
On infinite dimensional systems of conservation laws of

Keyfitz-Kranzer type

E.Yu. Panov

Abstract

We prove existence and uniqueness of strong generalized entropy

solution to the Cauchy problem for an infinite dimensional system of

Keyfitz-Kranzer type, in which the unknown vector takes its value in

an arbitrary Banach space.

We study the Cauchy problem for an equation

ut + (ϕ(‖u‖)u)x = 0 (1)

with initial condition
u(0, x) = u0(x). (2)

Here the unknown vector u = u(t, x) is defined in a half-plane Π = R+ × R,
R+ = (0, +∞) and takes its values in some real Banach space X equipped
with norm ‖ · ‖. We suppose that the function ϕ(r) ∈ C(R+) and

rϕ(r) → 0 as r → 0 + . (3)

The initial function u0(x) ∈ L∞(R, X), i.e. it is an essentially bounded
strongly measurable function on R.

Remark that in the case when X = Lp(R) equation (1) can be written as
the following integral-differential equation

∂

∂t
u(t, x, λ) +

∂

∂x

[

ϕ
(

∫

|u(t, x, µ)|pdµ
)

u(t, x, λ)
]

= 0, p ≥ 1.

In the case of finite dimensional X equation (1) is reduced to the known
Keyfitz-Kranzer system (see [1]). This case was completely investigated in [7],
where in particular existence and uniqueness of a strong generalized entropy
solution (strong g.e.s.) of problem (1), (2) were proved. In the present paper
these results are extended for the case of an arbitrary Banach space X.

Let f(r) = rϕ(|r|) ∈ C(R), for r = 0 we set f(r) = 0 in accordance with
(3). By analogy with finite-dimensional case we define a notion of a strong
g.e.s. of problem (1), (2).

1



Definition. A function u = u(t, x) ∈ L∞(Π, X) is called a strong g.e.s.
of (1), (2) if:

1) u(t, x) satisfies (1) in the sense of distributions ( in D′(Π, X) );
2) the function r = ‖u(t, x)‖ is a g.e.s. of the Cauchy problem for the

scalar equation
rt + f(r)x = 0, r(0, x) = ‖u0(x)‖ (4)

in the sense of S.N. Kruzhkov [2];
3) initial condition (2) is satisfied in the following strict form

ess lim
t→0

u(t, ·) = u0 in L1
loc(Π, X).

If u(t, x) is a strong g.e.s. of the problem (1), (2) then the function
r(t, x) = ‖u(t, x)‖ is uniquely determined by condition 2), as the unique
g.e.s. of scalar problem (4). It is essential here that the spatial variable x is
single, for the multidimensional equation rt + divx f(r) = 0, x ∈ R

n, n > 1
with only continuous flux vector f(r) ∈ C(R, R

n) a g.e.s. of the Cauchy
problem can be nonunique, see [3, 4, 8].

Thus, for the construction of a strong g.e.s. of problem (1), (2) we have
only to find the value v = u/r ( here for r = 0 the value of v can be chosen
arbitrarily, for instance we can set v = 0 ). From condition 1) it follows that
the vector v = v(t, x) must satisfy in D′(Π, X) the linear equation

(rv)t + (f(r)v)x = 0, v = v(t, x) ∈ L∞(Π, X) (5)

and the initial condition rv(0, x) = u0(x). In the scalar case v ∈ R the
theory of generalized solutions (g.s.) of the Cauchy problem for equation of
the kind (5) was developed in papers [5, 6, 7], where existence and uniqueness
(for the product rv) of g.s. were proved together with the following important
property:

any continuous function of a finite set of g.s. to problem (5) is also a g.s.
to this problem with corresponding initial data.

