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Abstract. In this paper, using the vanishing viscosity method, a solution of the
Riemann problem for the system of conservation laws

ut +
(
u2

)
x

= 0, vt + 2
(
uv

)
x

= 0, wt + 2
(
v2 + uw

)
x

= 0

with the initial data

(u(x, 0), v(x, 0), w(x, 0)) =
{

(u−, v−, w−), x < 0,
(u+, v+, w+), x > 0,

is constructed. This problem admits a δ′-shock wave type solution, which is a
new type of singular solutions to systems of conservation laws first introduced
in [25]. Roughly speaking, it is a solution of the above system such that for t > 0
its second component v may contain Dirac measures, and the third component w
may contain a linear combination of Dirac measures and their derivatives, while
the first component u of the solution has bounded variation. Using the above
mentioned results, we solve the δ-shock Cauchy problem for the first two equations
of the above system.

Since δ′-shocks can be constructed by the vanishing viscosity method, these
solutions are ”natural” distributional solutions to systems of conservation laws.
The results of this paper as well as those of the paper [25] show that solutions of
systems of conservation laws can develop not only Dirac measures (as in the case
of δ-shocks) but their derivatives as well.

1. Introduction

1.1. L∞-type solutions. Let us consider the Cauchy problem for the hyper-
bolic system of conservation laws

(1.1)

{
Ut +

(
F (U)

)
x

= 0, in R× (0, ∞),

U = U0, in R× {t = 0},
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where F : Rm → Rm and U0 : R → Rm are given smooth vector-functions, and
U = U(x, t) = (u1(x, t), . . . , um(x, t)) is the unknown function, x ∈ R, t ≥ 0.

As is well known, even in the case of smooth (and, certainly, in the case of
discontinuous) initial data U0(x), we cannot in general find a smooth solution of
(1.1). As said in the book [14, 3.4.1.a.], in this case “... we must devise some way to
interpret a less regular function U as somehow “solving” this initial-value problem.
But as it stands, the PDE does not even make sense unless U is differentiable.
However, observe that if we temporary assume U is smooth, we can as follows
rewrite, so that the resulting expression does not directly involve the derivatives
of U . The idea is to multiply the PDE in (1.1) by a smooth function ϕ and then
to integrate by parts, thereby transferring the derivatives onto ϕ”. In this way we
derive the integral identities which define a L∞-generalized solution of the Cauchy
problem (1.1). It is said that U ∈ L∞

(
R × (0,∞);Rm

)
is a generalized solution of

the Cauchy problem (1.1) if the integral identities

(1.2)

∫ ∞

0

∫ (
U · ϕ̃t + F (U) · ϕ̃x

)
dx dt +

∫
U0(x) · ϕ̃(x, 0) dx = 0

hold for all compactly supported test vector-functions ϕ̃ : R× [0,∞) → Rm, where ·
is the scalar product of vectors,

∫
f(x) dx denotes the improper integral

∫∞
−∞ f(x) dx.

1.2. δ-Shock wave type solutions. Consider two particular cases of the above
system of conservation laws:

(1.3) ut +
(
F (u, v)

)
x

= 0, vt +
(
G(u, v)

)
x

= 0,

and

(1.4) vt +
(
G(u, v)

)
x

= 0, (uv)t +
(
H(u, v)

)
x

= 0,

where F (u, v), G(u, v), H(u, v) are smooth functions, linear with respect to v; u =
u(x, t), v = v(x, t) ∈ R; x ∈ R.

In [2]– [4], [8]– [17], [20], [21], [29]– [33], [35] it is shown that for some cases
of hyperbolic systems (1.3), (1.4) “nonclassical” situations may occur, when the
Riemann problem does not possess a weak L∞-solution except for some particular
initial data. Here the linear component v of the solution may contain Dirac measures
and must be sought in the space of measures, while the nonlinear component u of
the solution has bounded variation. In order to solve the Cauchy problems in these
nonclassical situations, it is necessary to introduce new singularities called δ-shocks,
which are solutions of hyperbolic systems (1.3) or (1.4), whose linear components
have the form v(x, t) = V (x, t) + e(x, t)δ(Γ), Γ is a graph in the upper half-plane
{(x, t) : x ∈ R, t ≥ 0}, V ∈ L∞, e ∈ C(Γ), and the nonlinear component u ∈
L∞

(
R × (0,∞);R

)
. We need to define in which sense a distributional solution

satisfies a nonlinear system. Unfortunately, using the above instruction from the
L. C. Evans’s book [14, 3.4.1.a.], δ-shock wave type solutions cannot be defined .
Indeed, as can be seen from (1.3), (1.4) (see also (1.5), (1.9)), if integrating by parts
we transfer the derivatives onto a test function ϕ, under the integral sign there
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still remain terms undefined in the distributional sense, since the component v may
contain Dirac measures. In order to introduce δ-shock type solutions , we must devise
some way to define a singular superposition of distributions (for example, a product
of the Heaviside function and the delta function) (see, for example, [31]).

Recently, the theory of δ-shock type solutions for systems of conservation laws
has attracted intensive attention. In particular, there are large number of papers
where the system of zero-pressure gas dynamics is studied (see, for example, [1]–
[4], [10], [12], [28], [30], [35]). For one dimensional case this system is a particular
case of system (1.4), where G(u, v) = uv, H(u, v) = u2v, and v(x, t) ≥ 0 is density,
and u(x, t) is velocity.

Several approaches to solving δ-shock problems are known (see the above cited
papers and the references therein). One of them is the vanishing viscosity method
[13], [16], [17], [20], [27], [33], [35], which relates with introducing a viscosity term
in the right-hand side into a system of conservation laws. Next, we study a zero
dissipation limit of the viscous conservation laws obtained in this way. “Although
the solution of the viscous conservation laws are expected to approach those of
hyperbolic conservation laws as the viscosity tends to zero, this zero dissipation
limit is quite complicated” [23]. Note that the vanishing viscosity regularization is
often physically appropriate.

Note that in [17], by using the vanishing viscosity method , a δ-shock wave type
solution of the system

(1.5) ut +
(u2

2

)
x

= 0, vt +
(
uv

)
x

= 0

(here F (u, v) = u2/2, G(u, v) = vu) with the initial data

(1.6)
(
u0(x), v0(x)

)
=

{
(u−, v−), x < 0,
(u+, v+), x > 0,

is obtained, where u±, v± are given constants. In this paper the following definition
is used: the Riemann problem for (1.5) is to find distributions (u, v) ∈ D′(D)×D′(D)
such that

(1.7) 〈u, ϕt〉+ 〈u2/2, ϕx〉 = 0, 〈v, ϕt〉+ 〈uv, ϕx〉 = 0,

for all ϕ ∈ D(D), which satisfy the initial data (1.6). In [17], to solve the problem
(1.5), (1.6), the weak limit (u, v) = (limε→+0 uε, limε→+0 vε) is constructed, where
(uε(x, t), vε(x, t)) is a solution of the parabolic problem

(1.8) uε t +
(u2

ε

2

)
x

=
1

2
εuxx, vε t +

(
uεvε

)
x

=
1

2
εvxx

with the initial data (1.6). Since the pair of distributions (u, v) is such that u
contains the Heaviside function, and v contains both the Heaviside function and
the delta function (see [17, (2.27),(2.30)] and Corollary 7.2), the product uv is not
defined in the sense of distributions, and, consequently, a δ-shock wave type solution
of this problem cannot be defined by definition (1.7). Moreover, it is clear that in the
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sense of distributions limε→+0 uε(x, t)vε(x, t) 6= limε→+0 uε(x, t) limε→+0 vε(x, t). It is
also easily to see that the weak limit of the solution to the problem (1.8), (1.6) can
be interpreted as a δ-shock wave type solution of the Cauchy problem (1.5), (1.6), for
example, in the sense of the measure-valued solutions considered in [2], [33], [35], or
in the sense of the approach [3], [4]. In the framework of our approach the correct
solution of this problem is given below by Corollary 7.2.

Recall that in [21], to construct a δ-shock wave type solution of the system

(1.9) ut +
(
f(u)

)
x

= 0, vt +
(
f ′(u)v

)
x

= 0,

(here F (u, v) = f(u), G(u, v) = f ′(u)v) the problem of multiplication of distributions
is solved by using the definition of Volpert’s averaged superposition [34]. In [24], a
general framework for nonconservative product

(1.10) g(u)
du

dx

was introduced, where g : Rn → Rn is locally bounded Borel function, and u :
(a, b) → Rn is a discontinuous function of bounded variation. In the framework
of approach [24] the Cauchy problems for nonlinear hyperbolic systems in non-
conservative form can be considered [21], [22].

In [5], [6]– [11], [29]– [32], a new asymptotics method (namely, the weak asymp-
totics method) for studying the dynamics of propagation and interaction of different
singularities of quasilinear differential equations and hyperbolic systems of conser-
vation laws was developed. In [9]– [11], in the framework of the weak asymptotics
method definitions of a δ-shock wave type solution by integral identities were in-
troduced for two classes of hyperbolic systems of conservation laws (1.3), (1.4) (for
system (1.3) see Definition 2.1 below). These definitions give natural generalizations
of the classical definition of the weak L∞-solutions (1.1) relevant to the structure of
δ-shocks.

1.3. δ′-Shock wave type solutions. In [25] (a short review of some results
from [25] can be found in [26]), a concept of a new type of singular solutions to
systems of conservation laws, namely, δ(n)-shock wave, was introduced, where δ(n)

is n-th derivative of the Dirac delta function (n = 1, 2, . . . ). In this paper the case
n = 1 was studied in details.

In [25], in the framework of the mentioned above weak asymptotics method , a
definition of a δ′-shock wave type solution (Definition 3.1) for the system of conser-
vation laws

ut +
(
f(u)

)
x

= 0,

vt +
(
f ′(u)v

)
x

= 0,(1.11)

wt +
(
f ′′(u)v2 + f ′(u)w

)
x

= 0,

was introduced, where f(u) is a smooth function, f ′′(u) > 0, u = u(x, t), v =
v(x, t), w = w(x, t) ∈ R, x ∈ R. Definition 3.1 is a natural generalization of the
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δ-shock Definition 2.1. If in Definitions 2.1 and 3.1 there are no δ and δ′-terms (see
(2.1) and (3.1), (1.18), respectively), i.e., e(x, t) = g(x, t) = h(x, t) = 0, then these
definitions coincide with the classical definition (1.2).

Since by differentiating the scalar conservation law ut +
(
f(u)

)
x

= 0 twice with
respect to x and denoting v = ux, w = vx, we obtain system (1.11), this system is
a 3 × 3 “prolonged system”. System (1.11) is extremely degenerate with repeated
eigenvalues λ = f ′(u) and repeated eigenvectors (0, 0, 1).

In [25], within the framework of Definition 3.1, the Rankine–Hugoniot conditions
for δ′-shock were derived. In [25], a δ′-shock wave type solution to the Cauchy
problem of the system of conservation laws

(1.12) ut +
(
u2

)
x

= 0, vt + 2
(
uv

)
x

= 0, wt + 2
(
v2 + uw

)
x

= 0

with the singular initial data

(1.13)

u0(x) = u0
0(x) + u0

1(x)H(−x),

v0(x) = v0
0(x) + v0

1(x)H(−x) + e0δ(−x),

w0(x) = w0
0(x) + w0

1(x)H(−x) + g0δ(−x) + h0δ′(−x),

was constructed, where u0
k(x), v0

k(x), w0
k(x), k = 0, 1 are given smooth functions; e0,

g0, h0 are given constants, H(x) is the Heaviside function, δ(x) is the delta function,
and δ′(x) is its derivative.

Roughly speaking, a δ′-shock wave type solution is such a solution of system
(1.11) that for t > 0 its second component v may contain Dirac measures, and the
third component w may contain a linear combination of Dirac measures and their
derivatives, while the first component u of the solution has bounded variation (the
exact structure of a δ′-shock wave type solution see below in (1.18)).

In [25], we used the following admissibility condition for δ′-shocks:

(1.14) f ′(u+) ≤ φ̇(t) ≤ f ′(u−),

where φ̇(t) is the velocity of the δ′-shock wave, and u−, u+ are the respective left-
and right-hand values of u on the discontinuity curve. Condition (1.14) means that
all characteristics on both sides of the discontinuity are in-coming. For system (1.12)
condition (1.14) has the form

(1.15) 2u+ ≤ φ̇(t) ≤ 2u−.

Note that the notion of a weak asymptotic solution is one of the most im-
portant in the weak asymptotics method [9]– [11], [25], [26]. In these papers δ-
shock and δ′-shock wave type solutions of the Cauchy problems are constructed as
the weak limits of a weak asymptotic solutions of the corresponding Cauchy prob-
lems. Definition 2.1 and Definition 3.1 are derived only after analyzing asymptotic
solutions of the Cauchy problems. These definitions are based on the possibil-
ity to represent weak limits of nonlinear terms (for example, f ′(u(x, t, ε))v(x, t, ε),
f ′′(u(x, t, ε))v2(x, t, ε) + f ′(u(x, t, ε))w(x, t, ε)) as ε → 0, in the form of linear com-
binations of the Heaviside function, the delta function and its derivative, where
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(u(x, t, ε), v(x, t, ε), w(x, t, ε)) is a weak asymptotic solution to the Cauchy problem
(see [9]– [11], [25], [26] and Sec. 8).

