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Prolonged systems for a scalar conservation law and entropies of

higher orders

Abstract

We give a matrix representation for prolonged systems correspond-

ing to scalar conservation laws and describe entropies of such systems.

Let f ∈ Cn−1(R). We denote Dnf = Df(x) ∈ R
n the column

(f, f ′, . . . , f (n−1))⊤ consisting of derivatives of f , and consider the n × n-
matrix Tn(f) = Tn(f)(x), which is defined by the equality

Dn(fg) = Tn(f)Dng ∀g ∈ Cn−1(R). (1)

The coefficients of Tn(f) are continuous functions, depending on derivatives
f (k)(x), k = 0, . . . , n− 1. For instance, if n = 2, 3 then

T2(f) =

(

f 0
f ′ f

)

, T3(f) =







f 0 0
f ′ f 0
f ′′ 2f ′ f







respectively. In the general case, as it follows from the Leibnitz formula

(fg)(i−1) =
i
∑

j=1

Cj−1
i−1 f

(i−j)g(j−1),

Tn(f)ij = Cj−1
i−1 f

(i−j) for 1 ≤ j ≤ i ≤ n, Tn(f)ij = 0 for j > i

(in particular, the matrix Tn(f) is triangular). Here Ck
m =

m!

k!(m− k)!
are

binomial coefficients.
Clearly, Tn(αf1 + βf2) = αTn(f1) + βTn(f2), ∀f1, f2 ∈ Cn−1(R), α, β ∈ R.
Further, by the obvious identity

Tn(f1f2)Dg = Dn(f1(f2g)) = Tn(f1)Dn(f2g) = Tn(f1)Tn(f2)Dng,

Tn(f1f2) = Tn(f1)Tn(f2) ∀f1, f2 ∈ Cn−1(R).
Thus, the correspondence f → Tn(f) is a homomorphizm of algebras,

so that it is a linear representation of the algebra Cn−1(R) in the space
of vector-functions C(R,Rn). In particular, ∀η(u) ∈ Cn−1(R) we have the
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equality Tn(η(f)) = η(Tn(f)), i.e. Dn(η(f)g) = η(Tn(f))Dng ∀g ∈ Cn−1(R).
Here η(Tn(f)) is a function of the matrix Tn(f) understood in the sense of
functional calculus and, which is well-defined for η(u) ∈ Cn−1(R).

By the construction for any fixed x the image of the representation f →

Tn(f)(x) is a commutative n-dimensional matrix algebra Xn, consisting of
triangular matrices Un = Un(ū), ū = (u1, . . . , un), where

Un(ū)ij = Cj−1
i−1 ui−j+1 for 1 ≤ j ≤ i ≤ n, Un(ū)ij = 0 for j > i.

This algebra is isomorphic a quotient algebra of the polynomial algebra with
respect to the ideal generated by xn. The isomorphism is realized by the

map f → Tn(f)(0), so that for f(x) =
n
∑

i=1

uix
i−1/(i− 1)! Tn(f)(0) = Un(ū).

The following simple lemma will be needed for the sequel.
Lemma 1. Let η(u) ∈ Cn(R), ū ∈ R

n, U = Un(ū) and η(U) = Un(v̄),
η′(U) = Un(w̄), where v̄ = (v1, . . . , vn) ∈ R

n, w̄ = (w1, . . . , wn) ∈ R
n ( i.e.

vi = η(U)i1, wi = η′(U)i1 ). Then

∂vi

∂uj

=

{

Cj−1
i−1wi−j+1 , j ≤ i

0 , j > i
.

Proof. Since dη(U) = η′(U)dU then

∂vi

∂uj

=
i
∑

k=1

η′(U)ik

∂Uk1

∂uj

=
i
∑

k=1

η′(U)ik

∂uk

∂uj

,

which directly implies that
∂vi

∂uj

= 0 for j > i. If j ≤ i then

∂vi

∂uj

= η′(U)ij = Cj−1
i−1wi−j+1.

The proof is complete.

