
ASYMPTOTIC BEHAVIOR OF SMOOTH SOLUTIONS
FOR PARTIALLY DISSIPATIVE HYPERBOLIC SYSTEMS

WITH A CONVEX ENTROPY

S. BIANCHINI†, B. HANOUZET∗ AND R. NATALINI†

A. We study the asymptotic time behavior of global smooth solutions to general entropy dissipative
hyperbolic systems of balance law in m space dimensions, under the Shizuta-Kawashima condition. We show
that these solutions approach constant equilibrium state in the Lp-norm at a rate O(t−

m
2 (1− 1

p )), as t → ∞, for
p ∈ [min {m, 2},∞]. Moreover, we can show that we can approximate, with a faster order of convergence, the
conservative part of the solution in terms of the linearized hyperbolic operator for m ≥ 2, and by a parabolic
equation, in the spirit of Chapman-Enskog expansion in every space dimension. The main tool is given by a
detailed analysis of the Green function for the linearized problem.

1. I

In the following we shall consider the Cauchy problem for a general hyperbolic symmetrizable m-
dimensional system of balance laws

(1.1) ut +

m∑

α=1

( fα(u))xα = g(u),

with the initial conditions
(1.2) u(x, 0) = u0(x),
where u = (u1, u2) ∈ Ω ⊆ Rn1 ×Rn2 , with n1 + n2 = n. We also assume that there are n1 conservation laws
in the system, namely that we can take

(1.3) g(u) =

(
0

q(u)

)
, with q(u) ∈ Rn2 .

According to the general theory of hyperbolic systems of balance laws [8], if the flux functions fα and
the source term g are smooth enough, it is well-known that problem (1.1)-(1.2) has a unique local smooth
solution, at least for some time interval [0,T) with T > 0, if the initial data are also sufficiently smooth.
In the general case, and even for very good initial data, smooth solutions may break down in finite time,
due to the appearance of singularities, either discontinuities or blow-up.

Despite these general considerations, sometimes dissipative mechanisms due to the source term can
prevent the formation of singularities, at least for some restricted classes of initial data, as observed for
many models which arise to describe physical phenomena. A typical and well-known example is given
by the compressible Euler equations with damping, see [30, 15] for the 1-dimensional case and [34] for
an interesting 3-dimensional extension.

Recently, in [13], it was proposed a quite general framework of sufficient conditions which guarantee
the global existence in time of smooth solutions. Actually, for the systems which are endowed with a
strictly convex entropy function E = E(u), a first natural assumption is the entropy dissipation condition,
see [5, 27, 31, 37], namely for every u, u ∈ Ω, with g(u) = 0,

(E′(u) − E′(u)) · g(u) ≤ 0,
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where E′(u) is considered as a vector in Rn and · is the scalar product in the same space. Unfortunately,
it is easy to see that this condition is too weak to prevent the formation of singularities, see again [13].

A quite natural supplementary condition can be imposed to entropy dissipative systems, following
the classical approach by Shizuta and Kawashima [19, 33], and in the following called condition (SK),
which in the present case reads

(1.4) Ker Dg(u) ∩ {eigenspaces of
m∑

α=1
D fα(u)ξα} = {0},

for every ξ ∈ Rm \ {0} and every u ∈ Ω, with g(u) = 0. It is possible to prove that this condition, which is
satisfied in many interesting examples, is also sufficient to establish a general result of global existence
for small perturbations of equilibrium constant states, see [13] for a first proof in one space dimension,
and [38] for a multidimensional extension.

In this paper we investigate the asymptotic behavior in time of the global solutions, then always
assuming the existence of a strictly convex entropy and the (SK) condition. First let us describe our
approach in the one dimensional case. Our starting point is a careful and refined analysis of the behavior
of the Green function for the linearized problem, which is decomposed in three main terms. The first
term, the diffusive one, consists of heat kernels moving along the characteristic directions of the local
relaxed hyperbolic problem; the singular part consists of exponentially decaying δ-functions along the
characteristic directions of the full system. Finally the remainder term decays faster than the first one.
Notice that in the one dimensional case a first analysis of the Green function was already contained
in [39]. However, there are some differences in our analysis, and in particular we are able to give a
more precise description of the behavior of the diffusive part, which is decomposed in four blocks,
which decay with different decay rates. This description will be crucial in the analysis of the asymptotic
behavior. Let us better explain this point. Actually, we show that solutions have canonical projections
on two different components: the conservative part and the dissipative part. The first one, which loosely
speaking corresponds to the conservative part of equations in (1.1), decays in time like the heat kernel,
since it corresponds to the diffusive part of the Green function. On the other side, the dissipative part is
strongly influenced by the dissipation and decays at a rate t− 1

2 faster of the conservative one. To establish
this result, we shall use the Duhamel principle and the Green kernel estimates, very much in the spirit
of the Kawashima approach for the hyperbolic-parabolic equations [19]. Unfortunately, with respect
to that result, here there is a severe obstruction given by the lack of decay of the source term, when
convoluted with the Green kernel. This is not the case for convective or diffusive terms, since they are
derivative terms, so having a better decay, of an order 1

2 for every derivative. However, in the present
work we have shown that there is a structural algebraic compatibility between the Green kernel and the
conservative structure of the system, by decomposing the kernel according to different linear projectors,
which yields the cancellation of its highest order and slowly decaying interactions with the source term.

In the multidimensional case, the explicit form of the Green function cannot in general be expressed,
and we have to relay directly on the Fourier coordinates. Thus the separation of the Green kernel into
various part is done at the level of solution operator Γ(t) acting on L2(Rm,Rn), or L1 ∩ L2(Rm,Rn). This
allow to perform Lp linear decay estimates, for p ≥ 2.

Let us now shortly review some previous results concerning the asymptotic behavior of solution to
dissipative hyperbolic systems. A huge amount of work has been done during many years around the
special case of the dissipative (nonlinear) wave equation, see for instance [14, 24, 29] and references
therein. At the same time, and starting from the seminal paper by T.P. Liu [20], there were some
studies on 2 × 2 systems with relaxation, see for instance [15] for the p-system with damping, and [6]
for the general case. For more general models, we recall the paper by Y. Zeng [39] about gas dynamics
in thermal nonequilibrium and finally the paper by T. Ruggeri and D. Serre [32] about stability of
constant equilibrium states for general hyperbolic systems in one space dimension, under zero-mass
perturbations. A related result has been recently established by J.F. Coulombel and T. Goudon, who
have considered the diffusive relaxation limit of multidimensional isothermal Euler equations [7], see
Example 5.12 for a comparison with our approach. Finally let us remark that, under similar assumptions,
stability of shock profiles for general relaxation models has been considered in [26].
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The paper is organized as follows: Section 2 is devoted to recall some basic results about hyperbolic
systems with entropy dissipation and the Shizuta-Kawashima condition. In this section we also in-
troduce the decomposition of the linearized system, which will be called the Conservative-Dissipative
form. Section 3 contains a very detailed analysis of the Green kernel in one dimension, while the mul-
tidimensional case is presented in Section 4. Finally, Section 5 is devoted to the study of the decay
properties of the nonlinear system. Not only we shall prove the decay results for both the conservative
and the dissipative part of the solution, but we shall show also that the conservative variable approaches
the conservative part of the solution of the corresponding linearized problem, faster that the decay of
the heat kernel for m ≥ 2. Then, we prove that the solution of the parabolic problem, given by the
Chapman-Enskog expansion, approximates the conservative part of the solution of the nonlinear hy-
perbolic system. For m ≥ 2 the Chapman-Enskog operator is linear, while, in one space dimension, the
decay of the nonlinear part has a stronger influence, and so we can only show the faster convergence
towards the solution of a parabolic equation with quadratic nonlinearity.

Finally, let us point out again that these results were obtained by assuming all the time the condition
(SK). Unfortunately, this condition is not satisfied by many models, as for instance in one space dimension
for the Kerr–Debye system, which describes the propagation of electromagnetic waves in nonlinear Kerr
medium [12, 16, 13], for perturbations around a null electric field. Another interesting example is given
by the equations of gas dynamics in thermal nonequilibrium, which has been investigated in [39], where
however global existence of solutions has been established, even if condition (SK) is in general violated,
thanks to a splitting of the system in two parts, one of them being linearly degenerated. The situation is
even worst in more space dimensions, since there are more possibilities to violate condition (SK). This
is the case for for every equilibrium state for the 3-dimensional version of Kerr–Debye model, as shown
by a simple check. However, a physically relevant class of systems which verify the (SK) condition is
given by the rotationally invariant systems in Example 4.7 below. Other examples are given by the BGK
models proposed in [1], under the Bouchut stability condition [3]. Actually, we expect that, for many
physical systems not satisfying the (SK) condition, we could consider the influence of other factors, like
the existence of linearly degenerate fields, or, in several space dimensions, the well-known faster time
decay of the Green function, even for the nondissipative case. Some preliminary results about systems
violating the condition (SK) will be presented in [25].

2. B       

2.1. Entropy dissipation. In the following we shall consider a general m-dimensional system of balance
laws given by equation (1.1), with the source term g = g(u) verifying (1.3).

According to the general theory of hyperbolic systems of conservation laws [8, 31], we shall assume
that the system satisfies an entropy principle: there exists a strictly convex function E = E(u), the entropy
density, and some related entropy-flux functions Fα = Fα(u), such that for every smooth solution u ∈ Ω
to system (1.1), there holds

(2.1) Et(u) +

m∑

α=1
(Fα(u))xα = G(u) ,

where Fα′ = (F′α)TE′ and G = E′ · g. Let us introduce the set γ of the equilibrium points:
γ = {u ∈ Ω; g(u) = 0}.

Definition 2.1. The system (1.1) is non-degenerate if, for every ū ∈ γ, it holds
(2.2) qu2 (ū) is non singular.
Definition 2.2. The system (1.1) is entropy dissipative, if, for every ū ∈ γ and u ∈ Ω, we have
(2.3) (E′(u) − E′(ū)) · g(u) ≤ 0.

Following [11, 10, 2], it is now useful to symmetrize our system by introducing a new variable, the
entropy variable, which is just given by
(2.4) W = E′(u).
Actually, since E is a strictly convex function, we can inverse E′ to recover the original variable u
by the inverse map Φ � (E′)−1. Let us set now A0(W) � Φ′(W), Cα(W) � D fα(Φ(W))A0(W), and
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G(W) = g(Φ(W)) =

(
0

Q(W)

)
. It is easy to see that the matrix A0(W) is symmetric positive definite and,

for every α = 1. . . . ,m, Cα(W) is symmetric. Then, selecting W as the new variable, our system reads

(2.5) A0(W)Wt +

m∑

α=1
Cα(W)Wxα = G(W).

Now, as proved in [13], if the system is entropy dissipative and non-degenerate, the set of equilibrium
points is locally reduced to a single smooth manifold. More precisely, in the entropy coordinates, we
have that, setting γ̃ = E′(γ), the entropy dissipation condition reads

(2.6) (W2 − W̄2) ·Q(W) ≤ 0,

for every W̄2 ∈ Rn2 such that there exists W̄1 ∈ Rn1 with W̄ = (W̄1, W̄2) ∈ γ̃, and every W ∈ E′(Ω). In
this case, i.e. if the system is entropy dissipative and non-degenerate, we have that, if W̄ ∈ γ̃, then every
W ∈ E′(Ω) is also an equilibrium point if and only if W2 = W̄2, see [13].

Observe now that our definition of dissipative entropy is just invariant for affine perturbations of the
form Ẽ(u) = E(u) + α + β · u, for α ∈ R, β ∈ Rn. Therefore, without loss of generality, we can suppose
ū = 0 ∈ γ and consider system (1.1) with g(0) = 0, and fix fα(0) = 0. Moreover, we always can assume
that the entropy function E is a quadratic, i.e. such that

E(0) = 0, E′(0) = 0 ∈ γ̃.
Next, following the above considerations, and according to the actual structure of many systems

arising in physical models [36, 28, 37, 13, 31], we focus our investigation on a slightly restricted class of
entropy dissipative non-degenerate systems, namely the systems such that

(2.7) Q(W) = D(W)W2, with D(0) negative definite.

In the following we shall refer to these systems just as strictly entropy dissipative systems.

2.2. The Shizuta-Kawashima condition and the global existence of solutions. To continue our anal-
ysis of smooth solutions for dissipative hyperbolic systems, we need some supplementary coupling
conditions to avoid shock formation. A very natural condition was first introduced by Shizuta and
Kawashima in [33], for hyperbolic–parabolic systems. Here we first state the condition for the original
unknown, i.e. for system (1.1), just assuming that u = 0 is an equilibrium point with g(0) = 0.

Definition 2.3. The system (1.1) verifies condition (SK), if every eigenvector of
∑m
α=1 D fα(0)ξα is not in the null

space of Dg(0), for every ξ ∈ Rm \ {0}.
Since this condition is invariant under diffeomorphisms which conserve the origin, in the case of

strictly entropy dissipative systems, Definition 2.3 is equivalent to

(2.8)
for every λ ∈ R and every X ∈ Rn1 \ {0}, the vector

(
X
0

)
∈ Rn is not in

the null space of λA0(0) +

m∑

α=1
Cα(0)ξα, for every ξ ∈ Rm \ {0}.

Let us consider now the linearized version of system (1.1), namely, setting Aα = D fα(0) and B = Dg(0),

(2.9) ut +

m∑

α=1
Aαuxα = Bu, u ∈ Rn, x ∈ Rm, t ∈ R+,

with B of the form

(2.10) B =

[
0 0

D1 D2

]
, D1 ∈ Rn1×n2 ,D2 ∈ Rn2×n2 ,

with n = n1 + n2. Set A(ξ) =
∑m
α=1 Aαξα. According to the previous discussion, we can assume that
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(H1) there is a symmetric positive definite matrix A0 such that AαA0 is symmetric, for every α =
1, . . . ,m, and

BA0 =

[
0 0
0 D

]
,

where D ∈ Rn2×n2 is negative definite;
(H2) any eigenvector of A(ξ) is not in the null space of B, for every ξ ∈ Rm \ {0}.
To use the condition (SK), we have to give a reformulation which takes into account the kernel

E(iξ) = B − iA(ξ).
This is the content of the following lemma, which is an extension of Theorem 1.1 in [33] to the case of a
non symmetric matrix D (the proof is omitted).

Lemma 2.4. Under the assumption (H1), assumption (H2) is equivalent to any of the following:
i) there exists K = K(ξ) ∈ Rn×n such that, for every ξ ∈ Rm \ {0}, K(ξ)A0 is a skew symmetric matrix and

1
2(K(ξ)A(ξ)A0 + A(ξ)A0KT(ξ)) − 1

2(BA0 + A0BT)

is strictly positive definite;
ii) if λ(z) is an eigenvalue of E(z), then<(λ(iξ)) < 0 for every ξ ∈ Rm \ {0};

iii) there exists c > 0 such that

(2.11) <(λ(iξ)) ≤ −c |ξ|2
1 + |ξ|2 ,

for every ξ ∈ Rm \ {0}.
About the existence of a solution, we recall the following result [13, 38].

Theorem 2.5. Assume that system (1.1) is strictly entropy dissipative and condition (SK) is satisfied. Then there
exists δ > 0 such that, if ‖u0‖s ≤ δ, with s ≥ [m/2] + 2, there is a unique global solution u of (1.1)–(1.2), which
verifies

u ∈ C0([0,∞); Hs(Rm)) ∩ C1([0,∞); Hs−1(Rm)),
and such that, in terms of the entropy variable W = (W1,W2),

(2.12) sup
0≤t<+∞

‖W(t)‖2s +

∫ +∞

0

(
‖∇W1(τ)‖2s−1 + ‖W2(τ)‖2s

)
dτ ≤ C(δ)‖W0‖2s ,

where C(δ) is a positive constant.
2.3. The Conservative-Dissipative form in the linear case. We now consider a linear system with
constant coefficients:

(2.13) wt +

m∑

α=1
Ãαwxα = B̃w,

where w = (w1,w2) ∈ Rn1 ×Rn2 . We assume also that the differential part is symmetric:
(2.14) for all α = 1, . . . ,m, ÃT

α = Ãα.

Definition 2.6. Under assumption (2.14), the partially dissipative system (2.13) is in Conservative-Dissipative
form (C-D form) if there exists a negative definite matrix D̃ ∈ Rn2 , such that

(2.15) B̃ =

(
0 0
0 D̃

)
.

In the following w1 � wc is called the conservative variable, while w2 � wd is the dissipative one.
We notice that, thanks to assumption (H1), system (2.9) is already in the C-D form if A0 = I. We shall

prove in the following that there exists a linear change of variable such that (2.9) takes the C-D form in
the general case of A0 symmetric and positive definite.