Going to investigation of infinite-dimensional case v ∈ X, let us consider
the Cauchy problem for a general linear transport equation

(Av)t + (Bv)x = 0, (6)

with initial condition

v(0, x) = v0(x) ∈ L∞(R, X). (7)

2



Suppose, as in [5, 6, 7], that the coefficients A, B ∈ L∞(Π) satisfy the follow-
ing conditions:

ess lim
t→0+

A(t, x) = A(0, x) in L1
loc(R), A(0, x) ∈ L∞(R); (8)

∀ε > 0 |B| ≤ N(ε) · (A + ε) a.e. on Π , εN(ε) →
ε→0+

0; (9)

At + Bx = 0 in D′(Π). (10)

As was shown in [7], coefficients A = r, B = f(r) satisfy conditions (8)-(10),
moreover one can take in (9) N(ε) = ω(ε)/ε, where ω(σ) is the modulus of
continuity of f(u) on the segment [−R, R], R = ‖r‖∞. From condition (9) it
easily follows that A ≥ 0 a.e. on Π and B = 0 a.e. on the set, where A = 0.

The notion of a g.s. of problem (6), (7) is defined in the same way as in
[5, 7]:

Definition 2. A function v = v(t, x) ∈ L∞(Π, X) is called a g.s. of
Cauchy problem (6), (7) if for any test function h = h(t, x) from the space
C∞

0 (Π̄) with Π̄ = [0, +∞)× R

∫

Π
[Avht + Bvhx]dtdx +

∫

R

A(0, x)v0(x)h(0, x)dx = 0. (11)

Since the function v is supposed to be bounded and strongly mea-
surable the integrals in (11) are well-defined. It is clear that a vector
v = v(t, x) ∈ L∞(Π, X) is a g.s. of problem (6), (7) if and only if the scalar
functions < x′, v > are g.s. of this problem for all linear continuous function-
als x′ ∈ X ′, here X ′ being a conjugate space to X. Remark also that values
of the functions v(t, x) and v0(x) on the sets, where respectively A(t, x) = 0,
A0(x) = 0 do not matter and we can consider these functions as elements of
the spaces L∞(·, X) with respect to weighted measures Adtdx and A0dx.

To extend results of the papers [5, 6, 7] to the general case v ∈ X we
shall need the following technical lemma, which was proved in [7]:

Lemma 1. Let αt + βx ≤ 0 in D′(Π), where
α = α(t, x), β = β(t, x) ∈ L∞(Π); ess lim

t→0+
α(t, x) = α(0, x) in L1

loc(R); ∀ε > 0

|β(t, x)| ≤ N(ε)(α(t, x) + ε) a.e. on Π (in particular this condition implies
that α ≥ 0 a.e. on Π), N(ε) ≥ 1. Then for a.e. t > 0 the following estimate
holds:

∫

α(t, x)e−|x|dx ≤ et · inf
ε>0

(
∫

α(0, x)e−|x|/N(ε)dx + 2εN(ε)
)

.
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Now, we can prove the following

Theorem 1.

1) There exists a g.s. v = v(t, x) ∈ L∞(Π, X) of problem (6), (7);
2) ess limt→0+ A(t, x)v(t, x) = A0(x)v0(x) in L1

loc(R, X);
3) for any continuous function p(u) ∈ C(X), which is bounded on bounded

subsets of X, the composition p(v(t, x)) is a scalar g.s. of (6), (7) with initial
data p(v0(x));

4) if A(0, x)v0(x) = 0 a.e. on R then A(t, x)v(t, x) = 0 a.e. on Π ( unique-
ness ).

Proof. Remark firstly that for the finite-dimensional space X problem
(6), (7) reduces to the scalar problem for the corresponding coordinate func-
tions and in this case assertions 1)-4) have been already proved in [5, 6, 7]
( see for instance Propositions 4-6 in [7] ). In the general case to prove exis-
tence of g.s. we apply the technique of finite-dimensional approximations.

