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EQUATION — A LAGRANGIAN POINT OF VIEW
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Abstract. We show that the Camassa–Holm equation ut −uxxt +3uux −2uxuxx −uuxxx = 0
possesses a global continuous semigroup of weak conservative solutions for initial data u|t=0

in H1. The result is obtained by introducing a coordinate transformation into Lagrangian
coordinates. To characterize conservative solutions it is necessary to include the energy density
given by the positive Radon measure µ with µac = (u2 + u2

x) dx.

1. Introduction

The Cauchy problem for the Camassa–Holm equation [7, 8]

ut − uxxt + 2κux + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = u0, (1.1)

has received considerable attention the last decade. With κ positive it models, see [25], propagation
of unidirectional gravitational waves in a shallow water approximation, with u representing the
fluid velocity. The Camassa–Holm equation has a bi-Hamiltonian structure and is completely
integrable. It has infinitely many conserved quantities. In particular, for smooth solutions the
quantities ∫

u dx,

∫
(u2 + u2

x) dx,

∫
(u3 + uu2

x) dx (1.2)

are all time independent.
In this article we consider the case κ = 0 on the real line, that is,

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, (1.3)

and henceforth we refer to (1.3) as the Camassa–Holm equation. The equation can be rewritten
as the following system

ut + uux + Px = 0, (1.4a)

P − Pxx = u2 +
1
2
u2

x. (1.4b)

A highly interesting property of the equation is that for a wide class of initial data the solution
experiences wave breaking in finite time in the sense that the solution u remains bounded pointwise
while the spatial derivative ux becomes unbounded pointwise. However, the H1 norm of u remains
finite. More precisely, Constantin, Escher, and Molinet [12, 14] showed the following result: If the
initial data u|t=0 = u0 ∈ H1(R) and m0 := u0 − u′′0 is a positive Radon measure, then equation
(1.3) has a unique global weak solution u ∈ C([0, T ],H1(R)), for any T positive, with initial data
u0. However, any solution with odd initial data u0 in H3(R) such that u0,x(0) < 0 blows up in a
finite time.

The problem how to extend the solution beyond wave breaking can nicely be illustrated by
studying an explicit class of solutions. The Camassa–Holm equation possesses solutions, denoted
(multi)peakons, of the form

u(t, x) =
n∑

i=1

pi(t)e−|x−qi(t)|, (1.5)
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where the (pi(t), qi(t)) satisfy the explicit system of ordinary differential equations

q̇i =
n∑

j=1

pje
−|qi−qj |, ṗi =

n∑
j=1

pipj sgn(qi − qj)e−|qi−qj |.

Observe that the solution (1.5) is not smooth even with continuous functions (pi(t), qi(t)); one
possible way to interpret (1.5) as a weak solution of (1.3) is to rewrite the equation (1.3) as

ut +
(1
2
u2 + (1− ∂2

x)−1(u2 +
1
2
u2

x)
)
x

= 0.

Peakons interact in a way similar to that of solitons of the Korteweg–de Vries equation, and wave
breaking may appear when at least two of the qi’s coincide. If all the pi(0) have the same sign, the
peakons move in the same direction. Furthermore, in that case the solution experiences no wave
breaking, and one has a global solution. Higher peakons move faster than the smaller ones, and
when a higher peakon overtakes a smaller, there is an exchange of mass, but no wave breaking
takes place. Furthermore, the qi(t) remain distinct. However, if some of pi(0) have opposite sign,
wave breaking may incur, see, e.g., [3, 26]. For simplicity, consider the case with n = 2 and one
peakon p1(0) > 0 (moving to the right) and one antipeakon p2(0) < 0 (moving to the left). In
the symmetric case (p1(0) = −p2(0) and q1(0) = −q2(0) < 0) the solution will vanish pointwise at
the collision time t∗ when q1(t∗) = q2(t∗), that is, u(t∗, x) = 0 for all x ∈ R. Clearly, at least two
scenarios are possible; one is to let u(t, x) vanish identically for t > t∗, and the other possibility
is to let the peakon and antipeakon “pass through” each other in a way that is consistent with
the Camassa–Holm equation. In the first case the energy

∫
(u2 + u2

x) dx decreases to zero at t∗,
while in the second case, the energy remains constant except at t∗. Clearly, the well-posedness of
the equation is a delicate matter in this case. The first solution could be denoted a dissipative
solution, while the second one could be called conservative. Other solutions are also possible.
Global dissipative solutions of a more general class of equations were recently derived by Coclite,
Holden, and Karlsen [9, 10]. In their approach the solution was obtained by first regularizing
the equation by adding a small diffusion term εuxx to the equation, and subsequently analyzing
the vanishing viscosity limit ε → 0. Multipeakons are fundamental building blocks for general
solutions. Indeed, if the initial data u0 is in H1 and m0 := u0 − u′′0 is a positive Radon measure,
then it can proved, see [23], that one can construct a sequence of multipeakons that converges in
L∞loc(R;H1

loc(R)) to the unique global solution of the Camassa–Holm equation.
The problem of continuation beyond wave breaking was recently considered by Bressan and

Constantin [4]. They reformulated the Camassa–Holm equation as a semilinear system of ordi-
nary differential equations taking values in a Banach space. This formulation allowed them to
continue the solution beyond collision time, giving a global conservative solution where the en-
ergy is conserved for almost all times. Thus in the context of peakon-antipeakon collisions they
considered the solution where the peakons and antipeakons “passed through” each other. Local
existence of the semilinear system is obtained by a contraction argument. Furthermore, the clever
reformulation allows for a global solution where all singularities disappear. Going back to the orig-
inal function u, one obtains a global solution of the Camassa–Holm equation. The well-posedness,
i.e., the uniqueness and stability of the solution, is resolved as follows. In addition to the solution
u, one includes a family of non-negative Radon measures µt with density u2

x dx with respect to
the Lebesgue measure. The pair (u, µt) constitutes a continuous semigroup, in particular, one has
uniqueness and stability.

Very recently, Bressan and Fonte [5, 20] presented another approach to the Camassa–Holm
equation. The flow map u0 7→ u(t) is, as we have seen, neither a continuous map on H1 nor on
L2. However, they introduced a new distance J(u, v) with the property

c1 ‖u− v‖L1 ≤ J(u, v) ≤ c2 ‖u− v‖H1 .

Furthermore, it satisfies

J(u(t), u0) ≤ c3 |t| , J(u(t), v(t)) ≤ J(u0, v0)ec4|t|,
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where u(t), v(t) are solutions with initial data u0, v0, respectively. The distance is introduced by
first defining it for multipeakons, using the global, conservative solution described above. Subse-
quently it is shown that multipeakons are dense in the space H1. This enables them to construct
a semi-group of conservative solutions for the Camassa–Holm equation which is continuous with
respect to the distance J .

In this paper, as Bressan and Constantin [4], we reformulate the equation using a different set
of variables and obtain a semilinear system of ordinary differential equations. However, the change
of variables we use is distinct from that of Bressan and Constantin and simply corresponds to the
transformation between Eulerian and Lagrangian coordinates. Let u = u(t, x) denote the solution,
and y(t, ξ) the corresponding characteristics, thus yt(t, ξ) = u(t, y(t, ξ)). Our new variables are
y(t, ξ),

U(t, ξ) = u(t, y(t, ξ)), H(t, ξ) =
∫ y(t,ξ)

−∞
(u2 + u2

x) dx (1.6)

where U corresponds to the Lagrangian velocity while H could be interpreted as the Lagrangian
cumulative energy distribution. Furthermore, let

Q(t, ξ) = −1
4

∫
R

sgn(ξ − η) exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)(
U2yξ + Hξ

)
(η) dη,

P (t, ξ) =
1
4

∫
R

exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)(
U2yξ + Hξ

)
dη.