Take u a solution of (2.9). First, we use the classical transformation
v = A−1/2

0 u,
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which yields

(2.16) vt +

m∑

α=1
Āαvxα = B̄v,

where Āα = A−1/2
0 AαA1/2

0 , B̄ = A−1/2
0 BA1/2

0 . Notice that system (2.16) has a symmetric differential part, but
the matrix B̄ does not satisfy (2.15). However, by the assumptions on the matrix B, for B̄ there exists a
null space of dimension n1, while the other eigenvalues are strictly negative. We shall construct the C-D
variables using the projection Q0 on the null space and the complementing projection Q− = I − Q0. We
compute Q0 by using the explicit formula, see [18]:

Q0 = − 1
2πi

∮

|ξ|�1
(B̄ − ξI)−1dξ.

We have:

(B̄ − ξI)−1 = A1/2
0 (BA0 − ξA0)−1A1/2

0 = A1/2
0

[ −ξA0,11 −ξA0,21
−ξA0,21 D − ξA0,22

]−1

A1/2
0

= A1/2
0

([ −ξA0,11 −ξA0,12
0 D

] (
I + O(ξ)

))−1

A1/2
0

= A1/2
0

(
I + O(ξ)

) [ −(A0,11)−1/ξ −(A0,11)−1A0,12D−1

0 D−1

]
A1/2

0

=
1
ξ

A1/2
0

[ −(A0,11)−1 0
0 0

]
A1/2

0 + O(1).

We thus obtain that
Q0 = A1/2

0

[
(A0,11)−1 0

0 0

]
A1/2

0 .

Note that due to the assumptions on A0, this projector is symmetric. In particular we can choose left and
right projectors L0 ∈ Rn×n1 , R0 ∈ Rn1×n, so that

(2.17) Q0 = R0L0, L0R0 = I ∈ Rn1×n1 , L0 = RT
0 .

Note that by the last condition also R0, L0 are unique: in fact they are given by

(2.18) R0 = A1/2
0

[
(A0,11)−1/2

0

]
, L0 =

[
(A0,11)−1/2 0

]
A1/2

0 .

We define the complementary projection Q− to be

(2.19) Q− � I −Q0 = R−L−, L−R− = I ∈ Rn2×n2 , L− = RT
−.

The last condition follows because also Q− is symmetric, and the matrices R− ∈ Rn2×n, L− ∈ Rn×n2 are the
unique left and right projectors which satisfy (2.19): one can check that these projectors are given by

(2.20) R− = A−1/2
0

[
0

((A−1
0 )22)−1/2

]
, L− =

[
0 ((A−1

0 )22)−1/2
]
A−1/2

0 .

Set now w1 = L0v, w2 = L−v. We have
v = (Q0 + Q−)v = R0L0v + R−L−v

= R0w1 + R−w2

and by (2.16):

(L0v)t +

m∑

α=1
L0Āα(R0w1 + R−w2)xα = L0B̄(R0w1 + R−w2),

(L−v)t +

m∑

α=1
L−Āα(R0w1 + R−w2)xα = L−B̄(R0w1 + R−w2).
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Now notice that
L0B̄ = 0, B̄R0 = 0.

Therefore w = (w1,w2) are Conservative-Dissipative variables and system (2.16) is equivalent to the C-D
form system (2.13), where Ãα are the symmetric matrices

(2.21) Ãα =

(
L0ĀαR0 L0ĀαR−
L−ĀαR0 L−ĀαR−

)

and

(2.22) B̃ =

(
0 0
0 D̃

)
,

with
(2.23) D̃ = L−B̄R− = ((A−1

0 )22)1/2D((A−1
0 )22)1/2

is negative definite.

Proposition 2.7. If u is a solution to system (2.9), then, under assumption (H1),

(2.24) w = Mu =




(A0,11)−1/2 0

((A−1
0 )22)−1/2(A−1

0 )21 ((A−1
0 )22)1/2


 u

is a solution to the C-D form system (2.13) with (2.21), (2.22) and (2.23).

Remark 2.8. If system (1.1) is non degenerate and entropy-dissipative, we can apply Proposition 2.7 to
the linearized system (2.9). Therefore, in the following, we are always going to assume that the unknown
u is chosen in such a way that (2.9) is in conservative-dissipative form. In this case, we say that also
system (1.1) is in conservative-dissipative form and we shall set u = (uc, ud) ∈ Rn1 ×Rn2 .

Remark 2.9. More generally, we can look to the set of linear transformations w = Mu, such that, starting
from system (2.9), under assumption (H1), the new system is in C-D form. To obtain the symmetry of
the differential part, we have to take M such that (MTM)−1 is a symmetrizer of the system. Hence, we
can choose M such that
(2.25) MTM = A−1

0 .

Now, to verify condition (2.15), we obtain the relations

(2.26)



MT
11M11 = (A0,11)−1,

M12 = 0,

M21 = (MT
22)−1(A−1

0 )21,

MT
22M22 = (A−1

0 )22.

In particular, a special choice is to take M11 and M22 symmetric and we obtain (2.24) with D̃ given by
(2.23).

Example 2.10. The p-system with relaxation. Let us consider system

(2.27)



∂tu + ∂xv = 0 ,

∂tv + ∂xσ(u) = h(u) − v,
with σ′(u) > 0. Its linear counterpart is given by

(2.28)



∂tu + ∂xv = 0 ,

∂tv + λ2∂xu = au − v,
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where λ =
√
σ′(0) and a = h′(0). Therefore

A =




0 1

λ2 0


 , B =




0 0

a −1


 .

We can use the symmetrizer A0 given by

A0 =




1 a

a λ2


 ,

which is positive definite if it holds the subcharacteristic condition λ > |a|. It is easy to verify that
assumption (H1) is verified, since

AA0 =




a λ2

λ2 aλ2


 , BA0 =




0 0

0 a2 − λ2


 .

To recover the C-D form, we first compute the inverse matrix A−1
0 , which is given by

A−1
0 =

1
λ2 − a2



λ2 −a

−a 1


 .

This yields

M =




1 0

−a(λ2 − a2)− 1
2 (λ2 − a2)− 1

2




and so we obtain the matrices of the C-D form

Ã =




a (λ2 − a2) 1
2

(λ2 − a2) 1
2 −a


 , B̃ =




0 0

0 −1


 .

Setting (
uc
ud

)
= M

(
u
v

)

and reporting in (2.27), we obtain its conservative-dissipative form

(2.29) ∂t




uc

ud


 + ∂x




auc + (λ2 − a2) 1
2 ud

(λ2 − a2)− 1
2 (σ(uc) − a2uc) − aud


 =




0

(λ2 − a2)− 1
2 (h(uc) − auc) − ud


 .

3. T G         

Aim of this section is to compute the Green kernel Γ(t) for a linear dissipative hyperbolic system. The
fact that we are in dimension one will help us in inverting the Fourier transforms, hence giving explicit
form to the principal parts of Γ(t).

We can consider directly a system in C-D form, according to the results of Subsection 2.3. So we write
our system as
(3.1) wt + Awx = Bw,
where w = (wc,wd) ∈ Rn1 × Rn2 . We assume that the differential part is symmetric, and there exists a
negative definite matrix D ∈ Rn2×n2 , such that

(3.2) B =

(
0 0
0 D

)
,

so we have (H1). We assume also that (3.1) verifies condition (SK), then we have also (H2). We notice
that, by contrast with [39], we are not assuming that the matrix B is symmetric. This is necessary to deal
with some specific examples, as for instance the Jin-Xin relaxation system, see [17, 13].
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We want to study the Green kernel Γ(t, x) of (3.1), which satisfies

(3.3)



Γt + AΓx = BΓ

Γ(0, x) = δ(x)I
Taking the Fourier transform

Γ̂(t, ξ) =

∫

R

Γ(t, x)e−iξxdx

of (3.3) we obtain

(3.4)



dΓ̂/dt = (B − iξA)Γ̂

Γ̂(0, ξ) = I
To study the large time behavior of the Green kernel Γ, we use the approach already proposed in [21],
[39].

3.1. Perturbation analysis. Consider the entire function
(3.5) E(z) = B − zA.
It is clear that the solution to (3.4) is given by

(3.6) Γ̂(t, ξ) = eE(iξ)t =

+∞∑

n=0

tn

n! (B − iξA)n,

so that

(3.7) Γ(t, x) = p.v. 1
2π

∫

R

eE(iξ)teiξxdξ = lim
N→+∞

1
2π

∫ N

−N
eE(iξ)teiξxdξ

and Γ̂(t, z) = eE(z)t is an entire function of z. The next analysis follows using some ideas in [18].
The function E(z) given by (3.5), as a matrix valued function, has a constant number s of distinct

eigenvalues λ(z) iff z is not one of the exceptional points, which are of finite number in the plane. In fact
these points are the solutions to

(3.8) det
(
B − zA − λI

)
,

which is a polynomial equation with holomorphic coefficients. It follows that its roots λ(z) are branches
of one or more analytic functions with algebraic singularities of at most order n. As a consequence the
number of eigenvalues is constant, with the exception of a finite number of points, called exceptional
points, in each compact set of the complex plane. Since we can write

E(z) = z(−A + B/z),
then the same occurs in a neighborhood of z = ∞, so that in our case the number of exceptional points
is bounded in the whole complex plane. Even if z is not an exceptional point, differently from [39], the
matrix E(z) is in general not diagonalizable, due to the fact that B is negative definite but not symmetric:
we say that E(z) is permanently degenerate.

In any region where there are no exceptional point, the functions λ j(z), j = 1, . . . , s, are holomorphic,
with constant multiplicities m j, j = 1, . . . , s. In general these λ j are branches of one or more algebraic
functions, denoted again as λ j, j = 1, . . . , s. The exceptional points can be either regular points for
these algebraic functions, or a branch point for some λ j(z). In the first case the eigenprojectors remain
bounded, while in a branch point the projectors have a pole.

In general, the function E(z), if z is not exceptional, is represented as

(3.9) E(z) =
∑

j
λ j(z)P j(z) +

∑

j
D j(z),

where λ j are the eigenvalues of E(z), P j(z) the corresponding eigenprojections, given by the formula

(3.10) P j(z) = − 1
2πi

∮

|ξ−λ j(z)|�1
(E(z) − ξI)−1dξ,
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and D j are the nilpotent matrices, due to the fact that in general E is not diagonalizable, defined by
(3.11) D j(z) = (E(z) − λ j(z)I)P j(z).
Note that by construction the eigenvalues of D j are 0, so that

(3.12) Dm j
j (z) = 0,

where m j is the multiplicity of λ j.
We now study which consequences have the assumptions (H1), (H2) on E(z) and Γ̂(t, z) near the point

z = 0 and z = ∞. Both points are in general exceptional points: for z→ 0, n1 eigenvalues different from
0 converges to 0. When |z| → ∞, the matrix A is diagonalizable, but it can have common eigenvalues:
then the perturbation B/z will in general remove part of this degeneracy.

We are going to show that, near z = 0, semisimple eigenvalue of B, the matrix E(z) has a decomposition

(3.13) E(z) =
∑

jk

(
Λ jk(z)P jk(z) + D jk(z)

)
+ E1(z),

where the Λ jk are diagonal n × n matrices composed by the n1 eigenvalues, which converge to 0, the P jk
are spectral projectors, the D jk are nilpotent operators commuting with P jk. From assumption (H1), we
can control the behavior of the matrix E1(z).

In a similar way, near z = ∞, since the eigenvalues of A are semisimple, E(z) has a canonical decom-
position as

(3.14) E(z) =
∑

jk

(
Υ jk(z)P jk(z) +D jk(z)

)
.

The entries in the matrix Λ jk have an expansion in the form

(3.15) λ(z) = −zλ1
j − z2c jk + O(z3),

where the λ1
j are the eigenvalues of the symmetric block A11.

On the other hand, the entries in the matrix Υ jk have an expansion in the form
(3.16) υ(z) = −zλ j + b jk + O(1/z),
where the λ j are the eigenvalues of A. As a consequence of the assumption (H2), which is equivalent to
the condition (SK), the coefficients c jk and b jk have strictly negative real part.

3.1.1. Case z = 0. The total projector P corresponding to all the eigenvalues near 0 is

(3.17) P(z) = − 1
2πi

∮

|ξ|�1
(E(z) − ξI)−1dξ.

The point z = 0 is in general an exceptional point, and the projections corresponding to the eigenvalues
with negative real part (i.e. not in any of the jk families defined in (3.15)) can have poles in z = 0.
Nevertheless, the projection
(3.18) P−(z) = I − P(z)
corresponding to the whole family of eigenvalues with strictly negative real part is holomorphic near
z = 0, see [18] or the analysis below.

To simplify computations, we introduce the projectors

(3.19) L0 = RT
0 =

[
In1 0

]
, L− = RT

− =
[

0 In2

]
.

and

(3.20) Q0 = R0L0 =

[
In1 0
0 0

]
, Q− = I −Q0 =

[
0 0
0 In2

]
.

For ξ close to 0, we have

(3.21) (B − ξI)−1 = −1
ξ

Q0 + R−(D − ξI)−1L− =

[
ξ−1I 0

0 (D − ξI)−1

]
.
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We recall also the expansion of the resolvent

R(ξ, z) � (B − zA − ξI)−1 = (B − ξI)−1
(
I − zA(B − ξI)−1

)−1

= (B − ξI)−1 + z(B − ξI)−1A(B − ξI)−1 + z2(B − ξI)−1(A(B − ξI)−1)2 + O(z3)

= R0(ξ) +
∑

n≥1
znRn(ξ).(3.22)

The total projector P becomes here

(3.23) P(z) = P0 +
∑

n≥1
znPn,

where Pn is given by the integral

(3.24) Pn = − 1
2πi

∮

|ξ|�1
Rn(ξ)dξ.

By using (3.21) we have the zero order coefficient,

(3.25) P0 = − 1
2πi

∮

|ξ|�1
(B − ξI)−1dξ = Q0 =

[
I 0
0 0

]
,

while the coefficient for z is given by

P1 = − 1
2πi

∮

|ξ|�1
(B − ξI)−1A(B − ξI)−1dξ = Q0AR−D−1L− + R−D−1L−AQ0

=

[
0 A12D−1

D−1A21 0

]
.(3.26)

For completeness we will also compute the coefficient for z2. Integrating as before R2(ξ), we have

P2 = Q0(AR−D−1L−)2 + R−D−1L−AQ0AR−D−1L− + (R−D−1L−A)2Q0

− (Q0A)2R−D−2L− − R−D−2L−(AQ0)2 −Q0AR−D−2L−AQ0

=




−A12D−2A21 A12D−1A22D−1 − A11A12D−2

D−1A22D−1A21 −D−2A21A11 D−1A21A12D−1


 .(3.27)

As we will see later, the coefficient we are interested is the 22 coefficient: in fact we see that we can write

(3.28) P(z) =

[
I + O(z2) zA12D−1 + O(z2)

zD−1A21 + O(z2) z2D−1A21A12D−1 + O(z3)

]
.

We introduce the right and left eigenprojectors of P(z), R(z) ∈ Rn×n1 , L(z) ∈ Rn1×n, which verify
P(z) = R(z)L(z), L(z)R(z) = I.

We can find the power series of L(z) and R(z) by means of the relations
L(z)P(z) = L(z), P(z)R(z) = R(z).

We have in fact for L(z) = L0 + zL1 + z2L1 + O(z3), with L0 given by (3.19),
(
L0 + zL1 + z2L2 + O(z3)

)(
P0 + zP1 + z2P2 + O(z3)

)
= L0P0 + z

(
L0P1 + L1P0

)

+ z2
(
L0P2 + L1P1 + L2P0

)
+ O(z3)

= L0 + zL0AR−D−1L− + z2L0(AR−D−1L−)2 − z2L0AR−D−2L−AQ0

− z2L0AQ0AR−D−2L− + z2L1R−D−1L−AQ0 + z2L2P0 + O(z3),
so that we see that

(3.29) L1 = L0AR−D−1L− =
[

0 A12D−1
]
, R1 = R−D−1L−AR0 =

[
0

D−1A21

]
,
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(3.30)

L2 = L0(AR−D−1L−)2 − L0AQ0AR−D−2L− =
[
−A12D−2A21/2 A12D−1A22D−1 − A11A12D−2

]
,

R2 = (R−D−1L−A)2R0 − R−D−2L−AQ0AR0 =

[ −A12D−2A21/2
D−1A22D−1A21 −D−2A21A11

]
,

where we used a similar computation for R1, R2. Note that since D−1 is not symmetric, these projectors
do not satisfy L(z) = R(z).

Next, we can decompose E(z) according to the right and left operators:
(3.31) E(z) = R(z)F(z)L(z) + R−(z)F−(z)L−(z),
where F(z) � L(z)E(z)R(z) ∈ Rn1×n1 and F−(z) � L−(z)E(z)R−(z) ∈ Rn2×n2 .

We have
F(z) =

(
L0 + zL1 + O(z2)

)
(B − zA)

(
R0 + zR1 + O(z2)

)

= − zL0AR0 − z2L0AR−D−1L−AR0 + O(z3)
= − zA11 − z2A12D−1A21 + O(z3).(3.32)

The matrix A11 is symmetric, from assumption (H1), so that we can write for some eigenvalues λ1
j , with

multiplicity m′j, j = 1, . . . ,m′, and left and right eigenprojections l j ∈ Rm′j×n1 , r j ∈ Rn1×m′j , with l j = rT
j ,

(3.33) A11 =

m′∑

j=1
λ1

j r jl j.

