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1. SINGULAR SOLUTIONS TO SYSTEMS OF CONSERVATION
LAWS

Let us consider the Cauchy problem for the hyperbolic system of conservation laws
{

Ut +
(
F(U)

)
x = 0, in R× (0, ∞),

U = U0, in R×{t = 0},
(1)

whereF : Rm → Rm andU0 : R→ Rm are given smooth vector-functions, andU =
U(x, t) = (u1(x, t), . . . ,um(x, t)) is the unknown function,x∈ R, t ≥ 0.

As is well known, even in the case of smooth (and, certainly, in the case of discontin-
uous) initial dataU0(x), we cannot in general find a smooth solution of (1). In this case,
it is said thatU ∈ L∞(

R× (0,∞);Rm
)

is ageneralized solutionof the Cauchy problem
(1) if the integral identities

∫ ∞

0

∫ (
U · ϕ̃t +F(U) · ϕ̃x

)
dxdt+

∫
U0(x) · ϕ̃(x,0)dx= 0 (2)

hold for all compactly supported test vector-functionsϕ̃ : R× [0,∞)→ Rm, where · is
the scalar product of vectors,

∫
f (x)dx denotes the improper integral

∫ ∞
−∞ f (x)dx.
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Consider two particular cases of the above system of conservation laws:

L1[u,v] = ut +
(
F(u,v)

)
x = 0, L2[u,v] = vt +

(
G(u,v)

)
x = 0, (3)

and
vt +

(
G(u,v)

)
x = 0, (uv)t +

(
H(u,v)

)
x = 0, (4)

whereF(u,v), G(u,v), H(u,v) are smooth functions,linear with respect tov; u =
u(x, t), v = v(x, t) ∈ R; x ∈ R. The well-known zero-pressure gas dynamics system
is a particular case of system (4), whereG(u,v) = uv, H(u,v) = u2v, andv(x, t) ≥ 0 is
density, andu(x, t) is velocity.

In numerous papers (e.g., see [1], [4]– [7], [13]– [18] and the reference therein)
it is shown that for some cases of hyperbolic systems (3) and (4) “nonclassical” sit-
uations may occur, when the Riemann problem does not possess a weakL∞-solution
except for some particular initial data. Here thelinear componentv of the solution may
contain Dirac measures and must be sought in the space of measures, while the non-
linear componentu of the solution has bounded variation. In order to solve the Cauchy
problems in these nonclassical situations, it is necessary to introduce new singulari-
ties calledδ -shocks, which are solutions of hyperbolic systems (3) or (4), whoselin-
ear components have the formv(x, t) = V(x, t) + e(x, t)δ (Γ), Γ is a graph in the up-
per half-plane{(x, t) : x ∈ R, t ≥ 0}, V ∈ L∞, e∈C(Γ), and thenonlinearcomponent
u∈ L∞(

R× (0,∞);R
)
.

Unfortunately, by using Definition (2),δ -shockscannot be defined. Indeed, as can be
seen from (3), (4), if integrating by parts we transfer the derivatives onto a test function
ϕ, under the integral sign there still remain termsundefined in the distributional sense,
since the componentv may contain Dirac measures.

Recently, the theory ofδ -shock type solutions for systems of conservation laws has
attracted intensive attention and several approaches to solvingδ -shock problems are
known (see the above cited papers and the references therein). One of them is the
weak asymptotics methodwhich was developed in [3]– [5], [14]– [16]. In [4], [5],
in the framework of theweak asymptotics method definitions of aδ -shock wave type
solutionby integral identities were introduced for two classes of hyperbolic systems of
conservation laws (3), (4) (for system (3) see Definition 1 below). These definitions give
natural generalizations of the classical definition of the weakL∞-solutions (2) relevant
to the structure ofδ -shocks.

