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Abstract

We introduce a new model of traffic flow with phase transitions. The model is obtained by
coupling together the classical Lighthill-Whitham-Richards (LWR) equation with the 2 × 2
system described in [A. Aw and M. Rascle, Resurrection of “second order” models of traffic
flow, SIAM J. Appl. Math., 60 (2000), pp. 916–938]. We describe the solutions of the Riemann
problem, and we compare the results with the ones obtained using the LWR model and the
biphasic model described in [R.M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM
J. Appl. Math., 63 (2002), pp. 708–721]

Key words: Hyperbolic Conservation Laws, Riemann Problem, Phase Transitions, Continuum
Traffic Models

1 Introduction

Any reasonable model for traffic flow should satisfy the following principles:

1. Drivers react to what happens in front of them, so no information travels faster than the cars.

2. Density and velocity must remain non-negative and bounded.

One of the first models introduced to describe traffic flow is the well known Lighthill-Whitham [1]
and Richards [2] (LWR) model, which reads

∂tρ+ ∂x[ρv(ρ)] = 0, (1.1)

where ρ ∈ [0, R] is the mean traffic density, and v(ρ), the mean traffic velocity, is a given non-
increasing function, non-negative for ρ between 0 and the positive maximal density R, which corre-
sponds to a traffic jam. This simple model expresses conservation of the number of cars, and relies
on the assumption that the car speed depends only on the density. Nevertheless, the corresponding
fundamental diagram in the (ρ, ρv)-plane, see Figure 1, left, does not qualitatively match experi-
mental data as reported in Figure 1, right. These experimental data, whose behavior is similar to
what observed in several areas of the world, suggest that a good traffic flow model should exhibit
two qualitative different behaviors:

• for low densities, the flow is free and essentially analogous to the LWR model;

• at high densities the flow is congested and has one more degree of freedom (it covers a 2-
dimensional domain).
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Figure 1: Left: standard flow for the LWR model. Right: experimental data, taken from [3]

A first prototype of 2 × 2 models was proposed by Payne [4] and Whitham [5]. The main
drawback of this model is that it does not satisfy principles 1. and 2. above, as pointed out by
Daganzo [6]. Later, Aw and Rascle [7] have corrected the Payne-Whitham model by replacing
the space derivative of the “pressure” in the momentum equation with the convective derivative
∂t + v∂x. Another 2× 2 model has been introduced by Colombo [8], and used in the construction
of the first traffic flow model with phase transition [9].

In this paper we describe and study in details a new traffic flow model with phase transition
obtained combining the Aw-Rascle model with the LWR equation (the model has been introduced
in [10]). Section 2 is devoted to the description of the model. In Section 3 we construct the
solutions to the Riemann problem and in Section 4 we compare the results with the ones obtained
using the LWR model and the biphasic model described in [9]. Several examples are considered, and
numerical integrations are provided. Some results of existence and well-posedness for the solutions
of the Cauchy and Initial-Boundary Value Problems are collected in the Appendix.

2 Description of the model

In analogy with the model introduced by Colombo in [9], the model presented here is obtained
combining the classical LWR model describing the free flow with the 2 × 2 model introduced by
Aw and Rascle [7] (in this work referred to as the AR model) to describe the congested phase.

In the following R is the maximal possible car density, V is the maximal speed allowed and Vref
a given reference velocity. The model is the following:

Free flow: Congested flow:
(ρ, v) ∈ Ωf (ρ, v) ∈ Ωc

∂tρ+ ∂x[ρv] = 0

{
∂tρ+ ∂x[ρv] = 0
∂t
[
ρ(v + p(ρ))

]
+ ∂x

[
ρv(v + p(ρ))

]
= 0

v = vf (ρ) p(ρ) = Vref ln(ρ/R)

(2.2)