Then one can show that 
yt = U,

Ut = −Q,

Ht = U3 − 2PU,

(1.7)

is equivalent to the Camassa–Holm equation. Global existence of solutions of (1.7) is obtained
starting from a contraction argument, see Theorem 2.8. The uniqueness issue is resolved by
considering the set D (see Definition 3.1) which consists of pairs (u, µ) such that (u, µ) ∈ D if
u ∈ H1(R) and µ is a positive Radon measure whose absolutely continuous part satisfies µac =
(u2 + u2

x) dx. With three Lagrangian variables (y, U, H) versus two Eulerian variables (u, µ), it
is clear that there can be no bijection between the two coordinates systems. However, we define
a group of relabeling transformations which acts on the Lagrangian variables and let the system
of equations (1.7) invariant. Using this group, we are able to establish a bijection between the
space of Eulerian variables and the space of Lagrangian variables when we identify variables that
are invariant under relabeling. This bijection allows us to transform the results obtained in the
Lagrangian framework (in which the equation is well-posed) into the Eulerian framework (in which
the situation is much more subtle). In particular, and this constitutes the main result of this paper,
we obtain a metric dD on D and a continuous semi-group of solutions on (D, dD). The distance
dD gives D the structure of a complete metric space. This metric is compared with some more
standard topologies, and we obtain that convergence in H1(R) implies convergence in (D, dD)
which itself implies convergence in L∞(R), see Propositions 5.1 and 5.2. The properties of the
spaces as well as the various mappings between them are described in great detail, see Section 3.
Our main result, Theorem 4.2, states that for given initial data in D there exists a unique weak
solution of the Camassa–Holm equation. The associated measure µ(t) has constant total mass,
i.e., µ(t)(R) = µ(0)(R) for all t, which corresponds to the total energy of the system. This is the
reason why our solutions are called conservative.

The method described here can be studied in detail for multipeakons, see [22] for details. By
suitably modifying the techniques described in this paper, the results can be extended to show
global existence of conservative solutions for the generalized hyperelastic-rod equation

ut + f(u)x + Px = 0

P − Pxx = g(u) +
1
2
f ′′(u)u2

x.
(1.8)
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where f, g ∈ C∞(R) and f is strictly convex. Observe that if g(u) = κu + u2 and f(u) = u2

2 , then
(1.8) is the classical Camassa–Holm equation (1.1). With g(u) = 3−γ

2 u2 and f(u) = γ
2 u2, Dai

[15, 16, 17] derived (1.8) as an equation describing finite length, small amplitude radial deformation
waves in cylindrical compressible hyperelastic rods, and the equation is often referred to as the
hyperelastic-rod wave equation. See [9, 10] for a recent proof of existence of dissipative solutions
of (1.8). The details will be described in a forthcoming paper.

Furthermore, the methods presented in this paper can be used to derive numerical methods
that converge to conservative solutions rather than dissipative solutions. This contrasts finite
difference methods that normally converge to dissipative solutions, see [24] and [21] for the related
Hunter–Saxton equation. See also [23]. Results will be presented separately.

2. Global solutions in Lagrangian coordinates

2.1. Equivalent system. Assuming that u is smooth, it is not hard to check that

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x. (2.1)

Let us introduce the characteristics y(t, ξ) defined as the solutions of

yt(t, ξ) = u(t, y(t, ξ)) (2.2)

for a given y(0, ξ). Equation (2.1) gives us information about the evolution of the amount of energy
contained between two characteristics. Indeed, given ξ1, ξ2 in R, let H(t) =

∫ y(t,ξ2)

y(t,ξ1)

(
u2 + u2

x

)
dx

be the energy contained between the two characteristic curves y(t, ξ1) and y(t, ξ2). Then, using
(2.1) and (2.2), we obtain

dH

dt
=
[
(u3 − 2Pu) ◦ y

]ξ2

ξ1
. (2.3)

Solutions of the Camassa–Holm blow up when characteristics arising from different points collide.
It is important to notice that we do not get shocks as the Camassa–Holm preserves the H1

norm and therefore solutions remain continuous. However, it is not obvious how to continue
the solution after collision time. It turns out that, when two characteristics collide, the energy
contained between these two characteristics has a limit which can be computed from (2.3). As we
will see, knowing this energy enables us to prolong the characteristics and thereby the solution,
after collisions.

We now derive a system equivalent to (1.4). All the derivations in this section are formal and
will be justified later. Let y still denote the characteristics. We introduce two other variables, the
Lagrangian velocity and cumulative energy distribution, U and H, defined as U(t, ξ) = u(t, y(t, ξ))
and

H(t, ξ) =
∫ y(t,ξ)

−∞

(
u2 + u2

x

)
dx. (2.4)

From the definition of the characteristics, it follows that

Ut(t, ξ) = ut(t, y) + yt(t, ξ)ux(t, y) = −Px◦y (t, ξ). (2.5)

This last term can be expressed uniquely in term of U , y, and H. From (1.4b), we obtain the
following explicit expression for P ,

P (t, x) =
1
2

∫
R

e−|x−z|(u2(t, z) +
1
2
u2

x(t, z)) dz. (2.6)

Thus we have

Px◦y (t, ξ) = −1
2

∫
R

sgn(y(t, ξ)− z)e−|y(t,ξ)−z|(u2(t, z) +
1
2
u2

x(t, z)) dz

and, after the change of variables z = y(t, η),

Px ◦ y(t, ξ) = −1
2

∫
R

[
sgn(y(t, ξ)− y(t, η))e−|y(t,ξ)−y(t,η)|

×
(

u2(t, y(t, η)) +
1
2
u2

x(t, y(t, η))
)

yξ(t, η)
]
dη.
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Finally, since Hξ = (u2 + u2
x)◦y yξ,

Px◦y (ξ) = −1
4

∫
R

sgn(y(ξ)− y(η)) exp(− |y(ξ)− y(η)|)
(
U2yξ + Hξ

)
(η) dη (2.7)

where the t variable has been dropped to simplify the notation. Later we will prove that y is an
increasing function for any fixed time t. If, for the moment, we take this for granted, then Px◦y
is equivalent to Q where

Q(t, ξ) = −1
4

∫
R

sgn(ξ − η) exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)(
U2yξ + Hξ

)
(η) dη, (2.8)

and, slightly abusing the notation, we write

P (t, ξ) =
1
4

∫
R

exp
(
− sgn(ξ − η)(y(ξ)− y(η))

)(
U2yξ + Hξ

)
(η) dη. (2.9)

Thus Px◦y and P ◦y can be replaced by equivalent expressions given by (2.8) and (2.9) which
only depend on our new variables U , H, and y. We introduce yet another variable, ζ(t, ξ), simply
defined as ζ(t, ξ) = y(t, ξ) − ξ. It will turn out that ζ ∈ L∞(R). We now derive a new system of
equations, formally equivalent to the Camassa–Holm equation. Equations (2.5), (2.3) and (2.2)
give us 

ζt = U,

Ut = −Q,

Ht = U3 − 2PU.