Moreover, in [13], in the framework of theweak asymptotics method, for the system
of conservation laws

ut +
(

f (u)
)

x = 0, vt +
(

f ′(u)v
)

x = 0, wt +
(

f ′′(u)v2 + f ′(u)w
)

x = 0, (5)

a definition of a new type of singular solutions to systems of conservation laws, namely,
δ ′-shock wave, was introduced. Roughly speaking, aδ ′-shock wave type solution is a
such a solution of system (12) such that its second componentv may contain Dirac mea-
sures, and the third componentw may contain a linear combination of Dirac measures
and their derivatives, while the first componentu of the solution has bounded variation.
It is clear that by using Definition (2),δ ′-shockscannot be also defined.

In fact, to introduceδ -shocksandδ ′-shocks, we must devise some way to define a
singular superpositionof distributions (for example, aproduct of the Heaviside function



and the delta function). This problem in connection with the constructing ofsingular
solutionsof systems of conservation laws in the framework of theweak asymptotics
methodwas discussed in [3], [4], [8]– [10], [13], [15]– [17]. For some cases this problem
can be solved by usingnonconservative product[11]: g(u)du

dx, whereg : Rn → Rn is
locally bounded Borel function, andu : (a,b) → Rn is a discontinuous function of
bounded variation. There is another approach associated with the name of J. Colombeau
(see [2], [12] and the reference therein).

As is well known, in the general case, the product of distributions is either not a
Schwartz distribution or it is a Schwartz distribution which is not uniquely defined.
Nevertheless, in this paper, we show that asingular solutionof the Cauchy problem
generates algebraic relationsbetween distributional components of a singular solution
(“right” singular superpositions of distributions). Our“right” singular superpositions
(contextual singular superpositions) arewell defined and uniqueSchwartz distributions.
To illustrate our results we considerδ -shock type solutions for hyperbolic system of
conservation laws (3) with the simplest initial data

(
u0(x),v0(x)

)
=

{
(u−,v−), x < 0,
(u+,v+), x > 0,

(6)

whereu±, v± are given constants. We also consider two important particular cases of
system (3). Namely, the system

ut +
(

f (u)
)

x = 0, vt +
(
g(u)v

)
x = 0, (7)

(hereF(u,v) = f (u), G(u,v) = vg(u)) and the well known Keyfitz–Kranzer system

ut +(u2−v)x = 0, vt +
(1

3
u3−u

)
x
= 0 (8)

(hereF(u,v) = u2−v, G(u,v) = 1
3u3−u).

In this paper explicit formulas (14), (15), (22), (23), (25), (26) for thecontextual sin-
gular superpositions, generated by solutions of the corresponding Cauchy problems are
constructed. According to Theorem 2, in fact, the contextual singular superpositions are
determined by the structure of linear termsut , vt and the Rankine–Hugoniot conditions.

It remains to note that, since in the systems (8) there is no terms of the type of
g(u)du

dx, it is impossibleto construct aδ -shock wave type solutionfor it by using the
nonconservative product[11].

In this way explicit formulas for the “right” singular superpositions of distributions
generated byδ ′-shock type solution can be constructed (see [13], [17]).

2. δ -SHOCK GENERALIZED SOLUTION AND THE
RANKINE–HUGONIOT CONDITIONS

2.1.Suppose thatΓ = {γi : i ∈ I} is a graph in the upper half-plane{(x, t) : x∈ R, t ∈
[0,∞)} ∈ R2 containing smooth arcsγi , i ∈ I , and I is a finite set. ByI0 we denote a
subset ofI such that an arcγk for k ∈ I0 starts from the points of thex-axis. Denote by
Γ0 = {x0

k : k∈ I0} the set of initial points of arcsγk, k∈ I0.



Considerδ -shock wave type initial data(u0(x),v0(x)), where

v0(x) = V0(x)+e0δ (Γ0),

u0,V0 ∈ L∞(
R;R

)
, e0δ (Γ0) = ∑k∈I0 e0

kδ (x−x0
k), e0

k are constants,k∈ I0.