1.4. Main results and contents of the paper. In this paper we continue
studying δ(n)-shock waves started in [25]. Namely, by using the vanishing viscosity
method , we construct a δ′-shock wave type solution to the Cauchy problem for
system (1.12) with the initial data

(1.16)
(
u0(x), v0(x), w0(x)

)
=

{
(u−, v−, w−), x < 0,
(u+, v+, w+), x > 0,

where u+ = u0
0, v+ = v0

0, w+ = w0
0, u− = u0

0 + u0
1, v− = v0

0 + w0
1, w− = w0

0 + w0
1

are given constants. The initial data (1.16) are a particular case of the initial data
(1.13).

In Sec. 2, in order to compare our results on δ-shocks [9]– [11], [30]– [32] with
those on δ′-shocks, we give Definition 2.1 for δ-shock type solutions and the Rankine–
Hugoniot conditions for δ-shocks. In Sec. 3, we introduce Definition 3.1 of a δ′-shock
wave type solution for system (1.11) as well as the Rankine–Hugoniot conditions for
δ′-shocks from [25].

As mentioned above, we construct solutions of the Cauchy problem (1.12), (1.16),
in particular, a δ′-shock wave type solution, using the vanishing viscosity method .
Thereto, in Sec. 4, as the first step, we construct solutions of parabolic approximation
of system (1.12)

(1.17)

uε t +
(
u2

ε

)
x

= εuε xx,

vε t + 2
(
uεvε

)
x

= εvε xx,

wε t + 2
(
v2

ε + uεwε

)
x

= εwε xx

with the initial data (1.16).
By the Hopf-Cole transformations (4.12), system (1.17) is reduced to the triple

of linear heat equations (4.10). Solving this system of the heat equations (4.10), by
Lemma 4.1 we find a solution of problem (1.17), (1.16).

Next, in Sec. 5, for the case u− ≥ u+, the weak limit (5.15) of a solution to the
parabolic problem (1.17), (1.16) is constructed by Theorem 5.1. In Sec. 6, for the
case u− < u+, the weak limit (6.7) of a solution to the parabolic problem (1.17),
(1.16) is constructed by Theorem 6.1. The proofs of Theorems 5.1, 6.1 are based

on the limiting properties of the functions Th
(

[u](x−ct)
2ε

; t, ε
)

and Ch
(

[u](x−ct)
2ε

; t, ε
)

introduced by (5.7). According to Lemma 5.1, for the case u+ ≤ u− these properties
coincide with limiting properties of the corresponding hyperbolic functions of the

argument [u](x−ct)
2ε

, as ε → +0. Note that Theorems 5.1, 6.1 are the most important
results of this paper.

In Sec. 7, using the results of Sec. 5, 6, the Riemann problem (1.12), (1.16) is
solved.

In Subsec. 7.1, by Theorems 7.1, 5.1, and Corollary 7.1 we prove the following
statements.
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(a) If u+ ≤ u−, the weak limit of the solution to the parabolic problem (1.17),
(1.16) (i.e., the triple of distributions (5.15)) satisfies the integral identities (3.1),
and, consequently, it is a δ′-shock wave type solution to the Cauchy problem (1.12),
(1.16). This solution has the form

(1.18)

u(x, t) = u+ + [u]H(−x + φ(t)),

v(x, t) = v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t)),

w(x, t) = w+ + [w]H(−x + φ(t)) + g(t)δ(−x + φ(t))

+h(t)δ′(−x + φ(t))

and satisfies the entropy condition (1.15), where functions φ(t), e(t), g(t), h(t) are
given by (5.16). Thus the problem of propagation of a δ′-shock in system (1.12) is
studied.

(a.1) If u+ < u− then (1.18), (5.16) imply that the Cauchy problem (1.12),
(1.16) has a classical shock-solution (1.18), i.e., piecewise constant solution (7.7) if
and only if v− + v+ = 0 and w− + w+ = 0.

(a.2) If u+ < u− and v− + v+ = 0 and w− + w+ 6= 0 or u+ = u− = u0 then
the Cauchy problem (1.12), (1.16) has a δ-shock solution (1.18), i.e., (7.8) or (7.9),
respectively: w component contains a δ measure, while u and v components are
piecewise constant.

(a.3) The Cauchy problem (1.12), (1.16) has a δ′-shock wave type solution (1.18)
only if v− + v+ 6= 0, w− + w+ 6= 0.

This situation reflects the fact that systems (1.11) and (1.12) are overdetermined ,
so we cannot solve the Cauchy problem with arbitrary jumps without introducing
δ′-shock .

Remark 1.1. In [18], the system of conservation laws

(1.19) ut +
(u2

2

)
x

= 0, vt + (uv)x = 0, wt +
(v2

2
+ uw

)
x

= 0

was studied. This system has repeated eigenvalues. As it is said in [18], system
(1.19) cannot be solved in the classical distributional sense, therefore it is necessary
to define a generalized solution in the Colombeau sense. In [18] this is motivated by
the following arguments: if v−+ v+ 6= 0 then the v component contains a δ measure
along x = 0. Though the product uv does not make sense in the classical theory of
distributions, it can be defined in the sense of the approach [24], but v2 contains a
square of δ measure and cannot be defined in this sense.

It is clear that by the change of variables u → 2u, v → 2v, w → w system (1.19)
can be transformed into system (1.12). Thus, contrary to the assertion from the
paper [18], according to Theorem 7.1, system (1.19) admits a δ′-shock wave type
solution. This solution considered in the sense of Definition 3.1 is a distributional
solution.

In addition, by Corollary 7.2, we prove that the first and second distributions in
(1.18) constitute a δ-shock wave type solution (in the sense of Definition 2.1) of the
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Cauchy problem

(1.20) ut +
(
u2

)
x

= 0, vt + 2
(
uv

)
x

= 0,

with the initial data (1.6). Since by the change of variables u → u
2
, v → v, system

(1.20) can be transformed into system (1.5), Corollary 7.2 gives a correct solution of
the above mentioned problem (1.5), (1.6) from [17]. More precisely, the weak limit
of the solution to the parabolic problem (1.8), (1.6) is a δ-shock wave type solution
of the Cauchy problem (1.5), (1.6) in the sense of Definition 2.1. Thus, by using the
vanishing viscosity method, the Cauchy problems (1.20), (1.6) and (1.5), (1.6) are
solved.

In Subsec. 7.2, by Theorems 7.2, 6.1, we prove the following statement.
(b) If u+ > u− then the weak limit of the solution to the parabolic problem

(1.17), (1.16) (i.e., the triple of distributions (6.7))

(1.21)
(
u(x, t), v(x, t), w(x, t)

)
=





(u−, v−, w−), x ≤ 2u−t,(
x
2t

, 0, 0
)
, 2u−t < x < 2u+t,

(u+, v+, w+), x ≥ 2u+t,

satisfies the integral identities (3.1), and, consequently, it is a solution to the Cauchy
problem (1.12), (1.16). The first component u of solution (1.21) is the rarefaction
wave, the second component v and the third component w contain the intermediate
vacuum states v = 0 and w = 0.

According to the mentioned above Theorems 7.1, 7.2, Theorem 5.1 and Theo-
rem 6.1 describe the formation of the δ′-shocks and the vacuum states from a smooth
solutions (uε(x, t), vε(x, t), wε(x, t)) of the problem (1.17), (1.16), respectively.

It is clear that the exact solution (uε(x, t), vε(x, t), wε(x, t)) of the problem (1.17),
(1.16) is a weak asymptotic solution of the Cauchy problem (1.12), (1.16) (see defi-
nition of a weak asymptotic solution in [25]).

In Sec. 8, the algebraic aspect of singular solutions (in particular, δ′-shock type
solutions) is studied. Namely, we show that according to (8.7), singular solutions (in
particular, δ′-shock type solutions) (u, v, w) = (limε→+0 uε, limε→+0 vε, limε→+0 wε) of
the Cauchy problem (1.12), (1.16) generate algebraic relations between distributional
components u, v, w. We construct these algebraic relations , i.e., the “right” singu-
lar superpositions of distributions u2(x, t), 2u(x, t)v(x, t), 2

(
v2(x, t)+u(x, t)w(x, t)

)
given by formulas (8.2)–(8.4) or (8.11)–(8.13) (see Lemmas 8.1, 8.2), as the weak
limit of flux-functions

lim
ε→+0

u2
ε(x, t), lim

ε→+0
2uε(x, t)vε(x, t), lim

ε→+0
2
(
v2

ε(x, t) + uε(x, t)wε(x, t)
)
.

Formulas (8.2)–(8.4) show that the above mentioned flux-function limit can be very
singular and may contain δ-functions and their derivatives .

Note that Theorem 7.1 and Theorem 7.2 could be proved by direct substituting
the “right” singular superpositions (8.2)–(8.4) and (8.11)–(8.13), respectively, into
system (1.12).
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Since systems (1.11) and (1.12) have singular terms which differ from the terms
of the type (1.10), it is impossible to construct a δ′-shock wave type solution for
them by using the well-known nonconservative product [21]– [24].

The geometric aspects of δ-shock and δ′-shock type solutions were studied in the
papers [30], [32], and [25], respectively. Namely, in these papers δ-shock and δ′-
shock balance relations connected with area, mass, and momentum transportation
were proved.

The construction of a δ′-shock type solution gives a new perspective in the theory
of singular solutions to systems of conservation laws. This result shows that systems
of conservation laws can develop not only Dirac measures (as in the case of δ-shocks)
but their derivatives as well.

2. δ-Shocks: generalized solution and the Rankine–Hugoniot conditions

Suppose that Γ = {γi : i ∈ I} is a graph in the upper half-plane {(x, t) : x ∈
R, t ∈ [0,∞)} ∈ R2 containing smooth arcs γi, i ∈ I, and I is a finite set. By I0

we denote a subset of I such that an arc γk for k ∈ I0 starts from the points of the
x-axis. Denote by Γ0 = {x0

k : k ∈ I0} the set of initial points of arcs γk, k ∈ I0.
Consider δ-shock wave type initial data (u0(x), v0(x)), where

v0(x) = v̂0(x) + e0δ(Γ0),

u0, v̂0 ∈ L∞
(
R;R

)
, e0δ(Γ0) =

∑
k∈I0

e0
kδ(x− x0

k), e0
k are constants, k ∈ I0.

Definition 2.1. ( [9]– [11]) A pair of distributions (u(x, t), v(x, t)) and a graph
Γ, where v(x, t) has the form of the sum

v(x, t) = v̂(x, t) + e(x, t)δ(Γ),

u, v̂ ∈ L∞
(
R × (0,∞);R

)
, e(x, t)δ(Γ) =

∑
i∈I ei(x, t)δ(γi), ei(x, t) ∈ C(Γ), i ∈ I,

is called a generalized δ-shock wave type solution of system (1.3) with the δ-shock
wave type initial data (u0(x), v0(x)) if the integral identities

(2.1)

∫ ∞

0

∫ (
uϕt + F (u, v̂)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
v̂ϕt + G(u, v̂)ϕx

)
dx dt +

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
v̂0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R× [0,∞)), where
∂ϕ(x, t)

∂l
is the tangential

derivative on the graph Γ,
∫

γi
· dl is the line integral over the arc γi. Here the

delta function δ(γi) on the curve γi is defined in [15, ch.III,§1.3.], [19, 5.3.].
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Suppose that arcs of the graph Γ = {γi : i ∈ I} have the form γi = {(x, t) : x =
φi(t)}, i ∈ I, and n = (ν1, ν2) is the unit oriented normal to the curve γi. In this
case

(2.2) n = (ν1, ν2) =
1√

1 + (φ̇i(t))2

(
1,−φ̇i(t)

)
, l = (−ν2, ν1),

and

∂ϕ(x, t)

∂l

∣∣∣∣
γi

=
ϕt(φi(t), t) + φ̇i(t)ϕx(φi(t), t)√

1 + (φ̇i(t))2

(2.3) =
1√

1 + (φ̇i(t))2

dϕ(φi(t), t)

dt
.

Theorem 2.1. ([30]– [32], see also [25]) Let us assume that Ω ⊂ R × (0,∞)
is some region cut by a smooth curve Γ into a left- and right-hand parts Ω∓,
(u(x, t), v(x, t)), Γ is a generalized δ-shock wave type solution of system (1.3),
and (u(x, t), v(x, t)) is smooth in Ω±. Then the Rankine–Hugoniot conditions for
δ-shocks

(2.4)

[
F (u, v)

]
Γ
ν1 +

[
u
]
Γ
ν2 = 0,[

G(u, v)
]
Γ
ν1 +

[
v
]
Γ
ν2 = ∂e(x,t)|Γ

∂l
,

hold along Γ, where n = (ν1, ν2) is the unit normal to the curve Γ pointing from Ω−
into Ω+, l = (−ν2, ν1) is the tangential vector to Γ,

[
a(u, v)

]
= a(u−, v−)− a(u+, v+)

is, as usual, a jump in function a(u(x, t), v(x, t)) across the discontinuity curve Γ,
(u∓, v∓) are respective left- and right-hand values of (u, v) on the discontinuity curve.