(2.10)

As we will see, the system (2.10) of ordinary differential equations for (ζ, U, H) : [0, T ] → E is
well-posed, where E is Banach space to be defined in the next section. We have

Qξ = −1
2
Hξ −

(
1
2
U2 − P

)
yξ and Pξ = Qyξ. (2.11)

Hence, differentiating (2.10) yields
ζξt = Uξ (or yξt = Uξ),

Uξt =
1
2
Hξ +

(
1
2
U2 − P

)
yξ,

Hξt = −2QUyξ +
(
3U2 − 2P

)
Uξ.

(2.12)

The system (2.12) is semilinear with respect to the variables yξ, Uξ and Hξ.

2.2. Existence and uniqueness of solutions of the equivalent system. In this section, we
focus our attention on the system of equations (2.10) and prove, by a contraction argument, that
it admits a unique solution. Let V be the Banach space defined by

V = {f ∈ Cb(R) | fξ ∈ L2(R)}
where Cb(R) = C(R) ∩ L∞(R) and the norm of V is given by ‖f‖V = ‖f‖L∞(R) + ‖fξ‖L2(R). Of
course H1(R) ⊂ V but the converse is not true as V contains functions that do not vanish at
infinity. We will employ the Banach space E defined by

E = V ×H1(R)× V

to carry out the contraction mapping argument. For any X = (ζ, U, H) ∈ E, the norm on E is
given by ‖X‖E = ‖ζ‖V + ‖U‖H1(R) + ‖H‖V . The following lemma gives the Lipschitz bounds we
need on Q and P .

Lemma 2.1. For any X = (ζ, U, H) in E, we define the maps Q and P as Q(X) = Q and
P(X) = P where Q and P are given by (2.8) and (2.9), respectively. Then, P and Q are Lipschitz
maps on bounded sets from E to H1(R). Moreover, we have

Qξ = −1
2
Hξ −

(
1
2
U2 − P

)
(1 + ζξ), (2.13)

Pξ = Q(1 + ζξ). (2.14)
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Proof. We rewrite Q as

Q(X)(ξ) = −e−ζ(ξ)

4

∫
R

χ{η<ξ}e
−|ξ−η|eζ(η)

[
U(η)2(1 + ζξ(η)) + Hξ(η)

]
dη

+
eζ(ξ)

4

∫
R

χ{η>ξ}e
−|ξ−η|e−ζ(η)

[
U(η)2(1 + ζξ(η)) + Hξ(η)

]
dη, (2.15)

where χB denotes the indicator function of a given set B. We decompose Q into the sum Q1 +Q2

whereQ1 andQ2 are the operators corresponding to the two terms on the right-hand side of (2.15).
We know that the operator (1− ∂xx)−1 that we denote by A, is a continuous linear operator from
H−1(R) to H1(R), see for example, [6]. It is explicitly given by A(f)(x) = 1

2

∫
R e−|x−y|f(y) dy,

and we can rewrite Q1 as

Q1(X)(ξ) = −e−ζ(ξ)

2
A ◦R(ζ, U, H)(ξ) (2.16)

where R is the operator from E to L2(R) given by R(ζ, U, H)(t, ξ) = χ{η<ξ}e
ζ(U2 + U2ζξ + Hξ).

Since L2(R) is continuously embedded in H−1(R), we have A ◦R(ζ, U, H) ∈ H1. We say that an
operator is B-Lipschitz when it is Lipschitz on bounded sets. Let us prove that Q1 : E → H1(R)
is B-Lipschitz. It is not hard to prove that R is B-Lipschitz from E into L2(R) and therefore from
E into H−1(R). Since A : H−1(R) → H1(R) is linear and continuous, A ◦ R is B-Lipschitz from
E to H1(R). Then, we use the following lemma whose proof is left to the reader.

Lemma 2.2. Let R1 : E → V and R2 : E → H1(R), or R2 : E → V , be two B-Lipschitz maps.
Then, the product X 7→ R1(X)R2(X) is also a B-Lipschitz map from E to H1(R), or from E to
V .

Since the mapping X 7→ e−ζ is B-Lipschitz from E to V , Q1 is the product of two B-Lipschitz
maps, one from E to H1(R) and the other from E to V , it is B-Lipschitz map from E to H1(R).
Similarly, one proves that Q2 is B-Lipschitz and therefore Q is B-Lipschitz. Furthermore, P is
B-Lipschitz. The formulas (2.13) and (2.14) are obtained by direct computation using the product
rule, see [18, p. 129]. �

In the next theorem, by using a contraction argument, we prove the short-time existence of
solutions to (2.10).

Theorem 2.3. Given X̄ = (ζ̄, Ū , H̄) in E, there exists a time T depending only on
∥∥X̄∥∥

E
such

that the system (2.10) admits a unique solution in C1([0, T ], E) with initial data X̄.

Proof. Solutions of (2.10) can be rewritten as

X(t) = X̄ +
∫ t

0

F (X(τ)) dτ (2.17)

where F : E → E is given by F (X) = (U,−Q(X), U3 − 2P(X)U) where X = (ζ, U, H). The
integrals are defined as Riemann integrals of continuous functions on the Banach space E. Using
Lemma 2.1, we can check that each component of F (X) is a product of functions that satisfy one
of the assumptions of Lemma 2.2 and using this same lemma, we obtain that F (X) is a Lipchitz
function on any bounded set of E. Since E is a Banach space, we use the standard contraction
argument to prove the theorem. �

We now turn to the proof of existence of global solutions of (2.10). We are interested in a
particular class of initial data that we are going to make precise later, see Definition 2.6. In
particular, we will only consider initial data that belong to E ∩

[
W 1,∞(R)

]3 where W 1,∞(R) =
{f ∈ Cb(R) | fξ ∈ L∞(R)}. Given (ζ̄, Ū , H̄) ∈ E∩ [W 1,∞(R)]3, we consider the short-time solution
(ζ, U, H) ∈ C([0, T ], E) of (2.10) given by Theorem 2.3. Using the fact that Q and P are Lipschitz
on bounded sets (Lemma 2.1) and, since X ∈ C([0, T ], E), we can prove that P and Q belongs to
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C([0, T ],H1(R)). We now consider U , P and Q as given function in C([0, T ],H1(R)). Then, for
any fixed ξ ∈ R, we can solve the system of ordinary differential equations

d

dt
α(t, ξ) = β(t, ξ),

d

dt
β(t, ξ) =

1
2
γ(t, ξ) +

[
(
1
2
U2 − P )(t, ξ)

]
(1 + α(t, ξ)),

d

dt
γ(t, ξ) = − [2(QU)(t, ξ)] (1 + α(t, ξ)) +

[
(3U2 − 2P )(t, ξ)

]
β(t, ξ),

(2.18)

which is obtained by substituting ζξ, Uξ and Hξ in (2.12) by the unknowns α, β, and γ, respectively.
We have to specify the initial conditions for (2.18). Let A be the following set

A = {ξ ∈ R |
∣∣Ūξ(ξ)

∣∣ ≤ ∥∥Ūξ

∥∥
L∞(R)

,
∣∣H̄ξ(ξ)

∣∣ ≤ ∥∥H̄ξ

∥∥
L∞(R)

,
∣∣ζ̄ξ(ξ)

∣∣ ≤ ∥∥ζ̄ξ

∥∥
L∞(R)

},

We have thatA has full measure, that is, meas(Ac) = 0. For ξ ∈ A we define (α(0, ξ), β(0, ξ), γ(0, ξ)) =
(Ūξ(ξ), H̄ξ(ξ), ζ̄ξ(ξ)). However, for ξ ∈ Ac we take (α(0, ξ), β(0, ξ), γ(0, ξ)) = (0, 0, 0).