Thus, let v0n = v0n(x), n ∈ N be a sequence of simple functions such
that v0n →

n→∞
v0 in L1

loc(R, X). Recall that a simple function is a measurable

function, which takes only a finite number of values in X. Since v0(x) is
strongly measurable the approximated sequence v0n really exists, and in ad-
dition we can suppose that ‖v0n‖∞ ≤ M = ‖v0‖∞ ∀n ∈ N. Let xnk ∈ X,
k = 1, . . . , mn be values of the functions v0n, and Xn ⊂ X be a finite-
dimensional linear space generated by the vectors xnk, k = 1, . . . , mn. As
was mentioned above, there exists a unique g.s. vn = vn(t, x) ∈ L∞(Π, Xn)
of problem (6), (7) with initial functions v0n. Applying property 3 to this
g.s. with p(u) = max(‖u‖−M, 0), we obtain the g.s. p(vn) of scalar problem
(6), (7) with initial function p(v0n) = 0 and by the uniqueness property 4)
Ap(vn) = 0 a.e. on Π. The latter means ( after appropriate definition of vn

on the set, where A(t, x) = 0 ) that ‖vn‖∞ ≤ M ∀n ∈ N. For k, l ∈ N the
difference vk − vl takes its values in the finite-dimensional subspace Xk + Xl

and by property 3) with p(u) = ‖u‖ the function θ = ‖vk − vl‖ is a g.s. of
scalar problem (6), (7) with initial data θ0 = ‖v0k − v0l‖.

Further, observe that in view of (9) ∀ε > 0

|B|θ ≤ N(ε)(A + ε)θ ≤ N(ε)(Aθ + εθ) ≤

N(ε)(Aθ + 2Mε) ≤ N̄(ε)(Aθ + ε) a.e. on Π,

where N̄(ε) = max(2M, 1)N(ε) + 1.
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We see that the functions α(t, x) = Aθ = A‖vk − vl‖,
β(t, x) = Bθ = B‖vk − vl‖ satisfy the conditions of Lemma 1 with
N(ε) = N̄(ε), α(0, x) = A(0, x)θ0(x) = A(0, x)‖v0k − v0l‖. By Lemma 1
for a.e. t > 0 and all k, l ∈ N

∫

A(t, x)‖vk(t, x)− vl(t, x)‖e−|x|dx ≤ etωkl, (12)

where

ωkl = inf
ε>0

(
∫

A(0, x)(v0k(x) − v0l(x))e−|x|/N̄(ε)dx + 2εN̄(ε)
)

.

By the construction the sequence v0k converges as k → ∞ to the function v0

in L1
loc(R, X) and it is bounded in L∞(R, X): ‖v0k‖∞ ≤ M . From this and

the condition εN̄(ε) →
ε→0

0 it easily follows ( see the proof of Proposition 9

in [6] ) that lim
k,l→∞

ωkl = 0 and (12) implies that for any T > 0 the sequence

vk(t, x) is fundamental in the spaces L1([0, T ]×R, X) equipped with measure
e−|x|A(t, x)dtdx. By the Cauchy criterion this sequence converges in the
indicated spaces to some function v = v(t, x). Besides, we can assume that
vk(t, x) = v(t, x) = 0 on the set, where A = 0. Then vk(t, x) → v(t, x) as
k → ∞ in the space L1

loc(Π, X) as well. In particular, the function v(t, x)
is strongly measurable and bounded, clearly ‖v‖∞ ≤ M . From relation (11)
with v = vk, v0 = v0k it follows in the limit as k → ∞ that the limit function
v ∈ L∞(Π, X) satisfies this relation with initial data v0. Thus, v is a g.s. of
problem (6), (7). Existence of g.s. is proved.

Further, passing to the limit in estimate (12) as l → ∞ we obtain that
∀t ∈ E, where E ⊂ R+ is some set of full measure

∫

A(t, x)‖vk(t, x) − v(t, x)‖e−|x|dx ≤ etωk, (13)

ωk = inf
ε>0

(
∫

A(0, x)(v0k(x) − v0(x))e−|x|/N̄(ε)dx + 2εN̄(ε)
)

.