Definition 1. ( [4], [5]) A pair of distributions(u(x, t),v(x, t)) and a graphΓ, where
v(x, t) is represented in the form of the sum

v(x, t) = V(x, t)+e(x, t)δ (Γ),

u,V ∈ L∞(
R×(0, ∞);R

)
, e(x, t)δ (Γ) = ∑i∈I ei(x, t)δ (γi), ei(x, t)∈C(Γ), i ∈ I , is called

ageneralizedδ -shock wave type solutionof system (3) with theδ -shock wave type initial
data(u0(x),v0(x)) if the integral identities

∫ ∞

0

∫ (
uϕt +F(u,V)ϕx

)
dxdt+

∫
u0(x)ϕ(x,0)dx = 0,

∫ ∞

0

∫ (
Vϕt +G(u,V)ϕx

)
dxdt+∑

i∈I

∫

γi

ei(x, t)
∂ϕ(x, t)

∂ l
dl

+
∫

V0(x)ϕ(x,0)dx+ ∑
k∈I0

e0
kϕ(x0

k,0) = 0,

(9)

hold for all test functionsϕ(x, t) ∈ D(R× [0, ∞)), where
∂ϕ(x, t)

∂ l
is the tangential

derivative on the graphΓ,
∫

γi
· dl is the line integral over the arcγi .

2.2. In [15], [16], within the framework of Definition 1, the Rankine–Hugoniot con-
ditions forδ -shock were derived.

Theorem 1. ([15], [16]) Let us assume thatΩ ⊂ R× (0, ∞) is some region cut by a
smooth curveΓ = {(x, t) : x = φ(t)} into a left- and right-hand partsΩ± = {(x, t) :
±(x− φ(t)) > 0}, (u(x, t),v(x, t)) and Γ is a generalizedδ -shock wave type solution
of system(3), whereu(x, t), v(x, t) are smooth inΩ±. Then the Rankine–Hugoniot
conditions forδ -shocks

φ̇(t) =
[F(u,v)]

[u]

∣∣∣
x=φ(t)

, ė(t) =
(
[G(u,v)]− [v]

[F(u,v)]
[u]

)∣∣∣
x=φ(t)

, (10)

hold alongΓ, wheree(t)
de f
= e(φ(t), t). Here

[
a(u,v)

]
= a(u−,v−)−a(u+,v+) is a jump

in functiona(u(x, t),v(x, t)) across the discontinuity curveΓ.

2.3. Denote byOD ′(εα) the collection of distributionsf (x, t,ε) ∈ D ′(Rx) such
that 〈 f (x, t,ε), ψ(x)〉 = O(εα), for any test functionψ(x) ∈ D(Rx). Moreover,
〈 f (x, t,ε),ψ(x)〉 is a continuous function int, and the estimateO(εα) is understood in
the standard sense and is uniform with respect tot. The relationoD ′(εα) is understood
in a corresponding way.



Definition 2. ( [4], [5]) A pair of functions
(
u(x, t,ε),v(x, t,ε)

)
smooth asε > 0 is called

aweak asymptotic solutionof system (3) with the initial data(u0(x),v0(x)) if

L1[u(x, t,ε),v(x, t,ε)] = oD ′(1), u(x,0,ε) = u0(x)+oD ′(1),
L2[u(x, t,ε),v(x, t,ε)] = oD ′(1), v(x,0,ε) = v0(x)+oD ′(1),

(11)

asε →+0, where the first two estimates are uniform int.

Roughly speaking, theweak asymptotic solutionis a smooth (asε > 0) approximate
solution of a system of conservation laws which satisfies this system up tooD ′(1),
ε →+0 (for details, see [3]– [5], [14]– [16]).

