E.Yu. Panov
Prolonged systems for a scalar conservation law and entropies of
higher orders
Abstract

We give a matrix representation for prolonged systems correspond-
ing to scalar conservation laws and describe entropies of such systems.

Let f € C"YR). We denote D,f = Df(x) € R" the column

(f, f' ..., f@ T consisting of derivatives of f, and consider the n x n-
matrix T,(f) = T,(f)(x), which is defined by the equality
Dy(fg) = Tu(f)Dng Vg € C"H(R). (1)

The coefficients of T,,(f) are continuous functions, depending on derivatives
f®(z), k=0,...,n— 1. For instance, if n = 2, 3 then

/o fo0 0
Jacf>=:( | ), n=| 7 f o
f f f// 2f/ f

respectively. In the general case, as it follows from the Leibnitz formula

(£9)0 = 30 CIT fOgu,

j=1
Tou(f); = Ci fO9) for1<j<i<n, T,(f);=0 forj>i

|
. . . o o oml
(in particular, the matrix T,,(f) is triangular). Here C; = K(m — )] are
binomial coefficients.

ClearlYa Tn(O‘fl +ﬁf2) = @Tn(fl) +6Tn(f2)7 vf17 f2 € Cn_l(R)v Oéaﬁ € R.
Further, by the obvious identity

T.(fife)Dg = Dy(fi(f29)) = Tu(f1)Dn(f29) = Tn(f1)Tn(f2) Dng,

Tn(f1f2) = Tn(fl)Tn(f2) v][17 f2 € Cn_l(R)'

Thus, the correspondence f — T,(f) is a homomorphizm of algebras,
so that it is a linear representation of the algebra C™"1(R) in the space
of vector-functions C'(R,R™). In particular, Vn(u) € C"}(R) we have the
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equality T,(n(f)) = n(Tu(f)), i-e. Du(n(f)g) = n(Tu(f))Dng Yg € C"H(R).
Here n(T,,(f)) is a function of the matrix 7, (f) understood in the sense of
functional calculus and, which is well-defined for n(u) € C" 1(R).

By the construction for any fixed x the image of the representation f —
T,.(f)(z) is a commutative n-dimensional matrix algebra X, consisting of
triangular matrices U,, = U, (1), u = (uy,...,u,), where

Un(l_l,)l] =0 1111,2 —j+1 for 1 S] S ) S n, Un(ﬂ)z] =0 fOI'j > 1.

This algebra is isomorphic a quotient algebra of the polynomial algebra with
respect to the ideal generated by x” The isomorphism is realized by the

map f — T,(f)(0), so that for f Zu 20— 1) To(f)(0) = Uy(a).
The following simple lemma will be needed for the sequel.
Lemma 1. Let n(u) € C*"(R), u € R", U = U,(u) and n(U) = U, (v),
n'(U) = Uy(w), where v = (v1,...,v,) € R, w = (wy,...,w,) € R" (ie.
V; = T](U)ll, W; = T]/(U)ll ) Then

8Ui_ lewz g1 s J S0
8uj 0 ,]>Z

Proof. Since dn(U) = n'(U)dU then

(%Z : 8Uk1 : / 8Uk;
- ) = U itk
ou; ;77 k(?uj ,;177( )ké?uj
. . . . dv; . . . .
which directly implies that o 0 for j > . If j <7 then
uj
an /
ou; =1 (U) - C] 1wz —j+1-
j

The proof is complete.

Now we consider a scalar first order quasilinear equation

up + p(u)e = 0, (2)

u=u(t,x), (t,) € Il =Ry xR, p(u) € C"(R). Differentiating this equation
n — 1 times over the variable x, we obtain the so-called prolonged system
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of conservation laws, which consists of n equations (together with the orig-

inal one) depending on n unknown functions u; = ug_l), 1 =1,...,n. For
instance, if n = 3 then the prolonged system has the form
( 8161 3

8a—t + %(W(m)) =0
ﬁ + g (i) =0
\ % + %(@/(ul)uza + ¢"(ur)uz) = 0

If we apply the map T,, to equality (2), where functions in II are treated as
functions of the variable x with parameter ¢ then we obtain that

0 = To(u + p(u)z) = Tu(u)e + Tn(o(w)e = Ta(u)r + @(Tn(u)a (3)

Now we introduce the n xn-matrix U = U(t,z) = T,,(u). Clearly, U = U, (u),
where @ = (uy, ..., u,), u; = u;(t,z) =ulY i=1,... n
Then equality (3) can be rewritten as the equation

Ui +¢(U) =0 (4)

similar to equation (2), but here the unknown function U = U(¢, z) takes its
values in the algebra X,,. Since U = U, (u) the system (4) is a form of the
prolonged system.