Lemma 3.1. Under the assumption (H2), the matrix A12D−1A21 is negative defined.

Proof. Let r be an eigenvector of A11 for the eigenvalue λ1. Then, since D−1 is strictly negative and
A12 = AT

21, we have that
d = rTA12D−1A21r < 0

if A21r , 0. On the other hand, we have that

B
[

r
0

]
= 0

and
A

[
r
0

]
= A

[
A11r
A21r

]
=

[
λ1r
A21r

]
.

Therefore
[

r
0

]
is an eigenvalue of A if A21r = 0, and assumption (H2) implies that A21r , 0. �

We can again reduce (3.32) by considering the right and left projections r j(z), l j(z), with r j(0) = r j,
l j(0) = l j, for each family of eigenvalues λ j = −zλ1

j + O(z2). We can now expand the projectors as

p j(z) = r jl j + zp1
j + O(z2), r j(z) = r j + zr1

j + O(z2), l j(z) = l j + zl1j + O(z2),

where r1
j = p1

j r j, l1j = p1
j l j. Therefore

F j(z) � l j(z)F(z)r j(z) = −zλ1
j Im j − z2

(
l jA12D−1A21r j

)
− z2

(
l1j A11r j + l jA11r1

j

)
+ O(z3).

Now, using formula (II-2.14) in [18], it is possible to prove that the third term vanishes. So, we obtain
(3.34) F j(z) = −zλ1

j I − z2(A21r j)TD−1(A21r j) + O(z3).

As before, (A21r j)TD−1(A21r j) has eigenvalues with strictly negative real part. Let c jk be the eigenvalues,
with multiplicity m′j, of the reduced matrix (A21r j)TD−1(A21r j), and let p jk ∈ Rm′j×m′j be the corresponding
eigenprojections, with d jk ∈ Rm′j×m′j the nilpotent matrices. We obtain finally that

(3.35) F j(z) =
∑

k
F jk(z) =

∑

k
(−zλ1

j − z2c jk)p jk − z2d jk + O(z3).
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The eigenvalues tending to 0 belong to jk families, whose z expansion can be expressed by

(3.36) λ jk(z) = −zλ1
j − z2c jk + O(z3).

Note that since all c jk are different, then the total projection for each family is holomorphic near z = 0,
and similarly the nilpotent part. They can be expressed as

(3.37) P jk(z) = R0r jp jk(R0r j)T + O(z), D jk(z) = z2R0r jd jk(R0r j)T + O(z3).
Therefore, we obtain the projection of E(z) on the null eigenvalue as

(3.38) R(z)F(z)L(z) =
∑

jk

(
−zλ1

j I − z2c jkI + O(z3)
)
P jk(z) + D jk(z).

Remark 3.2. As we have noticed before, in general inside the jk family there are different eigenvalues
whose projections have a pole in z = 0. We just say that the total projection P jk(z) of the whole jk family
does not have poles in 0: as we showed, this follows because F(z) can be decomposed as the sum of
F jk(z), acting on different subspaces.

We study now the term F−(z) = L−(z)E(z)R−(z). As before, we expand the left and right projections of
P−(z) as L−(z) = L− + zL1− + O(z2) and R−(z) = R− + zR1− + O(z2). We obtain

(3.39) L1
− =

[
−D−1A21 0

]
, R1

− =

[ −A12D−1

0

]
.

This yields

(3.40) F−(z) = D − zA22 + O(z2).
We sum up the previous results in the following statement.

Proposition 3.3. We have the following decomposition near z = 0

(3.41) E(z) =
∑

jk

(
Λ jk(z)P jk(z) + D jk(z)

)
+ E1(z),

where the Λ jk are diagonal n × n matrices composed by the n1 eigenvalues λ jk given by (3.36), the coefficients
c jk having strictly negative real part, thanks to assumption (H2). The spectral projectors P jk and the nilpotent
operators D jk are given by (3.37) and verify

P jk(z)P j′k′ (z) = δ j j′δkk′P jk(z), D jk(z)P jk(z) = P jk(z)D jk(z) = D jk(z),

Λ jk(z)P jk(z) = P jk(z)Λ jk(z) = Λ jk(z), P jk(z)E1(z) = E1(z)P jk(z) = 0.
The term E1(z) is given by R−(z)F−(z)L−(z), where F−(0) = D, which, by assumption (H1), has eigenvalues with
strictly negative real part.

3.1.2. Case z = ∞. We do now the same analysis when |z| → ∞. We have

E(z) = B − zA = z
(
−A +

1
z B

)
= zẼ(1/z),

where
(3.42) Ẽ(ζ) = −A + ζB.
Since A is symmetric, we can write

(3.43) A =
∑

j
λ jR jRT

j ,

where λ j are the eigenvalues with multiplicity m j, R j ∈ Rn×m j are the right eigenprojections, normalized
by RT

j R j = I ∈ Rm j×m j . As before, by considering the total projection for the family of eigenvalues
converging to λ j as ζ→ 0, we obtain the reduced equation for each λ j,

(3.44) F̃ j(ζ) = −λ jI + ζRT
j BR j + O(ζ2).
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If one decompose now RT
j BR j as

RT
j BR j =

∑

k
b jkp̃ jk + d̃ jk, p̃ jk, d̃ jk ∈ Rm jk×m jk ,

we obtain that we can reduce further the F̃ j by

(3.45) F̃ jk(ζ) = (−λ j + ζb jk)p̃ jk + ζd̃ jk + O(ζ2).
As before, one obtains the jk families of eigenvalues for |z| → ∞ have the z series
(3.46) λ jk(z) = −zλ j + b jk + O(1/z),
and the projectors and nilpotent parts

P jk = R jp̃ jkRT
j + O(1/z), D jk = R jd̃ jkRT

j + O(1/z).(3.47)

Lemma 3.4. Under the assumption (H2), the eigenvalues b jk of RT
j BR j have strictly negative real part.

The proof follows by arguing as in Lemma 3.1.

Proposition 3.5. We have the following decomposition near z = ∞
(3.48) E(z) =

∑

jk

(
Υ jk(z)P jk(z) +D jk(z)

)
,

where Υ jk is the diagonal matrix whose entries are the eigenvalues of the jk family (3.46), the coefficients b jk having
strictly negative real part, thanks to assumption (H2). The spectral projectors P jk and the nilpotent operatorsD jk
are given by (3.47) and verify

P jk(z)P j′k′ (z) = δ j j′δkk′P jk(z), D jk(z)P jk(z) = P jk(z)D jk(z) = D jk(z),

Υ jk(z)P jk(z) = P jk(z)Υ jk(z) = Υ jk(z).

3.2. Green function estimates. In the general case, assuming that the matrix A is symmetric, we have
that Γ(t, x) = 0 if x > λ̄t or x < λt, where
(3.49) λ̄ := max

j
λ j, λ := min

j
λ j,

namely, the support of Γ is contained in the wave cone of A. Therefore we have

(3.50) Γ(t, x) = Γ(t, x)χ
{
λt ≤ x ≤ λ̄t},

where χ is the characteristic function. In conclusion, in the following we shall assume all the time

|xt | ≤ C.

Now, we are ready to estimate the global behavior for large t of the Green kernel Γ(t, x) using the local
expansions contained in Propositions 3.3 and 3.5. We associate a diffusive operator with Green function
K(t, x) to the expansion (3.41), and a dissipative transport operator with Green functionK(t, x) to (3.48),
and we estimate the remainder term

R(t, x) = Γ(t, x) − K(t, x) −K(t, x).

3.2.1. Estimates near z = 0. In the following we shall consider the Green kernel as composed of 4 parts,
acting on wc, wd:

(3.51) Γ(t, x) =

[
L0Γ(t, x)R0 L0Γ(t, x)R−
L−Γ(t, x)R0 L−Γ(t, x)R−

]
=

[
Γ00(t, x) Γ0−(t, x)
Γ−0(t, x) Γ−−(t, x)

]
.

Using the expansion of L(z), R(z) given by (3.29), (3.30) it follows that
P jk(z) = P̄ jk(z) + R jk(z)

=




r jp jkrT
j zr jp jkrT

j A12D−1

zD−1A21r jp jkrT
j z2D−1A21r jp jkrT

j A12D−1


 +

[ O(z2) O(z2)
O(z2) O(z3)

]
.(3.52)
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We can associate to each term of F jk(iξ) given by (3.35) the the parabolic equation

(3.53) wt + λ1
j wx = −

(
c jkI + d jk

)
wxx, w ∈ Rm′j ,

where c jk is in general complex valued, but its real part is strictly negative:
(3.54) c jk = −µ jk − iν jk, µ jk > 0.
Its kernel can be computed explicitly. If γ jk =

√−c jk =
√
µ jk + iν jk is the square root with positive real

part, so that argγ jk ∈ (−π/4, π/4), then

(3.55) g jk(t, x) � 1
2γ jk
√
πt

exp
−

(x − λ1
j t)2

4(µ jk + iν jk)t





∑

ι

M jk,ι
(x − λ1

j t)2ι

((µ jk + iν jk)t)ι


 .

The matrix valued coefficients M jk,ι are due to the fact that we have a nilpotent part D jk: the maximal
value of ι is m jk − 1, where m jk is the multiplicity of c jk. Note that we have in any case that for some c > 0

(3.56) |g jk(t, x)| ≤ O(1)√
t

e−(x−λ1
j t)

2/(ct) ∀k, (t, x) ∈ R+ ×R.

Similarly, one can see that the inverse Fourier transform of

F̄(t, z) �
∑

jk
e−zλ1

j t−z2c jkte−z2D jktP̄ jk(z)

is given by the function

(3.57) K(t, x) �
∑

jk




r j(g jk(t, x)p jk)rT
j −r j

(dg jk

dx p jk

)
rT

j A12D−1

−D−1A21r j

(dg jk

dx p jk

)
p jkrT

j D−1A21r j

(d2g jk

dx2 p jk

)
rT

j A12D−1



.

The function K(t, x), as we will see later, collects the principal parts of each component (3.51) of the Green
kernel Γ(t, x).

By the Proposition 3.3, we can compute eE(z)t near z = 0:

(3.58) eE(z)t =
∑

jk
e−zλ1

j t−z2c jkte−z2tD jk+O(z3t)P jk(z) + R−(z)eF−(z)tL−(z).

We associate to kernel of the parabolic equation (3.53), the function
ĝ jk(z) = −(zλ1

j − z2c jk)I − z2d jk.

In the same way, to the Green function K(t, x) we associate the function

(3.59) K̂(z) �
∑

jk
ĝ jk(z)P̄ jk(z) =

∑

jk




r j ĝ jk(z)p jkrT
j zr j ĝ jk(z)p jkrT

j A12D−1

zD−1A21r j ĝ jk(z)p jkrT
j z2D−1A21r j ĝ jk(z)p jkrT

j A12D−1


 .

Consider the following integral:

R1(t, x) =
1

2π

∫ ε

−ε

(
eE(iξ)t − eK̂(iξ)t

)
eiξxdξ

=
∑

jk

1
2π

∫ ε

−ε
eiξ(x−λ1

j t)+ξ2c jkt(eξ2tD jk+O(ξ3t)P jk(iξ) − eξ2tD jk P̄ jk(iξ)
)
dξ

+
1

2π

∫ ε

−ε
R−(iξ)eF−(iξ)tL−(iξ)eiξxdξ.(3.60)

The constant ε is sufficiently small. The meaning of the above integral is that for low frequencies ξ, the
main parts of Γ(t, x) is given by the parabolic diffusion process described by (3.53). Moreover, we are
taking into account the principal parts of each component of Γ(t, x), as in (3.51).

Using (3.40), and since D has strictly negative eigenvalues, it is clear that for some positive constant C

(3.61)
∣∣∣∣∣

1
2π

∫ ε

−ε
R−(iξ)eF−(iξ)tL−(iξ)eiξxdξ

∣∣∣∣∣ ≤ Ce−t/C.
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σ2

σ1

π
2 − argγ jk

argγ jk

σ3

=z

<z

F 1. The path σ in the complex plane in the case x − λ1
j t > 0.

We will consider separately each of the integrals

(3.62) R jk(t, x) =
1

2π

∫ ε

−ε
eiξ(x−λ1

j t)+ξ
2c jkt(eξ2tD jk+O(ξ3t)P jk(iξ) − eξ2tD jk P̄ jk(iξ)

)
dξ.

Since the integrand is holomorphic (because we are considering the whole eigenspace P jk, see Remark
3.2), we can change the path of integration in such a way that, when we take the real part of the exponent
inside the integral, we will obtain a strictly negative exponent (it is clear that such a thing do not happens
for the path considered in (3.67)). Let c jk = −µ jk − iν jk, and denote as before γ jk =

√
µ jk + iν jk its square

root with positive real part. Note that for all jk we have
(3.63) argγ jk ∈ (−π/4 + ζ, π/4 − ζ), ζ > 0.

By the change of coordinates ξ = e−i argγ jk z, we can write the exponent as

(3.64) iξ(x − λ1
j t) − ξ2γ2

jkt = ie−i argγ jk z(x − λ1
j t) − |γ jk|2z2t,

integrated along the path z = ei argγ jkξ, ξ ∈ [−ε, ε]. Since all integrands (3.67) are holomorphic, we can
deform the path as in fig. 1: denoting with y the constant

(3.65) y = min
{
|x − λ1

j t|/(2|γ jk|2t), ε/2
}
,

consider the path

σ =
{
−εei argγ jk + isgn(x − λ1

j t)ηe−i argγ jk ; η ∈ [0, y]
}

⋃{
−ηei argγ jk + isgn(x − λ1

j t)ye−i argγ jk ; η ∈
[
−ε, ε

]}

⋃{
εei argγ jk − isgn(x − λ1

j t)ηe−i argγ jk ; η ∈ [−y, 0]
}

= σ1 ∪ σ2 ∪ σ3.(3.66)
We now estimate:

(3.67) R jk(t, x) =
1

2π

∮

σ
eie−i argγ jk z(x−λ1

j t)−|γ jk |2z2t(eξ2tD jk+O(ξ3t)P jk(iξ) − eξ2tD jk P̄ jk(iξ)
) ∣∣∣∣ξ=e−i argγ jk z e−i argγ jk dz.

We begin with the following lemma.
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Lemma 3.6. If D is a complex nilpotent matrix, then for all δ > 0 and α ∈ C, there exists C = C(δ) such that
(3.68)

∣∣∣eαD+A − eαD
∣∣∣ ≤ Ce|α|δ+C|A||A|

for every matrix A.
Proof. Let 0 < ω << 1. Since D is nilpotent, there exists an invertible change of base R = R(ω), with

|R| = O(1), |R−1| = O(ω−n+1),
such that the matrix
(3.69) Y := RDR−1

verifies
|Y| = ω.

In fact, there exists S ∈ Rn×n, such that

D′ = SDS−1 =




0 1 0 . . . . . .
... 0 . . .

. . .
...

. . . 1 . . .
. . . 0 . . .

. . .
. . . 0

0
. . . . . . . . . 0




.

We introduce the diagonal matrix
T(ω) = diag(ωn−1, ωn−2, . . . , ω, 1)

and its inverse
T(ω)−1 = diag(ω−n+1, ω−n+2, . . . , ω−1, 1),

and set R(ω) = T(ω)S, which yields (3.69) with Y = ωD′. We can now compute
∣∣∣∣e−αDeαD+A − I

∣∣∣∣ =
∣∣∣∣
(∑+∞

n=0
(−αD)n

n!

) (∑+∞
m=0

(αD+A)m

m!

)
− I

∣∣∣∣

=
∣∣∣∣R−1

(∑+∞
n=1

∑n−1
m=0

1
m!(n−m)! (−αY)m(αY + RAR−1)n−m

)
R
∣∣∣∣

≤ C
∑+∞

n=1
∑n−1

m=0
1

m!(n−m)!
∑n−m

i=1
(n−m)!

i!(n−m−i)! |αY|n−i|RAR−1|i

≤ C
∑+∞

n=1
∑n

i=1
1

i!(n−i)! |αY|n−i|RAR−1|i ∑n−i
m=0

(n−i)!
m!(n−i−m)!

= C
∑+∞

n=1 2n ∑n
i=1

1
i!(n−i)! (|α||Y|)n−i|RAR−1|i

= C
∑+∞

n=0
2n

n!

(
(|α||Y| + |RAR−1|)n − (|α||Y|)n

)

= C
(
e2(|α||Y|+|RAR−1 |) − e2|α||Y|) ≤ Ce2|α||Y|+C|A||A|.

Therefore, we obtain
(3.70)

∣∣∣eαD+A − eαD
∣∣∣ ≤ Ce3|α||Y|+C|A||A|

and the conclusion follows. �

We introduce now
∆ jk(z) = eξ2tD jk+O(ξ3t) − eξ2tD jk .