The sets Ωf and Ωc denote the free and the congested phases respectively. In Ωf there is only
one independent variable, the car density ρ, and the velocity vf is a function that satisfies the
same properties usually required in the LWR model. Here we choose the simplest standard linear
function

vf (ρ) =

(
1− ρ

R

)
V.
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In Ωc the variables are the car density ρ and the car speed v or, equivalently, the conservative
variables ρ and y := ρ v + ρ p(ρ); see [7]. The “pressure” function p is assumed increasing and
plays the role of an anticipation factor, taking in account drivers’ reactions to the state of traffic in
front of them. Here we take p(ρ) = Vref ln(ρ/R) as in [11, 12], because this choice allows to define
a unique Riemann solver without any further assumption on the parameters R and V . However,
under suitable assumptions, the model allows more general pressures (see Remark 3.2 below).

As pointed out in [13], no evidence suggests that queues form spontaneously in free flow traffic
for no apparent reason. Hence it is reasonable to assume that if the initial data are entirely in the
free (resp. congested) phase, then the solution will remain in the free (resp. congested) phase for
all time. Thus we are led to take Ωf (resp. Ωc) to be an invariant set for (2.2), left (resp., right).
The resulting domain is given by

Ωf =
{

(ρ, v) ∈ [0, Rf ]× [Vf , V ] : v = vf (ρ)
}
,

Ωc =
{

(ρ, v) ∈ [0, R]× [0, Vc] : p(r) ≤ v + p(ρ) ≤ p(R)
}
,

where Vf and Vc are the threshold speeds, i.e. above Vf the flow is free and below Vc the flow
is congested. We assume they are strictly positive and V > Vf > Vc. The parameter r ∈ ]0, R]
depends on the environmental conditions and determines the width of the congested region. The
maximal free-flow density Rf must satisfy Vf + p(Rf ) = p(R) (that is Vf +Vref ln(Rf/R) = 0 with
our choice of the pressure). In order to get this condition, we are led to assume Vref < V . It is
easy to check that the capacity drop in the passage from the free phase to the congested phase [3]
is then automatically satisfied. In order to resume, we have the following order relation between
the speed parameters:

V > Vref > Vf > Vc.

vρ

0

ΩF

ρR

Ω C

Figure 2: Left: invariant domain for (2.2). Right: experimental data, taken from [3].

Figure 2 shows that the shape of the invariant domain is in good agreement with experimental
data.

We recall at this point the main features of the two models used in (2.2). In the free phase the
characteristic speed is λ(ρ) = V (1 − 2ρ/R), while the informations on the Aw-Rascle system are
collected in the following table (see [7] for a more detailed study of the model):

r1(ρ, v) =

[
1

−p′(ρ)

]
r2(ρ, v) =

[
1
0

]

λ1(ρ, v) = v − ρ p′(ρ) λ2(ρ, v) = v
∇λ1 · r1 = −2 p′(ρ)− ρ p′′(ρ) ∇λ2 · r2 = 0
L1(ρ; ρo, vo) = vo + p(ρo)− p(ρ) L2(ρ; ρo, vo) = vo
w1 = v w2 = v + p(ρ)

(2.3)
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Figure 3: Notation used in the paper.

where ri is the i-th right eigenvector, λi the corresponding eigenvalue and Li is the i-Lax curve.
Shock and rarefaction curves coincide, hence the system belongs to the Temple class [14].

Using Riemann coordinates (w1, w2), Ωc = [0, Vc] × [p(r), p(R)]. For (ρ, v) ∈ Ωf , we extend
the corresponding Riemann coordinates (w1, w2) as in [9]: Let ũ = (ρ̃, vf (ρ̃)) be the point in Ωf

implicitly defined by vf (ρ̃) + p(ρ̃) = p(r). We define

w1 = Vf w2 =

{
vf (ρ) + p(ρ) if ρ ≥ ρ̃
vf (ρ) + p(ρ̃) if ρ < ρ̃

(2.4)

so that, in Riemann coordinates, Ωf = {Vf} × [p(ρ̃), p(R)] (Figure 3).