Now we consider a scalar first order quasilinear equation

ut + ϕ(u)x = 0, (2)

u = u(t, x), (t, x) ∈ Π = R+ ×R, ϕ(u) ∈ Cn(R). Differentiating this equation
n − 1 times over the variable x, we obtain the so-called prolonged system
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of conservation laws, which consists of n equations (together with the orig-
inal one) depending on n unknown functions ui = u(i−1)

x , i = 1, . . . , n. For
instance, if n = 3 then the prolonged system has the form































∂u1

∂t
+

∂

∂x
(ϕ(u1)) = 0

∂u2

∂t
+

∂

∂x
(ϕ′(u1)u2) = 0

∂u3

∂t
+

∂

∂x
(ϕ′(u1)u3 + ϕ′′(u1)u

2
2) = 0

.

If we apply the map Tn to equality (2), where functions in Π are treated as
functions of the variable x with parameter t then we obtain that

0 = Tn(ut + ϕ(u)x) = Tn(u)t + Tn(ϕ(u))x = Tn(u)t + ϕ(Tn(u))x. (3)

Now we introduce the n×n-matrix U = U(t, x) = Tn(u). Clearly, U = Un(ū),
where ū = (u1, . . . , un), ui = ui(t, x) = u(i−1)

x , i = 1, . . . , n.
Then equality (3) can be rewritten as the equation

Ut + ϕ(U)x = 0 (4)

similar to equation (2), but here the unknown function U = U(t, x) takes its
values in the algebra Xn. Since U = Un(ū) the system (4) is a form of the
prolonged system.

Our aim is to describe entropies of the prolonged system. Recall ( see
[1] ) that the entropy of system (4) is a function p(ū) ∈ C1(Rn) such that
there exists a function q(ū) ∈ C1(Rn) (called the corresponding entropy flux)
satisfying the identity: ∀ū ∈ R

n

dp(ū) ◦ dϕ(U) = dq(ū), U = Un(ū). (5)

Suppose p(ū) is an entropy of (4) with flux q(ū). Applying the operator dp
to system (4) we derive the conservation law

p(ū)t + q(ū)x = 0. (6)

In particular, for a solution u(t, x) ∈ Cn(Π) of (2) the vector ū ∈ R
n with

coordinates ui = u(i−1)
x , i = 1, . . . , n satisfies equality (6). Hence, this equal-

ity is a consequence of the original scalar equation (2) and it is natural to
consider entropies of system (4) as entropies of order n for equation (2) (in

3



contrast to ”usual” entropies they depend not only on a solution u, but also
on its derivatives up to order n− 1).

Taking into account that dϕ(U) = ϕ′(U)dU we can rewrite equality (6)
in the form

n
∑

i=j

Cj−1
i−1 vi−j+1

∂p(ū)

∂ui

=
∂q(ū)

∂uj

, vk = ϕ′(U)k1. (7)

Suppose 1 ≤ j ≤ n, U = Uj(u1, . . . , uj) is a j × j-matrix ( i.e. the
principal minor of the matrix Un ), and η(u) ∈ Cj(R). Then the following
statement holds.

Theorem 1 A function p(ū) = η(Uj)j1 is an entropy of system (4) with
corresponding flux q(ū) = ψ(Uj)j1, where the function ψ(u) ∈ Cj(R) is de-
fined, up to an additive constant, by the equality ψ′(u) = η′(u)ϕ′(u).

Proof. Let U = Un(ū). Then

dq(ū) = dψ(Uj)j1 = (ψ′(Uj)dUj)j1 = (η′(Uj)ϕ
′(Uj)dUj)j1 = dp(ū)dϕ(U),

i.e. the identity (5) is satisfied. Thus, p(ū) is an entropy of (4) with flux
q(ū).

Remark that the entropy p(ū) and the flux q(ū) in Theorem 1 naturally
arise after differentiating of the ”scalar” entropy pair η(u), ψ(u) j− 1 times
over x, so that

dj−1η(u)

dxj−1
= p(ū),

dj−1ψ(u)

dxj−1
= q(ū), ui = u(i−1)

x , i = 1, . . . , j.

Now, suppose that the function ϕ(u) is not linear on nondegenerate intervals,
i.e. ϕ′′(u) 6= 0 on a dense set in R. We want to show that in this case
any entropy p(ū) ∈ C2(Rn) of system (4) is a sum of entropies indicated in
Theorem 1:

p(ū) =
n
∑

j=1

ηj(Uj)j1, ηj(u) ∈ Cj+1(R). (8)

For this, we have to analyse relation (7). Denote αij = Cj−1
i−1 vi−j+1. By

Lemma 1

αij =
∂βi

∂uj

, where βi = ϕ(Un)i1.