Lemma 2.4. Given initial condition X̄ = (Ū , H̄, ζ̄) ∈ E ∩ [W 1,∞(R)]3, we consider the solu-
tion X = (ζ, U, H) ∈ C1([0, T ], E) of (2.18) given by Theorem 2.3. Then, X ∈ C1([0, T ], E ∩
[W 1,∞(R)]3). The functions α(t, ξ), β(t, ξ) and γ(t, ξ) which are obtained by solving (2.18) for
any fixed given ξ with the initial condition specified above, coincide for almost every ξ and for all
time t with ζξ, Uξ and Hξ, respectively, that is, for all t ∈ [0, T ], we have

(α(t, ξ), β(t, ξ), γ(t, ξ)) = (ζξ(t, ξ), Uξ(t, ξ),Hξ(t, ξ)) (2.19)

for almost every ξ ∈ R.

Thus, this lemma allows us to pick up a special representative for (ζξ, Uξ,Hξ) given by (α, β, γ),
which is defined for all ξ ∈ R and which, for any given ξ, satisfies the ordinary differential equation
(2.18). In the remaining we will of course identify the two and set (ζξ, Uξ,Hξ) equal to (α, β, γ).
To prove this lemma, we will need the following proposition which is adapted from [27, p. 134,
Corollary 2].

Proposition 2.5. Let R be a bounded linear operator on a Banach space X into a Banach space
Y . Let f be in C([0, T ], X). Then, Rf belongs to C([0, T ], Y ) and therefore is Riemann integrable,
and

∫
[0,T ]

Rf(t) dt = R
∫
[0,T ]

f(t) dt.

Proof of Lemma 2.4. We introduce the Banach space of everywhere bounded function B∞(R)
whose norm is naturally given by ‖f‖B∞(R) = supξ∈R |f(ξ)|. Obviously, Cb(R) is included in

B∞(R). We define (α, β, γ) as the solution of (2.18) in [B∞(R)]3 ∩
[
L2(R)

]3 with initial data as
given above. Thus, strictly speaking, this is a different definition than the one given in the lemma
but we will see that they are in fact equivalent. We note that the system (2.18) is affine (it consists
of a sum of a linear transformation and a constant) and therefore it is not hard to prove, by using
a contraction argument in [B∞(R)]3 ∩

[
L2(R)

]3, the short-time existence of solutions. Moreover,
the solution exists on [0, T ], the interval on which (ζ, U, H) is defined. Let us assume the opposite.
Then, Z1(t) = ‖α(t, · )‖B∞(R)∩L2(R) + ‖β(t, · )‖B∞(R)∩L2(R) + ‖γ(t, · )‖B∞(R)∩L2(R) has to blow up
when t approaches some time strictly smaller than T . We rewrite (2.18) in integral form:

α(t) = α(0) +
∫ t

0

β(τ) dτ,

β(t) = β(0) +
∫ t

0

(
1
2
γ + (

1
2
U2 − P )(1 + α)

)
(τ) dτ,

γ(t) = γ(0) +
∫ t

0

(
−2QU(1 + α) + (3U2 − 2P )β

)
(τ) dτ.

(2.20)

Note that in (2.20) all the terms belong to B∞(R) ∩ L2(R) and the equalities hold in this space.
After taking the norms on both sides of the three equations in (2.20) and adding them term by
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term, we obtain the following inequality

Z1(t) ≤ Z1(0) + CT + C

∫ t

0

Z1(τ) dτ

where C is a constant which depends on the C([0, T ],H1(R))-norms of U , P and Q, which, by
assumption, are bounded. From Gronwall’s lemma, we get Z1(t) ≤ (Z1(0)+CT )eCT and therefore
Z1(t) cannot blow up and α, β and γ belong to C1([0, T ], B∞(R) ∩ L2(R)). For any given ξ, the
map f 7→ f(ξ) from B∞(R) to R is linear and continuous. Hence, after applying this map to
each term in (2.20) and using Proposition 2.5, we recover the original definition of α, β and γ as
solutions, for any given ξ ∈ R, of the system (2.18) of ordinary differential equations in R3. The
derivation map ∂ξ is continuous from V and H1(R) into L2(R). We can apply it to each term in
(2.10) written in integral from and, by Proposition 2.5, this map commutes with the integral. We
end up with, after using (2.13) and (2.14),

ζξ(t) = ζ̄ξ +
∫ t

0

Uξ(τ) dτ,

Uξ(t) = Ūξ +
∫ t

0

(
1
2
Hξ + (

1
2
U2 − P )(1 + ζξ)

)
(τ) dτ,

Hξ(t) = H̄ξ +
∫ t

0

(
−2QU(1 + ζξ) + (3U2 − 2P )Uξ

)
(τ) dτ.

(2.21)

The injection map from B∞(R) ∩ L2(R) to L2(R) is of course continuous, we can apply it to
(2.20) and again use Proposition 2.5. Then, we can subtract each equation in (2.21) from
the corresponding one in (2.20), take the norm and add them. After introducing Z2(t) =
‖α(t, · )− ζξ(t, · )‖L2(R) + ‖β(t, · )− Uξ(t, · )‖L2(R) + ‖γ(t, · )−Hξ(t, · )‖L2(R), we end up with the
following equation

Z2(t) ≤ Z2(0) + C

∫ t

0

Z2(τ) dτ

where C is a constant which, again, only depends on the C([0, T ],H1(R))-norms, of U , P and
Q. By assumption on the initial conditions, we have Z2(0) = 0 because α(0) = ζ̄ξ, β(0) = Ūξ,
γ(0) = H̄ξ almost everywhere and therefore, by Gronwall’s lemma, we get Z2(t) = 0 for all
t ∈ [0, T ]. This is just a reformulation of (2.19), and this concludes the proof of the lemma. �

It is possible to carry out the contraction argument of Theorem 2.3 in the Banach space
[W 1,∞(R)]3 but the topology on [W 1,∞(R)]3 turns out to be too strong for our purpose and
that is why we prefer E whose topology is in some sense weaker. Our goal is to find solutions
of (1.4) with initial data ū in H1 because H1 is the natural space for the equation. Theorem
2.3 gives us the existence of solutions to (2.10) for initial data in E. Therefore we have to find
initial conditions that match the initial data ū and belong to E. A natural choice would be to use
ȳ(ξ) = y(0, ξ) = ξ and Ū(ξ) = u(ξ). Then y(t, ξ) gives the position of the particle which is at ξ at
time t = 0. But, if we make this choice, then H̄ξ = ū2 + ū2

x and Hξ does not belong to L2(R) in
general. We consider instead (ȳ, Ū , H̄) given by the relations

ξ =
∫ ȳ(ξ)

−∞
(ū2 + ū2

x) dx + ȳ(ξ), Ū = ū◦ȳ , and H̄ =
∫ ȳ

−∞

(
ū2 + ū2

x

)
dx. (2.22)

Later (see Remark 3.10), we will prove that (ȳ − Id, Ū , H̄) belongs to G where G is defined as
follows.