3 The Riemann problem

This section is devoted to the description of the Riemann problem for (2.2), i.e. the Cauchy problem
(in conservative variables)





∂tρ+ ∂x
[
ρ · vf (ρ)

]
= 0 (ρ, y) ∈ Ωf{

∂tρ+ ∂x [ρ · v] = 0
∂ty + ∂x [y · v] = 0

(ρ, y) ∈ Ωc

(ρ, y)(0, x) =

{
(ρl, yl) if x < 0
(ρr, yr) if x > 0 .

(3.5)

However, the description will be carried out in the (ρ, v) variables or in the Riemann coordinates.
The construction follows closely the one in [9, 15]. For every (ρl, yl), (ρr, yr) in Ωf ∪ Ωc, we define
a unique self-similar admissible solution to (3.5) as defined in [9].

We consider several different cases:

(A) The data in (3.5) are in the same phase, i.e. they are either both in Ωf or both in Ωc. Then
the solution is the standard Lax solution to (2.2), left (resp. right), and no phase boundary
is present.

(B) (wl1, w
l
2) ∈ Ωc and (wr1, w

r
2) ∈ Ωf (as in Figure 4). We consider the points (wc1, w

c
2) ∈ Ωc and

(wm1 , w
m
2 ) ∈ Ωf implicitly defined by Vc + p(ρc) = wl1 and vf (ρm) + p(ρm) = wl1 respectively.

Then the solution is made of a rarefaction from (wl1, w
l
2) to (wc1, w

c
2), a phase transition from

(wc1, w
c
2) to (wm1 , w

m
2 ) and a Lax wave from (wm1 , w

m
2 ) to (wr1, w

r
2).
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(C) (wl1, w
l
2) ∈ Ωf and (wr1, w

r
2) ∈ Ωc with wl2 ∈ [p(r), p(R)] (as in Figure 5, left). Consider the

point (wm1 , w
m
2 ) ∈ Ωc implicitly defined by vm = vr, vm + p(ρm) = wl1. Then the solution

is made of a shock-like phase transition between (wl1, w
l
2) and (wm1 , w

m
2 ) followed by a 2-Lax

wave.
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Figure 5: Left: case (C). Right: case (D)

(D) (wl1, w
l
2) ∈ Ωf with wl2 < p(r) and (wr1, w

r
2) ∈ Ωc (see Figure 5, right). Due to the concavity

of the curve ρ v = ρ
(
p(r)− p(ρ)

)
, this case is much simpler than the corresponding case in

[9]. Let (wm1 , w
m
2 ) ∈ Ωc be the point in Ωc implicitly defined by vm = vr, vm + p(ρm) = p(r).

The solution to (3.5) consists of a phase boundary joining (w l1, w
l
2) with (wm1 , w

m
2 ) followed

by a 2-Lax wave in Ωc between the states (wm1 , w
m
2 ) and (wr1, w

r
2).

From the point of view of traffic flow, it is natural to pass to the Initial Boundary Value Problem
(IBVP) 




∂tρ+ ∂x
[
ρ · vf (ρ)

]
= 0 (ρ, y) ∈ Ωf , t ≥ 0 , x ≥ 0 ,{

∂tρ+ ∂x [ρ · v] = 0
∂ty + ∂x [y · v] = 0

(ρ, y) ∈ Ωc , t ≥ 0 , x ≥ 0 ,

(ρ, y)(0, x) = (ρ̄, ȳ)(x) x ≥ 0 ,

(ρv)(t, 0) = f̃(t) t ≥ 0 .

(3.6)

Problem (3.6) describes a road starting at x = 0 where the inflow f̃ is prescribed.
The definition of solution to (3.6) used here has been introduced in [16], see also [17, Defini-

tion NC]. According to it, a solution to (3.6) is a weak entropic solution to the Cauchy Problem
for the conservation law where x > 0, that attains the boundary data in the sense of the limit:

lim
x→0+

ρ(t, x) · v
(
ρ(t, x), y(t, x)

)
= f̃(t) for a.e. t ≥ 0 .
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Under suitable conditions, see (3.8) in Proposition 3.1 below, the Riemann problem with
boundary (3.7) is non characteristic, i.e. the condition prescribed along the boundary is attained
by the trace of the solution on the boundary. Nevertheless, due to the possible presence of phase
boundaries, the number of waves entering the domain cannot be a priori established.

