, hence we take the positive part of κ(%n
i )γ ± αi(%

n
i un

i )±hi±1/2. Moreover, %n
i+1/2,±

should satisfy %n
i+1/2,− ≤ %n

i and %n
i+1/2,+ ≤ %n

i+1,∀i ∈ Z,∀n ≥ 0 which is sufficient to ensure

nonnegativity of gas density at the next time step, this will be seen later in §3.2.2. And finally

for a reason of asymptotic consistency of the scheme, we replace hi and hi+1 by hi+1/2 (see §3.3).

3.2.1 Hyperbolic consistency

Of course we wish that this method is firstly consistent with the hyperbolic system (1). In fact

this property is sufficient to ensure that when h → 0, if the method converges then numerical

solutions converge to the solution of (1) (consistency in the sense of Lax-wendroff). We show

here that the numerical scheme presented in the previous subsection satisfies this theoretical

property.

Let us start by rewriting the scheme as

hi
d

dt
Ui(t) + Ai+1/2(t) − Ai−1/2(t) = Si+1/2− + Si−1/2+, (22)

Si+1/2,− = S−(Ui, Ui+1, αi, αi+1, hi+1/2) = Ai+1/2 − Ai+1/2 + Si+1/2,−

Si−1/2,+ = S+(Ui−1, Ui, αi−1, αi, hi−1/2) = −Ai−1/2 + Ai−1/2 − Si−1/2,+

where

Ai+1/2 = A(Ui, Ui+1), Ai+1/2 = A(Ui+1/2,−, Ui+1/2,+).

To prove consistency of the scheme with system (1), we apply criterion in [21], i.e, we have to

check the followings

i) A(U,U) = A(U),

ii) S−(U, V, α, β, 0) = S+(U, V, α, β, 0) = 0,

iii) limh→0

(

S−(U,U, α, α, h) + S+(U,U, α, α, h)
)

/h = (0,−α%u)t,

where U = (%, u)t.
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Theorem 3.1 Consider a flux function A consistent with the exact flux i.e A(U,U) = A(U).

Then the USI scheme satisfies i), ii) and iii).

Proof. The points i) and ii) are trivial. Concerning iii) we use the definition of %i+1/2,±

and the consistency of A with the exact flux A. For h small enough, κ(%i+1/2,±)γ = κ(%i)
γ ±

αi(%iui)±hi+1/2, then

(S− + S+)(U,U, α, α, h) =
(

0,−α(%u)+ − α(%u)−

)t
h,

which proves iii) and the theorem.2

3.2.2 Positivity of %

As a weak stability condition, the finite volume scheme has to ensure the nonnegativity of gas

density. We prove in this section that this property is satisfied by the USI scheme in both

discrete and semi-discrete version.

Semi discrete stability

Proposition 3.2 Consider a solver A for the homogeneous problem that preserves nonnegativity

of %i(t) then the finite volume scheme keeps %i(t) nonnegative.

Proof. The statement that A preserves the nonnegativity of %i(t) means that whenever %i(t)

vanishes, the following inequality

A%(Ui, Ui+1) −A%(Ui−1, Ui) ≤ 0,

holds for all choices of the other arguments. Similarly, in our case, we have to check

A%(Ui+1/2,+, Ui+1/2,−) −A%(Ui−1,+, Ui−1/2,−) ≤ 0,

whenever %i = 0. Notice that our reconstruction of %i+1/2,± (19) ensures that %i+1/2,− =

%i+1/2,+ = 0. whenever %i vanishes, which concludes the proof.2

Fully discrete stability

In order to preserve the positivity of %i, the CFL condition that needs to be used is not more

restrictive than that of the homogeneous problem.

Definition 3.3 We say that a solver A preserves the nonnegativity of % by interface with a

numerical speed σ(Ui, Ui+1) ≥ 0 under the CFL condition

σ(Un
i , Un

i+1)∆t ≤ min(hi, hi+1), (23)

if we have

%n
i − ∆t

hi

(

A%(Un
i , Un

i+1) − %n
i un

i

)

≥ 0,

%n
i+1 −

∆t

hi+1

(

%n
i+1u

n
i+1 −A%(Un

i , Un
i+1)

)

≥ 0.
(24)
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Proposition 3.4 Assume that the solver A for the homogeneous problem preserves the nonneg-

ativity of % by interface, then the USI scheme also preserves the nonnegativity of % by interface,

%n
i − ∆t

hi

(

A%(Un
i+1/2,−, Un

i+1/2,+) − %n
i un

i

)