If Γ = {(x, t) : x = φ(t)}, Ω± = {(x, t) : ±(x − φ(t)) > 0} then relations (2.4)
can be rewritten as

(2.5)
φ̇(t) = [F (u,v)]

[u]

∣∣∣
x=φ(t)

,

ė(t) =
(
[G(u, v)]− [v] [F (u,v)]

[u]

)∣∣∣
x=φ(t)

,

where e(t)
def
= e(φ(t), t) and ˙(·) = d

dt
(·).

The first equation (2.4) (or (2.5)) is the standard Rankine–Hugoniot condition.
The left-hand side of the second equation in (2.4) (or the right-hand side of the
second equation in (2.5)) is called the Rankine–Hugoniot deficit .

The system of δ-shocks integral identities (2.1) is a natural generalization of the
usual system of integral identities (1.2) (for m = 2). The integral identities (2.1)
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differ from the integral identities (1.2) (for m = 2) by the additional term

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

in the second identity. This term appears due to the so-called Rankine–Hugoniot
deficit .

3. δ′-Shocks: generalized solution and the Rankine–Hugoniot conditions

Denote by C̃(R × (0,∞);R
)

the class of piecewise-smooth functions. Let Γ =
{γi : i ∈ I} be a graph introduced in Sec. 2. Initial data (u0(x), v0(x), w0(x)), where

v0(x) = v̂0(x) + e0δ(Γ0), w0(x) = ŵ0(x) + g0δ(Γ0) + h0δ′(Γ0),

and u0, v̂0, ŵ0 ∈ C̃(R;R
)
, we call δ′-shock wave type initial data. Here, by defini-

tion, e0δ(Γ0)
def
=

∑
k∈I0

e0
kδ(x − x0

k), g0δ(Γ0)
def
=

∑
k∈I0

g0
kδ(x − x0

k), h0δ(Γ0)
def
=∑

k∈I0
h0

kδ
′(x− x0

k), where e0
k, g0

k, h0
k are constants, k ∈ I0.

Definition 3.1. ( [25]) A triple of distributions
(
u(x, t), v(x, t), w(x, t)

)
and

graph Γ, where v(x, t) and w(x, t) have the form of the sums

v(x, t) = v̂(x, t) + e(x, t)δ(Γ), w(x, t) = ŵ(x, t) + g(x, t)δ(Γ) + h(x, t)δ′(Γ),

where u, v̂, ŵ ∈ C̃(R× (0,∞);R
)
,

e(x, t)δ(Γ)
def
=

∑
i∈I ei(x, t)δ(γi),

g(x, t)δ(Γ)
def
=

∑
i∈I gi(x, t)δ(γi),

h(x, t)δ′(Γ)
def
=

∑
i∈I hi(x, t)δ′(γi),

and ei(x, t), gi(x, t), hi(x, t) ∈ C1(Γ), i ∈ I, is called a generalized δ′-shock wave type
solution of system (1.11) with δ′-shock wave type initial data (u0(x), v0(x), w0(x)) if
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the integral identities

(3.1)

∫ ∞

0

∫ (
uϕt + f(u)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫
v̂
(
ϕt + f ′(u)ϕx

)
dx dt +

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl

+

∫
v̂0(x)ϕ(x, 0) dx +

∑

k∈I0

e0
kϕ(x0

k, 0) = 0,

∫ ∞

0

∫ (
ŵϕt +

(
f ′′(u)v̂2 + f ′(u)ŵ

)
ϕx

)
dx dt

+
∑
i∈I

( ∫

γi

gi(x, t)
∂ϕ(x, t)

∂l
dl

+

∫

γi

hi(x, t)
∂ϕx(x, t)

∂l
dl +

∫

γi

∂e2
i (x,t)

∂l
− hi(x, t)∂[u(x,t)]

∂l

[u(x, t)]
ϕx(x, t) dl

)

+

∫
ŵ0(x)ϕ(x, 0) dx +

∑

k∈I0

g0
kϕ(x0

k, 0) +
∑

k∈I0

h0
kϕx(x

0
k, 0) = 0,

hold for all test functions ϕ(x, t) ∈ D(R× [0,∞)). Here the derivative of the delta
function δ′(γ) on the curve γ is defined in [15, ch.III,§1.5.], [19, 5.3.;5.5.].

Theorem 3.1. ( [25]) Let us assume that Ω ⊂ R× [0,∞) is some region cut by
a smooth curve Γ = {(x, t) : x = φ(t)}, φ(t) ∈ C1(0, +∞) into a left- and right-hand
parts Ω± = {(x, t) ∈ Ω : ±(x− φ(t)) > 0}, (u(x, t), v(x, t), w(x, t)), Γ is a general-
ized δ′-shock wave type solution of system (1.11), functions (u(x, t), v̂(x, t), ŵ(x, t))
are smooth in the domains Ω± and have one-sided limits u±, V±, W± on the curve
Γ, which are supposed to be continuous functions on Γ. Then the Rankine–Hugoniot
conditions for δ′-shock

φ̇(t) =
[f(u)]

[u]

∣∣∣∣
x=φ(t)

,(3.2)

ė(t) =
(
[f ′(u)v]− [v]

[f(u)]

[u]

)∣∣∣∣
x=φ(t)

,(3.3)

ġ(t) =
(
[f ′′(u)v2 + f ′(u)w]− [w]

[f(u)]

[u]

)∣∣∣∣
x=φ(t)

,(3.4)

d

dt

(
h(t)[u(φ(t), t)]

)
=

de2(t)

dt
(3.5)

hold along Γ. Here the functions e, g, h can be treated as functions of the single

variable t, so that e(t)
def
= e(φ(t), t), g(t)

def
= g(φ(t), t), h(t)

def
= h(φ(t), t).
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The system of the Rankine–Hugoniot conditions (3.2)–(3.5) determines the tra-
jectory x = φ(t) of a δ′-shock wave and the coefficients e(t), g(t), h(t) of the sin-
gularities. The first equation in this system is the “standard” Rankine–Hugoniot
condition for the shock , while the first and second equations are the “standard”
Rankine–Hugoniot conditions for δ-shock (2.5). The right-hand sides of the equali-
ties (3.3), (3.4) are the first Rankine-Hugoniot deficits , while the right-hand side of
(3.5) is the second Rankine-Hugoniot deficit .

The integral identities (3.1) differ from classical integral identities (1.2) (for m =
3) by additional terms in the second and third identities. Here the terms

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∑
i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂l
dl,

∫

Γ

g(x, t)
∂ϕ(x, t)

∂l
dl =

∑
i∈I

∫

γi

gi(x, t)
∂ϕ(x, t)

∂l
dl

appear due to the first Rankine–Hugoniot deficit , and the term

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl +

∫

Γ

∂e2(x,t)
∂l

− h(x, t)∂[u(x,t)]
∂l

[u(x, t)]
ϕx(x, t) dl

=
∑
i∈I

( ∫

γi

hi(x, t)
∂ϕx(x, t)

∂l
dl +

∫

γi

∂e2
i (x,t)

∂l
− hi(x, t)∂[u(x,t)]

∂l

[u(x, t)]
ϕx(x, t) dl

)

appears due to the second Rankine–Hugoniot deficit . Moreover, the first integral
identity in (3.1) is a “standard” type integral identity (see (1.2)), while the first
and second integral identities in (3.1) constitute δ-shock type integral identities (see
Definition 2.1), and the third integral identity in (3.1) is a special type of δ′-shock
type integral identity.

4. Solution of the parabolic problem (1.17), (1.16)

Using the vanishing viscosity method, we study the Cauchy problem (1.12),
(1.16). The first step is to find a solution of system (1.17) with the initial data
(1.16), where system (1.17) is the parabolic approximation of system (1.12).

Integrating system (1.17) and the initial data (1.16) with respect to x, we obtain
the system

(4.1)

Uε t + U2
ε x = εUε xx,

Vε t + 2Uε xVε x = εVε xx,

Wε t + 2
(
V 2

ε x + Uε xWε x

)
= εWε xx

with the initial data

(4.2) (U0(x), V 0(x),W 0(x) =

{
(u−x, v−x,w−x), x < 0,
(u+x, v+x,w+x), x > 0,
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where

(4.3)

Uε(x, t) =
∫ x

0
uε(y, t) dy,

Vε(x, t) =
∫ x

0
vε(y, t) dy,

Wε(x, t) =
∫ x

0
wε(y, t) dy,

U0(x) =

∫ x

0

u0(y) dy, V 0(x) =

∫ x

0

v0(y) dy, W 0(x) =

∫ x

0

w0(y) dy.

It is clear that if the triple of functions (Uε(x, t), Vε(x, t),Wε(x, t)) solves the
problem (4.1), (4.2) then the triple of functions (uε(x, t), vε(x, t), wε(x, t)), where

(4.4) uε(x, t) = Uε x(x, t), vε(x, t) = Vε x(x, t), wε(x, t) = Wε x(x, t),

solves the problem (1.17), (1.16).
It is well known that the first equation of system (4.1) can be linearized by

the Hopf-Cole transformation Aε(x, t) = e−
Uε(x,t)

ε . Note that differentiating the
first equation in (4.1) twice with respect to x, denoting Vε(x, t) = Uε x(x, t) and
Wε(x, t) = Vε x(x, t), we obtain whole system (4.1). Thus system (4.1) constitutes a
3 × 3 “prolonged system”. Due to this fact, system (4.1) can be linearized by the
generalized Hopf-Cole transformations

(4.5)

Aε(x, t) = e−
Uε(x,t)

ε ,

Bε(x, t) = −Vε(x, t)

ε
e−

Uε(x,t)
ε ,

Cε(x, t) =
(V 2

ε (x, t)

ε2
− Wε(x, t)

ε

)
e−

Uε(x,t)
ε ,

where the second and third transformations were obtained by successive differenti-
ating the first Hopf-Cole transformation with respect to x and denoting Vε(x, t) =
Uε x(x, t) and Wε(x, t) = Vε x(x, t). Thus

(4.6) Uε = −ε log Aε, Vε = −ε
Bε

Aε

, Wε = −ε
AεCε −B2

ε

A2
ε

.

It is easy to calculate that

(4.7)
Aε t = −Uε t

ε
e−

Uε
ε ,

Aε xx =
(
− Uε xx

ε
+ U2

ε x

ε2

)
e−

Uε
ε ,

(4.8)
Bε t =

(
− Vε t

ε
+ Uε tVε

ε2

)
e−

Uε
ε ,

Bε xx =
(
− Vε xx

ε
+ 2Uε xVε x+Uε xxVε

ε2 − U2
ε xVε

ε3

)
e−

Uε
ε ,
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(4.9)

Cε t =
(
− Wε t

ε
+ 2VεVε t+Uε tWε

ε2 − Uε tV 2
ε

ε3

)
e−

Uε
ε ,

Cε xx =
(
− Wε xx

ε
+ 2V 2

ε x+2VεVε xx+Uε xxWε+2Uε xWε x

ε2

−Uε xxV 2
ε +4Uε xVεVε x+U2

ε xWε

ε3 + U2
ε xV 2

ε

ε4

)
e−

Uε
ε ,

From (4.1) and (4.7)–(4.9) it follows that the functions Aε, Bε, Cε satisfy the
system of the heat equations

(4.10) Aε t = εAε xx, Bε t = εBε xx, Cε t = εCε xx.

The initial data for the last system read off from the initial data (4.2) and Hopf-Cole
transformations (4.5):

(
A0

ε(x), B0
ε (x), C0

ε (x)
)

(4.11) =





(
e−

u−x

ε , −v−x

ε
e−

u−x

ε ,
(v2

−x2

ε2
− w−x

ε

)
e−

u−x

ε

)
, x < 0,

(
e−

u+x

ε , −v+x

ε
e−

u+x

ε ,
(v2

+x2

ε2
− w+x

ε

)
e−

u−x

ε

)
, x > 0.

Thus, in view of (4.4), (4.6), by the Hopf-Cole transformations

(4.12) uε(x, t) = −ε
Aε x

Aε

, vε(x, t) = −ε

(
Bε

Aε

)

x

, wε(x, t) = −ε

(
AεCε −B2

ε

A2
ε

)

x

system (1.17) is reduced to the linear system of the heat equations (4.10).
It is well known that a solution of the heat equation with the initial data

Φε t = εΦε xx, Φε(x, 0) = Φ0
ε(x)

has the following form

(4.13) Φε(x, t) =
1√
4πtε

∫ ∞

−∞
Φ0

ε(y) exp
(
− (x− y)2

4tε

)
dy.