Definition 2.6. The set G is composed of all (ζ, U, H) ∈ E such that

(ζ, U, H) ∈
[
W 1,∞(R)

]3
, (2.23a)

yξ ≥ 0,Hξ ≥ 0, yξ + Hξ > 0 almost everywhere, and lim
ξ→−∞

H(ξ) = 0, (2.23b)

yξHξ = y2
ξU2 + U2

ξ almost everywhere, (2.23c)

where we denote y(ξ) = ζ(ξ) + ξ.
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Note that if all functions are smooth and yξ > 0, we have ux ◦ y = Uξ

yξ
and condition (2.23c) is

equivalent to (2.4). For initial data in G, the solution of (2.10) exists globally.

Lemma 2.7. Given initial data X̄ = (ζ̄, Ū , H̄) in G, let X(t) = (ζ(t), U(t),H(t)) be the short-time
solution of (2.10) in C([0, T ], E) for some T > 0 with initial data (ζ̄, Ū , H̄). Then,
(i) X(t) belongs to G for all t ∈ [0, T ],
(ii) for almost every t ∈ [0, T ], yξ(t, ξ) > 0 for almost every ξ ∈ R,
(iii) For all t ∈ [0, T ], limξ→±∞ H(t, ξ) exists and is independent of time.

We denote by A the set where the absolute values of ζ̄ξ(ξ), H̄ξ(ξ), and Ūξ(ξ) all are smaller
than

∥∥X̄∥∥
[W 1,∞(R)]3

and where the inequalities in (2.23b) and (2.23c) are satisfied for yξ, Uξ and
Hξ. By assumption, we have meas(Ac) = 0 and we set (Ūξ, H̄ξ, ζ̄ξ) equal to zero on Ac. Thus,
as allowed by Lemma 2.4, we choose a special representative for (ζ(t, ξ), U(t, ξ),H(t, ξ)) which
satisfies (2.12) as an ordinary differential equation, for every ξ ∈ R.

Proof. (i) We already proved in Lemma 2.4 that the space [W 1,∞(R)]3 is preserved and therefore
X(t) satisfies (2.23a) for all t ∈ [0, T ]. Let us prove that (2.23c) and the inequalities in (2.23b)
hold for any ξ ∈ A and therefore almost everywhere. We consider a fixed ξ in A and drop it in
the notations when there is no ambiguity. From (2.12), we have, on the one hand,

(yξHξ)t = yξtHξ + Hξtyξ = UξHξ + (3U2Uξ − 2yξQU − 2PUξ)yξ,

and, on the other hand,

(y2
ξU2 + U2

ξ )t = 2yξtyξU
2 + 2y2

ξUtU + 2UξtUξ

= 3UξU
2yξ − 2PUξyξ + HξUξ − 2y2

ξQU.

Thus, (yξHξ − y2
ξU2 − U2

ξ )t = 0, and since yξHξ(0) = (y2
ξU2 + U2

ξ )(0), we have yξHξ(t) =
(y2

ξU2 + U2
ξ )(t) for all t ∈ [0, T ]. We have proved (2.23c). Let us introduce t∗ given by

t∗ = sup{t ∈ [0, T ] | yξ(t′) ≥ 0 for all t′ ∈ [0, t]}.
Here we recall that we consider a fixed ξ ∈ A and dropped it in the notation. Assume that t∗ < T .
Since yξ(t) is continuous with respect to time, we have

yξ(t∗) = 0. (2.24)

Hence, from (2.23c) that we just proved, Uξ(t∗) = 0 and, by (2.12),

yξt(t∗) = Uξ(t∗) = 0. (2.25)

From (2.12), since yξ(t∗) = Uξ(t∗) = 0, we get

yξtt(t∗) = Uξt(t∗) =
1
2
Hξ(t∗). (2.26)

If Hξ(t∗) = 0, then (yξ, Uξ,Hξ)(t∗) = (0, 0, 0) and, by the uniqueness of the solution of (2.12), seen
as a system of ordinary differential equations, we must have (yξ, Uξ,Hξ)(t) = 0 for all t ∈ [0, T ].
This contradicts the fact that yξ(0) and Hξ(0) cannot vanish at the same time (ȳξ + H̄ξ > 0
for all ξ ∈ A). If Hξ(t∗) < 0, then yξtt(t∗) < 0 and, because of (2.24) and (2.25), there exists
a neighborhood U of t∗ such that y(t) < 0 for all t ∈ U \ {t∗}. This contradicts the definition
of t∗. Hence, Hξ(t∗) > 0 and, since we now have yξ(t∗) = yξt(t∗) = 0 and yξtt(t∗) > 0, there
exists a neighborhood of t∗ that we again denote U such that yξ(t) > 0 for all t ∈ U \ {t∗}. This
contradicts the fact that t∗ < T , and we have proved the first inequality in (2.23b), namely that
yξ(t) ≥ 0 for all t ∈ [0, T ]. Let us prove that Hξ(t) ≥ 0 for all t ∈ [0, T ]. This follows from (2.23c)
when yξ(t) > 0. Now, if yξ(t) = 0, then Uξ(t) = 0 from (2.23c) and we have seen that Hξ(t) < 0
would imply that yξ(t′) < 0 for some t′ in a punctured neighborhood of t, which is impossible.
Hence, Hξ(t) ≥ 0 and we have proved the second inequality in (2.23b). Assume that the third
inequality in (2.23c) does not hold. Then, by continuity, there exists a time t ∈ [0, T ] such that
(yξ + Hξ)(t) = 0. Since yξ and Hξ are positive, we must have yξ(t) = Hξ(t) = 0 and, by (2.23c),
Uξ(t) = 0. Since zero is a solution of (2.12), this implies that yξ(0) = Uξ(0) = Hξ(0), which
contradicts (yξ + Hξ)(0) > 0. The fact that limξ→−∞ H(t, ξ) = 0 will be proved below in (iii).
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(ii) We define the set
N = {(t, ξ) ∈ [0, T ]× R | yξ(t, ξ) = 0}.

Fubini’s theorem gives us

meas(N ) =
∫

R
meas(Nξ) dξ =

∫
[0,T ]

meas(Nt) dt (2.27)

where Nξ and Nt are the ξ-section and t-section of N , respectively, that is,

Nξ = {t ∈ [0, T ] | yξ(t, ξ) = 0} and Nt = {ξ ∈ R | yξ(t, ξ) = 0}.

Let us prove that, for all ξ ∈ A, meas(Nξ) = 0. If we consider the sets Nn
ξ defined as

Nn
ξ = {t ∈ [0, T ] | yξ(t, ξ) = 0 and yξ(t′, ξ) > 0 for all t′ ∈ [t− 1/n, t + 1/n] \ {t}},

then
Nξ =

⋃
n∈N

Nn
ξ . (2.28)

Indeed, for all t ∈ Nξ, we have yξ(t, ξ) = 0, yξt(t, ξ) = 0 from (2.23c) and (2.12) and yξtt(t, ξ) =
1
2Hξ(t, ξ) > 0 from (2.12) and (2.23b) (yξ and Hξ cannot vanish at the same time for ξ ∈ A). This
implies that, on a small punctured neighborhood of t, yξ is strictly positive. Hence, t belongs to
some Nn

ξ for n large enough. This proves (2.28). The set Nn
ξ consists of isolated points that are

countable since, by definition, they are separated by a distance larger than 1/n from one another.
This means that meas(Nn

ξ ) = 0 and, by the subadditivity of the measure, meas(Nξ) = 0. It
follows from (2.27) and since meas(Ac) = 0 that

meas(Nt) = 0 for almost every t ∈ [0, T ]. (2.29)

We denote by K the set of times such that meas(Nt) > 0, i.e.,

K = {t ∈ R+ | meas(Nt) > 0} . (2.30)

By (2.29), meas(K) = 0. For all t ∈ Kc, yξ > 0 almost everywhere and, therefore, y(t, ξ) is strictly
increasing and invertible (with respect to ξ).