Recall that we set ξ = e−i argγ jk z. Using (3.68), we obtain the estimate

(3.71)
∣∣∣∆ jk(z)

∣∣∣ ≤ Ce|z|2tδ+O(|z|3t)|z|3t ≤ Ce2|z|2tδ|z|3t,
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with ε ≈ δ and δ � 1. Note that we only assume here that |z| is small, but it may happens that z3t is
large. The importance of the above lemma is in the fact that we do not require any assumption on the
norm of A.

We have

∣∣∣eξ2tD jk+O(ξ3t)P jk(iξ) − eξ2tD jk P̄ jk(iξ)
∣∣∣ ≤

∣∣∣∣∣∣




r j∆ jk(z)p jkrT
j zr j∆ jk(z)p jkrT

j A12D−1

zD−1A21r j∆ jk(z)p jkp jkrT
j z2D−1A21r j∆ jk(z)p jkrT

j A12D−1



∣∣∣∣∣∣

+
∣∣∣∣eξ2tD jk+O(ξ3t)

(
P jk(iξ) − P̄ jk(iξ)

)∣∣∣∣

Using (3.71), (3.68) and (3.69), we obtain

(3.72)
∣∣∣eξ2tD jk+O(ξ3t)P jk(iξ) − eξ2tD jk P̄ jk(iξ)

∣∣∣ = (|z3|t + |z|)e2δ|z|2t
[ O(1) O(1)|z|
O(1)|z| O(1)|z|2

]
.

What we are going to obtain is the following result: the principal terms of Γ(t, x) are the heat kernels
g jk(t, x) or their derivatives, and the error terms for each principal part are of higher order. Using (3.67),
we will thus integrate along the path σ the function

(3.73) |z|p(|z|2t + 1) exp
{
<

(
ie−i argγ jk z(x − λ1

j t) − z2|γ jk|2t
)

+ 2δ|z|2t
}
,

for p = 1, 2, 3.
On σ1, observing that |z| = O(ε), one has

(3.74)∣∣∣∣∣∣
1

2π

∮

σ1

(. . . ) dz
∣∣∣∣∣∣ ≤ Cεp(ε2t + 1)

∫ y

0
exp

{
− cos(2 argγ jk)

(
η|x − λ1

j t| + |γ jk|2ε2t − |γ2
jk|η2t

)
+ 2δ(ε2t)

}
dη

≤ Cεp+1(ε2t + 1) exp
{
− 1

2µ jkε2t
}
≤ Cεp+1 exp

{
− ε2

C t
}
≤ Ce−t/C,

for some large constant C and if δ is sufficiently small. The same estimate can be obtained on σ3.
On σ2 we have

(3.75)∣∣∣∣∣∣
1

2π

∮

σ2

(. . . ) dz
∣∣∣∣∣∣

≤ C
∫ ε

−ε
exp

{
− cos(2 argγ jk)

(
y|x − λ1

j t| + |γ jk|2η2t − |γ jk|2y2t
)

+ 2δ(|z|2t)
}(

t(|y| + |η|)2 + 1
)
(|y| + |η|)pdη.

Recall now that y = min
{
|x−λ1

j t|/(2|γ jk|2t), ε/2
}
. If ε < |x−λ1

j t|/|γ|2t, then we can evaluate (3.75) as before,

(3.76) Cεp+1(ε2t + 1) exp
{
−1

8µ jkε
2t
}
≤ Ce−t/C.
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For ε ≥ |x − λ1
j t|/|γ|2t we have

(3.77)∣∣∣∣∣∣
1

2π

∮

σ2

(. . . ) dz
∣∣∣∣∣∣

≤ C
∫ ε

−ε
exp

− cos(2 argγ jk)



(x − λ1
j t)2

4|γ jk|2t + |γ jk|2η2t

 + 4δη2t +

δ(x − λ1
j t)2

|γ jk|4t


(
t(|y| + |η|)2 + 1

)
(|y| + |η|)pdη

≤ C exp
− cos(2 argγ jk)

(x − λ1
j t)2

8|γ|2t



∫ ε

−ε
e− 1

2µ jkη2t
(
|η|2t + y2t + 1

)
(|η| + y)pdη

≤ C exp
− cos(2 argγ jk)

(x − λ1
j t)2

8|γ|2t


1

t(1+p)/2




p+2∑

ι=0



|x − λ1

j t|√
t




ι

≤ C
t(1+p)/2 e−(x−λ1

j t)
2/ct.

Observe here that in (3.62), R jk is bounded for 0 ≤ t ≤ 1. Then, using also (3.50), we can write that the
rest part near ξ = 0 is of the order of

(3.78) R1(t, x) =
∑

j
e−(x−λ1

j t)
2/ct

[ O(1)(1 + t)−1 O(1)(1 + t)−3/2

O(1)(1 + t)−3/2 O(1)(1 + t)−2

]
.

3.2.2. Estimates near z = ∞. In this case, we can associate to each term of zF̃ jk(1/z) in (3.45), the Fourier
transform of the Green kernel of the transport equation
(3.79) wt + λ jwx = (b jkI + d̃ jk)w, w ∈ Rm jk .

We can write it explicitly by

(3.80) g̃ jk(t, x) = δ(x − λ jt)eb jkt
∑

ι

tι
ι! (d̃ jk)ι,

Note that by our assumption<(b jk) ≤ −c < 0, so that we have the estimate
(3.81) |g̃ jk(t, x)| ≤ Cδ(x − λ jt)e−ct ∀k, (t, x) ∈ R+ ×R.

We associate to the kernels g̃ jk, the hyperbolic Green function

(3.82) K(t, x) =
∑

jk
R j g̃ jk(t, x)p̃ jkRT

j .

Using (3.47) and Proposition 3.5, we obtain

(3.83) K(t, x) =
∑

jk
δ(x − λ jt)eb jktetD jk(∞)P jk(∞).

Observe thatK(t, x) is the Fourier transform in x of

(3.84) K̂(t, ξ) =
∑

jk
e−iλ jtξ+b jktetD jk(∞)P jk(∞).

From the Proposition 3.5, near z = ∞ we have the expansion for E(z) as

(3.85) E(z) =
∑

jk

((
−zλ j + b jk + b1

jk
1
z + O(1) 1

z2

)
I +D jk(z)

)
P jk(z),

so that we can compute its exponential as

(3.86) eE(z)t =
∑

jk
e−zλ jt+b jkt+(b1

jk
1
z +O(1) 1

z2 )tetD jk(z)P jk(z).
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For N sufficiently large, we define

(3.87) R2(t, x) =
1

2π

∫

|ξ|≥N

(
eE(iξ)t − K̂(t, ξ)

)
eiξxdξ.

We have

|R2(t, x)| ≤
∑

jk

1
2π

∣∣∣∣∣∣

∫

|ξ|≥N
eiξ(x−λ jt)+b jkt

(
etD jk(iξ)+t(b1

jk
1
iξ+O(1) 1

ξ2 )IP jk(iξ) − etD jk(∞)P jk(∞)
)
dξ

∣∣∣∣∣∣ .

We have

D jk(iξ) + b1
jk

1
iξ I + O(1) 1

ξ2 = D jk(∞) +
1
ξ
D1

jk + O(1)
( 1
ξ2

)
, P jk(iξ) = P jk(∞) +

1
ξ
P1

jk + O(1)
( 1
ξ2

)
.

We denote by deD the derivative of the application

D→ eD.

So, it holds
|eD+A − eD − deDA| ≤ C|A|2 sup

s∈[0,1]
|d2eD+sA| ≤ Ce|D|+|A||A|2,

which in the case
D 7→ tD, |D| ≤ δ, A 7→

( t
ξ

)
A, |A|/|ξ| ≤ δ,

becomes ∣∣∣∣∣e
tD+( t

ξ )A − etD − detD
( t
ξ

)
A
∣∣∣∣∣ ≤ Cet(|D|+|( 1

ξ )A|)
(

t2

ξ2

)
|A|2 ≤ C

(
t2

ξ2

)
eCδt.

From the Lemma 3.6 and (3.69) we can suppose that |D jk(∞)| ≤ δ.
Therefore, for N large enough, we obtain

etD jk(iξ)+t(b1
jk

1
iξ+O(1) 1

ξ2 )IP jk(iξ) =
[
etD jk(∞)P jk(∞) − d

(
etD jk(∞)

) (
t
ξ

) (
D1

jk + O(1)
(

1
ξ

))
+ O(1)

(
t2

ξ2

)
eCδt

]

×
[
P jk(∞) + 1

ξP1
jk + O(1)

(
1
ξ2

)]
.

We conclude that

(3.88) etD jk(iξ)+t(b1
jk

1
iξ+O(1) 1

ξ2 )IP jk(iξ) − etD jk(∞)P jk(∞) =
1
ξ

[
td

(
etD jk(∞)

)
D1

jkP jk(∞) + etD jk(∞)P1
jk

]
+

1
ξ2O(1)eCδt.

Finally, for δ small enough, we obtain

(3.89) |R2(t, x)| ≤
∑

jk
Ce−αt

∣∣∣∣∣∣

∫

|ξ|≥N

eiξ(x−λ jt)

ξ
dξ

∣∣∣∣∣∣ +
∑

jk
Ce−αt

∫

|ξ|≥N

1
ξ2 dξ ≤ Ce−αt.

3.2.3. Estimates in between. To complete the study of the Fourier transform of Γ, we have to study which
terms are left: these are the parabolic kernel K for |ξ| ≥ ε and t ≥ 1, the transport kernel K for |ξ| ≤ N,
and the kernel E(z) for ε ≤ |ξ| ≤ N. We thus have to consider here 3 cases.

First, one has immediately that if K is the parabolic linearized Green kernel. Set

(3.90) R3(t, x) =
1

2π

∫

|ξ|≥ε
K̂(t, ξ)eiξxdξ,

and we obtain

(3.91) |R3(t, x)| ≤
∑

jk
C

∣∣∣∣∣∣

∫

|ξ|≥ε
eiξ(x−λ1

j t)e−c jkξ2tdξ
∣∣∣∣∣∣ ≤ Ce−t/C

√
t
, t ≥ 1.

Similarly, we introduce

(3.92) R4(t, x) =
1

2π

∫

|ξ|≤N
K̂(t, ξ)eiξxdξ,
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(3.93) |R4(t, x)| ≤ Ce−αt
∑

j

∣∣∣∣∣∣

∫ N

−N
eiξ(x−λ jt)dξ

∣∣∣∣∣∣ ≤ Ce−αt min
j

{
N, 1/|x − λ1

j t|
}
.

Finally, we set

(3.94) R5(t, x) =
1

2π

∫

ε≤|ξ|≤N
eE(iξ)teiξxdξ,

and, thanks to Lemma 2.4, we can use the estimate (2.11), which follows from the Shizuta-Kawashima
condition:

(3.95) |R5(t, x)| ≤ C
∫

ε≤|ξ|≤N
e−αξ2t/(1+ξ2)dξ ≤ Ce−t/C,

for some large constant C.

3.2.4. Global estimates. Notice that, thanks to (3.50), we have to study only the case |x/t| ≤ C. By means
of (3.78), (3.89), (3.91), (3.93), (3.95), we have

R(t, x) = Γ(t, x) − K(t, x) −K(t, x)

=
∑

j

e−(x−λ1
j t)

2/Ct

1 + t

[ O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

]
+ Ce−t/C,(3.96)

for some large constant C. Moreover, using again |x/t| ≤ C, we have that in (3.96) the first term on the
RHS dominates the second one, so that we can write

(3.97) R(t, x) =
∑

j

e−(x−λ1
j t)

2/Ct

1 + t

[ O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

]
.

We have then proved the main result of this section.

Theorem 3.7. Let Γ(t, x) be the Green function of system (3.1), under the assumptions (H1) and (H2). Let K(t, x)
be the Green function of the diffusive operator given by (3.57) and K(t, x) the Green function of the dissipative
transport operator given by (3.82). Then, we have the decomposition

(3.98) Γ(t, x) = K(t, x)χ
{
λt ≤ x ≤ λ̄t, t ≥ 1

}
+K(t, x) + R(t, x)χ

{
λt ≤ x ≤ λ̄t

}
,

where R(t, x) can be written as

R(t, x) =
∑

j

e−(x−λ1
j t)

2/ct

1 + t
(
R0(O(1))L0 + R0(O(1)(1 + t)−1/2)L−

+ R−(O(1)(1 + t)−1/2)L0 + R−(O(1)(1 + t)−1)L−
)
,(3.99)

for some constant c. Here O(1) denotes a generic bounded matrix, λ1
j are the eigenvalues of the symmetric block

A11 of A, used in expansion (3.15), and the projectors are given by (3.19) and (3.20).

4. T   G 

In this section we prove an analogous theorem for multi dimensional systems. Since, in general, the
form of the Green function is not explicit, we have to relay directly on the Fourier coordinates. Thus the
separation of the Green kernel into various part is done at the level of solution operator Γ(t) acting on
L2(Rm,Rn), or L1 ∩ L2(Rm,Rn). In the following we will consider the last space, even if one can study the
equation for initial data only in L2. Our aim is in fact to obtain decay estimates.
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4.1. General setting and first estimates. We consider the Cauchy problem for the linear relaxation
system in the Conservative-Dissipative form

(4.1) wt +

m∑

α=1
Aαwxα = Bw, w ∈ Rn1+n2 ,

(4.2) w(0, ·) = w0.

We assume that Aα, α = 1, . . . ,m, are symmetric matrices and that we have, as in (3.2),

B =

[
0 0
0 D

]
,

where D is a negative definite matrix ∈ Rn2×n2 . So we have (H1).
Set, for ξ ∈ Rm,

(4.3) A(ξ) :=
m∑

α=1
ξαAα, E(iξ) = B − iA(ξ).

We assume also that we have (H2), and we recall that, from Lemma 2.4, there exists a c > 0 such that if
λ(iξ) is an eigenvalue of E(iξ), with ξ ∈ Rm, then

(4.4) <(λ(iξ)) ≤ −c |ξ|2
1 + |ξ|2 .

Let us introduce the polar coordinates in Rm

ξ = ρζ, ρ = |ξ|, ζ ∈ Sm−1

and set
E(iρ, ζ) = E(iρζ).

More generally, in C ⊗ Sm−1,
(4.5) E(z, ζ) = E(zζ) = B − zA(ζ).

Moreover, since Sm−1 is compact, then when E(z, ζ) is considered in C ⊗ Sm−1, the points z = 0, z = ∞
are uniformly isolated exceptional point for all ζ, while in general there are a finite number of exceptional
curves for 0 < |z| < ∞. Thus we can expand E(z, ζ) near z = 0 and z = ∞ as in the one dimensional case.

As before, we want to study the Green kernel Γ(t, x) of (4.1). We recall that the support of Γ is
contained in the wave cone of (4.1), so that, for t ≥ 0, Γ(t, ·) has compact support. The solution of the
Cauchy problem (4.1)-(4.2) is given by
(4.6) w(t, ·) = Γ(t, ·) ∗ w0

and, using the Fourier transform, we have

(4.7) ŵ(t, ξ) = Γ̂(t, ξ)ŵ0(ξ) = eE(iξ)tŵ0(ξ).
We now use (4.4) to obtain our first decay estimates. For a > 0, we have:

(4.8)
∣∣∣χ(|ξ| > a) eE(iξ)t

∣∣∣ ≤ Ce
−c a2

1 + a2 t
,

(4.9)
∣∣∣χ(|ξ| ≤ a) eE(iξ)t

∣∣∣ ≤ Ce
− c

1 + a2 |ξ|2t
.

We have the following natural decomposition
w(t, ·) = Ma(t)w0 +Ma(t)w0,

with
(4.10) M̂a(t)w0 = χ(|ξ| > a) eE(iξ)tŵ0(ξ),

(4.11) M̂a(t)w0 = χ(|ξ| ≤ a) eE(iξ)tŵ0(ξ).



ASYMPTOTIC BEHAVIOR FOR PARTIALLY DISSIPATIVE HYPERBOLIC SYSTEMS 23

For the high frequencies we obtain
‖Ma(t)w0‖L2 = C‖χ(|ξ| > a) eE(iξ)tŵ0(ξ)‖L2

≤ Ce
−c a2

1 + a2 t‖w0‖L2

and, more generally, for any derivative Dβ in the space variables:

(4.12) ‖DβMa(t)w0‖L2 ≤ Ce
−c a2

1 + a2 t‖Dβw0‖L2 .

On the other hand, for the low frequencies, we have

‖DβMa(t)w0‖L∞ ≤ C
∫

Sm−1

∫ a

0
e
− c

1 + a2 |ξ|2t|ξ|β|ŵ0(ξ)||ξ|m−1d|ξ|dζ

≤ C(a, |β|) min
(
1, t− m

2 − |β|2
)
‖w0‖L1

and

‖DβMa(t)w0‖L2 ≤ C




∫

Sm−1

∫ a

0
e
− c

1 + a2 |ξ|2t|ξ|2β|ŵ0(ξ)|2|ξ|m−1d|ξ|dζ



1
2

≤ C(a, |β|) min
(
1, t−m

4 − |β|2
)
‖w0‖L1

More generally, for β ∈Nm and p ∈ [2,+∞], we obtain the decay estimates:

(4.13) ‖DβMa(t)w0‖Lp ≤ C(a, |β|) min
(
1, t−

m
2 (1− 1

p )− |β|2
)
‖w0‖L1 .