By substituting the initial data (4.11) into formula (4.13), we obtain a solution
of the problem (4.10), (4.11):

(4.14)
Aε(x, t) = aε

−(x, t) + aε
+(x, t),

Bε(x, t) = bε
−(x, t) + bε

+(x, t),
Cε(x, t) = cε

−(x, t) + cε
+(x, t),

where

(4.15)

aε
−(x, t) =

1√
4πtε

∫ 0

−∞
exp

(
− (x− y)2

4tε
− u−

ε
y
)

dy,

aε
+(x, t) =

1√
4πtε

∫ ∞

0

exp
(
− (x− y)2

4tε
− u+

ε
y
)

dy,
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(4.16)

bε
−(x, t) =

1√
4πtε

∫ 0

−∞

(
− v−

ε
y
)

exp
(
− (x− y)2

4tε
− u−

ε
y
)

dy,

bε
+(x, t) =

1√
4πtε

∫ ∞

0

(
− v+

ε
y
)

exp
(
− (x− y)2

4tε
− u+

ε
y
)

dy,

(4.17)

cε
−(x, t) =

1√
4πtε

∫ 0

−∞

(v2
−

ε2
y2 − w−

ε
y
)

exp
(
− (x− y)2

4tε
− u−

ε
y
)

dy,

cε
+(x, t) =

1√
4πtε

∫ ∞

0

(v2
+

ε2
y2 − w+

ε
y
)

exp
(
− (x− y)2

4tε
− u+

ε
y
)

dy.

Lemma 4.1. A solution (uε, vε, wε) of the problem (1.17), (1.16) is represented
in the form

(4.18) uε(x, t) =
u−aε

− + u+aε
+

aε− + aε
+

,

(4.19) vε(x, t) = Vε x(x, t),

(4.20) wε(x, t) = Wε x(x, t),

where

Vε(x, t) = −ε
Bε

Aε

(4.21) =
v−(x− 2u−t)aε

− + v+(x− 2u+t)aε
+ − (v− − v+)

√
tε
π
e−

x2

4tε

aε− + aε
+

,

(4.22) Wε(x, t) = −ε

(
AεCε −B2

ε

A2
ε

)
= −ε

Cε

Aε

+
1

ε

(
Vε

)2

,

where Aε, Bε, Cε are given by formulas (4.14)–(4.17), and

(4.23) Bε(x, t) = −1

ε

(
v−(x− 2u−t)aε

− + v+(x− 2u+t)aε
+ − (v− − v+)

√
tε

π
e−

x2

4tε

)
,

Cε(x, t) =
2t

ε

(
v2
−aε

− + v2
+aε

+

)
+

1

ε2

(
v2
−(x− 2u−t)2aε

− + v2
+(x− 2u+t)2aε

+

)

− 1

ε2

√
tε

π
e−

x2

4tε

(
v2
−(x− 2u−t)− v2

+(x− 2u+t)
)

(4.24) −1

ε

(
w−(x− 2u−t)aε

− + w+(x− 2u+t)aε
+ − (w− − w+)

√
tε

π
e−

x2

4tε

)
.
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Proof. According to the above calculations, a solution (uε, vε, wε) of the prob-
lem (1.17), (1.16) is represented by formulas (4.12), where Aε, Bε, Cε are given by
(4.14)–(4.17).

Integrating by parts, it is easy to calculate that

J1
± = ± 1√

4πtε

∫ ±∞

0

y exp
(
− (x− y)2

4tε
− u±

ε
y
)

dy

(4.25) = (x− 2u±t)aε
±(x, t)±

√
tε

π
e−

x2

4tε .

Then easy calculations show that (4.14)–(4.16), (4.25) imply

(4.26) Aε x(x, t) = −u−
ε

aε
−(x, t)− u+

ε
aε

+(x, t),

and

Bε(x, t) = −v−
ε

(
(x− 2u−t)aε

−(x, t)−
√

tε

π
e−

x2

4tε

)

−v+

ε

(
(x− 2u+t)aε

+(x, t) +

√
tε

π
e−

x2

4tε

)

= −1

ε

(
v−(x− 2u−t)aε

− + v+(x− 2u+t)aε
+ − (v− − v+)

√
tε

π
e−

x2

4tε

)
,

i.e., (4.23) (see also calculations in Lemma 2.1. from [17]). Thus (4.12), (4.14),
(4.26), (4.23) imply (4.18), and (4.19), (4.21).

Next, integrating by parts, performing simple calculations, and using (4.25), we
obtain

J2
± = ± 1√

4πtε

∫ ±∞

0

y2 exp
(
− (x− y)2

4tε
− u±

ε
y
)

dy

= (x− 2u±t)J1
± + 2tεaε

±(x, t)

(4.27) = (x− 2u±t)
(
(x− 2u±t)aε

±(x, t)±
√

tε

π
e−

x2

4tε

)
+ 2tεaε

±(x, t).

Using (4.14)–(4.17), (4.25), (4.27), we obtain

Cε(x, t) =
v2
−

ε2
J2
− −

w−
ε

J1
− +

v2
+

ε2
J2

+ −
w+

ε
J1

+.

The last relation can be easily transformed into (4.24). Thus (4.12), (4.14), (4.26),
(4.23), (4.24) imply (4.20), (4.22). ¤
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5. Weak limit of the solution to the problem (1.17), (1.16) for u+ ≤ u−

Let us construct the weak limit of a solution (uε, vε, wε) to the Cauchy problem
(1.17), (1.16), as ε → +0 for the case u+ ≤ u−.

For our calculations we need the following identities

(5.1) −u±(x− u±t)

ε
− (x− 2u±t)2

4tε
= − x2

4tε

− [u](x− ct)

2ε
− (x− 2u−t)2

4tε
=

[u](x− ct)

2ε
− (x− 2u+t)2

4tε

(5.2) = −(x− ct)2 + [u]2t2

4tε
.

Denote c = u− + u+. Since u+ ≤ u−, we have 2u+ ≤ c ≤ 2u−, i.e.,

(5.3) x− 2u−t ≤ x− ct ≤ x− 2u+t.

In view of the identity

−(x− y)2

4tε
− u±

ε
y = −(x− 2tu± − y)2

4tε
− u±(x− u±t)

ε
,

elementary calculations transform relations (4.15) to the form

(5.4)

aε
−(x, t) = e−

u−(x−u−t)

ε J
(x− 2u−t√

4tε

)
,

aε
+(x, t) = e−

u+(x−u+t)

ε J
(
− x− 2u+t√

4tε

)
,

where

(5.5) J(z) =
1√
π

∫ ∞

z

e−y2

dy ∼





1 +
e−z2

2
√

π z
, z → −∞,

e−z2

2
√

π z

(
1− 1

2z2

)
, z → +∞.

By using (5.4) and taking into account that

(x− 2u+t)2

4tε
− (x− 2u−t)2

4tε

(5.6) =
u−(x− u−t)

ε
− u+(x− u+t)

ε
=

[u](x− ct)

ε
,
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we introduce the following functions

(5.7)

Sh
( [u](x− ct)

2ε
; t, ε

)
def
=

e
[u](x−ct)

2ε J
(− x−2u+t√

4tε

)− e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)

2
,

Ch
( [u](x− ct)

2ε
; t, ε

)
def
=

e
[u](x−ct)

2ε J
(− x−2u+t√

4tε

)
+ e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)

2
,

Th
( [u](x− ct)

2ε
; t, ε

)
def
=

Sh
( [u](x−ct)

2ε
; t, ε

)

Ch
( [u](x−ct)

2ε
; t, ε

) =
aε

+ − aε
−

aε
+ + aε−

=
e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)− e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)

e
[u](x−ct)

2ε J
(− x−2u+t√

4tε

)
+ e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

) .

Here

(5.8) J
(∓ x− 2u±t√

4tε

)
= J

(∓ x− ct√
4tε

− [u]

2

√
t

ε

)
.

To solve our problem, we need to study the limiting properties of functions in
(5.7), as ε → +0.

Lemma 5.1. We have

(5.9)

lim
ε→+0

1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

))
= lim

ε→+0

aε
−

aε
+ + aε−

= H(−x + ct),

lim
ε→+0

Th
( [u](x− ct)

2ε
; t, ε

)
= lim

ε→+0

aε
+ − aε

−
aε

+ + aε−
= 1− 2H(−x + ct),

(5.10) lim
ε→+0

1

ε

1

Ch2
(

[u](x−ct)
2ε

; t, ε
) = lim

ε→+0

1

ε

4aε
−aε

+

(aε− + aε
+)2

=
4

[u]
δ(−x + ct),

where the limits are understood in the weak sense.

Proof. 1. Taking into account (5.4) and (5.6), one can see that

aε
−

aε
+ + aε−

=
1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

))

(5.11) =
e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

) .

Let x < ct. Taking into account the inequalities x − ct < 0, (5.3), [u] > 0, and
relation (5.5), we obtain that limε→+0 J

(
x−2u−t√

4tε

)
= 1, and limε→+0 J

(− x−2u+t√
4tε

) ≤ 1.

Consequently, limε→+0 e
[u](x−ct)

2ε J
( − x−2u+t√

4tε

)
= 0, limε→+0 e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
= ∞.
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Thus for the first function in (5.7) we have that limε→+0 Th
( [u](x−ct)

2ε
; t, ε

)
= −1 for

x < ct.
Let x > ct. Taking into account the inequalities x − ct > 0, (5.3), [u] > 0, and

relation (5.5), we have that limε→+0 J
(− x−2u+t√

4tε

)
= 1, limε→+0 J

(
x−2u−t√

4tε

) ≤ 1, and

limε→+0 e
[u](x−ct)

2ε J
( − x−2u+t√

4tε

)
= ∞, limε→+0 e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
= 0. Thus for the

first function in (5.7) we have that limε→+0 Th
(

[u](x−ct)
2ε

; t, ε
)

= 1 for x > ct.
Thus according to (5.7) and (5.11), we have in the weak sense that

lim
ε→+0

Th
( [u](x− ct)

2ε
; t, ε

)
= lim

ε→+0

aε
+ − aε

−
aε

+ + aε−
=

{
1, x > ct,

−1, x < ct,

i.e., (5.9) holds.

2. In view of (5.7), (5.8), by changing ξ = [u](x−ct)
2ε

, we obtain

lim
ε→+0

∫ ∞

−∞

1

ε

ϕ(x, t)

Ch2
( [u](x−ct)

2ε
; t, ε

) dx

= lim
ε→+0

∫ ∞

−∞

4

ε

ϕ(x, t)(
e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)
+ e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

))2 dx

=
8

[u]
lim

ε→+0

∫ ∞

−∞

ϕ
(
ct + 2ξ

[u]
ε, t

)
(
eξJ

(− ξ
√

ε

[u]
√

t
− [u]

2

√
t
ε

)
+ e−ξJ

(
ξ
√

ε

[u]
√

t
− [u]

2

√
t
ε

))2 dξ.

Since according to (5.8),

(5.12) lim
ε→+0

J
(
∓ x− 2u±t√

4tε

)∣∣∣
x=ct+ 2ξ

[u]
ε
= lim

ε→+0
J
(
∓ ξ

√
ε

[u]
√

t
− [u]

2

√
t

ε

)
= 1,

and, according to the above calculations, a denominator of the integrand tends to
∞ sufficiently rapidly, as |ξ| → ∞, one can see that

(5.13) lim
ε→+0

∫ ∞

−∞

1

ε

ϕ(x, t)

Ch2
(

[u](x−ct)
2ε

; t, ε
) dx =

8ϕ
(
ct, t

)

[u]

∫ ∞

−∞

dξ(
eξ + e−ξ

)2 =
4ϕ

(
ct, t

)

[u]
,

for all ϕ ∈ D(R× [0,∞)). Thus in the weak sense we have the first relation in (5.10).
Taking into account (5.6), according to (5.4), (5.7), we have

1

ε

4aε
−aε

+

(aε− + aε
+)2

=
1

ε

4J
(

x−2u−t√
4tε

)
J
(− x−2u+t√

4tε

)
(
e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ e−

[u](x−ct)
2ε J

(− x−2u+t√
4tε

))2

(5.14) = J
(x− 2u−t√

4tε

)
J
(− x− 2u+t√

4tε

)1

ε

1

Ch2
(

[u](x−ct)
2ε

; t, ε
) .

Thus, in view of (5.13), (5.12), relation (5.14) implies the second relation in (5.10).
¤
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It is clear that for u+ ≤ u− limiting properties of functions (5.7) coincide
with limiting properties of the corresponding hyperbolic functions of the argument
[u](x−ct)

2ε
, as ε → +0.

Theorem 5.1. Let u+ ≤ u−. If (uε, vε, wε) is a solution of the parabolic problem
(1.17), (1.16) then for t ∈ [0, ∞) we have in the weak sense

(5.15)

u(x, t) = limε→+0 uε(x, t) = u+ + [u]H(−x + φ(t)),

v(x, t) = limε→+0 vε(x, t) = v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t)),

w(x, t) = limε→+0 wε(x, t) = w+ + [w]H(−x + φ(t)) + g(t)δ(−x + φ(t))

+h(t)δ′(−x + φ(t)),

where

(5.16)

φ(t) = ct = [u2]
[u]

t =
(
u− + u+

)
t,

e(t) =
(
2[uv]− [v]φ̇(t)

)
t = [u](v− + v+)t,

g(t) =
(
2[v2 + uw]− [w]φ̇(t)

)
t

=
(
2[v](v− + v+) + [u](w− + w+)

)
t,

h(t) = [u](v− + v+)2t2.