The starting point for the study of (3.6) is the solution to the Riemann problem with boundary,
namely 




∂tρ+ ∂x
[
ρ · vf (ρ)

]
= 0 (ρ, y) ∈ Ωf , t ≥ 0 , x ≥ 0{

∂tρ+ ∂x [ρ · v] = 0
∂ty + ∂x [y · v] = 0

(ρ, y) ∈ Ωc , t ≥ 0 , x ≥ 0

(ρ, y)(0, x) = (ρ̄, ȳ) x ≥ 0 ,

(ρv)(t, 0) = f̃ t ≥ 0 .

(3.7)

We denote the maximum possible traffic flow along the considered road by F = RfVf .

Proposition 3.1 With reference to (3.7), if

Vref ≥ V
(

1− r

eR

)
, (3.8)

then for all (ρ̄, ȳ) ∈ Ωf ∪Ωc, there exists a threshold fmax = fmax(ρ̄, ȳ) such that for all f̃ ∈ [0, fmax]
the Riemann problem for (3.7) admits a solution in the sense of [17, Definition NC]. More precisely,
there exists a unique state (ρ̃, ỹ) ∈ Ωf ∪Ωc such that the flow at (ρ̃, ỹ) is f̃ and the standard solution
to the Riemann problem (2.2) with data (ρ̃, ỹ) and (ρ̄, ȳ) consists only of waves having positive speed.

1. If (ρ̄, ȳ) ∈ Ωf , then fmax = F and (ρ̃, ỹ) is in Ωf . The solution consists of a 2-wave in the
free phase.

2. If (ρ̄, ȳ) ∈ Ωc, then there exist a fmin = fmin(ρ̄, ȳ) such that:

(a) If fmin ≤ f̃ ≤ fmax, (ρ̃, ỹ) is the unique intersection between the curve ρv(ρ, y) = f̃ and
the 2-wave through (ρ̄, ȳ). The solution consists of a simple 2-wave.

(b) If f̃ < fmin, then (ρ̃, ỹ) is the unique state in Ωf such that ρ̃vf (ρ̃) = f̃ . The solution
consists of a phase boundary and a 2-wave.

Moreover, the Riemann Solver is continuous in L1
loc.

Note that condition (3.8) ensures that supΩf∪Ωc λ1 < 0. It means that, if the maximal speed V
is not too high, the anticipation factor, which is proportional to Vref , forces informations to move
backward.

The proof is the same as in [15]. We recall it for completeness. Note that, as remarked in [15],
the incoming flow f̃ can be slightly greater than the flow ρ̄ v(ρ̄) present on the road.

Proof. Condition (3.8) implies supΩf∪Ωc λ1 < 0, hence all the waves of the first family are exiting
the domain x ≥ 0, t ≥ 0.

1. If (ρ̄, ȳ) is in Ωf , then for any f̃ ∈ [0, F ], the line ρv = f̃ intersects Ωf at a unique point
(ρ̃, ỹ). The standard Riemann problem with data (ρ̃, ỹ), (ρ̄, ȳ) admits a solution consisting
of a simple wave with positive speed. The restriction of this solution to x ≥ 0, t ≥ 0 is a
solution to the Riemann problem for (3.7).
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2. (a) If (ρ̄, ȳ) is in Ωc, then the 2-Lax curve through (ρ̄, ȳ) has a unique intersection with the
line ρv = f̃ at a point (ρ̃, ỹ) if and only if f̃ ∈ [fmin, fmax], see Figure 6.