Our aim is to describe entropies of the prolonged system. Recall ( see
[1] ) that the entropy of system (4) is a function p(z) € C'(R"™) such that
there exists a function g(u) € C'(R™) (called the corresponding entropy flux)
satisfying the identity: Vu € R”

dp(u) o dp(U) = dq(u), U = Un(u). (5)

Suppose p(u) is an entropy of (4) with flux ¢(@). Applying the operator dp
to system (4) we derive the conservation law

p(a)e + q(a)e = 0. (6)

In particular, for a solution u(¢,x) € C™(II) of (2) the vector u € R™ with
coordinates u; = ul™Y, i = 1,..., n satisfies equality (6). Hence, this equal-
ity is a consequence of the original scalar equation (2) and it is natural to
consider entropies of system (4) as entropies of order n for equation (2) (in

3



contrast to "usual” entropies they depend not only on a solution u, but also
on its derivatives up to order n — 1).
Taking into account that dp(U) = ¢'(U)dU we can rewrite equality (6)

in the form . op(a) D(t)
pl\u qlu
>~ Ci = , U = @' (U)ka (7)
1Y+ (MZ auj 1

i=j

Suppose 1 < j < n, U = Uj(uy,...,u;) is a j x j-matrix ( i.e. the
principal minor of the matrix U, ), and n(u) € C?(R). Then the following
statement holds.

Theorem 1 A function p(u) = n(U;);1 is an entropy of system (4) with
corresponding flur q(u) = (U;) 1, where the function (u) € C?(R) is de-
fined, up to an additive constant, by the equality ¥'(u) = n'(u)y'(u).

Proof. Let U = U,(u). Then

dq(u) = dy(Uj)jn = (V' (Uy)dUy);, = (0'(U;)'(Uz)dU;);, = dp(a)de(U),
i.e. the identity (5) is satisfied. Thus, p(u) is an entropy of (4) with flux
g(w).
Remark that the entropy p(u) and the flux ¢(z) in Theorem 1 naturally

arise after differentiating of the ”scalar” entropy pair n(u), ¥(u) j—1 times
over x, so that

&~ 'n(u) () _ 1) :
WZP(U% qu(u), w; =ulY i=1,...,7.

Now, suppose that the function ¢(u) is not linear on nondegenerate intervals,
ie. ¢’(u) # 0 on a dense set in R. We want to show that in this case
any entropy p(@) € C?(R") of system (4) is a sum of entropies indicated in
Theorem 1:

i Vi1, ni(u) € CTTH(R). (8)

For this, we have to analyse relation (7). Denote a;; = C’f__llvi_jﬂ. By
Lemma 1
d5;

a;j = —, where 3, = p(Uy,)i-

3uj 7
Therefore, for k,r =1,...,n

aalk ap - aazr ap ) = azﬁl ap(ﬂ)
; ou, 8uZ Z = 2 Ourlu, Ou;

i=r Z:k+T— 1

ou, Ou;



0*B;
8uk8uT

OVi_p41

= k1
1—1 aur

= 0 for

We also take into account that by Lemma 1

1 < k+r—1.
From this equality and (7) it follows the relation: for all k,r =1,... n

n n )
Z O[Zk 8u16ur Z Cir 8u18uk

1=

& 0 & 8 d?q
S, DS pe) _ ) Pal@ _,

ou, = w; " Ou;  Ou,Ouy, c?uk(?ur

i=r

Since the first terms in the sums from the left side of this equality, corre-
sponding to ¢ = k and ¢ = r, coincides, we conclude that
n 0*p(u n 0*p(u
> ik @ = > ( ) (9)
ou;0u, | Ou;Ouy,

i=k+1 =r+1

Using relations (9) we are ready to prove the following result.
Proposition 1. Let p(ﬂ) € C?*(R") is an entropy of order n. Then for
k=2,. ,r=1,.

0*p(a) _, 0*p(a)

kE—1 = r—
( )8uk6ur 6uk_18uT+1

(10)
Here we agree that for r = n the derivative from the right side of (10) equals
zero.

Proof. We shall draw the proof by induction on k4 r = 2n,...,3. The

o°p(@) _
ou?
This equality directly follows from (9) with £ = n—1, r = n and the fact that
Apn—1 = (n—1)vg = (n—1)¢" (u1)ug # 0 on a dense set of u € R™. Moreover,
applying (9) consequently for k =n —1,...,1 and r = n, we derive in the
same way as above that

base of induction k41 = 2n reduces to verification of the equality

0°p(a)
ﬁukﬁun

Now suppose that (10) holds for [ +1 < k 4+ r < 2n. Then for such values
k,r

=0, k=2,....n (11)

’p(w) _ r  0’p(u)

OupOu, k—10up_10urs1




auk—l—r naun 12
0%p(u) ' (12)
k:-H“ 28”18Uk;+7n .