≥ 0,

%n
i+1 −

∆t

hi+1

(

%n
i+1u

n
i+1 −A%(Un

i+1/2,−, Un
i+1/2,+)

)

≥ 0,
(25)

under the CFL condition

σ(Un
i+1/2,−, Un

i+1/2,+)∆t ≤ min(hi, hi+1). (26)

Proof. Taking into account the CFL condition (26), the followings inequalities

%n
i+1/2,− − ∆t

hi

(

A%(Un
i+1/2,−, Un

i+1/2,+) − %n
i+1/2,−un

i

)

≥ 0,

%n
i+1/2,+ − ∆t

hi+1

(

%n
i+1/2,+un

i+1 −A%(Un
i+1/2,−, Un

i+1/2,+)
)

≥ 0,

hold. Moreover, our construction (19) ensures that %n
i+1/2,− ≤ %n

i and %n
i+1/2,+ ≤ %n

i+1, and

as 1 + un
i ∆t/hi ≥ 0 and 1 − un

i+1∆t/hi+1 ≥ 0, the inequalities (25) hold, which concludes the

proof.2

3.3 Asymptotic Consistency with porous media equation

We show in this paragraph that the USI scheme is asymptotically consistent with (6). This

means that the asymptotic expansion when α → ∞ of the mass flux computed with USI scheme

is a given consistent numerical flux to (6). Thus, the numerical scheme preserves Darcy’s equi-

librium for large values of the friction α.

From now A denotes a C1 numerical flux consistent with the exact flux A i.e A(%, u, %, u) =

A(%, u) ≡ (%u, %u2 + p(%)). Then, up to extraction we assume

lim
α→∞

%n
i = rn

i , lim
α→∞

un
i = 0, ∀i ∈ Z, ∀n ∈ N, (27)

and we finally assume that α is constant.

Theorem 3.5 Assume that A satisfies (32) below, (27) and the following asymptotic expansion

of %i and ui when α → ∞

%i = ri +
r
(1)
i

α
+ O(

1

α2
), ui =

v
(1)
i

α
+

v
(2)
i

α2
+ O(

1

α3
). (28)

Then, as long as ri > 0, we have

A%(%i+1/2,−, ui, %i+1/2,+, ui+1) =
κ

αhi+1/2
(%γ

i − %γ
i+1) + O(

h

α
) + O(

1

α2
). (29)

12



Remark 3.6 Theorem 3.5 expresses that for large values of the friction (α → ∞) we have

αA%(%i+1/2,−, ui, %i+1/2,+, ui+1) = F i+1/2 + O(h) + O(
1

α
),

where F i+1/2 is a consistent flux for

∂

∂τ
% − ∂

∂x

( ∂

∂x
(p(%))

)

= 0, τ ≥ 0.

This means that the USI scheme is asymptotically consistent with porous media equation. In

fact the main point is that the asymptotic expansion of A%
i+1/2 does not contain terms in O(h)

which means that the mesh size does not depend on the friction. This makes the difference with

the source centered scheme.

Proof. The proof is divided into two parts. For simplicity we shall write %i and ui instead of

%n
i resp un

i .

First part. Our aim in this paragraph is to select solvers for the homogeneous system that

ensure

ri+1/2,− = ri+1/2,+, ∀i ∈ Z.

Consider the second discrete equation involving the momentum flux

hi

∆t
(%n+1

i un+1
i − %iui) +

(

A%u(%i+1/2,−, ui, %i+1/,+, ui+1) −A%u(%i−1/2,−, ui−1, %i−1/2,+, ui)
)

= κ(%i+1/2,−)γ − κ(%i−1/2,+)γ ∀i ∈ Z,

When passing to the limit as α → ∞ we obtain for all i

A%u(ri+1/2,−, 0, ri+1/2,+, 0) −A%u(ri−1/2,−, 0, ri−1/2,+, 0) = κ(ri+1/2,−)γ − κ(ri−1/2,+)γ , (30)

with ri+1/2,± are given by







κrγ
i+1/2,− =

(

κrγ
i − ri(v

(1)
i )+hi+1/2

)

+
,

κrγ
i+1/2,+ =

(

κrγ
i+1 + ri+1(v

(1)
i+1)−hi+1/2

)

+
,

(31)

If ri+1/2,− = ri+1/2,+ for all i then, by consistency of A, (30) holds. The aim of this first part is

to find a condition on A that ensures uniqueness of these solutions to (30).

Proposition 3.7 Assume that unique solutions of (30) are (ri+1/2,− = ri+1/2,+) for all i. Then

for all R strictly positive, A satisfies

• If A%u(r, 0, R, 0) = A%u(r, 0, r, 0) then r = R.