Let us recall that within the framework of theweak asymptotics method, we find aδ -
shock wave type solutionof the Cauchy problem as the weak limit of aweak asymptotic
solution:

u(x, t) = lim
ε→+0

uε(x, t), v(x, t) = lim
ε→+0

vε(x, t). (12)

Constructing theweak asymptotic solutionand multiplying the first two relations (11)
by a test functionϕ(x, t) ∈ D(R× [0, ∞)), integrating these relations by parts and then
passing to the limit asε →+0, we will see that the pair of distributions (12) satisfy the
integral identities (9).

3. δ -SHOCK SINGULAR SUPERPOSITIONS

Let us consider the Cauchy problem (3), (6). According to [4], [5], [14]– [16],δ -shock
wave type solution of this Cauchy problem has the form

u(x, t) = u+ +[u]H(−x+φ(t)),
v(x, t) = v+ +[v]H(−x+φ(t))+e(t)δ (−x+φ(t)), (13)

wheree(t), φ(t) are the desired functions,x = φ(t) is the discontinuity curve,H(x) is
the Heaviside function,δ (x) is the delta-function.

Theorem 2. Let (u,v) be a δ ′-shock type solution(13) and let (uε ,vε) be a weak
asymptotic solution of the Cauchy problem(3), (6). Then fort ∈ [0, ∞) we can define
explicit formulas for the “right” singular superpositions:

F(u,v)
de f
= lim

ε→+0
F(uε ,vε) = F(u+,v+)+ [F(u,v)]

∣∣
x=φ(t)H(−x+φ(t)), (14)

G(u,v)
de f
= lim

ε→+0
G(uε ,vε)

= G(u+,v+)+ [G(u,v)]
∣∣
x=φ(t)H(−x+φ(t))+e(t)φ̇(t)δ (−x+φ(t)), (15)

where functionsφ(t), e(t) are given by(10), and the limits are understood in the weak
sense.



Proof. Let (uε(x, t),vε(x, t)) be aweak asymptotic solutionof the Cauchy problem (3),
(6), i.e., in view of (11), the relation

uε t +
(
F(uε ,vε)

)
x = oD ′(1), vε t +

(
G(uε ,vε)

)
x = oD ′(1), ε →+0. (16)

and relations (12) hold, where(u(x, t),v(x, t)) is a δ -shock wave type solution (13) of
the Cauchy problem (3), (6).

By definition, the“right” singular superpositionsare defined as the weak limits

F(u,v)
de f
= lim

ε→+0
F(uε ,vε), G(u,v)

de f
= lim

ε→+0
G(uε ,vε), (17)

where(u,v) is given by (13).
Next, according to (16), (12), we have

lim
ε→+0

〈uε t ,ϕ〉+ lim
ε→+0

〈(
F(uε ,vε)

)
x,ϕ

〉
= lim

ε→+0

〈
oD ′(1),ϕ

〉
= 0,

lim
ε→+0

〈vε t ,ϕ〉+ lim
ε→+0

〈(
G(uε ,vε)

)
x,ϕ

〉
= lim

ε→+0
〈oD ′(1),ϕ〉 = 0,

(18)

for all ϕ(x, t) ∈D(R× [0,∞)). Thus (18), (17) imply that
〈(

F(u,v)
)

x,ϕ
〉

= limε→+0
〈(

F(uε ,vε)
)

x,ϕ
〉

=−〈ut ,ϕ〉,〈(
G(u,v)

)
x,ϕ

〉
= limε→+0

〈
G(uε ,vε)

)
x,ϕ

〉
=−〈vt ,ϕ〉,

(19)

for all ϕ(x, t) ∈D(R× [0, ∞)).
Using the first relation in (19), formulas (13), and the first Rankine–Hugoniot condi-

tion for δ -shocks (10), we obtain in the weak sense
(
F(u,v)

)
x =−ut =−(

u+ +[u]H(−x+φ(t))
)

t

=−[u]φ̇(t)δ (−x+φ(t)) =−[F(u,v)]δ (−x+φ(t)).