To obtain a more refined estimate, we have to use the Conservative-Dissipative form in (4.13), by
expanding E(iξ) for the low frequencies.

4.2. Low frequencies estimates. We now study the expansion of E(z, ζ) = B − zA(ζ) near z = 0. We can
use the result of Section 3, noting that the matrix A in (3.5) is simply replaced by A(ζ). We introduce
the total projector P(z, ζ) corresponding to all the eigenvalues near 0, and P−(z, ζ) = I − P(z, ζ) is the
projector corresponding to the whole family of the eigenvalues with strictly negative real part (see (3.17)
and (3.18)). The principal part of P(z, ζ) is the projector Q0 = R0L0, the principal part of P−(z, ζ) is the
projector Q− = R−L−, and the projectors R0, L0, R−, L− are given by

(4.14) L0 = RT
0 =

[
In1 0

]
, L− = RT

− =
[

0 In2

]
.

As in Section 3.1, we can write the expansion of the eigenprojectors L(z, ζ), R(z, ζ) corresponding to the
vanishing eigenvalues. By formula (3.29) we obtain

(4.15)

L(z, ζ) = L0 + zL0A(ζ)R−D−1L− + O(z2)

= L0 + z
[

0 A12(ζ)D−1
]

+ O(z2)

=
[

In1 zA12(ζ)D−1
]

+ O(z2).

(4.16)

R(z, ζ) = R0 + zR−D−1L−A(ζ)R0 + O(z2)

= R0 + z
[ 0

D−1A21(ζ)
]

+ O(z2)

=
[ In1

zD−1A21(ζ)
]

+ O(z2).
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Thus, as in (3.32), we obtain
F(z, ζ) � L(z, ζ)E(z, ζ)R(z, ζ)

= − zA11(ζ) − z2A12(ζ)D−1A21(ζ) + O(z3)
= F(z, ζ) + O(z3).(4.17)

In the same way, using (3.39) and (3.40), we obtain

(4.18)
F−(z) � L−(z, ζ)E(z, ζ)R−(z, ζ)

= D − zA22(ζ) + O(z2).
Let us recall that near z = 0 we have

P(z, ζ) = R(z, ζ)L(z, ζ), L(z, ζ)R(z, ζ) = I,
P−(z, ζ) = R−(z, ζ)L−(z, ζ), L−(z, ζ)R−(z, ζ) = I,

and
E(z, ζ) = R(z, ζ)F(z, ζ)L(z, ζ) + R−(z, ζ)F−(z, ζ)L−(z, ζ).

This yields
(4.19) eE(iξ)t = R(iξ)eF(iξ)tL(iξ) + R−(iξ)eF−(iξ)tL−(iξ).
Take now a constant a small enough, such that we can use decomposition (4.19) in (4.11):

(4.20)
M̂a(t)w0 = χ(|ξ| ≤ a)R(iξ)eF(iξ)tL(iξ) + χ(|ξ| ≤ a)R−(iξ)eF−(iξ)tL−(iξ)

� ̂Ma,1(t)w0 + ̂Ma,2(t)w0.

Lemma 4.1. Assume a << 1. There exist two constants c,C > 0, such that
(4.21)

∣∣∣χ(|ξ| ≤ a)eF−(iξ)t
∣∣∣ ≤ Ce−ct,

(4.22)
∣∣∣χ(|ξ| ≤ a)eF(iξ)t

∣∣∣ ≤ Ce−c|ξ|2t.

Proof. The matrix D is negative definite, thus (4.18) implies (4.21). To obtain (4.22), we use again the
polar coordinates ρ = |ξ|, ξ = ρζ, to write

F(iξ) = −iρA11(ζ) + ρ2A12(ζ)D−1A21(ζ) + O(ρ3)

= F(iξ) + O(ρ3).
The matrix A11(ζ) is real symmetric, and, by Lemma 3.1, the matrix A12(ζ)D−1A21(ζ) is negative defined
(uniformly in Sm−1). If µ is an eigenvalue of the matrix

−iA11(ζ) + ρA12(ζ)D−1A21(ζ),
there exists a constant c > 0 such that

<(µ) ≤ −cρ, (0 ≤ ρ ≤ a).
Therefore, if µ(iξ) is an eigenvalue of F(iξ), we have
(4.23) <(µ(iξ)) ≤ −c|ξ2|, (0 ≤ |χ| ≤ a),
which yields (4.22). Let us underline that these inequalities are a direct consequence of assumption
(H2). �

Next, we fix a > 0, such that estimates (4.21) and (4.22) hold, and we make a decomposition of the
Green operator:
(4.24) Γ(t) = K(t) +K(t),
where

K(t) � Ma,1(t), K(t) � Ma,2(t) +Ma(t).
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For every function w0 ∈ L1 ∩ L2(Rm,Rn), the solution w(t) = Γ(t)w0 of (4.1), (4.2) can be decomposed as

(4.25) w(t) = Γ(t)w0 = K(t)w0 +K(t)w0.

Using (4.12) and (4.21), we can estimate the second term on the RHS: there exist two constants c,C > 0,
such that, for all space derivative Dβ, it holds

(4.26) ‖DβK(t)w0‖L2 ≤ Ce−ct‖Dβw0‖L2 .

We can now establish the decay properties of K(t), using the Conservative-Dissipative form. Using (4.15),
(4.16), (4.20), and (4.22), we have that there exist two constants c,C > 0, such that

(4.27)

∣∣∣ ̂L0K(t)w0
∣∣∣ ≤ Ce−c|ξ|2t(|L0ŵ0| + |ξ||L−ŵ0|

)

∣∣∣ ̂L−K(t)w0
∣∣∣ ≤ Ce−c|ξ|2t(|ξ||L0ŵ0| + |ξ|2|L−ŵ0|

)
.

Using (4.27) we obtain

‖L0K(t)w0‖2L2 ≤ C
∫
Sm−1

∫ ∞
0 e−2c|ξ|2t(|L0ŵ0(ξ)|2 + |ξ|2|L−ŵ0(ξ)|2

)
|ξ|m−1d|ξ|dζ

≤ C min{1, t−m/2}‖L0ŵ0‖2L∞ + C min{1, t−m/2−1}‖L−ŵ0‖2L∞
≤ C min{1, t−m/2}‖L0w0‖2L1 + C min{1, t−m/2−1}‖L−w0‖2L1 ,

‖L−K(t)w0‖2L2 ≤ C
∫
Sm−1

∫ ∞
0 e−2c|ξ|2t(|ξ|2|L0ŵ0(ξ)|2 + |ξ|4|L−ŵ0(ξ)|

)
|ξ|m−1d|ξ|dζ

≤ C min{1, t−m/2−1}‖L0w0‖2L1 + C min{1, t−m/2−2}‖L−w0‖2L1 .

Similarly, it is easy to prove that for every multi index β the coefficient ξ2β appears in the integrand, so
that

‖L0DβK(t)w0‖L2 ≤ C min{1, t−m/4−|β|/2}‖L0w0‖L1 + C min{1, t−m/4−1/2−|β|/2}‖L−w0‖L1 .

‖L−DβK(t)w0‖L2 ≤ C min{1, t−m/4−1/2−|β|/2}‖L0w0‖L1 + C min{1, t−m/4−1−|β|/2}‖L−w0‖L1 .

We can estimate also the decay in every p ∈ [2,+∞]. We have that

|DβL0K(t)w0| ≤ C
∫

e−c|ξ|2t|ξ|β
(
‖L0ŵ0‖L∞ + |ξ|‖L−ŵ0‖L∞

)
dξ

≤ C min
{
1, t−m/2−|β|/2}‖L0w0‖L1 + C min

{
1, t−m/2−1/2−|β|/2}‖L−w0‖L1 ,

|DβL−K(t)w0| ≤ C min
{
1, t−m/2−1/2−|β|/2}‖L0w0‖L1 + C min

{
1, t−m/2−1−|β|/2}‖L−w0‖L1 ,

so that, if β is a multi index, for p ∈ [2,+∞] we have also the “K(t) estimates”:

(4.28)
‖L0DβK(t)w0‖Lp ≤ C(|β|) min

{
1, t−

m
2 (1− 1

p )−|β|/2}‖w0
c‖L1

+C(|β|) min
{
1, t−

m
2 (1− 1

p )−1/2−|β|/2}‖w0
d‖L1 ,

(4.29)
‖L−DβK(t)w0‖Lp ≤ C(|β|) min

{
1, t−

m
2 (1− 1

p )−1/2−|β|/2}‖w0
c‖L1

+C(|β|) min
{
1, t−

m
2 (1− 1

p )−1−|β|/2}‖w0
d‖L1 .
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4.3. Decay estimates. We thus collect the results in the following theorem.

Theorem 4.2. Consider the linear PDE in the Conservative-Dissipative form

(4.30) wt +

m∑

α=1
Aαwxα = Bw,

where Aα, B satisfy the assumption (SK) of Definition 2.3, and let Q0 = R0L0, Q− = I − Q0 = R−L− be the
eigenprojectors on the null space and the negative definite part of B. Then, for any function w0 ∈ L1 ∩L2(Rm,Rn),
the solution w(t) = Γ(t)w0 of (4.1), (4.2) can be decomposed as
(4.31) w(t) = Γ(t)w0 = K(t)w0 +K(t)w0,

where the following estimates hold: for any multi index β and for every p ∈ [2,+∞],
K(t) estimates:

‖L0DβK(t)w0‖Lp ≤ C(|β|) min
{
1, t−

m
2 (1− 1

p )−|β|/2}‖L0w0‖L1

+ C(|β|) min
{
1, t−

m
2 (1− 1

p )−1/2−|β|/2}‖L−w0‖L1 ,(4.32)

‖L−DβK(t)w0‖Lp ≤ C(|β|) min
{
1, t−

m
2 (1− 1

p )−1/2−|β|/2}‖L0w0‖L1

+ C(|β|) min
{
1, t−

m
2 (1− 1

p )−1−|β|/2}‖L−w0‖L1 ;(4.33)

K(t) estimates:
(4.34) ‖DβK(t)w0‖L2 ≤ Ce−ct‖Dβw0‖L2 .

Remark 4.3. Let us notice the relation among the Green kernel for (4.1) and the parabolic n1 × n1 system
in m dimensions

(4.35) wt +

m∑

α=1
Aα,11wxα = −

m∑

α,β=1
Aα,12D−1Aβ,21wxαxβ , w ∈ Rn1 .

This relation will be exploited better in the Sections 5.4, 5.5. Here we want to prove that the above system
satisfies the following assumptions:

(1) there exists a unitary matrices C(ζ), ζ ∈ Sn−1, such that

(4.36) CT(ζ)
( m∑

α,β=1
ζαζβAα,12D−1Aβ,21

)
C(ζ) =

[
0 0
0 D̂(ζ)

]
,

with D̂(ζ) negative definite (also its dimension depends on ζ, in general);
(2) any eigenvector of

∑
α ζαAα,11 is not in the null eigenspace of

m∑

α,β=1
ζαζβAα,12D−1Aβ,21.

It is easy to verify that the above assumptions correspond to Shizuta-Kawashima condition along any
direction ζ for the parabolic system (4.35). To prove (1), let C(ζ) ∈ Rn1×n1 be the change of coordinates so
that ( m∑

α=1
ζαAα,21

)
C(ζ) =

[
0 K(ζ)

]
,

with Ker(K(ζ)) = {0}. Since Aα,12 = AT
α,12, we thus obtain

CT(ζ)
( m∑

α=1
ζαAα,21

)T
D−1

( m∑

α=1
ζαAα,21

)
C(ζ) =

[
0

KT(ζ)

]
D−1

[
0 K(ζ)

]

=

[
0 0
0 KT(ζ)D−1K(ζ)

]
.

The matrix KT(ζ)D−1K(ζ) is negative definite, since D−1 is negative definite and Ker(K(ζ)) = {0}.
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Assume now that v(ζ), eigenvector of
∑
α ζαAα,11, is in the null space of the viscosity matrix of (4.35).

The it follows that is in Ker(
∑
α ζαAα,21), so that the vector R0v is an eigenvector of

∑
α ζαAα. But this

contradicts our assumptions, because is in the null space of B. For a related discussion about this remark,
in a slightly different framework, see [38].
Remark 4.4. We note here that we cannot expect any estimate of the form

‖w(t)‖L1 ≤ C‖w0‖L1 ,

because for large t the function L0w behaves like the solution to

wc,t +

m∑

α=1
L0AαR0wc,xα = 0,

and it is knows from [4] that this estimate is not true in general. The L∞ estimate depends strongly on
the presence of a uniform parabolic operator, so that it is lost in the hyperbolic limit.
Remark 4.5. We note here that by means of the explicit form of the kernel in the one dimensional case it
follows that the decay estimates holds for p ∈ [1,+∞], with the same decay rate.
Remark 4.6. Since in general we are not able to give the explicit form of the kernel part K(t), one may
suspect that even if the kernel K(t)R−L− has the same decay estimates of a derivative of the heat kernel,
it is not a derivative of a heat like kernel. This is striking different from the one dimensional case.

However, a simple observation shows that the function L0Γ(t, x)R− is actually a derivative. Note that
in one space dimension we only proved that its principal part L0K(t, x)R− is an x-derivative. Thus we are
obtaining a new result also in one space dimension.

By replacing wd with w̃d + eDtwd(t = 0), we obtain that the equations for (wc, w̃d) are

(4.37)



wc,t +
∑
α Aα,11wc,xα +

∑
α Aα,12w̃d,xα = −∑

α Aα,12eDtwd,xα(t = 0)

w̃d,t +
∑
α Aα,21wc,xα + Aα,22w̃d,xα = Dw̃d −∑

α Aα,22eDtwd,xα(t = 0)
with initial data (wc(t = 0), 0). The solution can be written by Duhamel formula as

(
wc
w̃d

)
= Γ(t) ∗

(
wc(t = 0)

0

)
−

∑

α

∫ t

0
Γ(t − s) ∗

(
Aα,12eDswd,xα(t = 0)
Aα,22eDswd,xα(t = 0)

)
ds

= Γ(t) ∗
(

wc(t = 0)
0

)
−

∑

α

∂xα

∫ t

0
Γ(t − s) ∗

(
Aα,12eDswd(t = 0)
Aα,22eDswd(t = 0)

)
ds.(4.38)

In particular, one sees that the

(4.39) Γ(t, x)R− =
∑

α

∂xα

(∫ t

0
Γ(t − s, x)AαR−eDsds

)
+

(
0

eDtδ(x)

)
.

This remark is useful to deal with the case m = 2 in Section 5.4.
Example 4.7. Rotationally invariant systems. If we assume that system (4.30) is invariant for rotations,
it is possible to give a more precise expansion of the parabolic part K(t) of the kernel Γ(t). Consider for
example the linearized isentropic Euler equations with damping, which can be written as

(4.40)



ρt + divv = 0

vt + ∇ρ = −v
To fix the ideas, take m = 3, n = 4 = n1 + n2 = 1 + 3. Clearly the system is already in the Conservative-
Dissipative form and the condition (SK) is satisfied. In this case one can decompose K(t, x) as

(4.41) K(t, x) =

[
G(t, x) (∇G(t, x))T

∇G(t, x) ∇2G(t, x)

]
+ R1(t, x),

where G(t, x) is the heat kernel for ut = ∆u, and the rest term R1(t, x) satisfies the bound

(4.42) R1(t, x) =
e−c|x|2/t

(1 + t)2

[ O(1) O(1)(1 + t)−1/2

O(1)(1 + t)−1/2 O(1)(1 + t)−1

]
.
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In particular the principal part of Γ(t) is given by the heat kernel G(t, x).
A more interesting example is the system

(4.43)



ρt + divv = 0,

vt + ∇ρ + divR = 0,

Rt + ∇v = −R,

where ρ ∈ R, v ∈ R3, and R ∈ R9. In this case, thanks to the invariance for rotations of the Green kernel,
we can use the one dimensional decomposition (3.57) to find that the main smooth part K00(t) of the
Green kernel Γ(t) is given by

(4.44) K00(t) =

[
0 0
0 G(t, x)P

]
+

[
(W00 ∗ G)(t, x) (W01 ∗ G)(t, x)
(W10 ∗ G)(t, x) (W11 ∗ G)(t, x)

]
+ R1(t, x).

Here P : (L2(R3))3 7→ (L2(R3))3 is the orthogonal projection of L2 vector fields on the subspace of
divergence free vector fields. Pv is characterized by

Pv ∈ (L2(R3))3, divPv = 0, curl(v − Pv) = 0,

and so we have that
v − Pv = ∇ψ, with ∆ψ = divv.

This yields

(4.45) Pv = v − ∇(∆−1divv).