Obviously, ωk → 0 as k → ∞ and from (13) it follows that as k → ∞
A(t, ·)vk(t, ·) → A(t, ·)v(t, ·) in the space L1(R, X) ( equipped with the mea-
sure e−|x|dx ) uniformly with respect to t ∈ [0, T ] ∩ E, ∀T > 0. Since for
the finite-dimensional solutions vk(t, x) property 2) is satisfied, and it can
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be written in the form ess lim
t→0+

A(t, ·)vk(t, ·) = A0v0k in L1(R, X), then due to

uniform convergence the limit function is essentially continuous at t = 0:

ess lim
t→0+

A(t, x)v(t, x) = A0(x)v0(x) in L1(R, X),

i.e. condition 2) is satisfied.
After a possible extraction of a subsequence we can assume that vk(t, x) →

v(t, x), v0k(x) → v0(x) in X as k → ∞ a.e. on Π and on R respectively. Let
a function p(u) be continuous on X and be bounded on bounded subsets of
X. Then the functions p(vk(t, x)), k ∈ N and p(v(t, x)) are bounded and
p(vk) → p(v) as k → ∞ a.e. on Π. By the Lebesgue dominated convergence
theorem we see that p(vk) → p(v) in L1

loc(Π, X) and, similarly, p(v0k) → p(v0)
in L1

loc(R, X). As was already mentioned, p(vk) is a scalar g.s. of problem
(6), (7) with initial data p(v0k). Passing to the limit in the corresponding
equality (11) as k → ∞ we derive that (11) holds for the limit function p(v)
and the initial function p(v0). Thus, p(v) is a g.s. of problem (6), (7) with
initial data p(v0).

It only remains to prove the uniqueness of g.s. Let A(0, x)v0(x) = 0
a.e. on R and v = v(t, x) be the corresponding g.s. of (6), (7). By strong
measurability the set of essential values of v(t, x) is separable ( see for example
[9] ). Thus, we can change X to the closed linear hull of the essential image
of v(t, x) and without loss of generality assume that X is a separable Banach
space. Then the conjugate space X ′ is weakly separable ( see [9] ) and we
can choose a countable weakly dense set S ⊂ X ′. For any functional x′ ∈ S
the function < x′, v(t, x) > is a g.s. of (6), (7) with zero initial data. By
the known uniqueness of scalar solutions we have < x′, A(t, x)v(t, x) >= 0
a.e. on Π. Since S is countable then the set of full measure, on which the
latter equality holds, can be chosen common for all x′ ∈ S. Then on this set
A(t, x)v(t, x) = 0 ( in view of density of S ⊂ X ′ ) that is A(t, x)v(t, x) = 0
a.e. on Π. The proof is complete.

From Theorem 1 it easily follows our main result:
Theorem 2. There exists a unique strong g.e.s. of problem (1), (2).
Proof. Let r = r(t, x) be the g.e.s. of scalar problem (4) with initial

function r0 = ‖u0(x)‖. Notice that by the comparison principle ( see [2, 3,
4, 8] ) r ≥ 0. By Theorem 1 we can find a g.s. v = v(t, x) of problem (5),

(7) with initial data v0(x) =

{

u0(x)/r0(x) , r0(x) > 0,
0 , r0(x) = 0.
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Then r0‖v0‖ ≡ r0 and by statement 3) of Theorem 1 ‖v(t, x)‖ is a g.s. of
scalar equation (5) with initial function, which is equals 1. Since constant
function are evidently g.s. of (5) ( in view of condition (10) ) then by unique-
ness property 4) r‖v‖ = r a.e. on Π. We set u = rv. Then u ∈ L∞(Π, X)
and ‖u‖ = r‖v‖ = r is a g.e.s. of problem (4). Further,

ut + (ϕ(‖u‖)u)x = (rv)t + (f(r)v)x = 0 in D′(Π, X),

because v satisfies equation (5) in the sense of distributions. Finally, as
it follows from the definition of g.e.s. of problem (4) and statement 2) of
Theorem 1,

ess lim
t→0

u(t, ·) = u0 in L1
loc(Π, X).

By Definition 1 u = u(t, x) is a strong g.e.s. of original problem (1), (2).
To prove uniqueness of a strong g.e.s. suppose that u1 = u1(t, x), u2 =

u2(t, x) are strong g.e.s. of problem (1), (2). Then ‖u1‖ = ‖u2‖ = r in view
of uniqueness of a g.e.s. to problem (4). But then vi = ui/r, i = 1, 2 are g.s.
of problem (5), (7) with the same initial function u0/r0. By uniqueness of
this g.s. u1 − u2 = r(v1 − v2) = 0 a.e. on Π, that was to be prove. The proof
is complete.
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