(b) If (ρ̄, ȳ) is in Ωc and f̃ ∈
[
0, fmin

[
, then the line ρv = f̃ intersects Ωf at a single point, say

(ρ̃, ỹ). The standard Riemann problem with data (ρ̃, ỹ), (ρ̄, ȳ) has a solution consisting
of a phase boundary having positive speed and a 2 contact discontinuity. The restriction
of this solution to x ≥ 0, t ≥ 0 is a solution to the Riemann problem for (3.7).

�

Once the Riemann solvers are available, well posedness for the Cauchy and the Initial-Boundary
Value Problems can be proved as in [15], for all initial (and boundary) data with bounded total
variation. For sake of completeness, the corresponding results are recalled in the Appendix.

Remark 3.2 In [7] the function p(·) is chosen to be

p(ρ) = ργ , γ > 0 .

In particular, the function is positive and its behavior near the vacuum is qualitatively different
from the one considered here. More precisely, consider the 1-Lax curves in the (ρ, ρv) coordinates

m(ρ; ρ−) := ρ v(ρ) = −ρ p(ρ) + ρ p(ρ−), ρ− ∈ [r,R] ,

= −ργ+1 + ρ ργ−.

These curves intersect Ωf if and only if m′(0; ρ−) = ργ− > V and V < Rγ < V/γ (derived from the
condition m′(R; ρ−) > −V , and which implies γ < 1). Under these hypotheses, one can recover all
the previous results.

We conjecture that this construction can also be applied to the Modified AR model introduced
in [18], in which the pressure takes the form

p(ρ) =

(
1

ρ
− 1

R

)−γ
, ρ ≤ R .

Remark 3.3 Coupling the AR model with the LWR equation let us correct some drawbacks of
the original AR model. First of all, model (2.2) is well-posed and stable near the vacuum, which
is not the case for the AR system. Second, as noted in [7, Section 5], when there is a rarefaction
wave connecting a state (ρ−, ρ−v−) to the vacuum, the maximal velocity v reached by the cars is
vmax = +∞ if p(ρ) = Vref ln(ρ/R), or vmax = v− + p(ρ−) if p(ρ) = ργ , i.e. the maximal speed
reached by the cars on an empty road is either infinite or it depends on the initial data ρ−, v−,
which is clearly wrong. On the contrary, the solution given by model (2.2) reaches the maximal
velocity V independently from the choice of the pression and the initial data.
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4 Traffic flow models with phase transitions

In this section, we compare the model introduced here with the biphasic model introduced by
Colombo in [9] and the LWR model (1.1).

The LWR-Colombo coupling introduced in [9] reads:

Free flow: Congested flow:
(ρ, q) ∈ Ωf (ρ, q) ∈ Ωc

∂tρ+ ∂x[ρv] = 0

{
∂tρ+ ∂x[ρv] = 0
∂tq + ∂x[(q −Q)v] = 0

v = vf (ρ) v = vc(ρ, q)

(4.9)

Here, Q is a parameter of the road under consideration and the velocity vc in the congested phase
is given by

vc(ρ, q) =

(
1− ρ

R

)
q

ρ
.

The weighted flow q is a variable originally motivated by the linear momentum in gas dynamics.
It approximates the real flow ρv for ρ small compared to R. The two phases are defined by

Ωf =
{

(ρ, q) ∈ [0, Rf ]× [0,+∞[ : vf (ρ) ≥ Vf , q = ρ · V
}

Ωc =

{
(ρ, q) ∈ [0, R] × [0,+∞[ : vc(ρ, q) ≤ Vc, q−Qρ ∈

[
Q−−Q
R , Q+−Q

R

]}
,

where the parameters Q− ∈]0, Q[ and Q+ ∈]Q,+∞[ depend on the environmental conditions and
determines the width of the congested region.