In fact, in Fourier coordinates, we have

(4.46) P̂v(ξ) = v̂(ξ) − |ξ|−2(ξ · v̂(ξ))ξ = v̂(ξ) − |ξ|−2ξξT · v̂(ξ).

The matrix valued function

(4.47) W(t, x) = W1(t, x) + W2(t, x) =

[
W00(t, x) W01(t, x)
W10(t, x) W11(t, x)

]
+

[
0 0
0 δ(x)P

]

is the matrix valued Green function of the system


ρt + divv = 0

vt + ∇ρ = 0

and it can be written by means of the fundamental solution to the wave equation utt = ∆u. In fact, W00
is the solution of utt = ∆u with initial data u = δ(x), ut = 0, and

(4.48) W1 =

[
W00 ∇T∂t(−∆)−1W00

∇∂t(−∆)−1W00 −∇2(−∆)−1W00

]
.

In particular one can check that W2 corresponds to incompressible vector fields, while W1 corresponds
to curl free vector fields. Finally the rest R1(t, x) satisfies

|R1(t, x)| ≤ (1 + t)−1/2|G(t, x)| + (1 + t)−1/2
∣∣∣(W ∗ G)(t, x)

∣∣∣.
From (4.44), one sees that the asymptotic behaviour of Γ(t) is a function (0, v0), with v0 divergence free
vector field, which remains close to the origin, and a function (ρ, v1), with v1 curl free, which diffuses
around the sound cone {|x| = t}. Due to the finite speed of propagation of (4.43), we can restrict K00(t) to
the light cone {|x| ≤ √2t}. Finally, let us notice that the main part of the kernel K00 is the Green function
of the fully parabolic system

(4.49)



ρt + divv = ∆ρ,

vt + ∇ρ = ∆v.
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5. D          

In this section we study the time decay properties of the global smooth solutions to a nonlinear
entropy strictly dissipative relaxation system in conservative-dissipative form. We shall prove that the
conservative variables uc = L0u decays as the heat kernel and derivatives, while the dissipative variable
ud = L−u decays faster. Following (3.51), we set

K(t) =

[
L0K(t)R0 L0K(t)R−
L−K(t)R0 L−K(t)R−

]
=

[
K00(t) K0−(t)
K−0(t) K−−(t)

]
.

Moreover we shall prove that uc(t) approaches the conservative part K00(t)L0u(0) of the linear solution
Γ(t)u(0) faster that the decay of the heat kernel for m ≥ 2. In one dimension we shall show that uc(t)
converges to the solution of a parabolic equation with quadratic nonlinearity, in the spirit of Chapman-
Enskog expansion.

5.1. Decay estimates in Lp. We now prove the decay estimates in Lp(Rm;Rn), p ∈ [2,+∞], for the solution
u with initial data in L1 ∩Hs, with s sufficiently large, for the non linear equation

(5.1) ut +

m∑

α=1
( fα(u))xα = g(u),

with fα(0) = g(0) = 0 and initial condition
(5.2) u(x, 0) = u0(x).
We shall assume that the system (5.1) is strictly entropy dissipative and condition (SK) is satisfied. Under
the assumptions of Theorem 2.5, we consider the global solution u of (5.1)-(5.2), with

(5.3) u ∈ C0 ([0,+∞); Hs(Rm)) ∩ C1
(
[0,+∞); Hs−1(Rm)

)
,

and we can assume that there exists δ0 > 0 such that, for (t, x) ∈ [0,+∞) ×Rm,
(5.4) |u(t, x)| ≤ δ0.

Consider now the associated linearized problem

(5.5) ut +

m∑

α=1
D fα(0)uxα = Dg(0)u.

Thanks to Proposition 2.7 and Remark 2.8, we can assume , without loss of generality, that this system
is in the Conservative-Dissipative form (C-D form) of Definition 2.6. Therefore, thanks to Theorem 4.2,
the associated Green function can be decomposed as
(5.6) Γ(t) = K(t) +K(t),
and the estimates (4.32), (4.33), and (4.34) hold true.

We can write the solution u to (5.1) by Duhamel’s formula as

u(t) = Γ(t)u(0) +

m∑

α=1

∫ t

0
DxαΓ(t − s)

(
D fα(0)u(s) − fα(u(s))

)
ds

+

∫ t

0
Γ(t − s)(g(u(s)) −Dg(0)u(s))ds.(5.7)

Remark 5.1. We now observe that the only terms acting on g(u) − Dg(0)u are the exponential decaying
terms K(t), and the terms K0−(t) and K−−(t). Thus when projecting on the conservative variables, the
term with the slowest decay is K0−(t), while when projected on the dissipative variables the leading term
is K−−(t). A similar observation can be made for the product Γxα (t − s)(D fα(0)u(s) − fα(u(s)), where the
principal part for uc is K00(t) while for ud(t) is K−0(t).

We first prove that the solution decays as the heat kernels and derivatives, with no distinction among
the conservative part uc = L0u and the dissipative one ud = L−u. We next prove that the dissipative
part decays faster, as a derivative of the conservative one. Finally we shall study the decay of the time
derivative.
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For the β derivative, we shall use the formula

Dβu(t) = DβK(t)u(0) +K(t)Dβu(0)

+

m∑

α=1

∫ t/2

0
DβDxαK(t − s)

(
D fα(0)u(s) − fα(u(s))

)
ds

+

m∑

α=1

∫ t

t/2
DxαK(t − s)Dβ

(
D fα(0)u(s) − fα(u(s))

)
ds

+

∫ t/2

0
DβK(t − s)R−L−

(
g(u(s)) −Dg(0)u(s)

)
ds

+

∫ t

t/2
K(t − s)R−DβL−

(
g(u(s)) −Dg(0)u(s)

)
ds

+

m∑

α=1

∫ t

0
K(t − s)Dβ

(
Dxα

(
D fα(0)u(s) − fα(u(s))

)
+

(
g(u(s)) −Dg(0)u(s)

))
ds,(5.8)

observing that for β = 0 we do not need to split the integral in time.
Now we recall some well-known inequalities in the Sobolev spaces Hs(Rm). The basic remark is the

fact that for s > m
2 , Hs(Rm) is a Banach algebra, i.e., for any u, v in Hs(Rm), we have:

(5.9) ‖uv‖Hs ≤ C‖u‖Hs‖v‖Hs .

More generally, we need some Moser-type calculus inequalities, see for instance [23, 35].
For every u, v in Hs(Rm) ∩ L∞(Rm) (s ≥ 0), and |β| ≤ s

(5.10) ‖Dβ(uv)‖L2 ≤ C
(
‖u‖L∞‖Dβv‖L2 + ‖v‖L∞‖Dβu‖L2

)
,

so that, if u, v ∈ Hs+|β|(Rm),

(5.11) ‖Dβ(uv)‖Hs ≤ C
(
‖u‖L∞‖Dβv‖Hs + ‖v‖L∞‖Dβu‖Hs

)
.

For every smooth function h : R 7→ R, every u ∈ Hs(Rm)∩ L∞(Rm) (s ≥ 1), which verifies inequality (5.4),
and β , 0, |β| ≤ s, we have

(5.12) ‖Dβh(u)‖L2 ≤ Cβ‖h′‖C|β|−1(|u|≤δ0)‖u‖|β|−1
L∞ ‖Dβu‖L2 .

Moreover, if h(0) = 0, we have

(5.13) ‖h(u)‖Hs ≤ C
(
δ0, ‖h‖Cs(|u|≤δ0)

)
(1 + ‖u‖Hs ).

As in [6], we use the following crude, but useful Lemma:

Lemma 5.2. For any γ, δ ≥ 0, t ≥ 2

(5.14) ϕ � min
{
γ, δ, γ + δ − 1

}
,

then it holds

(5.15)
∫ t

0
min{1, (t − s)−γ}min{1, s−δ}ds ≤ C ·



t−ϕ γ, δ , 1
t−ϕ(1 + ln t) γ ≤ 1, δ = 1 or γ = 1, δ ≤ 1
t−1 γ > 1, δ = 1 or γ = 1, δ > 1

(5.16)
∫ t

0
min{1, s−δ} = C ·



1 δ > 1
ln t δ = 1
t1−δ 0 ≤ δ < 1

(5.17)
∫ t

0
e−c(t−s) min{1, s−γ} ≤ C min{1, s−γ}, γ ≥ 0,



ASYMPTOTIC BEHAVIOR FOR PARTIALLY DISSIPATIVE HYPERBOLIC SYSTEMS 31

5.1.1. Hs estimates. Let us set now

(5.18) Es = max
{
‖u(0)‖L1 , ‖u(0)‖Hs

}
,

and

(5.19) M0(t) = sup
0≤τ≤t

{
max

{
1, τm/4

}
‖u(τ)‖Hs

}
,

We are going to estimate the Hs norm of u(t) in (5.7).
For shortness we denote (the products below should be intended as tensor products)

(5.20) fα(u) −D fα(0)u = u2hα(u), g(u) −Dg(0)u = u2h(u).

Using Theorem 4.2 and recalling Remark 5.1, we have the estimate

(5.21)

‖u(t)‖Hs ≤ C min{1, t−m/4}‖u(0)‖L1 + Ce−ct‖u(0)‖Hs

+C
∫ t

0 min
{
1, (t − s)−m/4−1/2

}(∑m
α=1 ‖u2hα(u(s))‖L1 + ‖u2h(u(s))‖L1

)
ds

+C
∫ t

0 e−c(t − s)
(∑m

α=1 ‖Dxα (u2hα(u(s)))‖Hs + ‖u2h(u(s))‖Hs

)
ds.

It is obvious that
C min{1, t−m/4}‖u(0)‖L1 + Ce−ct‖u(0)‖Hs ≤ C min{1, t−m/4}Es.

For the third term, using (5.4), we have:

(5.22)

∑m
α=1 ‖u2hα(u(s))‖L1 + ‖u2h(u(s))‖L1

≤ C
(∑m

α=1 ‖hα‖L∞(|u|≤δ0) + ‖h‖L∞(|u|≤δ0)
)
‖u(s)‖2L2

≤ C min{1, s−m/2} (M0(s))2

Let us consider now the fourth term in (5.21). We have to estimate ‖Dβ(u2h(u))‖Hs for β = 0 and |β| = 1.
More generally we have the following result.

Lemma 5.3. Fix s > m
2 and β ∈Nm, and let u ∈ Hr which verifies inequality (5.4), with r ≥ s + |β|. Then we have

(5.23) ‖Dβ(u2h(u))‖Hs ≤ C
(
δ0, ‖u‖Hs , ‖h‖Cs+|β|(|u|≤δ0)

)
‖u‖L∞‖Dβu‖Hs .

Proof. First we consider the case β = 0. We have

‖u2h(u)‖Hs ≤ ‖u2h(0)‖Hs + ‖u2(h(u) − h(0))‖Hs .

Using (5.9) and (5.11) yields

‖u2h(u)‖Hs ≤ C(‖u‖L∞‖u‖Hs + ‖u‖L∞‖h(u) − h(0)‖L∞‖u‖Hs

+‖u‖L∞‖u‖Hs‖h(u) − h(0)‖Hs ).

So, by (5.13), we obtain (5.23) for β = 0. For |β| ≥ 1, using twice (5.11) yields

‖Dβ(u2h(u))‖Hs ≤ C‖u‖L∞
(
‖u‖L∞‖Dβh(u)‖Hs + ‖h(u)‖L∞‖Dβu‖Hs

)
.

Since |β| ≥ 1, we can use (5.12) to obtain

‖Dβh(u)‖Hs ≤ C(δ0)‖h′‖C|β|+s−1(|u|≤δ0)‖Dβu‖Hs ,

which implies (5.23) with C = C
(
δ0, ‖h‖Cs+|β|(|u|≤δ0)

)
. �
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Now, inequality (5.23) gives

(5.24)
m∑

α=1
‖Dxα (u2hα(u))‖Hs + ‖u2h(u)‖Hs ≤ C‖u‖L∞‖u‖Hs+1 .

Collecting inequalities (5.22) and (5.24) in (5.21), we obtain

(5.25)

‖u(t)‖Hs ≤ C min{1, t−m/4}Es + C (M0(t))2
∫ t

0
min{1, (t − s)−m/4−1/2}min{1, s−m/2}ds

+CM0(t)Es+1

∫ t

0
e−c(t−s) min{1, s−m/4}ds.

By means of Lemma 5.2, for m = 1 the first integral decays as t−1/4, while for m = 2 decays as t−1 ln t < t−1/2,
and for m ≥ 3 as t−m/4−1/2 < t−m/4. So, we obtain in (5.25)

(5.26) M0(t) ≤ C
(
Es + (M0(t))2 + Es+1M0(t)

)
.

Then, if Es+1 is small enough, we have the bound

(5.27) M0(t) ≤ CEs,

which implies

(5.28) ‖u(t)‖Hs ≤ C min{1, t−m/4}Es.

5.1.2. L∞ estimates. We now estimate the L∞ norm of the solution. Set as before

N0(t) = sup
0≤τ≤t

{
max

{
1, τm/2

}
‖u(τ)‖L∞

}
.

From (5.8) and Theorem 4.2, we have, using (5.22) and (5.27),

(5.29)

‖u(t)‖L∞ ≤ C min
{
1, t−m/2

}
‖u(0)‖L1 + Ce−ct‖u(0)‖H[m/2]+1

+CE2
[m/2]+1

∫ t
0 min

{
1, (t − s)−m/2−1/2

}
min

{
1, s−m/2

}
ds

+CN0(t)E[m/2]+1
∫ t

0 e−c(t − s) min
{
1, s−m/2

}
ds.

Using Lemma 5.2, for m ≥ 2, we obtain

(5.30) N0(t) ≤ C(E[m/2]+1 + E[m/2]+1N0(t) + E2
[m/2]+1),

which implies

(5.31) ‖u(t)‖L∞ ≤ C min
{
1, t−m/2

}
E[m/2]+1,

if E[m/2]+1 is small enough.
For m = 1, using the decomposition of Theorem 3.7 and the estimate (5.27), we can estimate the first

integral as
∫ t

0

(
‖Kx(t)‖L2 + ‖Rx(t)‖L2

)
‖u2‖L2 ≤ CN0(t)E1

∫ t

0
min

{
1, (t − s)−3/4

}
min

{
1, s−3/4

}
ds

≤ C min
{
1, t−1/2

}
N0(t)E1,

and for E1 is uniformly small, the inequality (5.31) holds also for m = 1.
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5.1.3. Dβu estimates. We set now for b ∈N
(5.32) Mb(t) =

∑

0≤|β|≤b
sup
0≤τ≤t

{
max

{
1, τm/4+|β|/2}‖Dβu(τ)‖Hs

}
,

and we assume that for 0 ≤ b < b̄ the following estimates hold:

(5.33) Mb(t) ≤ CEb+s � 1.

Now we estimate the |β| = b̄ derivative using Theorem 4.2 with the decomposition (5.8) and Remark
5.1. We have

(5.34)

‖Dβu(t)‖Hs ≤ C min{1, t−m/4−|β|/2}‖u(0)‖L1 + Ce−ct‖Dβu(0)‖Hs

+C
∫ t/2

0
min

{
1, (t − s)−m/4−1/2−|β|/2}




m∑

α=1
‖u2hα(u(s))‖L1 + ‖u2h(u(s))‖L1


 ds

+C
∫ t

t/2
min

{
1, (t − s)−m/4−1/2

}( m∑

α=1
‖DβDxαu2hα(u(s))‖L1 + ‖Dβu2h(u(s))‖L1

)
ds

+C
∫ t

0
e−c(t − s)

( m∑

α=1
‖DβDxαu2hα(u(s))‖Hs + ‖Dβu2h(u(s))‖Hs

)
ds.

For the first integral we obtain, using (5.22), (5.27), and Lemma 5.2:

(5.35)

∫ t/2

0
min

{
1, (t − s)−m/4−1/2−|β|/2} (∑m

α=1 ‖u2hα(u(s))‖L1 + ‖u2h(u(s))‖L1

)
ds

≤ CE2
s

∫ t/2

0
min

{
1, (t − s)−m/4−1/2−|β|/2} min

{
1, s−m/2

}
ds

≤ C min{1, t−m/4−|β|/2}E2
s .

For the second integral we need to prove the following estimate

(5.36)
( m∑

α=1
‖DβDxαu2hα(u)‖L1 + ‖Dβu2h(u)‖L1

)
≤ C min{1, t−m/2−|β|/2}

(
E2

b̄+s−1 + EsMb̄

)
.

We just consider the first term on the left. Using the chain rule, we have

DβDxαu2hα(u) = Dβ
(
(Dxαu)uh̃(u)

)

=
∑

α≤β

∑

γ≤β−α

∑

δ1+···+δk=α

C(α, β, γ, δi)(Dβ−α−γDxαu)(Dγu)(Dδ1 u) · · · (Dδk u)h̃(k)(u).