(iii) For any given t ∈ [0, T ], since Hξ(t, ξ) ≥ 0, H(t, ξ) is an increasing function with respect to
ξ and therefore, as H(t, · ) ∈ L∞(R), H(t, ξ) has a limit when ξ → ±∞. We denote those limits
H(t,±∞). Since U(t, · ) ∈ H1(R), we have limξ→±∞ U(t, ξ) = 0 for all t ∈ [0, T ]. We have

H(t, ξ) = H(0, ξ) +
∫ t

0

[
U3 − 2PU

]
(τ, ξ) dτ. (2.31)

We let ξ tend to ±∞. Since U and P are bounded in L∞([0, T ] × R), we can apply the
Lebesgue dominated convergence theorem and it follows from (2.31), as limξ→±∞ U(t, ξ) = 0, that
H(t,±∞) = H(0,±∞) for all t ∈ [0, T ]. Since X̄ ∈ G, H(0,−∞) = 0 and therefore H(t,−∞) = 0
for all t ∈ [0, T ]. �

We are now ready to prove global existence of solutions to (2.10).

Theorem 2.8. For any X̄ = (ȳ, Ū , H̄) ∈ G, the system (2.10) admits a unique global solution
X(t) = (y(t), U(t),H(t)) in C1(R+, E) with initial data X̄ = (ȳ, Ū , H̄). We have X(t) ∈ G for all
times. If we equip G with the topology inducted by the E-norm, then the mapping S : G ×R+ → G
defined as

St(X̄) = X(t)
is a continuous semigroup.

Proof. The solution has a finite time of existence T only if ‖(ζ, U, H)(t, · )‖E blows up when t
tends to T because, otherwise, by Theorem 2.3, the solution can be prolongated by a small time
interval beyond T . Let (ζ, U, H) be a solution of (2.10) in C([0, T ), E) with initial data (ζ̄, Ū , H̄).
We want to prove that

sup
t∈[0,T )

‖(ζ(t, · ), U(t, · ),H(t, · ))‖E < ∞. (2.32)
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We have already seen that H(t, ξ) is an increasing function in ξ for all t and, from Lemma 2.7,
we have limξ→∞ H(t, ξ) = limξ→∞ H(0, ξ). This shows that supt∈[0,T ) ‖H(t, · )‖L∞(R) is bounded
by
∥∥H̄∥∥

L∞(R)
and therefore is finite. To simplify the notation we suppress the dependence in t for

the moment. We have

U2(ξ) = 2
∫ ξ

−∞
U(η)Uξ(η) dη = 2

∫
{η≤ξ|yξ(η)>0}

U(η)Uξ(η) dη (2.33)

since, from (2.23c), Uξ(ξ) = 0 when yξ(ξ) = 0. For almost every ξ such that yξ(ξ) > 0, we have

|U(ξ)Uξ(ξ)| =

∣∣∣∣∣√yξU(ξ)
Uξ(ξ)√
yξ(ξ)

∣∣∣∣∣ ≤ 1
2

(
U(ξ)2yξ(ξ) +

U2
ξ (ξ)

yξ(ξ)

)
=

1
2
Hξ(ξ),

from (2.23c). Inserting this inequality in (2.33), we obtain U2(ξ) ≤ H(ξ) and supt∈[0,T ) ‖U(t, · )‖L∞(R)

is therefore finite. Then, from the governing equation (2.10), it follows that

|ζ(t, ξ)| ≤ |ζ(0, ξ)|+ sup
t∈[0,T )

‖U(t, · )‖L∞(R) T

and supt∈[0,T ) ‖ζ(t, · )‖L∞(R) < ∞. Next we prove that supt∈[0,T ) ‖Q(t, · )‖L∞(R) < ∞. After one
integration by parts, Q can be rewritten as

Q(t, ξ) = −1
4

∫
R

e−|y(ξ)−y(η)|yξ(η)
[
sgn(ξ − η)U(η)2 −H(η)

]
dη − 1

2
H(t, ξ).

Hence, we get, after a change of variable,

|Q(t, ξ)| ≤ C

∫
R

e−|y(ξ)−y(η)|yξ(η) dη + C ≤ 3C,

where the constant C depends only on supt∈[0,T ) ‖H(t, · )‖L∞(R) and supt∈[0,T ) ‖U(t, · )‖L∞(R).
Similarly, one proves that that ‖P (t, · )‖L∞(R) < ∞. We denote

C1 = sup
t∈[0,T )

{‖U(t, · )‖L∞(R) + ‖H(t, · )‖L∞(R)

+ ‖ζ(t, · )‖L∞(R) + ‖P (t, · )‖L∞(R) + ‖Q(t, · )‖L∞(R)}.

We have just proved that C1 < ∞. Let t ∈ [0, T ). Looking back at (2.16) and the definition of R,
we obtain that

‖R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

for some constant C depending only on C1. Since A is a continuous linear mapping from L2(R)
to H1(R), we get

‖A ◦R(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

for another constant C which again only depends on C1. From now on, we denote generically by
C such constants that only depends on C1. From (2.16), as

∥∥e−ζ(t, · )
∥∥

L∞(R)
≤ C, we obtain that

‖Q1(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R))

The same bound holds for Q2 and therefore

‖Q(t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.34)

Similarly, one proves

‖P (t, · )‖L2(R) ≤ C(‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R)). (2.35)

Let Z(t) = ‖U(t, · )‖L2(R) + ‖ζξ(t, · )‖L2(R) + ‖Uξ(t, · )‖L2(R) + ‖Hξ(t, · )‖L2(R), then the theorem
will be proved once we have established that supt∈[0,T ) Z(t) < ∞. From the integrated version
of (2.10) and (2.21), after taking the L2(R)-norms on both sides, adding the relevant terms and
using (2.35), we obtain

Z(t) ≤ Z(0) + C

∫ t

0

Z(τ) dτ.



12 HOLDEN AND RAYNAUD

Hence, Gronwall’s lemma gives us that supt∈[0,T ) Z(t) < ∞. From standard ordinary differential
equation theory, we infer that St is a continuous semi-group. �

3. From Eulerian to Lagrangian coordinates and vice versa

As noted in [4], even if H1(R) is a natural space for the equation, there is no hope to obtain
a semigroup of solutions by only considering H1(R). Thus, we introduce the following space D,
which characterizes the solutions in Eulerian coordinates:

Definition 3.1. The set D is composed of all pairs (u, µ) such that u belongs to H1(R) and µ is
a positive finite Radon measure whose absolute continuous part, µac, satisfies

µac = (u2 + u2
x) dx. (3.1)

We derived the equivalent system (2.10) by using characteristics. Since y satisfies (2.2), y, for
a given ξ, can also be seen as the position of a particle evolving in the velocity field u, where u is
the solution of the Camassa–Holm equation. We are then working in Lagrangian coordinates. In
[13], the Camassa–Holm equation is derived as a geodesic equation on the group of diffeomorphism
equipped with a right-invariant metric. In the present paper, the geodesic curves correspond to
y(t, · ). Note that y does not remain a diffeomorphism since it can become non invertible, which
agrees with the fact that the solutions of the geodesic equation may break down, see [11]. The
right-invariance of the metric can be interpreted as an invariance with respect to relabeling as
noted in [2]. This is a property that we also observe in our setting. We denote by G the subgroup
of the group of homeomorphisms from R to R such that

f − Id and f−1 − Id both belong to W 1,∞(R) (3.2)

where Id denotes the identity function. The set G can be interpreted as the set of relabeling
functions. For any α > 1, we introduce the subsets Gα of G defined by

Gα = {f ∈ G | ‖f − Id‖W 1,∞(R) +
∥∥f−1 − Id

∥∥
W 1,∞(R)

≤ α}.