A detailed description of the Riemann solver, and analogies between solutions to (4.9) and real
traffic features are given in [9] (see [15] for further analytical results). Note that, even for this
model, the invariant domain given in Figure 7, left, is in good agreement with experimental data
as reproduced in Figure 7, right.

vρ

0

ΩC

ΩF

ρR

Figure 7: Left: invariant domain for (4.9). Right: experimental data, taken from [3]

The numerical integrations that lead to the figures showed in the following sections rely on
the choices: R = 1, r = 0.47, V = 2, Vf = 1, Q = 0.5, Q− = 0.25, Vc = 0.85, Rf = 0.5 and

Vref = V
1−Rf/R
ln(R/Rf ) .
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4.1 Red traffic light

Assume that a traffic light is placed at x = 0 and turns red at t = 0. In other words, as in [5],
we compare the restrictions to the quadrant t ≥ 0, x ≤ 0 of the solutions to suitable Riemann
problems for (1.1), (4.9) and (2.2).1

• In the case of the LWR equation (1.1), the initial data is of the form

ρ(0, x) =

{
ρi if x < 0,
R if x > 0.

The solution is a shock with negative propagation speed, located at the end of the queue of
cars. Each driver, as soon as reaches it, brakes and immediately stops the car (see Figures 8–
12).

• In the model (4.9), we choose the following initial data

(ρ, q)(0, x) =

{
(ρi, qi) ∈ Ωf if x < 0,
(R, q) if x > 0.

for some q admissible. Figures 8–12 show that there exist two threshold parameters ρ−i and
ρ+
i such that

– if ρi 6∈ [ρ−i , ρ
+
i ], we have the same solution as in the LWR model (Figures 8, 11, 12);

– if ρi ∈ [ρ−i , ρ
+
i ], the solution consists of a phase transition followed by a rarefaction

attached to it (Figures 9 and 10 show two mutual positions with respect to the solution
given by (2.2), depending on the initial data).

According to this model, drivers brake suddenly to zero speed in two cases: when density is
high and speed is low, or when density is low and speed is high. In the intermediate situation,
drivers brake and enter the congested region, where the car speed smoothly decreases to zero.

• In the case of the LWR-AR coupling (2.2), the initial data are given by

(ρ, v)(0, x) =

{
(ρi, vi) ∈ Ωf if x < 0,
(R, 0) if x > 0.

The solution exhibits the same behavior as in the LWR model, but cars are allowed to form
queues at any density. In fact, in the AR model, car density along the queue depends on the
density of cars that line up.

While the models (1.1) and (4.9) have a rather similar behavior for all initial data, the model (2.2)
provides the same solution only for (ρi, vi) = (Rf , Vref p(Rf ) − Vref p(R)), i.e. the extreme point
of Ωf , that lies on the same 1-Lax curve as the right initial data (R, 0) (see Figure 12).

1A preliminary study of this example has been presented in [10].
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Figure 9: Red traffic light at medium density, Case 1.
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Figure 11: Red traffic light at high density, Case 1.
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Figure 12: Red traffic light at high density, Case 2.

4.2 Green traffic light

A traffic light placed at x = 0 turns green at t = 0. The corresponding Riemann problems to be
considered are as follows:

• For the LWR equation (1.1),

ρ(0, x) =

{
R if x < 0,
0 if x > 0.

The solution is a rarefaction wave spreading between −V t and V t.

• For the LWR-Colombo coupling (4.9), we take

(ρ, q)(0, x) =

{
(R, q) ∈ Ωc if x < 0,
(0, 0) if x > 0.

(4.10)

for some q ∈ [Q−, Q+]. For q ∈ [Q−, Q], the solution consists in a shock-like phase transition
with negative speed, followed by a rarefaction wave with positive speed in the free phase
(Figures 13 and 14). For q ∈]Q,Q+], the solution exhibits a rarefaction with negative speed,
followed by a phase transition and a rarefaction wave with positive speed in the free phase
(Figure 15).

• For the LWR-AR coupling (2.2), the initial data to be taken are

(ρ, v)(0, x) =

{
(R, 0) ∈ Ωc if x < 0,
(0, 0) if x > 0.