Following the proof of Lemma 3.10 in [35], we obtain for the generic term

‖(Dβ−α−γDxαu)(Dγu)(Dδ1 u) · · · (Dδk u)‖L1 ≤ ‖(Dβ−α−γDxαu)‖L2 · ‖(Dγu)(Dδ1 u) · · · (Dδk u)‖L2

≤ C‖Dβ−α−γu‖H1‖D|γ+α|u‖L2 .

Then, to obtain (5.36), we have to use (5.33) for the cases γ + α , 0 and γ + α , β.
For the third integral, the inequality (5.23) yields

(∑m
α=1 ‖DβDxαu2hα(u(s))‖Hs + ‖Dβu2h(u(s))‖Hs

)
≤ C‖u‖L∞‖Dβu‖Hs+1

≤ C‖u‖L∞‖Dβ′u‖Hs+2 ,
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where |β′| = b̄−1. We use the L∞-estimate (5.31) and the induction hypothesis (5.33) (replacing s by s+2),
to obtain

(5.37)
( m∑

α=1
‖DβDxαu2hα(u(s))‖Hs + ‖Dβu2h(u(s))‖Hs

)
≤ C min{1, t−m/4− b̄

2 }E[m/2]+1Eb̄+s+1.

Substituting the above inequalities into (5.34) yields

(5.38)

‖Dβu(t)‖Hs ≤ C min{1, t−m/4−|β|/2}
(
Eb̄+s + E2

s
)

+C
(
E2

b̄+s−1 + EsMb̄(t)
) ∫ t

t/2
min

{
1, (t − s)−m/4−1/2

}
min{1, s−m/2−|β|/2}ds

+CE[m/2]+1Eb̄+s+1

∫ t

0
e−c(t − s) min{1, s−m/4− b̄

2 }ds.

Using again Lemma 5.2 we finally obtain

(5.39) ‖Dβu(t)‖Hs ≤ C min{1, t−m/4−|β|/2}
(
Eb̄+s + E2

s + E2
b̄+s−1 + E[m/2]+1Eb̄+s+1 + EsMb̄(t)

)
.

If Es is small enough, we have

Mb̄(t) ≤ CEb̄+s,

with C = C(Eb̄+s+1). So, we can conclude

(5.40) ‖Dβu(t)‖Hs ≤ C min{1, t−m/4−|β|/2}E|β|+s.

To obtain the L∞ estimates we use the following inequalities from [35], Proposition 3.8:

‖Dβu(t)‖L∞ ≤ C‖D[m/2]+1Dβu(t)‖1/2L2 ‖DkDβu(t)‖1/2L2 ,

with k = [m/2]− 1 if m is even and k = [m/2] if m is odd. So, we just use (5.40) with s = [m/2] + 1 to obtain

(5.41) ‖Dβu(t)‖L∞ ≤ C min{1, t−m/2−|β|/2}E|β|+m+2.

Actually, it is possible to show, by a direct calculation, that the following estimate holds:

(5.42) ‖Dβu‖L∞ ≤ C min
{
1, t−m/2−|β|/2}E|β|+[m/2]+1.

Therefore, we easily obtain the decay estimate in the Lp-spaces

(5.43) ‖Dβu(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2}E|β|+[m/2]+1,

with p ∈ [2 +∞].
Let us state our global decay estimate for u.

Theorem 5.4. Let u(t) be a smooth global solution to problem (5.1), (5.2). Let Es = max
{
‖u(0)‖L1 , ‖u(0)‖Hs

}
, and

assume E[m/2]+2 small enough. Let p ∈ [2,+∞]. The following decay estimate holds

(5.44) ‖Dβu(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2}E|β|+[m/2]+1,

with C = C(E|β|+σ), for σ large enough.
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Remark 5.5. For m = 1 we can estimate also the L1 norm, since with the same computation as above we
have

‖Dβu(t)‖L1 ≤ C min
{
1, t−β/2

}
‖u(0)‖L1 + Ce−ct‖Dβu(0)‖L1

+CE2
1 min

{
1, t−β/2−1/2

} ∫ t/2

0
min

{
1, s−1/2

}
ds

+CE2
β min

{
1, t−1/2−β/2}

∫ t

t/2
min

{
1, (t − s)−1/2

}
ds

+CEβ+1Eβ
∫ t

0
e−c(t − s) min

{
1, s−1/2−β/2}ds,

which yields

(5.45) ‖Dβu(t)‖L1 ≤ C
(
min

{
1, t−β/2

}
Eβ+1 + e−ct‖Dβu(0)‖L1

)
,

with the constant C = C(Eβ+2), so that, for m = 1, Theorem 5.4 holds for p ∈ [1,+∞].

5.2. Decay estimates for the dissipative variables. We now study the faster decay of the dissipative
variables. Set uc = L0u(t) for the conservative variables, and ud(t) = L−u(t) for the dissipative ones, where
the projectors L0 and L− are given by (4.14). We have that

Dβud(t) = DβL−K(t)u(0) + L−K(t)Dβu(0)

+

m∑

α=1

∫ t/2

0
DβDxαL−K(t − s)

(
D fα(0)u(s) − fα(u(s))

)
ds

+

m∑

α=1

∫ t

t/2
DxαL−K(t − s)Dβ

(
D fα(0)u(s) − fα(u(s))

)
ds

+

∫ t/2

0
DβL−K(t − s)R−L−

(
g(u(s)) −Dg(0)u(s)

)
ds

+

∫ t

t/2
L−K(t − s)R−L−Dβ

(
g(u(s)) −Dg(0)u(s)

)
ds

+

m∑

α=1

∫ t

0
L−K(t)Dβ

(
Dxα

(
D fα(0)u(s) − fα(u(s))

)
+

(
g(u(s)) −Dg(0)u(s)

))
ds.(5.46)

As we see form the above formula, in this case one gains t−1/2 in the estimates of the convolution with
the smoothing kernels, because the principal terms in the initial data is K−0 and in the convolutions are
DK−0 and K−−(t), respectively, but no gain in the singular part L−K(t).

We start with the L2 norm of the β derivative: we have

(5.47)

‖Dβud(t)‖L2 ≤ C min{1, t−m/4−|β|/2−1/2}‖u(0)‖L1 + Ce−ct‖u(0)‖H|β|

+C
∫ t/2

0
min

{
1, (t − s)−m/4−1−|β|/2}‖u(s)2‖L1 ds

+C
∫ t

t/2
min

{
1, (t − s)−m/4−1

}( m∑

α=1
‖Dβu2hα(u(s))‖L1 + ‖Dβu2h(u(s))‖L1

)
ds

+C
∫ t

0
e−c(t − s)

( m∑

α=1
‖DβDxαu2hα(u(s))‖L2 + ‖Dβu2h(u(s))‖L2

)
ds.
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Using (5.36) and (5.33),we have

(5.48)
m∑

α=1
‖Dβu2hα(u(s))‖L1 + ‖Dβu2h(u(s))‖L1 ≤ C min

{
1, t−m/2−|β|/2} (E2

|β|+[m/2] + E[m/2]+1E|β|+[m/2]+1
)
.

Next, using (5.23) and then (5.44) and (5.40), yields

(5.49)

m∑

α=1
‖DβDxαu2hα(u(s))‖L2 + ‖Dβu2h(u(s))‖L2 ≤ C‖u‖L∞‖Dβu‖H[m/2]+2

≤ C min
{
1, t−m/2

}
E[m/2]+1 min

{
1, t−m/4−|β|/2}E|β|+[m/2]+2.

Therefore, we use the above inequalities in (5.47), to give

(5.50)

‖Dβud(t)‖L2 ≤ C min{1, t−m/4−|β|/2−1/2}E|β|

+C min
{
1, t−m/4−1−|β|/2}

(∫ t/2

0
min

{
1, s−m/2

}
ds

)
E2

[m/2]+1

+C min
{
1, t−m/2−|β|/2}

(∫ t

t/2
min

{
1, (t − s)−m/4−1

}
ds

) (
E2
|β|+[m/2] + E[m/2]+1E|β|+[m/2]+1

)

+C
(∫ t

0
e−c(t−s) min{1, s−3m/4−|β|/2}ds

)
E[m/2]+1E|β|+[m/2]+2.

Then, for m ≥ 2, we obtain

‖Dβud(t)‖L2 ≤ C min{1, t−m/4−|β|/2−1/2}(E|β| + E2
[m/2]+1 + E2

|β|+[m/2] + E[m/2]+1E|β|+[m/2]+2),

which implies

(5.51) ‖Dβud(t)‖L2 ≤ C min{1, t−m/4−|β|/2−1/2}E[m/2]+|β|+1,

with C = C(E|β|+[m/2]+2).
About the L∞ norm, we can use (5.51) and, by arguing as in (5.41), we have

(5.52) ‖Dβud(t)‖L∞ ≤ C min{1, t−m/2−|β|/2−1/2}E|β|+m+1,

for m ≥ 2. Actually, it is also possible as before, to show by a direct calculation, that the following
estimate holds:

(5.53) ‖Dβud(t)‖L∞ ≤ C min{1, t−m/2−|β|/2−1/2}E|β|+[m/2]+1.

We also obtain the Lp-decay estimate

(5.54) ‖Dβud(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2}E|β|+[m/2]+1,

with p ∈ [2 +∞], m ≥ 2.
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For m = 1, we recall that, thanks to (3.57), L−K(t)R− = K−− = D2S−−, where S−− is a heat like kernel.
Therefore, we will consider the equation

Dβud(t) =
(
DβL−K(t) + DβL−R(t)

)
u(0) +K(t)Dβu(0)

+

∫ t/2

0
Dβ+1

(
L−K(t − s) + L−R(t − s)

)(
D f (0)u(s) − f (u(s))

)
ds

+

∫ t

t/2

(
L−K(t − s) + L−R(t − s)

)
Dβ+1

(
D f (0)u(s) − f (u(s))

)
ds

+

∫ t/2

0
Dβ

(
D2S−−(t − s) + R−−(t − s)

)
L−

(
g(u(s)) −Dg(0)u(s)

)
ds

+

∫ t

t/2
DS−−(t − s)L−Dβ+1

(
g(u(s)) −Dg(0)u(s)

)
ds

+

∫ t

t/2
R−−(t − s)L−Dβ

(
g(u(s)) −Dg(0)u(s)

)
ds

+

∫ t

0
L−K(t − s)Dβ

(
D
(
D f (0)u(s) − f (u(s))

)
+

(
g(u(s)) −Dg(0)u(s)

))
ds.(5.55)

Thanks to this decomposition we can prove the L2 estimate for m = 1. Using (5.48) and, for the fifth
integral, the L1-estimate of R−− coupled with (5.23), we have

(5.56)

‖Dβud(t)‖L2 ≤ C min{1, t−1/4−β/2−1/2}Eβ

+C min
{
1, t−1/4−1−β/2}

(∫ t/2

0
min

{
1, s−1/2

}
ds

)
E2

1

+C min
{
1, t−1−β/2}

(∫ t

t/2
min

{
1, (t − s)−3/4

}
ds

)
Eβ+2Eβ+1

+C min
{
1, t−3/4−β/2}

(∫ t

t/2
min

{
1, (t − s)−3/2

}
ds

)
E1Eβ+1

+C
(∫ t

0
e−c(t−s) min{1, s−3/4−β/2}ds

)
E1Eβ+2.

Therefore, we have (5.51) for m = 1. On the other hand, we can estimate the L∞-norm as follows. First
we have

‖Dβud(t)‖L∞ ≤ C min{1, t−1−β/2}‖u(0)‖L1 + Ce−ct‖Dβu(0)‖L∞

+ C
∫ t/2

0
min

{
1, (t − s)−3/2−β/2}‖u(s)2‖L1 ds

+ C
∫ t

t/2
min

{
1, (t − s)−1/2

}
‖Dβ+1u2h(u(s))‖L∞ds

+ C
∫ t

t/2
min

{
1, (t − s)−3/2

}
‖Dβu2h(u(s))‖L∞ds

+ C
∫ t

0
e−c(t − s)(‖Dβ+1u2h(u(s))‖L∞ + ‖Dβu2h(u(s))‖L∞

)
ds.

By using (5.42), we have

(5.57) ‖Dβu2h(u(t))‖L∞ ≤ C min
{
1, t−1−β/2}Eβ+1Esup(β,1),
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which yields

‖Dβud(t)‖L∞ ≤ C min{1, t−1−β/2}‖u(0)‖L1 + Ce−ctEβ+1

+CE2
1 min

{
1, t−3/2−β/2}

∫ t/2

0
min

{
1, s−1/2

}
ds

+CEβ+2Eβ+1 min
{
1, t−3/2−β/2}

∫ t

t/2
min

{
1, (t − s)−1/2

}
ds

+CE2
β+1 min

{
1, t−1−β/2}

∫ t

t/2
min

{
1, (t − s)−3/2

}
ds

+CEβ+2Eβ+1 min
{
1, t−1−β/2}.

Therefore, we conclude
(5.58) ‖Dβud(t)‖L∞ ≤ C min{1, t−1−β/2}Eβ+1,

with C = C(Eβ+2).
Theorem 5.6. Under the assumptions of Theorem 5.4, we have the following decay estimates for the dissipative
part of u:

(5.59) ‖Dβud(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−1/2−|β|/2}E|β|+[m/2]+1,

with C = C(E|β|+σ), for σ large enough, and p ∈ [2,+∞].
Remark 5.7. As previously, for m = 1, we can estimate the L1 norm. By the decomposition (5.55), and
using (5.48), we have

‖Dβud(t)‖L1 ≤ C min
{
1, t−1/2−β/2}‖u(0)‖L1 + Ce−ct‖Dβu(0)‖L1

+ CE2
1 min

{
1, t−1−β/2}

∫ t/2

0
min

{
1, s−1/2

}
ds

+ CEβ+1Eβ+2 min
{
1, t−1−β/2}

∫ t

t/2
min

{
1, (t − s)−1/2

}
ds

+ CE2
β+1 min

{
1, t−1/2−β/2}

∫ t

t/2
min

{
1, (t − s)−3/2

}
ds

+ CEβ+1Eβ+2

∫ t

0
e−c(t − s) min

{
1, s−1/2−β/2ds

}

≤ C min
{
1, t−1/2−β/2}Eb̄+1,(5.60)

which yields

(5.61) ‖Dβud(t)‖L1 ≤ C
(
min

{
1, t−1/2−β/2}Eβ+1 + e−ct‖Dβu(0)‖L1

)
,

with the constant C = C(Eβ+2), so that, for m = 1, Theorem 5.6 holds for p ∈ [1,+∞].
5.3. Decay estimates for the time derivative. We estimate now the decay of the time derivative of the
solution. Directly from equations we obtain

‖Dβut(t)‖Lp ≤
m∑

α=1
‖DβDxα fc,α(u)‖Lp + C‖Dβud‖Lp + ‖Dβ(g(u) −Dg(0)u)‖Lp

≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2}E|β|+[m/2]+2,(5.62)

where p ∈ [2,+∞]. For m = 1, as previously,

(5.63) ‖Dβut(t)‖L1 ≤ C min
{
1, t−1/2−β/2}Eβ+2 + Ce−ct‖Dβ+1u(0)‖L1 .
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About the dissipative variables, we write

(ut)t +

m∑

α=1
D fα(0)(ut)xα −Dg(0)ut =

m∑

α=1
((D fα(0) −D fα(u))ut)xα + (Dg(u) −Dg(0))ut,

so that we obtain
Dβud,t(t) = DβL−K(t)ut(0) +K(t)Dβut(0)

+

m∑

α=1

∫ t/2

0
DβDxαL−K(t − s)

(
(D fα(0)u(s) −D fα(u))ut(s)

)
ds

+

m∑

α=1

∫ t

t/2
DxαL−K(t − s)Dβ

(
(D fα(0) −D fα(u))ut(s)

)
ds

+

∫ t/2

0
DβL−K(t − s)R−L−

(
(Dg(u) −Dg(0))ut(s)

)
ds

+

∫ t

t/2
L−K(t − s)R−DβL−

(
(Dg(u) −Dg(0))ut(s)

)
ds

+

m∑

α=1

∫ t

0
K(t)Dβ

(
Dxα ((D fα(0) −D fα(u))ut(s)) + (Dg(u) −Dg(0))ut(s)

)
ds.(5.64)

It holds
L−DβK(t)R0L0ut(0) = −

∑

α

DβDxαL−K(t)R0L0 fα(u(0)),

and
L−DβK(t)R−L−ut(0) = −

∑

α

DβDxαL−K(t)R−L− fα(u(0)) + DβL−K(t)R−L−g(u(0)).

Since fα(0) = g(0) = 0, we have ‖ fα(u)‖L1 , ‖g(u)‖L1 = O(1)‖u‖L1 , which can be used, for m ≥ 2, to yield

‖Dβud,t(t)‖L2 ≤ C min{1, t−m/4−|β|/2−1}‖u(0)‖L1 + Ce−ctE|β|+[m/2]+2

+ CE[m/2]+2 min
{
1, t−m/4−1−|β|/2}

∫ t/2

0
min

{
1, s−m/2−1/2

}
ds

+ CE|β|+[m/2]+2 min
{
1, t−m/2−|β|/2−1/2

} ∫ t

t/2
min

{
1, (t − s)−m/4−1

}
ds

+ CE|β|+[m/2]+3 min
{
1, t−3m/4−|β|/2−1/2

}

≤ C min{1, t−m/4−|β|/2−1}E|β|+[m/2]+3.(5.65)
It follows by using the same analysis of (5.58) that for all p ∈ [2,+∞]

(5.66) ‖Dβud,t(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1}E|β|+[m/2]+3.