Moreover,

(5.17) h(t) =
e2(t)

[u]
.

Proof. 1. Taking into account (5.6), by substituting (5.4) into (4.18), we obtain

uε(x, t) =
u−e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ u+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

= u+ + [u]
e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

(5.18) = u+ + [u]
1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

))
.

Using (5.18) and (5.9), we have in the weak sense

〈u(x, t), ϕ(x, t)〉 = lim
ε→+0

〈uε(x, t), ϕ(x, t)〉 = lim
ε→+0

〈u−aε
− + u+aε

+

aε− + aε
+

, ϕ(x, t)
〉

= lim
ε→+0

〈
u+ + [u]

1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

))
, ϕ(x, t)

〉

(5.19) =
〈
u+ + [u]H(−x + φ(t)), ϕ(x, t)

〉
,
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for all ϕ ∈ D(R × [0,∞)), where φ(t) = ct = (u− + u+)t. Here the passage to the
limit under the integral sign is justified by the Lebesgue dominated theorem. The
first equality in (5.15) is thus proved.

2. Similarly to the above calculations, taking into account relations (5.6), (5.1),
(5.2), we transform Vε(x, t) given by (4.21), to the form

Vε(x, t) = x
v−e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ v+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

−
[v]

√
tε
π
e−

(x−2u−t)2

4tε

J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
ε J

(− x−2u+t√
4tε

)

(5.20) −2t
u−v−e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ u+v+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

) .

Since

(5.21)
1√
πε

e−
x2

ε
D′→ δ(x), ε → +0,

and, according to the proof of Lemma 5.1, limε→+0 e∓
[u](x−ct)

2ε J
( ± x−2u∓t√

4tε

)
= ∞ for

∓(x− ct) > 0, we have

[v]
√

tε
π
e−

x2

4tε

aε− + aε
+

=
[v]

√
tε
π
e−

(x−2u−t)2

4tε

J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
ε J

(− x−2u+t√
4tε

)

(5.22) = ε
[v]

√
t

πε
e−

(x−ct)2

4tε e−
[u]2t
4ε

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

) D′→ 0, ε → +0.

Passing to the weak limit in Vε(x, t) as ε → +0, and taking into account relations
(5.9), (5.18), (5.19), we have

v−e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ v+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

= v+ + [v]
1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

)) D′→ v+ + [v]H(−x + φ(t)),

u−v−e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ u+v+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

= u+v+ + [uv]
1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

)) D′→ u+v+ + [uv]H(−x + φ(t)).
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Thus taking into account (5.22), similarly to (5.19), we obtain that in the weak sense

V (x, t) = lim
ε→+0

Vε(x, t)

(5.23) = x
(
v+ + [v]H(−x + φ(t))

)
− 2t

(
u+v+ + [uv]H(−x + φ(t))

)
.

According to (4.21), (5.4), vε(x, t) = (Vε(x, t))x. Hence, taking into account the
well-known relation (−x + φ(t))δ(−x + φ(t)) = 0, and differentiating relation (5.23)
with respect to x, we obtain

〈v(x, t), ϕ(x, t)〉 = lim
ε→+0

〈vε(x, t), ϕ(x, t)〉 = lim
ε→+0

〈(Vε(x, t))x, ϕ(x, t)〉

= − lim
ε→+0

〈Vε(x, t), ϕx(x, t)〉 = 〈Vx(x, t), ϕ(x, t)〉

=
〈
v+ + [v]H(−x + φ(t))− x[v]δ(−x + φ(t)) + 2t[uv]δ(−x + φ(t)), ϕ(x, t)

〉

(5.24) =
〈
v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t)), ϕ(x, t)

〉
,

for all ϕ ∈ D(R× [0,∞)), where e(t) is given by the second relation in (5.16). The
second equality in (5.15) is thus proved.

3. According to (4.20), (4.22), wε(x, t) = Wε x, where

Wε(x, t) = −ε
Cε

Aε

+
1

ε

(
Vε

)2

.

To achieve our goal, we shall use the same transforms of Wε(x, t) as above.
In view of (4.24), (4.14), (4.15), we have

−ε
Cε

Aε

= −2t
v2
−aε

− + v2
+aε

+

aε− + aε
+

+
w−(x− 2u−t)aε

− + w+(x− 2u+t)aε
+

aε− + aε
+

−
[w]

√
tε
π
e−

x2

4tε

aε− + aε
+

+
1

ε

√
tε

π
e−

x2

4tε
v2
−(x− 2u−t)− v2

+(x− 2u+t)

aε− + aε
+

(5.25) −1

ε

v2
−(x− 2u−t)2aε

− + v2
+(x− 2u+t)2aε

+

aε− + aε
+

.

Next, using (4.21), one can easily see that

1

ε

(
Vε

)2

=
1

ε

v2
−(x− 2u−t)2(aε

−)2 + v2
+(x− 2u+t)2(aε

+)2

(aε− + aε
+)2

+
1

ε

2v−v+(x− 2u−t)(x− 2u+t)aε
−aε

+

(aε− + aε
+)2

(5.26) +
[v]2 t

π
e−

x2

2tε

(aε− + aε
+)2

− 1

ε
2[v]

√
tε

π
e−

x2

4tε
v−(x− 2u−t)aε

− + v+(x− 2u+t)aε
+

(aε− + aε
+)2

.
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Summarizing (5.25) and (5.26), we obtain

(5.27) Wε(x, t) = −ε
Cε

Aε

+
1

ε

(
Vε

)2

= Z1ε + Z2ε + Z3ε + Z4ε,

where

(5.28) Z1ε = −2t
v2
−aε

− + v2
+aε

+

aε− + aε
+

+
w−(x− 2u−t)aε

− + w+(x− 2u+t)aε
+

aε− + aε
+

,

Z2ε =
1

ε

v2
−(x− 2u−t)2(aε

−)2 + v2
+(x− 2u+t)2(aε

+)2

(aε− + aε
+)2

+
1

ε

2v−v+(x− 2u−t)(x− 2u+t)aε
−aε

+

(aε− + aε
+)2

−1

ε

v2
−(x− 2u−t)2aε

− + v2
+(x− 2u+t)2aε

+

aε− + aε
+

(5.29) = −1

ε

aε
−aε

+

(aε− + aε
+)2

(
v−(x− 2u−t)− v+(x− 2u+t)

)2
,

(5.30) Z3ε = −
[w]

√
tε
π
e−

x2

4tε

aε− + aε
+

+
[v]2 t

π
e−

x2

2tε

(aε− + aε
+)2

,

Z4ε =
1

ε

√
tε

π
e−

x2

4tε
v2
−(x− 2u−t)− v2

+(x− 2u+t)

aε− + aε
+

(5.31) −1

ε
2[v]

√
tε

π
e−

x2

4tε
v−(x− 2u−t)aε

− + v+(x− 2u+t)aε
+

(aε− + aε
+)2

.

Passing to the weak limit in Z1ε as ε → +0, and taking into account relations
(5.9), (5.18), (5.19), one can easily see that

lim
ε→+0

Z1ε
D′
= x

(
w+ + [w]H(−x + φ(t))

)

(5.32) −2t
(
v2

+ + u+w+ + [v2 + uw]H(−x + φ(t))
)
.

In view of (5.10), relation (5.29) implies that in the weak sense

lim
ε→+0

Z2ε
D′
= − 1

[u]

(
v−(ct− 2u−t)− v+(ct− 2u+t)

)2
δ(−x + φ(t))

(5.33) = − 1

[u]
[u]2(v− + v+)2t2δ(−x + φ(t)) = −[u](v− + v+)2t2δ(−x + φ(t)).
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In view of (5.21), by using (5.30), (5.6), (5.1), (5.2), and repeating the proof of
relation (5.22) almost word for word, we obtain

Z3ε = −ε
[w]

√
t

πε
e−

(x−ct)2

4tε e−
[u]2t
4ε

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

(5.34) +
√

ε
[v]2 t

π
√

ε
e−

(x−ct)2

2tε e−
[u]2t
2ε

(
e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

))2

D′→ 0, ε → +0.

Taking into account (5.6), (5.1), (5.2), by the above elementary calculations, we
transform (5.31) to the form

Z4ε =

√
t

πε
e−

(x−ct)2

4tε e−
[u]2t
4ε

{
v2
−(x− 2u−t)− v2

+(x− 2u+t)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

−2[v]
v−(x− 2u−t)e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ v+(x− 2u+t)e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)
(
e−

[u](x−ct)
2ε J

(
x−2u−t√

4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

))2

}
.

Applying the last relation to a test function ϕ(x, t) ∈ D(R× [0,∞)) and making the

change of variables ξ = [u](x−ct)
2ε

, η = t
ε
, we obtain for the first term in Z4ε:

∫ ∞

0

∫
Z4ε(x, t)ϕ(x, t) dx dt

= 2ε3

∫ ∞

0

∫ √
η

π

e
− ξ2

[u]2η
− [u]2η

4
(
2ξ[v2]− [u]2(v2

− + v+)η
)

e−ξJ
(

2ξ−[u]2η
2[u]

√
η

)
+ eξJ

(− 2ξ+[u]2η
2[u]

√
η

) ϕ
(
(cη +

2ξ

[u]
)ε, ηε

)
dξ dη → 0,

as ε → +0. Similar simple calculations show that the second term in Z4ε tends to
zero in the weak sense, as ε → +0. Thus

(5.35) lim
ε→+0

Z4ε
D′
= 0.

Here we use the fact that
√

t
πε

e−
(x−ct)2

4tε e−
[u]2t
4ε

D′→ 0, ε → +0.

Thus, according to (5.32), (5.33), (5.34), (5.35), we have

lim
ε→+0

Wε(x, t) = lim
ε→+0

(Z1ε + Z2ε + Z3ε + Z4ε)
D′
= x

(
w+ + [w]H(−x + φ(t))

)

−2t
(
v2

+ + u+w+ + [v2 + uw]H(−x + φ(t))
)

(5.36) −[u](v− + v+)2t2δ(−x + φ(t)).
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Taking into account that (−x+φ(t))δ(−x+φ(t)) = 0, and differentiating relation
(5.36) with respect to x, we obtain〈

w(x, t), ϕ(x, t)
〉

= lim
ε→+0

〈
(Wε(x, t))x, ϕ(x, t)

〉
= − lim

ε→+0

〈
Wε(x, t), ϕx(x, t)

〉

=
〈
Wx(x, t), ϕ(x, t)

〉
=

〈
w+ + [w]H(−x + φ(t)− x[w]δ(−x + φ(t))

+2t[v2 + uw]δ(−x + φ(t)) + [u](v− + v+)2t2δ′(−x + φ(t)), ϕ(x, t)
〉

(5.37) =
〈
w+ + [w]H(−x + φ(t)) + g(t)δ(−x + φ(t)) + h(t)δ′(−x + φ(t)), ϕ(x, t)

〉
,

for all ϕ ∈ D(R×[0,∞)), where g(t) = (2[v2+uw]−[w]c)t and h(t) = [u](v−+v+)2t2

are given by the third and fourth relations in (5.16). Thus, the third equality in
(5.15) is proved. ¤

6. Weak limit of the solution to the problem (1.17), (1.16) for u+ > u−

In this case we have [u] = u− − u+ < 0, 2u− < c = u− + u+ < 2u+, and

(6.1) x− 2u+t < x− ct < x− 2u−t.

According to (5.4), (5.5), (5.1), we have

(6.2)

aε
−(x, t) ∼ e−

x2

4tε

√
4tε

2
√

π(x− 2u−t)

(
1− 4tε

2(x− 2u−t)2

)
, x > 2u−t,

aε
+(x, t) ∼ e−

x2

4tε
−√4tε

2
√

π(x− 2u+t)

(
1− 4tε

2(x− 2u+t)2

)
, x < 2u+t,

as ε → +0.

Lemma 6.1. We have

lim
ε→+0

1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

))
= lim

ε→+0

aε
−

aε
+ + aε−

=





1, x ≤ 2u−t,
1
[u]

(
x
2t
− u+

)
, 2u−t < x < 2u+t,

0, x ≥ 2u+t,

(6.3) =
1

2[u]t

(
(−x + 2u−t)H(−x + 2u−t)− (−x + 2u+t)H(−x + 2u+t)

)
,

where the limit is understood in the weak sense.