The solution presents a rarefaction wave with negative speed in the congested phase, followed
by a phase transition and a rarefaction wave with positive speed in the free phase.
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Figure 13: Green traffic light. In (4.10) q = Q.
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Figure 14: Green traffic light. In (4.10) q = Q−.

Figures 13–15 show the solutions given by the tree models, for different values of q ∈ [Q−, Q+]
in (4.10). Models (1.1) and (2.2) are in good agreement, while in general model (4.9) exhibits a
quite different solution. Only for q close to Q+, its solution almost coincide with the one given by
the model presented in this paper (see Figure 15, where q = Q+).
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Figure 15: Green traffic light. In (4.10) q = Q+.

4.3 Bottleneck

As a last example, we consider traffic on a highway described by the interval [−2, 2], in which the
number of lanes is reduced from three to two at x = 0. This is simulated by setting the maximal
density R = 1 for x < 0, and R = 2/3 for x > 0. All the parameters are changed consequently in
the region x > 0: r = 0.41, Vf = 1, Q = 1/3, Q− = 1/6, Vc = 0.85, Rf = 1/3.

Modeling this problem requires the solution of two Riemann problems with boundary, namely
(3.7) on the right and





∂tρ+ ∂x
[
ρ · vf (ρ)

]
= 0 (ρ, y) ∈ Ωf , t ≥ 0 , x ≤ 0{

∂tρ+ ∂x [ρ · v] = 0
∂ty + ∂x [y · v] = 0

(ρ, y) ∈ Ωc , t ≥ 0 , x ≤ 0

(ρ, y)(0, x) = (ρ̄, ȳ) x ≤ 0 ,

(ρv)(t, 0) ≤ f̃ t ≥ 0 ,

(4.11)

on the left. Details on the construction of the solution of the above Riemann problem with unilateral
constraints are given in [19].

In the example showed here, we have chosen initial data on the left-hand side so that the
incoming flux is higher than the maximal possible flux in the two-lane region. This causes the
traffic congestion showed by Figures 16–18.

Initial data ul for x < 0 and ur for x > 0 are taken in the free phase Ωf . The solutions given
by the three models present the same behavior:

- a shock (hiding a phase transition for models (2.2) and (4.9)) moving backward in the three
lane region, upstream the congested traffic;

- a discontinuity (under-compressive shock) at x = 0, corresponding to the bottleneck;
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- a rarefaction wave moving forward in the free phase.

In particular, the LWR-Aw-Rascle coupling (2.2) and the LWR-Colombo coupling (4.9) are in good
agreement, especially if the flux of the incoming traffic is equal to F (Figure 18).
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Figure 16: Bottleneck at x = 0 with incoming flux fl slightly higher than the maximal possible flux
at x > 0.

5 Conclusions

We have showed that a phase transition can be added to the AR model. This allows both to
correct some drawbacks of the original 2×2 system, and to obtain results that well fit experimental
data. Comparisons with the LWR model and the LWR-Colombo coupling show a satisfying rate of
agreement in the resulting solutions. In particular, in the examples that have been considered, the
reader can guess which models better describe each situation.

It would be interesting to investigate the continuous dependence of the solutions from the flow
function, and apply it to the problem of parameter identification. The model could also be improved
to cover various control and optimization problems of interest in the traffic management.
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Figure 17: Bottleneck at x = 0 with incoming flux fl higher than the maximal possible flux at
x > 0.
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Figure 18: Bottleneck at x = 0 with incoming flux fl = F , the maximal possible incoming flux at
x < 0.
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Appendix: Cauchy and Initial-Boundary Value Problems

Let us introduce the following notations:

X = L1
(
R; Ωf ∪ Ωc

)
,

u = (ρ, y) ,

‖u‖L1 = ‖ρ‖L1(R) + ‖y‖L1(R) ,

TV(u) = TV(ρ) + TV(y) .