Repeating the computations we did above for m = 1, it follows that the above estimate holds also for
m = 1.

Theorem 5.8. Under the assumptions of Theorem 5.4, we have the following decay estimates for ut

(5.67) ‖Dβut(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−1/2−|β|/2}E|β|+[m/2]+2,

(5.68) ‖Dβud,t(t)‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−1−|β|/2}E|β|+[m/2]+3,

where C = C(E|β|+σ) for σ large enough and p ∈ [2,∞].

For m = 1, as previously,

(5.69) ‖Dβud,t(t)‖L1 ≤ C min
{
1, t−1−β/2}Eβ+3 + Ce−ct‖Dβ+1u(0)‖L1 .
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5.4. Decay to linear solution. We consider here the difference among the solution of the nonlinear
equation (5.1) and the linearized one

(5.70) ut +

m∑

α=1
D fα(0)uxα =

(
0

Dud q(0)ud

)
,

where we have already considered the conservative-dissipative variable pair. The idea is that if the
dimension m is sufficiently large, then the decay of the non linear parts is faster than the linear part.
Since it is easy to show that the following results do not hold in the case m = 1, we will consider in the
following m ≥ 2, thus estimating only the Lp norm, p ∈ [2,+∞].

By using the representation (5.7), it follows that

u(t) − ul(t) =

m∑

α=1

∫ t

0
DxαΓ(t − s)

(
D fα(0)u(s) − fα(u(s))

)
ds

+

∫ t

0
Γ(t − s)(g(u(s)) −Dg(0)u(s))ds.(5.71)

Repeating the estimates leading to (5.38) and (5.51), it follows that for m ≥ 3

(5.72) ‖Dβ(u(t) − ul(t))‖L2 ≤ min
{
1, t− m

4 −|β|/2−1/2
}
E2
|β|+[m/2]+1.

By arguing as previously, it follows also that

(5.73) ‖Dβ(u(t) − ul(t))‖Lp ≤ min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2}E2
|β|+[m/2]+1,

for m ≥ 3. If one tries to repeat the above computations for m = 2, one finds that there is a critical integral
of the form

I =

∫ t

0
L−K(t − s)R−L−(g(u(s)) −Dg(0)u(s))ds,

which we can only estimate at order ln t/t, since, directly using Theorem 4.2, we obtain that

‖I‖L2 ≤ C
∫ t

0
min

{
1, (t − s)−1

}
min

{
1, s−1

}
ds.

However, using Remark 4.6, we can actually write

I = O(1)
∑

α

∫ t

0

(∫ t−s

0
L−K(t − s − τ)AαR−eτDud q(0)dτ

)
Dxα (g(u(s)) −Dg(0)u(s))ds.

Therefore, estimating the Kernel in L1 and the term Dxα (g(u(s)) −Dg(0)u(s)) in L2, we obtain

‖I‖L2 ≤ C
∫ t

0
min

{
1, (t − s)−1/2

}
min

{
1, s−3/2

}
≤ C min

{
1, s−1

}
.

We thus conclude with the following result.

Theorem 5.9. Let ul be the solution of problem (5.70), (5.2), under the assumptions of Theorem 5.4, for m ≥ 2
and p ∈ [2,∞], we have the following decay estimate

(5.74) ‖Dβ(u(t) − ul(t))‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2}E|β|+[m/2]+1,

with C = C(E|β|+σ), for σ large enough.
We notice now that for the conservative part we have that

L0ul(t) = L0Γ(t) (R0L0u(0) + R−L−u(0))

= K00(t)L0u(0) + L0K(t)R−L−u(0) + L0K(t)u(0).
So, using Theorem 4.2, and by arguing as for Theorem 5.9, we obtain another interesting approximation.

Theorem 5.10. Under the assumptions of Theorem 5.9, the following decay estimate holds

(5.75) ‖Dβ(uc(t) − K00(t)L0u(0))‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2}E|β|+[m/2]+1.
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Let us notice that, by definition, the pseudo-differential operator K00 is always fully parabolic.

5.5. Chapman-Enskog expansion. We show now how the solutions to the parabolic Chapman-Enskog
expansion approximate the conservative part of the solutions to the nonlinear hyperbolic problem:

(5.76) ut +

m∑

α=1
Aα(u)uxα =

(
0

q(u)

)
,

where Aα(u) = D fα(u). We use the conservative-dissipative decomposition of u:

(5.77) uc,t +

m∑

α=1
Aα,11(0)uc,xα +

m∑

α=1
Aα,12(0)ud,xα = L0

m∑

α=1

(Aα(0)u − fα(u))xα ;

(5.78) ud,t +

m∑

α=1
Aα,21(0)uc,xα +

m∑

α=1
Aα,22(0)ud,xα = Dud q(0)ud + L−

m∑

α=1

(Aα(0)u − fα(u))xα +
(q(u) −Dud q(0)ud

)
.

We can compute ud using (5.78), which yields, inserting in (5.77):

(5.79)

uc,t +
∑m
α=1 Aα,11(0)uc,xα +

∑m
β=1

∑m
α=1 Aα,12(0)(Dud q(0))−1Aβ,21(0)uc,xαxβ

= L0
∑m
α=1

(Aα(0)u − fα(u))xα +
∑m
α=1 Aα,12(0)(Dud q(0))−1 (q(u) −Dud q(0)ud

)
xα

−∑m
α=1 Aα,12(0)(Dud q(0))−1

(
ud,txα +

∑m
β=1 Aβ,22(0)ud,xαxβ −

∑m
β=1 L−

(
Aβ(0)u − fβ(u)

)
xαxβ

)
.

We consider the linear parabolic equation

(5.80) wt +

m∑

α=1
Aα,11(0)wxα +

m∑

β=1

m∑

α=1
Aα,12(0)(Dud q(0))−1Aβ,21(0)wxαxβ = 0,

and we denote by up(t) the solution of the weakly parabolic equation (5.80) with
(5.81) up(0) = L0u(0).
Using Remark 4.3 and by arguing again as for Theorem 5.9, it is possible to prove the following result.

Theorem 5.11. Let up be the solution of problem (5.80), (5.81), under the assumptions of Theorem 5.4, for m ≥ 2
and p ∈ [2,∞], we have the following decay estimate

(5.82) ‖Dβ(uc(t) − up(t))‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2}E|β|+[m/2]+1,

with C = C(E|β|+σ), for σ large enough.
Notice that the same faster decay holds for the difference between the solution up to the weakly

parabolic problem and the solution K00L0u(0) of the“fully” parabolic pseudo-differential problem.

Example 5.12. Rotationally invariant systems Consider the isentropic dissipative Euler equations

(5.83)



ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v) + 1
γ∇ργ = −v.

We can linearize the system around the constant state (ρ̄, v̄) = (1, 0), so obtaining system (4.40) of Example
4.7. In that case we can immediately apply Theorems 5.4, 5.6, 5.9, and 5.11. In particular, by eliminating
v in (4.40), we obtain the estimate

‖Dβ(ρ(t) − ρw(t))‖Lp + ‖Dβ(ρ(t) − ρp(t))‖Lp ≤ C min
{
1, t−

m
2 (1− 1

p )−|β|/2−1/2},
where ρw and ρp are respectively the solutions of the m-dimensional dissipative wave equation equation

ρw,t + ρw,tt − ∆ρw = 0,
and the m-dimensional heat equation

ρp,t − ∆ρp = 0.
These estimates improve on previous results about this problem contained in [34] and [7].
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Consider now the relaxation system

(5.84)



ρt + div(ρv) = 0,

(ρv)t + div(ρR) + ∇ρ = 0,

(ρR)t + ∇(ρv) = ρv ⊗ v − ρR.
Its local relaxation limit is given by the (non dissipative) isentropic Euler equations. However, its
linearized version around the state (ρ̄, v̄, R̄) = (1, 0, 0), is just given by system (4.43) of Example 4.7.
Again, we can explicitly identify the asymptotic limits, with analogous decay rates, in terms of the linear
hyperbolic system (4.43) and, thanks to the analysis in Example 4.7, of the fully parabolic system (4.49),
which corresponds to the kernel K00 given by (4.44). Finally, thanks to Theorem 5.11, the same behavior
is shown by its Chapman-Enskog expansion, which is given in this case by the weakly parabolic system



ρt + divv = 0,

vt + ∇ρ = ∆v.

The Chapman-Enskog expansion in the case m = 1. For m = 1, we need to consider together with the
linear part the nonlinear terms of the order of u2, because the decay of u2 convoluted with the linear
kernel and integrated in time gives the same decay estimate of u. We will prove that for all 0 ≤ µ < 1/2,
the difference among the conservative variables and the solution to an approximated Chapman-Enskog
expansion decays as t−1/2(1−1/p)−µ in Lp if the initial data is sufficiently small: their size goes to 0 as
µ→ 1/2.

Let us introduce the operators

(5.85) Ã =
1
2
(
L0D2

uc f (0) − A12(0)(Dud q(0))−1D2
uc q(0)

)
,

(5.86) B̃ = A12(0)(Dud q(0))−1A21(0).

We rewrite (5.79) as

(5.87) uc,t +
(
A11(0)uc + Ã(uc, uc)

)
x

+ B̃uc,xx = Sx,

with
S = L0

(
A(0)u − f (u) + 1

2 D2
uc f (0)(uc, uc)

)

+A12(0)(Dud q(0))−1
(
q(u) −Dud q(0)ud − 1

2 D2
uc q(0)(uc, uc)

)

−A12(0)(Dud q(0))−1
(
ud,t + A22(0)ud,x − L−

(A(0)u − f (u))x
)
.

In the same way, we replace (5.80) by the nonlinear parabolic equation

(5.88) wt +
(
A11(0)w + Ã(w,w)

)
x

+ B̃wxx = 0.

We introduce Fβ, with F1 = E1 and, if β ≥ 1,

(5.89) Fβ+1 =



Eβ+1, if p ∈ [2,∞],

Eβ+1 + ‖Dβu(0)‖L1 , otherwise.

Theorem 5.13. Let up be the solution of problem (5.88), (5.81), under the assumptions of Theorem 5.4, for m = 1
and p ∈ [1,∞], for µ ∈ [0, 1/2), if E1 sufficiently small with respect to (1/2− µ), then we have the following decay
estimate

(5.90) ‖Dβ(uc(t) − up(t))‖Lp ≤ C min
{
1, t−

1
2 (1− 1

p )−µ−β/2}Fβ+4,

where C = C(µ, Fβ+σ), for σ large enough.



ASYMPTOTIC BEHAVIOR FOR PARTIALLY DISSIPATIVE HYPERBOLIC SYSTEMS 43

Proof. We denote by Γp(t) the Green kernel of the linear parabolic equation

(5.91) wt + A11(0)wx + B̃wxx = 0.
Using Remark 4.3, Γp(t) can be written as

(5.92) Γp(t) = K00(t) + K̃(t) + R̃(t),
where K00(t) is the 00 component of the principal part K(t) of the relaxation kernel Γ(t), given by (3.57).

We take the difference among uc(t) and up(t):

Dβ(uc(t) − up(t)) =

∫ t/2

0
DβD

(
K00(t − s) + R̃(t − s)

)(
Ã(up(s), up(s)) − Ã(uc(s), uc(s))

)
ds

+

∫ t/2

0
DβD

(
K00(t − s) + R̃(t − s)

)
S(s)ds

+

∫ t

t/2
D(K00(t − s) + R̃(t − s))Dβ

(
Ã(up(s), up(s)) − Ã(uc(s), uc(s)) + S(s)

)
ds

+

∫ t

0
K̃(t − s)DβD

(
Ã(up(s), up(s)) − Ã(uc(s), uc(s)) + S(s)

)
ds.(5.93)

By the previous estimates on Dβu, Dβud, Dβud,t, we have that

(5.94)
∥∥∥∥DβS

∥∥∥∥Lp
≤ C min

{
1, t−1/2(1−1/p)−1−β/2}Fβ+3.

Let us define, for a fixed µ ∈ [0, 1/2),

(5.95) m0(t) � sup
0≤τ≤t

{
max

{
1, τ1/4+µ

}
‖uc(τ) − up(τ))‖L2

}
.

Taking the L2 norm of (5.93), for β = 0 we have

‖uc(t) − up(t)‖L2 ≤ CE1m0(t)
∫ t

0
min

{
1, (t − s)−3/4

}
min

{
1, s−1/2−µ}ds

+ CF3

∫ t

0
min

{
1, (t − s)−3/4

}
min

{
1, s−1

}
ds

+ C(E2E1 + F4)
∫ t

0
e−c(t − s) min

{
1, s−5/4

}
ds

≤ C min
{
1, s−1/4−µ}(E1E2 + E1 + F4 + (1/2 − µ)−1E1m0(t)).

It follows thus
(5.96) m0(t) ≤ CF4,

for E1 sufficiently small with respect to (1/2 − µ).
Assume now that for γ < β

(5.97) ‖Dγ(uc − up)(t)‖L2 ≤ C(µ) min
{
1, t−1/4−µ−γ/2}Fγ+4,

with µ < 1/2, and set

(5.98) mβ(t) � sup
0≤τ≤t

{
max

{
1, τ1/4+µ+β/2

}
‖Dβ(uc(τ) − up(τ))‖L2

}
.

Using the induction assumption (5.97), we obtain

‖Dβ(Ã(uc(s), uc(s)) − Ã(up(s), up(s)))‖L1 ≤ C
∑β−1
α=0

(
‖Dβ−αuc‖L2 + ‖Dβ−αup‖L2

)
‖Dα(uc − up)‖L2

+C(‖uc‖L2 + ‖up‖L2 )‖Dβ(uc − up)‖L2

≤ C min
{
1, t−1/2−µ−β/2}(C(µ)Eβ+1Fβ+3 + E1mβ(t)).
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Using this inequality, (5.94) and (5.96) in (5.93) yields

‖Dβ(uc(t) − up(t))‖L2 ≤ CE2
1

∫ t/2

0
min

{
1, (t − s)−3/4−β/2} min

{
1, s−1/2−µ}ds

+ CF3

∫ t/2

0
min

{
1, (t − s)−3/4−β/2} min

{
1, s−1

}
ds

+ C(C(µ)Eβ+1Fβ+3 + E1mβ(t))
∫ t

t/2
min

{
1, (t − s)−3/4

}
min

{
1, s−1/2−µ−β/2}ds

+ CFβ+4

∫ t

t/2
min

{
1, (t − s)−3/4

}
min

{
1, s−1−β/2}ds

+ C(Eβ+2E1 + Fβ+4)
∫ t

0
e−c(t − s) min

{
1, s−5/4−β/2}ds.

It follows that mβ(t) ≤ C(µ)Fβ+4, and we have (5.97) for β.
As for the estimate (5.41), we have the L∞-estimate

(5.99) ‖Dβ(uc(t) − up(t))‖L∞ ≤ C(µ) min
{
1, t−1/2−µ−β/2}Fβ+4.

Finally, we estimate the L1-norm in (5.93):

‖Dβ(uc(t) − up(t))‖L1 ≤ CE2
1

∫ t/2

0
min

{
1, (t − s)−1/2−β/2} min

{
1, s−1/2−µ}ds

+ CF3

∫ t/2

0
min

{
1, (t − s)−1/2−β/2} min

{
1, s−1

}
ds

+ C(C(µ)Eβ+1Fβ + E1mβ+3(t))
∫ t

t/2
min

{
1, (t − s)−1/2

}
min

{
1, s−1/2−µ−β/2}ds

+ CFβ+4

∫ t

t/2
min

{
1, (t − s)−1/2

}
min

{
1, s−1−β/2}ds

+
(
C(µ)(Eβ+2Fβ+4 + E1Fβ+5) + Fβ+4

) ∫ t

0
e−c(t − s) min

{
1, s−1−β/2}ds.

It follows that

(5.100) ‖Dβ(uc(t) − up(t))‖L1 ≤ C min
{
1, t−µ−β/2

}
Fβ+4.

Therefore, we obtain the conclusion. �

Example 5.14. The p-system with relaxation. We can apply Theorem 5.13 to the Example 2.10. In this
case the Chapman-Enskog expansion is given by the semilinear parabolic equation

(5.101) up,t + h′(0)up,x +
1
2h′′(0)(u2

p)x − (λ2 − a2)up,xx = 0.

For previous results about this example see [6] and [22]. Notice that in [6], the data are chosen in a
special class, which allows to take µ = 1/2 in Theorem 5.13. However, even for this special example,
our C-D decomposition gives a more precise description on the behavior of the solution, in terms of the
dissipative part ud = (λ2 − a2)− 1

2 (v − au).
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