Proof. 1. Let x ≤ 2u−t. In view of (6.1), we have x − ct, x − 2u+t < 0,
i.e., according to (5.5), limε→+0 J

( − x−2u+t√
4tε

)
= 0, and limε→+0 J

(
x−2u−t√

4tε

)
= 1, for

x < 2u−t; J
(

x−2u−t√
4tε

)∣∣
x=2u−t

= 1
2
. Applying estimates (5.5) and formulas (5.1), (5.2)

to (5.11), we see that

lim
ε→+0

aε
−

aε
+ + aε−

= lim
ε→+0

J
(

x−2u−t√
4tε

)

J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
ε J

(− x−2u+t√
4tε

)
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= lim
ε→+0

J
(

x−2u−t√
4tε

)

J
(

x−2u−t√
4tε

)− e
[u](x−ct)

ε

√
4tε

2
√

π(x−2u+t)
e−

(x−2u+t)2

4tε

(6.4) = lim
ε→+0

J
(

x−2u−t√
4tε

)

J
(

x−2u−t√
4tε

)−
√

4tε
2
√

π(x−2u+t)
e−

(x−2u−t)2

4tε

= 1.

Let x ≥ 2u+t. In view of (6.1), we have x − ct, x − 2u−t > 0, and, con-
sequently, limε→+0 J

(
x−2u−t√

4tε

)
= 0, and limε→+0 J

( − x−2u+t√
4tε

)
= 1, for x > 2u+t;

J
( − x−2u+t√

4tε

)∣∣
x=2u+t

= 1
2
. Applying estimates (5.5) to (5.11), and taking into ac-

count (5.1), (5.2), just as above, we have

lim
ε→+0

aε
−

aε
+ + aε−

= lim
ε→+0

e−
[u](x−ct)

ε J
(

x−2u−t√
4tε

)

e−
[u](x−ct)

ε J
(

x−2u−t√
4tε

)
+ J

(− x−2u+t√
4tε

)

= lim
ε→+0

e−
[u](x−ct)

ε

√
4tε

2
√

π(x−2u−t)
e−

(x−2u−t)2

4tε

e−
[u](x−ct)

ε

√
4tε

2
√

π(x−2u−t)
e−

(x−2u−t)2

4tε + J
(− x−2u+t√

4tε

)

(6.5) = lim
ε→+0

√
4tε

2
√

π(x−2u−t)
e−

(x−2u+t)2

4tε

√
4tε

2
√

π(x−2u−t)
e−

(x−2u+t)2

4tε + J
(− x−2u+t√

4tε

) = 0.

Let 2u−t < x < 2u+t. In this case we have x− 2u−t > 0 and x− 2u+t < 0, and,
consequently, limε→+0 J

(− x−2u+t√
4tε

)
= 0, and limε→+0 J

(
x−2u−t√

4tε

)
= 0. Thus applying

(5.5), (5.2), (5.1), (6.2), to (5.11), we calculate

lim
ε→+0

aε
−

aε
+ + aε−

= lim
ε→+0

e−
x2

4tε

√
4tε

2
√

π(x−2u−t)

e−
x2

4tε

√
4tε

2
√

π(x−2u−t)
+ e−

x2

4tε
−√4tε

2
√

π(x−2u+t)

(6.6) =

1
x−2u−t

1
x−2u−t

− 1
x−2u+t

=
x− 2u+t

2[u]t
.

Summarizing the above relations (6.4)–(6.6), we conclude that relation (6.3)
holds. ¤

Theorem 6.1. Let u+ > u−. If (uε, vε, wε) is a solution of the parabolic problem
(1.17), (1.16) then for t ∈ [0, ∞) we have in the weak sense(

u(x, t), v(x, t), w(x, t)
)

= lim
ε→+0

(
uε(x, t), vε(x, t), wε(x, t)

)

=





(u−, v−, w−), x ≤ 2u−t,(
x
2t

, 0, 0
)
, 2u−t < x < 2u+t,

(u+, v+, w+), x ≥ 2u+t,
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= (u+, v+, w+)
(
1−H(−x + 2u+t)

)
+ (u−, v−, w−)H(−x + 2u−t)

(6.7) +
( x

2t
, 0, 0

)(
H(−x + 2u+t)−H(−x + 2u−t)

)
.

Proof. 1. According to (5.18) and (6.3), we have in the weak sense

u(x, t) = lim
ε→+0

uε(x, t) = lim
ε→+0

u−aε
− + u+aε

+

aε− + aε
+

= lim
ε→+0

(
u+ + [u]

1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

)))

(6.8) = u+ +
1

2t

(
(−x + 2u−t)H(−x + 2u−t)− (−x + 2u+t)H(−x + 2u+t)

)
.

The first equality in (5.15) thus holds.
2. Similarly to the above calculations, we can calculate the weak limit of the

following terms of Vε(x, t) given by (5.20), as ε → +0:

v−e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ v+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

= v+ + [v]
1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

)) D′→

(6.9) v+ +
[v]

2[u]t

(
(−x + 2u−t)H(−x + 2u−t)− (−x + 2u+t)H(−x + 2u+t)

)
,

u−v−e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ u+v+e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)
+ e

[u](x−ct)
2ε J

(− x−2u+t√
4tε

)

= u+v+ + [uv]
1

2

(
1− Th

( [u](x− ct)

2ε
; t, ε

)) D′→

(6.10) u+v+ +
[uv]

2[u]t

(
(−x + 2u−t)H(−x + 2u−t)− (−x + 2u+t)H(−x + 2u+t)

)
.

If x ≤ 2u−t, according to the proof of Lemma 6.1, limε→+0 J
(

x−2u−t√
4tε

)
= 1, for

x < 2u−t; J
(

x−2u−t√
4tε

)∣∣
x=2u−t

= 1
2
; limε→+0 J

(− x−2u+t√
4tε

)
= 0. Next, using estimates

(5.5), equalities (5.1), (5.2), and repeating the proof of Lemma 6.1, we see that

lim
ε→+0

[v]
√

tε
π
e−

x2

4tε

aε− + aε
+

= lim
ε→+0

[v]
√

tε
π
e−

(x−ct)2

4tε e−
[u]2t
4ε

e−
[u](x−ct)

2ε J
(

x−2u−t√
4tε

)− e
[u](x−ct)

2ε

√
4tε

2
√

π(x−2u+t)
e−

(x−2u+t)2

4tε
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(6.11) = lim
ε→+0

[v]
√

tε
π
e−

(x−2u−t)2

4tε

J
(

x−2u−t√
4tε

)−
√

4tε
2
√

π(x−2u+t)
e−

(x−2u−t)2

4tε

= 0.

If x ≥ 2u+t, taking into account that limε→+0 J
(−x−2u+t√

4tε

)
= 1; J

(−x−2u+t√
4tε

)∣∣
x=2u+t

=
1
2
; limε→+0 J

(
x−2u−t√

4tε

)
= 0, and repeating the proof of Lemma 6.1, we obtain

(6.12) lim
ε→+0

[v]
√

tε
π
e−

x2

4tε

aε− + aε
+

= 0.

If 2u−t < x < 2u+t, according to the proof of Lemma 6.1, limε→+0 J
(± x−2u∓t√

4tε

)
= 0.

Using (5.5), (5.1), (5.2), (6.2), and repeating the proof of Lemma 6.1, we obtain

lim
ε→+0

[v]
√

tε
π
e−

x2

4tε

aε− + aε
+

= lim
ε→+0

[v]
√

tε
π
e−

x2

4tε

e−
x2

4tε

√
4tε

2
√

π(x−2u−t)
+ e−

x2

4tε
−√4tε

2
√

π(x−2u+t)

(6.13) = lim
ε→+0

[v]
√

tε
π

√
4tε

2
√

π(x−2u−t)
−

√
4tε

2
√

π(x−2u+t)

=
[v](−x + 2u−t)(−x + 2u+t)

2[u]t
.

Thus (6.11), (6.12), (6.13) imply

lim
ε→+0

[v]
√

tε
π
e−

x2

4tε

aε− + aε
+

(6.14) =
[v](−x + 2u−t)(−x + 2u+t)

2[u]t

(
H(−x + 2u+t)−H(−x + 2u−t)

)
.

Taking into account (6.9), (6.10), (6.14), by easy calculations we derive

V (x, t) = lim
ε→+0

Vε(x, t)

= x
{

v+ +
[v]

2[u]t

(
(−x + 2u−t)H(−x + 2u−t)− (−x + 2u+t)H(−x + 2u+t)

)}

−2t
{

u+v+ +
[uv]

2[u]t

(
(−x + 2u−t)H(−x + 2u−t)− (−x + 2u+t)H(−x + 2u+t)

)}

− [v](−x + 2u−t)(−x + 2u+t)

2[u]t

(
H(−x + 2u+t)−H(−x + 2u−t)

)

= −v+

(− x + 2u+t
)(

1−H(−x + 2u+t)
)− v−

(− x + 2u−t
)
H(−x + 2u−t)

(6.15) =




−v−

(− x + 2u−t
)
, x ≤ 2u−t,

0, 2u−t < x < 2u+t.
−v+

(− x + 2u+t
)
, x ≥ 2u+t,
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Consequently, taking into account the relations (−x + 2u±t)δ(−x + 2u±t) = 0, we
have

〈v(x, t), ϕ(x, t)〉 = lim
ε→+0

〈(Vε(x, t))x, ϕ(x, t)〉 = 〈Vx(x, t), ϕ(x, t)〉

(6.16) =
〈
v+

(
1−H(−x + 2u+t)

)
+ v−H(−x + 2u−t), ϕ(x, t)

〉
,

for all ϕ ∈ D(R× (0,∞)), i.e., the second equality in (6.7) holds.
3. According to (5.27),

Wε(x, t) = Z1ε + Z2ε + Z3ε + Z4ε,

where Z1ε, Z2ε, Z3ε, Z4ε are given by (5.28)–(5.31). We set Z3ε = Z1
3ε + Z2

3ε, where

(6.17) Z1
3ε = −

[w]
√

tε
π
e−

x2

4tε

aε− + aε
+

, Z2
3ε =

[v]2 t
π
e−

x2

2tε

(aε− + aε
+)2

.

Repeating the calculations for deriving formulas (6.8), (6.9), (6.10), (6.14), we
see that

(6.18) lim
ε→+0

(
Z1ε + Z1

3ε

)
x

=





w−, x ≤ 2u−t,

− [v2]
[u]

, 2u−t < x < 2u+t,

w+, x ≥ 2u+t.

Using (5.29) and taking into account (5.21), by repeating the above calculations,
we obtain for x < 2u−t

lim
ε→+0

Z2ε

= lim
ε→+0

J
(

x−2u−t√
4tε

)
1

x−2u+t

√
t

πε
e−

(x−2u−t)2

4tε

(
J
(

x−2u−t√
4tε

)−
√

4tε
2
√

π(x−2u+t)
e−

(x−2u−t)2

4tε

)2

(
v−(x− 2u−t)− v+(x− 2u+t)

)2
= 0.

Similarly to proving the above equality and (6.11), (6.12), it is easy to prove that if
x < 2u−t or x > 2u+t then

(6.19) lim
ε→+0

Z2ε = lim
ε→+0

Z2
3ε = lim

ε→+0
Z4ε = 0.

Let 2u−t < x < 2u+t. Denote X± = x − 2u±t. Applying formulas (5.1), (5.2),
(6.2) to (5.29), (6.17), (5.31), and taking into account that X+ − X− = 2[u]t, we
calculate that

lim
ε→+0

(
Z2ε + Z2

3ε + Z4ε

)

= lim
ε→+0

{
− 1

ε

e−
x2

4tε

√
4tε

2
√

πX−

(
1− 2tε

X2
−

)
e−

x2

4tε
−√4tε
2
√

πX+

(
1− 2tε

X2
+

)
(
e−

x2

4tε

√
4tε

2
√

πX−

(
1− 2tε

X2
−

)− e−
x2

4tε

√
4tε

2
√

πX+

(
1− 2tε

X2
+

))2

(
v−X− − v+X+

)2
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+
[v]2 t

π
e−

x2

2tε

(
e−

x2

4tε

√
4tε

2
√

πX−

(
1− 2tε

X2
−

)− e−
x2

4tε

√
4tε

2
√

πX+

(
1− 2tε

X2
+

))2

+
1

ε

√
tε

π
e−

x2

4tε
v2
−X− − v2

+X+

e−
x2

4tε

√
4tε

2
√

πX−

(
1− 2tε

X2
−

)− e−
x2

4tε

√
4tε

2
√

πX+

(
1− 2tε

X2
+

)

−2[v]

ε

√
tε

π
e−

x2

4tε

v−X− e−
x2

4tε
√

4tε
2
√

πX−

(
1− 2tε

X2
−

)− v+X+
e−

x2

4tε
√

4tε
2
√

πX+

(
1− 2tε

X2
+

)
(
e−

x2

4tε

√
4tε

2
√

πX−
− e−

x2

4tε

√
4tε

2
√

πX+

)2

}

= lim
ε→+0

1

ε

{
X−X+

4[u]2t2
(
v−X− − v+X+

)2
+

[v]2X2
−X2

+

4[u]2t2

+
X−X+

(
v2
−X− − v2

+X+

)

2[u]t
− 2[v]2

X2
−X2

+

4[u]2t2

}

+

{
1

2[u]2t

(X− + X+)2

X−X+

(
v−X− − v+X+

)2
+

[v]2

[u]2t

(
X2
− + X−X+ + X2

+

)2

− 1

2[u]2t

X3
− −X3

+

X−X+

(
v2
−X− − v2

+X+

)

(6.20) − [v]

[u]2t

(
v−(X2

+ + 2X−X+ + 2X2
−)− v+(X2

− + 2X−X+ + 2X2
+)

)}
.