13



• If A%u(r, 0, R, 0) = A%u(R, 0, R, 0) then r = R.

Proof We may rewrite equation (30) as

A%u(ri+1/2,−, 0, ri+1/2,+, 0)− κ(ri+1/2,−)γ = A%u(ri−1/2,−, 0, ri−1/2,+, 0)− κ(ri−1/2,+)γ , ∀i ∈ Z.

We choose ri−1/2,− = ri−1/2,+. By consistency of A with the exact flux we have

A%u(ri−1/2,−, 0, ri−1/2,+, 0) = A%u(ri−1/2,+, 0, ri−1/2,+, 0) =⇒ ri−1/2,− = ri−1/2,+ ∀i ∈ Z.

Similarly by choosing ri+1/2,− = ri+1/2,+

A%u(ri+1/2,−, 0, ri+1/2,+, 0) = A%u(ri+1/2,−, 0, ri+1/2,−, 0) =⇒ ri+1/2,− = ri+1/2,+ ∀i ∈ Z.

which achieves the proof.2

Proposition 3.7 expresses a necessary condition on the function A to ensure that unique solutions

of (30) are (ri+1/2,−)i∈Z = (ri+1/2,+)i∈Z. A sufficient one is given by the following

Proposition 3.8 Assume A satisfies

A%u(r, 0, R, 0) =
κ

2
(rγ + Rγ) ∀r,R ∈ R+; (32)

and (ri+1/2,±)i∈Z satisfy (30). Then for all i we have ri+1/2,− = ri+1/2,+.

Proof Taking into account (32) we rewrite (30) as

(ri+1/2,−)γ − (ri+1/2,+)γ = −
(

(ri−1/2,−)γ − (ri−1/2,+)γ
)

, ∀i ∈ Z,

which means that there exists a constant C such that

(ri+1/2,−)γ − (ri+1/2,+)γ = (−1)iC ∀i ∈ Z,

besides, from mass conservation we deduce that

lim
i→∞

ri = lim
i→∞

ri+1/2,− = lim
i→∞

ri+1/2,+ = 0,

thus, ri+1/2,− = ri+1/,+, for all i in Z, which concludes the proof of the proposition.2

Second part. Now we compute the asymptotic expansion of the mass flux. From now,

(∂qA%)i+1/2,− denotes the partial derivative of A% with respect to the qith variable at (%i+1/2,−, 0, %i+1/2,−, 0).

First we start by the asymptotic expansion of %i+1/2,+ − %i+1/2,− when α → ∞. Indeed, using

the construction of %i+1/2,± we obtain

κ(%i+1/2,+)γ − κ(%i+1/2,−)γ = κ(%i+1)
γ − κ(%i)

γ + α%i(ui)+hi+1/2 + α%i+1(ui+1)−hi+1/2,

14



when passing to the limit when α → ∞ we obtain an equality that relates v
(1)
i to v

(1)
i+1

κ(ri+1)
γ − κ(ri)

γ + ri(v
(1)
i )+hi+1/2 + ri+1(v

(1)
i+1)−hi+1/2 = 0. (33)

Then taking into account the above relation, a first order asymptotic expansion of (%i+1/2,+)γ −
(%i+1/2,−)γ is the following

(%i+1/2,+)γ − (%i+1/2,−)γ =
1

α

(

γ(rγ−1
i+1 r

(1)
i+1 − rγ−1

i r
(1)
i ) +

hi+1/2

κ
(riv

(2)
i + r

(1)
i v

(2)
i ) 1{R∗

+
}(ui)

+
hi+1/2

κ
(ri+1v

(2)
i+1 + r

(1)
i+1v

(2)
i+1) 1{R∗

−
}(ui+1)

)

+ O(
1

α2
).

We introduce ci and bi+1/2 such that

ci =
hi+1/2

γκ
(riv

(2)
i + r

(1)
i v

(2)
i ), bi+1/2 = rγ−1

i+1 r
(1)
i+1 − rγ−1

i r
(1)
i ,

it follows

%i+1/2,+ − %i+1/2,− =
1

α(ri+1/2,−)γ−1

(

bi+1/2 + 1{R∗

+
}(ui)ci + 1{R∗

−
}(ui+1)ci+1

)

+ O(
1

α2
).