Definition 5.1 Let M > 0 and a function space X. A map S: [0,+∞[×D 7→ D is an M -Standard
Riemann Semigroup (M -SRS) if the following holds:

(SRS1) D ⊇
{
u ∈ X: TV(u) ≤M

}
;

(SRS2) S0 = Id and St1 ◦ St2 = St1+t2 ;

(SRS3) there exists a constant L > 0 such that for all t1, t2 in [0,+∞[ and u1, u2 in D,
∥∥St1u1 − St2u2

∥∥
L1 ≤ L ·

(
‖u1 − u2‖L1 + |t1 − t2|

)
;

(SRS4) if u ∈ D is piecewise constant, then for t small, Stu coincides with the gluing of solutions
to Riemann problems.

By “solutions to Riemann problems” we refer to the solutions to (2.2) defined in Section 3. We
are now ready to state the existence of a SRS generated by (2.2).

Theorem 5.2 For any positive M , the system (2.2) generates an M -SRS S: [0,+∞[ × D 7→ D.
Moreover

(CP1) for all (ρo, yo) ∈ D, the orbit t 7→ St(ρo, yo) is a weak entropic solution to (2.2) with initial
data (ρo, yo);

(CP2) any two M–SRS coincide up to the domain;

(CP3) the solutions yielded by S can be characterized as viscosity solutions, in the sense of [20,
Theorem 9.2].

(CP4) D ⊆
{
u ∈ X: TV(u) ≤ M̂

}
for a positive M̂ dependent only on M .

Observe that the description of several realistic situations requires suitable source terms in the
right hand sides of (2.2). Thanks to our choice of the pression, the techniques in [12, 21] can then
be applied.

We consider now the IBVP (3.6), relying on the Riemann solver for (3.7) constructed in Sec-
tion 3. Following [15], in the case of (3.6), we denote:

X = L1
(
[0,+∞[ ; (Ωf ∪ Ωc)× [0, F ]

)

u = (ρ, y, f)

‖u‖L1 = ‖ρ‖L1([0,+∞[) + ‖y‖L1([0,+∞[) + ‖f‖L1([0,+∞[)

TV(u) = TV(ρ) + TV(y) + TV(f) +
∣∣(ρv)(0) − f(0)

∣∣ .
With this notation, Definition 5.1 applies also to the case of (3.6) provided “solutions to Riemann
problems” is now intended as the solutions to (2.2) previously defined where x > 0 and as the
solution constructed in Proposition 3.1 at x = 0.
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Theorem 5.3 For every positive M , the IBVP (3.6) generates a M–SRS

S : [0,+∞[ × D 7→ D
t ,

(
ρ̄, ȳ, f̃

)
7→

(
ρ(t), y(t), Ttf̃

)
.

Moreover

(IBVP1) for all (ρ̄, ȳ, f̃) ∈ D, the map t 7→
(
ρ(t), y(t)

)
is a weak entropic solution to (3.6) with

initial data (ρ̄, ȳ) and boundary data f̃ ;

(IBVP2) any two M–SRS coincide up to the domain;

(IBVP3) the solutions yielded by S can be characterized as viscosity solutions, in the sense of [22,
Section 5];

(IBVP4) D ⊆
{
u ∈ X: TV(u) ≤ M̂

}
for a positive M̂ dependent only on M .

Above, T is the translation operator, i.e. (Ttf)(s) = f(t+ s). In the case of (3.6), (SRS3) implies
that

∥∥(ρ1, y1)(t1)− (ρ2, y2)(t2)
∥∥

L1

≤ L ·
(∥∥(ρ̄1, ȳ1)− (ρ̄2, ȳ2)

∥∥
L1 +

∥∥∥f̃1 − f̃2

∥∥∥
L1

+ |t1 − t2|
)

Thanks to Proposition 3.1, the IBVP (3.6) fits in the framework of non characteristic problems.
Moreover, the techniques used in [23] apply also to the present case.

When source terms need to be added on the right hand sides in (3.6), the techniques in [12, 23]
can be applied.

Acknowledgment: The author thanks Rinaldo Colombo for suggesting the problem and for
providing useful comments.
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