Integrating the last relation with respect tox, we have

F(u,v) = [F(u,v)]H(−x+φ(t))+C, (20)

whereC is a constant. Since according to (13),limε→+0F(uε(x, t),vε(x, t)) = F(u+,v+)
for x > φ(t), we conclude that (20) impliesC = F(u+,v+). Thus relation (14) is proved.

Using the second formula in (19), formulas (13), and the Rankine–Hugoniot condi-
tions forδ -shocks (10), we have in the weak sense

(
G(u,v)

)
x =−vt =−(

v+ +[v]H(−x+φ(t))+e(t)δ (−x+φ(t))
)

t

=−(
[v]φ̇(t)+ ė(t)

)
δ (−x+φ(t))−e(t)φ̇(t)δ ′(−x+φ(t))

=−[G(u,v)]δ (−x+φ(t))−e(t)φ̇(t)δ ′(−x+φ(t)).

Integrating the last relation with respect tox, we obtain

G(u,v) = [G(u,v)]H(−x+φ(t))+e(t)φ̇(t)δ (−x+φ(t))+C, (21)

whereC is a constant. Sincelimε→+0G(uε(x, t),vε(x, t)) = G(u+,v+) for x > φ(t), we
haveC = F(u+,v+). Consequently, relation (15) is proved.



Thus one can see that the generalized solution (13) of the Cauchy problem (3),
(6), generates algebraic relations(14), (15) between distributional componentsu, v of
solution (13).

4. TWO PARTICULAR EXAMPLES

4.1. Let us consider the Cauchy problem (7), (6). This Cauchy problem was solved
in [4], [5]. In this case for aδ -shock wave type solution (13) of the Cauchy problem (7),
(6), according to Theorem 2, the “right” singular superpositions are defined as

f (u) = f (u+)+ [ f (u)]H(−x+φ(t)), (22)

vg(u) = v+g(u+)+ [vg(u)]H(−x+φ(t))+e(t)φ̇(t)δ (−x+φ(t)). (23)

Here in view of (10), the Rankine–Hugoniot conditions forδ -shocks are given as
φ̇(t) = [ f (u)]

[u] , ė(t) =
(
[vg(u)]− [v] [ f (u)]

[u]

)
.

In fact, by (23), we define theunique “right” product of the step function and the
delta function:

e(t)δ (−x+φ(t))u(x, t) = e(t)δ (−x+φ(t))
{

u−, x < φ(t),
u+, x > φ(t),

= e(t)
[ f (u)]

[u]
δ (−x+φ(t)). (24)

4.2. Let us consider the Cauchy problem (8), (6). This Cauchy problem was solved
in [14], [15]. Similarly to the previous example, for aδ -shock wave type solution (13) of
the Cauchy problem (8), (6), Theorem 2 implies that the “right” singular superpositions
are defined as

u2−v = u2
+−v+ +

[
u2−v

]
H(−x+φ(t)), (25)

1
3

u3−u =
1
3

u3
+−u+ +

[1
3

u3−u
]
H(−x+φ(t))+e(t)

[
u2−v

]

[u]
δ (−x+φ(t)), (26)

where in view of (10),φ̇(t) = [u2−v]
[u] , ė(t) =

(
[1
3u3−u]− [v] [u

2−v]
[u]

)
.

The Keyfitz–Kranzer system (8) has aspecificproperty. We stress that, in contrast
to system (7), in the case of systems (8) wedo not define (!)the product of the
Heaviside function and theδ -function. Moreover, although according to (13),u(x, t)
does not dependon the terme(t)δ (−x + φ(t)), the “right” singular superposition
1
3u3−u determined by (26),does dependon this term. Thus one can say that the term
e(t)δ (−x+ φ(t)) “appears from nothing”. Analogously, the left-hand side in (25)de-
pendson the terme(t)δ (−x+φ(t)), but the right-hand side in (25)does not dependon
this term.

Thus a“right” singular superpositionis determined only in thecontextof solving the
Cauchy problem. Moreover, this is the Schwartz distribution.
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