Therefore, for k, r = 1, . . . , n

n
∑

i=k

∂αik

∂ur

∂p(ū)

∂ui

=
n
∑

i=r

∂αir

∂uk

∂p(ū)

∂ui

=
n
∑

i=k+r−1

∂2βi

∂uk∂ur

∂p(ū)

∂ui

.
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We also take into account that by Lemma 1
∂2βi

∂uk∂ur

= Ck−1
i−1

∂vi−k+1

∂ur

= 0 for

i < k + r − 1.
From this equality and (7) it follows the relation: for all k, r = 1, . . . , n

n
∑

i=k

αik

∂2p(ū)

∂ui∂ur

−
n
∑

i=r

αir

∂2p(ū)

∂ui∂uk

=

∂

∂ur

n
∑

i=k

αik

∂p(ū)

∂ui

−
∂

∂uk

n
∑

i=r

αir

∂p(ū)

∂ui

=
∂2q(ū)

∂ur∂uk

−
∂2q(ū)

∂uk∂ur

= 0.

Since the first terms in the sums from the left side of this equality, corre-
sponding to i = k and i = r, coincides, we conclude that

n
∑

i=k+1

αik

∂2p(ū)

∂ui∂ur

=
n
∑

i=r+1

αir

∂2p(ū)

∂ui∂uk

. (9)

Using relations (9) we are ready to prove the following result.
Proposition 1. Let p(ū) ∈ C2(Rn) is an entropy of order n. Then for

k = 2, . . . , n, r = 1, . . . , n

(k − 1)
∂2p(ū)

∂uk∂ur

= r
∂2p(ū)

∂uk−1∂ur+1

. (10)

Here we agree that for r = n the derivative from the right side of (10) equals
zero.

Proof. We shall draw the proof by induction on k + r = 2n, . . . , 3. The

base of induction k+r = 2n reduces to verification of the equality
∂2p(ū)

∂u2
n

= 0.

This equality directly follows from (9) with k = n−1, r = n and the fact that
αnn−1 = (n−1)v2 = (n−1)ϕ′′(u1)u2 6= 0 on a dense set of ū ∈ R

n. Moreover,
applying (9) consequently for k = n − 1, . . . , 1 and r = n, we derive in the
same way as above that

∂2p(ū)

∂uk∂un

= 0, k = 2, . . . , n. (11)

Now suppose that (10) holds for l + 1 ≤ k + r ≤ 2n. Then for such values
k, r

∂2p(ū)

∂uk∂ur

=
r

k − 1

∂2p(ū)

∂uk−1∂ur+1

= · · ·
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=



















const
∂2p(ū)

∂uk+r−n∂un

= 0 for k + r > n+ 1

Ck−1
k+r−2

∂2p(ū)

∂u1∂uk+r−1

for k + r ≤ n+ 1
. (12)

In turn from (12) it follows that for k1 + r ≥ l + 1

n
∑

i=k1

αik

∂2p(ū)

∂ui∂ur

=
n+1−r
∑

i=k1

αikC
i−1
i+r−2

∂2p(ū)

∂u1∂ui+r−1

=

n
∑

j=k1+r−1

γkrj

∂2p(ū)

∂u1∂uj

. (13)

Here we make the change j = i+ r − 1 and denote

γkrj = γkrj(ū) = αikC
i−1
i+r−2 =

(j − 1)!

(k − 1)!(r − 1)!(j + 1 − k − r)!
vj+2−k−r.

Now we are ready to prove that equality (10) holds for k + r = l. By (9) we
have an equality

n
∑

i=k

αik−1
∂2p(ū)

∂ui∂ur

=
n
∑

i=r+1

αir

∂2p(ū)

∂ui∂uk−1

. (14)

Further, k + r + 1 > l and, as it easily follows from (13) and the equality
γk−1rj = γrk−1j ,

n
∑

i=k+1

αik−1
∂2p(ū)

∂ui∂ur

=
n
∑

i=r+2

αir

∂2p(ū)

∂ui∂uk−1

=
n
∑

j=k+r

γk−1rj

∂2p(ū)

∂u1∂uj

.