) it follows that for ky +r > 141

for k+r<n-+1

In turn from

{const p(t) =0 for k+r>n-+1
(12

Z ( ) n—ir@ Cz 1 82 (_) —
i—ky ik (‘9u28ur i—ky i 2(‘9u16uz+T 1
- 0*p(u)
—. 1
j:klgr_lfykrj 8U18Uj ( 3)

Here we make the change 7 =74 r — 1 and denote

j—1
Yerj :W/krj( ) Oézk;C_Hn 9 = (k’—l) (7“ _(1) (]>—|—1—k— ) Vjt2—k—r-

Now we are ready to prove that equality (10) holds for £+ = 1. By (9) we
have an equality
Ipu) _ 0%p(u)
Z&Zk 16 81674 Z Cir 8161'8161{;_1.

i=r+1

(14)

Further, k£ + r + 1 > [ and, as it easily follows from (13) and the equality
Ye—1rj = Vrk—1j,

’p(u) _ ¢ 0”p( 82p(a)
Z %1 Qik—17 ou aur Z ;2 Qir 5 O 8uk . ; %—r Vek—1rj o o ou 1auj

Therefore, (14) is reduced to coincidence of the first terms:

Fplu) 0°p(a)

kE—1 = ryg——m——
( >U2 8uk8ur 28ur+18uk_1

and since vy = ¢"(u1)us # 0 on a dense set of the arguments we conclude
that (10) holds. According to the mathematical induction method the proof
is complete.

Corollary 1. In the sense of distributions on R™ (" in D'(R™) )

or k<n-—1
ok Ouf " Qugy d N :
2 0 for k>n-—1

(15)



Proof. If k = 1 then equality (15) is trivial. Next, if (15) holds for
k=1 —1<n—1 then, taking into account (10), we see that

Op(w) 0 9 'pa) (r—1) o (9% dp(u)
ouy, — Ouy Ouy 't Ouy \ Ouy? Ou,
b 2O 0 oyl

Ou 2 Qugdu, ouTT Oupyy

At last, if r = n then by (10) again the right hand side of the above equality
is null (all the more this is true for » > n). According to the mathematical
induction method the proof is complete.

Now we are ready to show that under our assumptions any entropy of
order n has the form (8).

Theorem 2 Suppose the function p(u) is not linear on nondegenerate
intervals. Then an entropy p(u) € C*(R™) of system (4) has the form (8).

Proof. Let p(@) depend only on first 7 coordinates, i.e. it is an entropy
of order . We are going to prove that p(u) has a representation like (8)

p(a) = émwj)ﬂ, 1) € CP(R). (16)

We shall draw the proof by induction on order r. If » = 1 (the base of
induction) then p(u) = n(uy) = n(U;) and (16) is clear. Now, assume that
(16) holds for entropies of order < n and show that it holds for entropies
of order n. (with arbitrary n > 1). Remark firstly that from (11) it follows

that a@_p = a(uy), therefore p(a) = a(ui)u, + b(uy, ..., u,—1), b € C*R"1).
u

We show that a(u) € C™(R). For this, remark that by Corollary 1 p(u) is a
polynomial of degree not more than n — 1 with respect to a variable us:

n—1
p(ﬂ) = Z qku§7 qr — qk(u17u37 ) un)7
k=0

and also, as follows from the condition p(u) € C?*(R™), the coefficients g, €
C?(R"1). By Corollary 1 again, for k =n — 1

o™ 'p(w)

n—1
Ous,

o2 Op(u) N
| = (n— 1)la?
ouy? Ou, (n = Dla™ " (w)

=(n—1)

(n—1)!g, 1 =
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in D'(R"). Thus, a2 (u;) = ¢,_1 € C? and a(u) € C*(R), as required.
Let () = [ a(u)du € C™}(R), pu(@) = n(Un)a. Then p, (@) € CX(=")

and, evidently, p,(@) = a(u)u, +c(uy, ..., u,_1), c € C*(R"1). We see that
p(a) —pn(a) = (b—c)(u,...,u,—1) € C*(R* 1) is an entropy of order n — 1.
By the inductive assumption

p(u) — pa(u) Z (U, ni(u) € C7H(R),
and we conclude that
p(@) => nj(U)a, n;ju) € C7H(R),
j=1

as was to be proved.

Remark. It is easy to verify that an entropy p(@) of the form (8) is
convex only in the case when

p(ﬂ) = 77(“1) + Z CjUj, Cj = const
=2

with a convex function n(u). In particular, there are no strictly convex
entropies of order n > 1.
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