The subsets Gα do not possess the group structure of G. The next lemma provides a useful
characterization of Gα.

Lemma 3.2. Let α ≥ 0. If f belongs to Gα, then 1/(1 + α) ≤ fξ ≤ 1 + α almost everywhere.
Conversely, if f is absolutely continuous, f − Id ∈ L∞(R) and there exists c ≥ 1 such that
1/c ≤ fξ ≤ c almost everywhere, then f ∈ Gα for some α depending only on c and ‖f − Id‖L∞(R).

Proof. Given f ∈ Gα, let B be the set of points where f−1 is differentiable. Rademacher’s theorem
says that meas(Bc) = 0. For any ξ ∈ f−1(B), we have

lim
ξ′→ξ

f−1(f(ξ′))− f−1(f(ξ))
f(ξ′)− f(ξ)

= (f−1)ξ(f(ξ))

because f is continuous and f−1 is differentiable at f(ξ). On the other hand, we have

f−1(f(ξ′))− f−1(f(ξ))
f(ξ′)− f(ξ)

=
ξ′ − ξ

f(ξ′)− f(ξ)
.

Hence, f is differentiable for any ξ ∈ f−1(B) and

fξ(ξ) ≥
1

‖(f−1)ξ‖L∞(R)

≥ 1
1 + α

. (3.3)

The estimate (3.3) holds only on f−1(B) but, since meas(Bc) = 0 and f−1 is Lipschitz and one-to-
one, meas(f−1(Bc)) = 0 (see, e.g., [1, Remark 2.72]), and therefore (3.3) holds almost everywhere.
We have fξ ≤ 1 + ‖fξ − 1‖L∞(R) ≤ 1 + α.

Let us now consider a function f which is absolutely continuous and such that f − Id ∈ L∞(R)
and 1/c ≤ fξ ≤ c almost everywhere for some c ≥ 1. Since fξ is bounded, f and therefore f − Id
are Lipschitz and f − Id ∈ W 1,∞(R). Since fξ ≥ 1/c almost everywhere, f is strictly increasing
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and, since it is also continuous, it is invertible. As f is Lipschitz, we can make the following change
of variables (see, for example, [1]) and get that, for all ξ1, ξ2 in R such that ξ1 < ξ2,

f−1(ξ2)− f−1(ξ1) =
∫

[f−1(ξ1),f−1(ξ2)]

fξ

fξ
dξ ≤ c(ξ2 − ξ1).

Hence, f−1 is Lipschitz and (f−1)ξ ≤ c. We have f−1(ξ′) − ξ′ = ξ − f(ξ) for ξ′ = f(ξ) and
therefore ‖f − Id‖L∞(R) =

∥∥f−1 − Id
∥∥

L∞(R)
. Finally, we get

‖f − Id‖W 1,∞(R) +
∥∥f−1 − Id

∥∥
W 1,∞(R)

≤ 2 ‖f − Id‖W 1,∞(R) + 2

+ ‖fξ‖L∞(R) +
∥∥(f−1)ξ

∥∥
L∞(R)

≤ 2 ‖f − Id‖L∞(R) + 2 + 2c.

�

We define the subsets Fα and F of G as follows

Fα = {X = (y, U, H) ∈ G | y + H ∈ Gα},

and
F = {X = (y, U, H) ∈ G | y + H ∈ G}.

For α = 0, G0 = {Id}. As we will see, the space F0 will play a special role. These sets are relevant
only because they are in some sense preserved by the governing equation (2.10) as the next lemma
shows.

Lemma 3.3. The space F is preserved by the governing equation (2.10). More precisely, given
α, T ≥ 0 and X̄ ∈ Fα, we have

St(X̄) ∈ Fα′

for all t ∈ [0, T ] where α′ only depends on T , α and
∥∥X̄∥∥

E
.

Proof. Let X̄ = (ȳ, Ū , H̄) ∈ Fα, we denote X(t) = (y(t), U(t),H(t)) the solution of (2.10) with
initial data X̄ and set h(t, ξ) = y(t, ξ)+H(t, ξ), h̄(ξ) = ȳ(ξ)+H̄(ξ). By definition, we have h̄ ∈ Gα

and, from Lemma 3.2, 1/c ≤ h̄ξ ≤ c almost everywhere, for some constant c > 1 depending only
α. We consider a fixed ξ and drop it in the notation. Applying Gronwall’s inequality backward in
time to (2.12), we obtain

|yξ(0)|+ |Hξ(0)|+ |Uξ(0)| ≤ eCT (|yξ(t)|+ |Hξ(t)|+ |Uξ(t)|) (3.4)

for some constant C which depends on ‖X(t)‖C([0,T ],E), which itself depends only on
∥∥X̄∥∥

E
and

T . From (2.23c), we have

|Uξ(t)| ≤
√

yξ(t)Hξ(t) ≤
1
2
(yξ(t) + Hξ(t)).

Hence, since yξ and Hξ are positive, (3.4) gives us

1
c
≤ ȳξ + H̄ξ ≤

3
2
eCT (yξ(t) + Hξ(t)),

and hξ(t) = yξ(t) + Hξ(t) ≥ 2
3ce−CT . Similarly, by applying Gronwall’s lemma forward in time,

we obtain yξ(t) + Hξ(t) ≤ 3
2ceCT . We have ‖(y + H)(t)− ξ‖L∞(R) ≤ ‖X(t)‖C([0,T ],E) ≤ C for

another constant C which also only depends on
∥∥X̄∥∥

E
and T . Hence, applying Lemma 3.2, we

obtain that y(t, · ) + H(t, · ) ∈ Gα′ and therefore X(t) ∈ Fα′ for some α′ depending only on α, T
and

∥∥X̄∥∥
E

. �

For the sake of simplicity, for any X = (y, U, H) ∈ F and any function f ∈ G, we denote
(y ◦ f, U ◦ f,H ◦ f) by X ◦ f .

Proposition 3.4. The map from G × F to F given by (f,X) 7→ X ◦ f defines an action of the
group G on F .
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Proof. We have to prove that X ◦ f belongs to F for any X = (y, U, H) ∈ F and f ∈ G. We
denote X̄ = (ȳ, Ū , H̄) = X ◦ f . As compositions of two Lipschitz maps, ȳ, Ū and H̄ are Lipschitz.
We have

‖ȳ − Id‖L∞(R) ≤ ‖ȳ ◦ f − f‖L∞(R) + ‖f − Id‖L∞(R)

≤ ‖ȳ − Id‖L∞(R) + ‖f − Id‖L∞(R) < +∞.