Therefore, (14) is reduced to coincidence of the first terms:

(k − 1)v2
∂2p(ū)

∂uk∂ur

= rv2
∂2p(ū)

∂ur+1∂uk−1

and since v2 = ϕ′′(u1)u2 6= 0 on a dense set of the arguments we conclude
that (10) holds. According to the mathematical induction method the proof
is complete.

Corollary 1. In the sense of distributions on R
n ( in D′(Rn) )

∂kp(ū)

∂uk
2

=











k!
∂k−1

∂uk−1
1

∂p(ū)

∂uk+1

for k ≤ n− 1

0 for k > n− 1
. (15)
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Proof. If k = 1 then equality (15) is trivial. Next, if (15) holds for
k = r − 1 < n− 1 then, taking into account (10), we see that

∂rp(ū)

∂ur
2

=
∂

∂u2

∂r−1p(ū)

∂ur−1
2

= (r − 1)!
∂

∂u2

(

∂r−2

∂ur−2
1

∂p(ū)

∂ur

)

=

(r − 1)!
∂r−2

∂ur−2
1

∂2p(ū)

∂u2∂ur

= r!
∂r−1

∂ur−1
1

∂p(ū)

∂ur+1

.

At last, if r = n then by (10) again the right hand side of the above equality
is null (all the more this is true for r > n). According to the mathematical
induction method the proof is complete.

Now we are ready to show that under our assumptions any entropy of
order n has the form (8).

Theorem 2 Suppose the function ϕ(u) is not linear on nondegenerate
intervals. Then an entropy p(ū) ∈ C2(Rn) of system (4) has the form (8).

Proof. Let p(ū) depend only on first r coordinates, i.e. it is an entropy
of order r. We are going to prove that p(ū) has a representation like (8)

p(ū) =
r
∑

j=1

ηj(Uj)j1, ηj(u) ∈ Cj+1(R). (16)

We shall draw the proof by induction on order r. If r = 1 (the base of
induction) then p(ū) = η(u1) = η(U1) and (16) is clear. Now, assume that
(16) holds for entropies of order r < n and show that it holds for entropies
of order n. (with arbitrary n > 1). Remark firstly that from (11) it follows

that
∂p

∂un

= a(u1), therefore p(ū) = a(u1)un + b(u1, . . . , un−1), b ∈ C2(Rn−1).

We show that a(u) ∈ Cn(R). For this, remark that by Corollary 1 p(ū) is a
polynomial of degree not more than n− 1 with respect to a variable u2:

p(ū) =
n−1
∑

k=0

qku
k
2, qk = qk(u1, u3, . . . , un),

and also, as follows from the condition p(ū) ∈ C2(Rn), the coefficients qk ∈

C2(Rn−1). By Corollary 1 again, for k = n− 1

(n− 1)!qn−1 =
∂n−1p(ū)

∂un−1
2

= (n− 1)!
∂n−2

∂un−2
1

∂p(ū)

∂un

= (n− 1)!a(n−2)(u1)

7



in D′(Rn). Thus, a(n−2)(u1) = qn−1 ∈ C2 and a(u) ∈ Cn(R), as required.

Let ηn(u) =
∫

a(u)du ∈ Cn+1(R), pn(ū) = ηn(Un)n1. Then pn(ū) ∈ C2(Rn)

and, evidently, pn(ū) = a(u1)un + c(u1, . . . , un−1), c ∈ C2(Rn−1). We see that
p(ū)− pn(ū) = (b− c)(u1, . . . , un−1) ∈ C2(Rn−1) is an entropy of order n− 1.
By the inductive assumption

p(ū) − pn(ū) =
n−1
∑

j=1

ηj(Uj)j1, ηj(u) ∈ Cj+1(R),

and we conclude that

p(ū) =
n
∑

j=1

ηj(Uj)j1, ηj(u) ∈ Cj+1(R),

as was to be proved.

Remark. It is easy to verify that an entropy p(ū) of the form (8) is
convex only in the case when

p(ū) = η(u1) +
n
∑

j=2

cjuj, cj = const

with a convex function η(u). In particular, there are no strictly convex
entropies of order n > 1.
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