It is easy to examine that the expression in the first braces in (6.20) is equal to
zero, i.e.,

X−X+

4[u]2t2
(
v−X− − v+X+

)2
+

[v]2X2
−X2

+

4[u]2t2

(6.21) +
X−X+

(
v2
−X− − v2

+X+

)

2[u]t
− 2[v]2

X2
−X2

+

4[u]2t2
= 0.

Let us consider the expression in the second braces in (6.20). Easy calculations show
that

1

2[u]2t

(X− + X+)2

X−X+

(
v−X− − v+X+

)2
+

[v]2

[u]2t

(
X2
− + X−X+ + X2

+

)2

− 1

2[u]2t

X3
− −X3

+

X−X+

(
v2
−X− − v2

+X+

)

− [v]

[u]2t

(
v−(X2

+ + 2X−X+ + 2X2
−)− v+(X2

− + 2X−X+ + 2X2
+)

)

=
1

2[u]2t

(
1

X−X+

(
X2
−X2

+(v2
− − 4v−v+ + v2

+)

+X3
−X+(2v2

− − 2v−v+ + v2
+) + X−X3

+(2v2
+ − 2v−v+ + v2

−)
)
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+
(
X−X+(−2v2

− + 4v−v+ − 2v2
+) + X2

−(−2v2
− + 2v−v+) + X2

+(−2v2
+ + 2v−v+)

))

(6.22) =
1

2[u]2t

(
X2
−v2

+ −X−X+(v2
− + v2

+) + X2
+v2

−
)
.

Thus (6.20), (6.21), (6.22) imply that

lim
ε→+0

(Z2ε + Z2
3ε + Z4ε) =

1

2[u]2t

(
X2
−v2

+ −X−X+(v2
− + v2

+) + X2
+v2

−
)

for 2u−t < x < 2u+t. Consequently,

(6.23) lim
ε→+0

(Z2ε + Z2
3ε + Z4ε)x =

[v2]

2[u]2t

(
X+ −X−

)
=

[v2]

[u]
, 2u−t < x < 2u+t.

Summarizing (6.18), (6.19), (6.23), we conclude that

(6.24) w(x, t) = lim
ε→+0

(Wε(x, t))x =





w−, x ≤ 2u−t,
0, 2u−t < x < 2u+t,

w+, x ≥ 2u+t,

i.e., the third equality in (6.7) holds. ¤

7. Solutions of the Riemann problem (1.12), (1.16)

7.1. Propagation of δ′-shock wave in system (1.12). Now we prove that
the triple of distributions (5.15) constructed by Theorem 5.1 is a δ′-shock wave type
solution of the Cauchy problem (1.12), (1.16) for u+ ≤ u−.

Theorem 7.1. Let u+ ≤ u−. Then for t ∈ [0, ∞), the Cauchy problem (1.12),
(1.16) has a unique generalized δ′-shock wave type solution (1.18) (see (5.15))

u(x, t) = u+ + [u]H(−x + φ(t)),

v(x, t) = v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t)),

w(x, t) = w+ + [w]H(−x + φ(t)) + g(t)δ(−x + φ(t))

+h(t)δ′(−x + φ(t)),
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which satisfies the integral identities (3.1):

(7.1)

∫ ∞

0

∫ (
u(x, t)ϕt + u2(x, t)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
v̂(x, t)ϕt + 2u(x, t)v̂(x, t)ϕx

)
dx dt

+

∫

Γ

e(t)
∂ϕ(x, t)

∂l
dl +

∫
v̂0(x)ϕ(x, 0) dx = 0,

∫ ∞

0

∫ (
ŵ(x, t)ϕt + 2

(
v̂2(x, t) + u(x, t)ŵ(x, t)

)
ϕx

)
dx dt

+

∫

Γ

g(t)
∂ϕ(x, t)

∂l
dl +

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl +

∫

Γ

∂e2(x,t)
∂l

[u]
ϕx(x, t) dl

+

∫
ŵ0(x)ϕ(x, 0) dx = 0,

for all ϕ(x, t) ∈ D(R× [0, ∞)), where functions e(t), g(t), h(t) are given by (5.16).
Here Γ = {(x, t) : x = φ(t) = ct, t ≥ 0}, v̂(x, t) = v+ + [v]H(−x + φ(t)), ŵ(x, t) =
w+ + [w]H(−x + φ(t)), and (see (2.3))

∫

Γ

e(x, t)
∂ϕ(x, t)

∂l
dl =

∫ ∞

0

e(t)
dϕ(φ(t), t)

dt
dt,

∫

Γ

g(x, t)
∂ϕ(x, t)

∂l
dl =

∫ ∞

0

g(t)
dϕ(φ(t), t)

dt
dt,

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl =

∫ ∞

0

h(t)
dϕx(φ(t), t)

dt
dt,

∫

Γ

∂e2(x,t)
∂l

− h(x, t)∂[u(x,t)]
∂l

[u(x, t)]
ϕx(x, t) dl =

∫ ∞

0

de2(t)
dt

[u]
ϕx(φ(t), t) dt.

Moreover, for this solution the admissibility condition (1.15) holds.

Proof. Let Ω ⊂ R × [0,∞) be some region and suppose that the curve Γ =
{(x, t) : x = φ(t) = ct, t ≥ 0} cuts it into a left- and right-hand parts Ω± = {(x, t) :

±(x − ct) > 0}. Let n = (ν1, ν2) = (1,−φ̇(t))√
1+(φ̇(t))2

= (1,−c)√
1+c2

be the unit normal to the

curve Γ pointing from Ω− into Ω+, and l = (−ν2, ν1) = (c,1)√
1+c2

be the tangential

vector to Γ (see (2.2)).
Choosing a test function ϕ(x, t) with support in Ω, we deduce that the left-hand

side of the first relation in (7.1) transforms to the form∫ ∞

0

∫ (
u(x, t)ϕt + u2(x, t)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx

=

∫ ∫

Ω−

(
u−ϕt + u2

−ϕx

)
dx dt +

∫ ∫

Ω+

(
u+ϕt + u2

+ϕx

)
dx dt
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(7.2) +

∫ 0

−∞
u0(x)ϕ(x, 0) dx +

∫ ∞

0

u0(x)ϕ(x, 0) dx.

Next, integrating by parts, taking into account that dx
dt

= −ν2

ν1
= −c and ν1dl = dt,

we obtain ∫ ∫

Ω±

(
u±ϕt + u2

±ϕx

)
dx dt

= ∓
∫

Γ

(
ν2u± + ν1u

2
±
)
ϕdl ∓

∫ ±∞

0

u0(x)ϕ(x, 0) dx

(7.3) = ∓
∫ ∞

0

(− cu± + u2
±
)
ϕ(ct, t) dt∓

∫ ±∞

0

u0(x)ϕ(x, 0) dx.

Since according to the first equation in (5.16) φ̇(t) = c = [u2]
[u]

, relations (7.2), (7.3)

imply ∫ ∞

0

∫ (
u(x, t)ϕt + u2(x, t)ϕx

)
dx dt +

∫
u0(x)ϕ(x, 0) dx

(7.4) =

∫ ∞

0

(− c[u] + [u2]
)
ϕ(ct, t) dt = 0.

Thus the first identity in (7.1) holds.
Applying the above calculations to the left-hand side of the second relation in

(7.1), we obtain∫ ∞

0

∫ (
v̂(x, t)ϕt + 2u(x, t)v̂(x, t)ϕx

)
dx dt +

∫
v̂0(x)ϕ(x, 0) dx

=

∫

Γ

(
ν2v− + ν12u−v−

)
ϕdl −

∫

Γ

(
ν2v+ + ν12u+v+

)
ϕdl

(7.5) =

∫

Γ

(
ν2[v] + ν12[uv]

)
ϕdl =

∫ ∞

0

(− c[v] + 2[uv]
)
ϕ(ct, t) dt.

Since by integration by parts we have∫ ∞

0

t
dϕ(ct, t)

dt
dt = −

∫ ∞

0

ϕ(ct, t) dt,

in view of the second equation in (5.16), and (2.3), we deduce that∫ ∞

0

∫ (
v̂(x, t)ϕt + 2u(x, t)v̂(x, t)ϕx

)
dx dt +

∫
v̂0(x)ϕ(x, 0) dx

=

∫ ∞

0

(− c[v] + 2[uv]
)
ϕ(ct, t) dt = −

∫ ∞

0

(− c[v] + 2[uv]
)
t
dϕ(ct, t)

dt
dt

= −
∫ ∞

0

e(t)
dϕ(ct, t)

dt
dt = −

∫

Γ

e(t)
∂ϕ(x, t)

∂l
dl.
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By substituting the last relation into the left-hand side of the second relation in
(7.1) we see that the second identity in (7.1) holds.

Now, applying the above calculations to the left-hand side of the third relation
in (7.1), we obtain

∫ ∞

0

∫ (
ŵ(x, t)ϕt + 2

(
v̂2(x, t) + u(x, t)ŵ(x, t)

)
ϕx

)
dx dt

+

∫
ŵ0(x)ϕ(x, 0) dx = −

∫ ∞

0

g(t)
dϕ(ct, t)

dt
dt = −

∫

Γ

g(t)
∂ϕ(x, t)

∂l
dl,

where according to (5.16), g(t) =
(
2[v2 + uw]− [w] [u

2]
[u]

)
t. Thus,

∫ ∞

0

∫ (
ŵ(x, t)ϕt + 2

(
v̂2(x, t) + u(x, t)ŵ(x, t)

)
ϕx

)
dx dt

(7.6) +

∫
ŵ0(x)ϕ(x, 0) dx +

∫

Γ

g(t)
∂ϕ(x, t)

∂l
dl = 0.

According to (5.16), (5.17), e(t) = [u](v− + v+)t, h(t) = e2(t)
[u]

= [u](v− + v+)2t2.

Consequently, taking into account that [u] is a constant, and integrating by parts,
we have∫ ∞

0

h(t)
dϕx(ct, t)

dt
dt =

∫ ∞

0

[u](v− + v+)2t2
dϕx(ct, t)

dt
dt

= −
∫ ∞

0

2[u](v− + v+)2tϕx(ct, t) dt = −
∫ ∞

0

de2(t)
dt

[u]
ϕx(ct, t) dt,

i.e., in view of (2.3),

∫

Γ

h(x, t)
∂ϕx(x, t)

∂l
dl +

∫

Γ

∂e2(x,t)
∂l

[u]
ϕx(x, t) dl = 0.

By summing (7.6) and the last relation, we deduce that the third identity in
(7.1) holds.

The proof is complete. ¤

In view of Remark 1.1, a solution of the Cauchy problem (1.19), (1.16) formulated
in [18], can be obtained from solution (5.15) of the Cauchy problem (1.12), (1.16)
by the change of variables u → 1

2
u, v → 1

2
v, w → w .

Note that system (5.16) which determines the trajectory x = φ(t) of a δ′-shock
wave and the coefficients e(t), g(t), h(t) of the singularities is a solution of the system
the Rankine–Hugoniot conditions for δ′-shock (3.2)–(3.5).

If u+ ≤ u−, it follows from Theorems 5.1, 7.1 that c = u+ + u− = φ̇(t) and
x = φ(t) = ct are the velocity of motion and the trajectory of a δ′-shock wave,
respectively. Moreover, Theorems 5.1, 7.1 imply the following statements.
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Corollary 7.1. Let u+ < u−. The Cauchy problem (1.12), (1.16) has
(a.1) a classical shock-solution (1.18) of the form

(7.7)
u(x, t) = u+ + [u]H(−x + φ(t)),
v(x, t) = v+ + [v]H(−x + φ(t)),
w(x, t) = w+ + [w]H(−x + φ(t)),

if and only if v− + v+ = 0 and w− + w+ = 0;
(a.2) a δ-shock solution (1.18) of the form

(7.8)
u(x, t) = u+ + [u]H(−x + φ(t)),
v(x, t) = v+ + [v]H(−x + φ(t)),
w(x, t) = w+ + [w]H(−x + φ(t)) + [u](w− + w+)tδ(−x + φ(t)).

if v− + v+ = 0 and w− + w+ 6= 0, or

(7.9)
u(x, t) = u0,
v(x, t) = v+ + [v]H(−x + φ0(t)),
w(x, t) = w+ + [w]H(−x + φ0(t)) + 2[v2]tδ(−x + φ0(t)),

if u+ = u− = u0, where φ0(t) = 2u0t;
(a.3) a δ′-shock wave type solution (1.18) only if v− + v+ 6= 0, w− + w+ 6= 0.

Proof. Let u+ < u−. In this case, according to (1.18) (5.15), and (5.16), the
Cauchy problem (1.12), (1.16) has a classical shock-solution (7.7) if and only if
v− + v+ = 0, w− + w+ = 0.