Now we perform a first order asymptotic expansion of A%
i+1/2 at the point(%i+1/2,−, 0, %i+1/2,−, 0)

A%(%i+1/2,−, ui, %i+1/2,+, ui+1) = %iui + (%i+1/2,− − %i)ui + (%i+1/2,+ − %i+1/2,−)(∂3A%)i+1/2,−

+ (ui+1 − ui)(∂4A%)i+1/2,− + O((%i+1/2,+ − %i+1/2,−)2)

+ O((ui)
2) + O((ui+1)

2),

and from relation (33) we deduce

ri(v
(1)
i )+ =

κ

hi+1/2
(rγ

i − rγ
i+1) − ri+1(v

(1)
i+1)−.

Then we divide by α and we use (28)

%iui =
κ

αhi+1/2
(%γ

i − %γ
i+1) +

di+1/2

α
+ O(

1

α2
),

where

di+1/2 = ri(v
(1)
i )− − ri+1(v

(1)
i+1)−.

It follows that

A%(%i+1/2,−, ui, %i+1/2,+, ui+1) =
κ

αhi+1/2

(

%γ
i − %γ

i+1

)

+
di+1/2

α
+ (%i+1/2,− − %i)ui

+
(∂3A%)i+1/2,−

αrγ−1
i+1/2,−

(

bi+1/2 + 1{R∗

+
}(ui)ci + 1{R∗

−
}(ui+1)ci+1

)

+
(v

(1)
i+1 − v

(1)
i )

α
(∂4A%)i+1/2,− + O(

1

α2
).
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Notice that (%i+1/2,− − %i), (v
(1)
i+1 − v

(1)
i ), bi+1/2, ci and di+1/2 are O(h) for all i, therefore we

conclude that

A%(%i+1/2,−, ui, %i+1/2,+, ui+1) =
κ

αhi+1/2

(

%γ
i − %γ

i+1

)

+ O(
h

α
) + O(

1

α2
),

and thus Theorem 3.5 is proved.2

Remark 3.9 The crucial point in the proof is the property (32) that implies that (%i+1/2,−)i∈Z

and (%i+1/2,+)i∈Z have the same limits when α → ∞. This equality holds when using kinetic and

Lax-Friedrichs scheme since they satisfy property (32). However, it is a restrictive property and

it does not hold for Godunov scheme for instance.

4 Numerical results

We conclude this paper with numerical examples that illustrate the results stated in the previous

sections. In particular we hilight the defects of just centering the source and we compare these

results to those given by the USI scheme and coupled scheme.

All numerical tests are performed with a kinetic solver for the homogeneous problem. This solver

is based on the kinetic theory developed in [19] and has the advantage to satisfy our sufficient

asymptotic consistency condition (32), to keep the gas density nonnegative, to verify a discrete

in-cell entropy inequality and to be able to compute problems with shocks or vacuum.

We present a non stationary test case. The flow domain consists of two heterogeneous subdo-

mains: transparent part and porous one

α(x) =

{

0, for x ≤ x0,

α0 � 1, for x > x0.

where x0 is the interface coordinate. The initial conditions are

u(0, x) = 0, %(0, x) =

{

%l, for x ≤ x0,

%r, for x > x0.

where %l > %r. Note that this case corresponds to a Riemann problem for the homogeneous

system. We consider a domain which length L = 1m and x0 = L/4. For all numerical tests, we

use a CFL number 0.4.

Figure 1 illustrates the convergence speed of the solution given by a source centered hyperbolic

approach. Note that the reference solution is reached by a mesh h = 1/8000. Which confirms

the theoretical analysis presented in the previous section, indeed h ≤ 1/α.

In figure 2 we show also the convergence speed of the solution given by the coupled scheme. The
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Figure 1: Gas density at tf=2 using a source centered hyperbolic scheme.

reference solution is given by the use of 2000 points, and quite good solutions may be reached

using 200 points.

Figure 3 illustrates the convergence speed of the solution given using the hyperbolic USI

approach. Note that the reference solution is reached by the use of 2000 points.

We also checked that the three approaches converge toward the same reference solution, this is

shown in figure 4.

In figure 5 we compare solutions computed using 100 points with three approaches to the

reference solution. The source centered hyperbolic approach is the less accurate one, this result

is confirmed by figure 6 where we show the density error.

In order to illustrate the asymptotic consistency of the USI scheme with the porous media

equation, we compared solutions given by USI and hyperbolic-parabolic coupling approach when

we change the friction values. It is confirmed by figure 7 and 8 that for a fixed mesh size (we

choose 1/400), when the friction takes very large values, solutions given by both approaches are

very close.
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Figure 2: Gas density at tf=2 using the hyperbolic-parabolic coupling approach.
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Figure 7: Solutions computed with USI and the coupled scheme: α = 150, tf=6, 400 points.
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Figure 8: Solutions computed with USI and the coupled scheme: α = 15000, tf=6, 400 points.
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