If v−+v+ = 0, w−+w+ 6= 0, in view of (5.16), the Cauchy problem has a δ-shock
wave type solution (1.18) of the form (7.8).

According to (5.16), the Cauchy problem (1.12), (1.16) has a δ′-shock wave type
solution (1.18) (see (5.15)) only if v− + v+ 6= 0, w− + w+ 6= 0.

Let u+ = u− = u0. In this case the Cauchy problem (1.12), (1.16) has a δ-shock
wave type solution (1.18) of the form (7.9)), where φ0(t) = 2u0t. Here x = φ0(t) =
2u0t is a characteristic line of the first equation ut +

(
u2

)
x

= 0 in system (1.12)
issued from (0, 0). ¤

Corollary 7.2. Let u+ ≤ u−. Then for t ∈ [0, ∞), the Cauchy problem (1.20),
(1.6) has a unique generalized δ-shock wave type solution

(7.10)
u(x, t) = u+ + [u]H(−x + φ(t)),

v(x, t) = v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t)),

which satisfies the integral identities (2.1), i.e., the first two integral identities in
(7.1), where φ(t), e(t) are given by (5.16).

The correct δ-shock wave type solution of the Cauchy problem (1.5), (1.6) (see [17]
and Subsec. 1.2) is reduced to solution (7.10) by the transform u± → 1

2
u±, v± → v±.



THE RIEMANN PROBLEM ADMITTING δ′-SHOCK WAVE TYPE SOLUTION 37

7.2. Vacuum states in solution of the Riemann problem (1.12), (1.16).
Now we consider the case u+ > u−. Substituting the triple of distributions (6.7)
constructed by Theorem 6.1 into the left-hand side of (7.1), it is easy to prove the
following assertion.

Theorem 7.2. Let u+ > u−. Then for t ∈ [0, ∞) the triple of distributions
(1.21)

(
u(x, t), v(x, t), w(x, t)

)
=





(u−, v−, w−), x ≤ 2u−t,(
x
2t

, 0, 0
)
, 2u−t < x < 2u+t,

(u+, v+, w+), x ≥ 2u+t,

is a unique generalized solution of the Cauchy problem (1.12), (1.16), which satisfies
the integral identities (7.1), where v̂(x, t) = v(x, t), ŵ(x, t) = w(x, t), and e(t) ≡ 0,
g(t) ≡ 0, h(t) ≡ 0.

Here the first component u of the solution (1.21) is a rarefaction wave, and the
second component v and the third component w contain the intermediate vacuum
states v = 0 and w = 0.

8. Algebraic aspect of singular solutions

As mentioned in Introduction, the problem of defining a δ′-shock wave type
solution of the Cauchy problem is connected with the construction of singular su-
perpositions (products) of distributions.

It seems natural to define a product of the Heaviside function and delta function
as the weak limit of the product of their regularizations. For example, choosing
regularizations of the delta function and the Heaviside function in the form

δ(x, ε) =
1

ε
ωδ

(x

ε

)
, H(x, ε) =

∫ x
ε

−∞
ω(η) dη,

respectively, where ω, ωδ are the mollifiers, it is easy to calculate that in the weak
sense

(8.1)
︷ ︸︸ ︷
H(x)δ(x)

def
= lim

ε→+0
H(x, ε)δ(x, ε) = Bδ(x),

where B =
∫

ω0(η)ωδ(η) dη. Product (8.1) defined in this way depends on the
mollifiers ω, ωδ, i.e., on the regularizations of distributions H(x), δ(x).

In [25], in a similar way, using regularizations u(x, t, ε), v(x, t, ε), w(x, t, ε) of
distributions u(x, t), v(x, t), w(x, t) given by (5.15), singular superpositions

︷ ︸︸ ︷
u2(x, t),

︷ ︸︸ ︷
2u(x, t)v(x, t),

︷ ︸︸ ︷
2
(
v2(x, t) + u(x, t)w(x, t)

)

were constructed. As shown in [25], these singular superpositions depend on the reg-
ularizations of the Heaviside function, delta function, and its derivative. Moreover,
the last superposition is unbounded . Nevertheless, according to [25], using instead
of arbitrary regularizations of distributions u(x, t, ε), v(x, t, ε), w(x, t, ε) the special
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regularizations of distributions, namely, the weak asymptotic solution of the Cauchy
problem, we shall construct unique “right” singular superpositions

u2(x, t), 2u(x, t)v(x, t), 2
(
v2(x, t) + u(x, t)w(x, t)

)
,

which are the Schwartz distributions.
Now we prove that these unique “right” singular superpositions can be con-

structed by using a solution (uε(x, t), vε(x, t), wε(x, t)) of the parabolic problem
(1.17), (1.16).

Lemma 8.1. Let u+ ≤ u−. Let (uε, vε, wε) be a solution of the parabolic problem
(1.17), (1.16) and (u, v, w) be a triple of limiting distributions (5.15), which is a
δ′-shock type solution of the Cauchy problem (1.12), (1.16). Then for t ∈ [0, ∞) we
can define explicit formulas for the “right” singular superpositions:

(8.2) u2(x, t)
def
= lim

ε→+0
u2

ε(x, t) = u2
+ + [u2]H(−x + φ(t)),

2u(x, t)v(x, t)
def
= lim

ε→+0
2uε(x, t)vε(x, t)

(8.3) = 2u+v+ + 2[uv]H(−x + φ(t)) + e(t)φ̇(t)δ(−x + φ(t)),

2
(
v2(x, t) + u(x, t)w(x, t)

) def
= lim

ε→+0
2
(
v2

ε(x, t) + uε(x, t)wε(x, t)
)

= 2(v2
+ + u+w+) + 2[v2 + uw]H(−x + φ(t))

(8.4) +

(
1

[u]

de2(t)

dt
+ g(t)φ̇(t)

)
δ(−x + φ(t)) + h(t)φ̇(t)δ′(−x + φ(t)),

where functions e(t), g(t), h(t) are given by (5.16), and the limits are understood in

the weak sense. Here 1
[u]

de2(t)
dt

+ g(t)φ̇(t) = 4[uv](v− + v+) + [u2](w− + w+).

Proof. According to (4.18), we have

(8.5) u2
ε(x, t) = u2

+ + [u2]
aε
−

aε− + aε
+

− (u− + u+)2 aε
−aε

+

(aε− + aε
+)2

.

In view of (5.9) (5.10), formula (8.5) implies (8.2).
Next, using the direct representation (4.19)–(4.22) of vε(x, t), wε(x, t), we can

prove that relations (8.3)–(8.4) hold. However, we shall use another approach. Ac-
cording to Theorem 5.1, if (uε, vε, wε) is a solution of the parabolic problem (1.17),
(1.16) then

(8.6)

lim
ε→+0

〈uε t, ϕ〉+ lim
ε→+0

〈(
u2

ε

)
x
, ϕ

〉
= lim

ε→+0
ε
〈
uε xx, ϕ

〉
= 0,

lim
ε→+0

〈vε t, ϕ〉+ lim
ε→+0

〈
2
(
uεvε

)
x
, ϕ

〉
= lim

ε→+0
ε〈vε xx, ϕ〉 = 0,

lim
ε→+0

〈
wε t, ϕ

〉
+ lim

ε→+0

〈
2
(
v2

ε + uεwε

)
x
, ϕ

〉
= lim

ε→+0
ε〈wε xx, ϕ〉 = 0,
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for all ϕ(x, t) ∈ D(R × [0,∞)). By definition, the “right” singular superpositions
are given as the weak limits

u2(x, t)
def
= limε→+0 u2

ε(x, t),

2u(x, t)v(x, t)
def
= limε→+0 2uε(x, t)vε(x, t),

2
(
v2(x, t) + u(x, t)w(x, t)

) def
= limε→+0 2

(
v2

ε(x, t) + uε(x, t)wε(x, t)
)
,

and, consequently, (8.6) implies that

(8.7)

〈(
u2(x, t)

)
x
, ϕ

〉
= limε→+0

〈(
u2

ε

)
x
, ϕ

〉
= −〈ut, ϕ〉,〈(

2u(x, t)v(x, t)
)

x
, ϕ

〉
= limε→+0

〈
2
(
uεvε

)
x
, ϕ

〉
= −〈vt, ϕ〉,〈

2
(
v2(x, t) + u(x, t)w(x, t)

)
x
, ϕ

〉
= limε→+0

〈
2
(
v2

ε + uεwε

)
x
, ϕ

〉

= −〈wt, ϕ〉,
for all ϕ(x, t) ∈ D(R× [0, ∞)).

Using the first formula in (5.15) and the first relation in (8.7), we have in the
weak sense(

2u(x, t)v(x, t)
)

x
= −vt = −(

v+ + [v]H(−x + φ(t)) + e(t)δ(−x + φ(t))
)

t

= −([v]φ̇(t) + ė(t))δ(−x + φ(t))− e(t)φ̇(t)δ′(−x + φ(t)).

According to (5.16), φ̇(t) = (u− + u+), ė(t) = [u](v− + v+), and, consequently,

[v]φ̇(t) + ė(t) = 2[uv]. Thus
(
2u(x, t)v(x, t)

)
x

= −2[uv]δ(−x + φ(t))− e(t)φ̇(t)δ′(−x + φ(t)).

By integrating the last relation with respect to x, we obtain the relation

(8.8) 2u(x, t)v(x, t) = 2[uv]H(−x + φ(t)) + e(t)φ̇(t)δ(−x + φ(t)) + C,

where C is a constant. Since limε→+0 2uε(x, t)vε(x, t) = 2u+v+ for x > φ(t), we
conclude that (8.8) implies C = 2u+v+. Relation (8.3) is thus proved.

Using the second formula in (5.15) and the second relation in (8.7), we have in
the weak sense

2
(
v2(x, t) + u(x, t)w(x, t)

)
x

= −wt

= −(
w+ + [w]H(−x + φ(t)) + g(t)δ(−x + φ(t)) + h(t)δ′(−x + φ(t))

)
t

= −(
[w]φ̇(t) + ġ(t)

)
δ(−x + φ(t))

(8.9) −(
g(t)φ̇(t) + ḣ(t)

)
δ′(−x + φ(t))− h(t)φ̇(t)δ′′(−x + φ(t)).

According to (5.16), φ̇(t) = (u− + u+), g(t) =
(
2[v](v− + v+) + [u](w− + w+)

)
t,

h(t) = [u](v− + v+)2t2, we have ġ(t) + [w]φ̇(t) = 2[v2 + uw] and g(t)φ̇(t) + ḣ(t) =
1
[u]

de2(t)
dt

+ g(t)φ̇(t) = 4[uv](v− + v+) + [u2](w− + w+). Integrating relation (8.9) with

respect to x, we obtain

2
(
v2(x, t) + u(x, t)w(x, t)

)
= 2[v2 + uw]H(−x + φ(t))
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(8.10) +
(
4[uv](v−+ v+)+ [u2](w−+w+)

)
δ(−x+φ(t))+h(t)φ̇(t)δ′(−x+φ(t))+C,

where C is a constant. If x > φ(t) then limε→+0 2
(
v2

ε(x, t) + uε(x, t)wε(x, t)
)

=
2(v2

+ +u+w+), and, consequently, C = 2(v2
+ +u+w+). Thus relation (8.4) holds. ¤

Now using Theorem 6.1 and formulas (8.7), it is easy to prove the following
assertion.

Lemma 8.2. Let u+ < u−. Let (uε, vε, wε) be a solution of the parabolic problem
(1.17), (1.16) and (u, v, w) be a triple of limiting distributions (6.7), which is a
solution of the Cauchy problem (1.12), (1.16). Then for t ∈ [0, ∞) we can define
explicit formulas for the “right” singular superpositions:

(8.11) u2(x, t)
def
= lim

ε→+0
u2

ε(x, t) =





u2
−, x ≤ 2u−t,(

x
2t

)2
, 2u−t < x < 2u+t,

u2
+, x ≥ 2u+t,

2u(x, t)v(x, t)
def
= lim

ε→+0
2uε(x, t)vε(x, t)

(8.12) =





2u−v−, x ≤ 2u−t,

0, 2u−t < x < 2u+t,

2u+u+, x ≥ 2u+t,

2
(
v2(x, t) + u(x, t)w(x, t)

) def
= lim

ε→+0
2
(
v2

ε(x, t) + uε(x, t)wε(x, t)
)

(8.13) =





2(v2
− + u−w−), x ≤ 2u−t,

0, 2u−t < x < 2u+t,

2(v2
+ + u+w+), x ≥ 2u+t.

Thus one can see that the generalized solution (u, v, w) of the Cauchy problem
(1.12), (1.16), constructed by Theorem 5.1 and Theorem 6.1, generates algebraic
relations (8.2)–(8.4) and (8.11)–(8.13), respectively, between distributions u, v, w.

Note that Theorem 7.1 and Theorem 7.2 could be proved by direct substituting
the “right” singular superpositions of distributions (8.2)–(8.4) and (8.11)–(8.13),
respectively, into system (1.12).
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