Hence, (ȳ − Id, Ū , H̄) ∈ [W 1,∞(R)]3. Let us prove that

ȳξ = yξ◦f fξ, Ūξ = Uξ◦f fξ and H̄ξ = Hξ◦f fξ (3.5)

almost everywhere. Let B1 be the set where y is differentiable and B2 the set where ȳ and f
are differentiable. Using Radamacher’s theorem, we get that meas(Bc

1) = meas(Bc
2) = 0. For

ξ ∈ B3 = B2 ∩ f−1(B1), we consider a sequence ξi converging to ξ (ξi 6= ξ). We have

y(f(ξi))− y(f(ξ))
f(ξi)− f(ξ)

f(ξi)− f(ξ)
ξi − ξ

=
ȳ(ξi)− ȳ(ξ)

ξi − ξ
. (3.6)

Since f is continuous, f(ξi) converges to f(ξ) and, as y is differentiable at f(ξ), the left-hand side
of (3.6) tends to yξ◦f(ξ) fξ(ξ). The right-hand side of (3.6) tends to ȳξ(ξ), and we get that

yξ(f(ξ))fξ(ξ) = ȳξ(ξ) (3.7)

for all ξ ∈ B3. Since f−1 is Lipschitz, one-to-one and meas(Bc
1) = 0, we have meas(f−1(B1)c) = 0

and therefore (3.7) holds everywhere. One proves the two other identities in (3.5) similarly. From
Lemma 3.2, we have that fξ > 0 almost everywhere. Then, using (3.5) we easily check that (2.23b)
and (2.23c) are fulfilled. Thus, we have proved that (ȳ − Id, Ū , H̄) fulfills (2.23). It remains to
prove that (ȳ − Id, Ū , H̄) ∈ E. Since f ∈ G, f ∈ Gα for some large enough α and, by Lemma 3.2,
there exists a constant c > 0 such that 1/c ≤ fξ ≤ c almost everywhere. We have, after a change
of variables, ∥∥Ū∥∥2

L2(R)
=
∫

R
(U ◦f )2 dξ ≤ c

∫
R
(U ◦f )2fξ dξ = c ‖U‖2L2(R) .

Hence, Ū ∈ L2(R). Similarly, one proves that yξ − 1, Uξ and Hξ belong to L2(R) and therefore
(y, U, H) ∈ G. We have ȳ + H̄ = (y + H) ◦ f which implies, since y + H and f belongs to G and
G is a group, that ȳ + H̄ ∈ G. Therefore X̄ ∈ F and the proposition is proved. �

Since G is acting on F , we can consider the quotient space F/G of F with respect to the action
of the group G. The equivalence relation on F is defined as follows: For any X, X ′ ∈ F , X and
X ′ are equivalent if there exists f ∈ G such that X ′ = X ◦ f . We denote by Π(X) = [X] the
projection of F into the quotient space F/G. We introduce the mapping Γ: F → F0 given by

Γ(X) = X◦( y + H)−1

for any X = (y, U, H) ∈ F . We have Γ(X) = X when X ∈ F0. It is not hard to prove Γ is invariant
under the G action, that is, Γ(X ◦f) = Γ(X) for any X ∈ F and f ∈ G. Hence, there corresponds
to Γ a mapping Γ̃ from the quotient space F/G to F0 given by Γ̃([X]) = Γ(X) where [X] ∈ F/G

denotes the equivalence class of X ∈ F . For any X ∈ F0, we have Γ̃ ◦ Π(X) = Γ(X) = X.
Hence, Γ̃ ◦ Π|F0 = Id|F0 . Any topology defined on F0 is naturally transported into F/G by this
isomorphism. We equip F0 with the metric induced by the E-norm, i.e., dF0(X, X ′) = ‖X −X ′‖E

for all X, X ′ ∈ F0. Since F0 is closed in E, this metric is complete. We define the metric on F/G
as

dF/G([X], [X ′]) = ‖Γ(X)− Γ(X ′)‖E ,

for any [X], [X ′] ∈ F/G. Then, F/G is isometrically isomorphic with F0 and the metric dF/G is
complete.

Lemma 3.5. Given α ≥ 0. The restriction of Γ to Fα is a continuous mapping from Fα to F0.

Remark 3.6. The mapping Γ is not continuous from F to F0. The spaces Fα were precisely
introduced in order to make the mapping Γ continuous.
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Proof. As for F0, we equip Fα with the topology induced by the E-norm. Let Xn = (yn, Un,Hn) ∈
Fα be a sequence that converges to X = (y, U, H) in Fα. We denote X̄n = (ȳn, Ūn, H̄n) = Γ(Xn)
and X̄ = (ȳ, Ū , H̄) = Γ(X). By definition of F0, we have H̄n = −ζ̄n (recall that ζn = yn − Id).
Let us prove first that H̄n tends to H̄ in L∞(R). We denote fn = yn + Hn, f = y + H, and we
have fn, f ∈ Gα. Thus H̄n − H̄ = (Hn −H) ◦ fn

−1 + H̄ ◦ f ◦ fn
−1 − H̄ and we have∥∥H̄n − H̄

∥∥
L∞(R)

≤ ‖Hn −H‖L∞(R) +
∥∥H̄ ◦ f − H̄ ◦ fn

∥∥
L∞(R)

. (3.8)

From the definition of F0, we know that H̄ is Lipschitz with Lipschitz constant smaller than one.
Hence, ∥∥H̄ ◦ f − H̄ ◦ fn

∥∥
L∞(R)

≤ ‖fn − f‖L∞(R) . (3.9)

Since Hn and fn converges to H and f , respectively, in L∞(R), from (3.8) and (3.9), we get
that H̄n converges to H̄ in L∞(R). Let us prove now that H̄n,ξ tend to H̄ξ in L2(R). We have
H̄n,ξ − H̄ξ = Hn,ξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1 which can be decomposed into

H̄n,ξ − H̄ξ =
(

Hn,ξ −Hξ

fn,ξ

)
◦ fn

−1 +
Hξ

fn,ξ
◦ fn

−1 − Hξ

fξ
◦ f−1. (3.10)

Since fn ∈ Gα, there exists a constant c > 0 independent of n such that 1/c ≥ fn,ξ ≥ c almost
everywhere, see Lemma 3.2. We have∥∥∥∥(Hn,ξ −Hξ

fn,ξ

)
◦ fn

−1

∥∥∥∥2

L2(R)

=
∫

R
(Hn,ξ −Hξ)2

1
fn,ξ

dξ ≤ c ‖Hn,ξ −Hξ‖2L2(R) , (3.11)

where we have made the change of variables ξ′ = fn
−1(ξ). Hence, the left-hand side of (3.11)

converges to zero. If we can prove that Hξ

fn,ξ
◦ fn

−1 → Hξ

fξ
◦ f−1 in L2(R), then, using (3.10), we

get that H̄n,ξ → H̄ξ in L2(R), which is the desired result. We have

Hξ

fn,ξ
◦ fn

−1 =
(H̄ξ ◦ f)fξ

fn,ξ
◦ fn

−1 = (H̄ξ ◦ gn)gn,ξ

where gn = f ◦fn
−1. Let us prove that limn→∞ ‖gn,ξ − 1‖L2(R) = 0. We have, after using a change

of variables,

‖gn,ξ − 1‖2L2(R) =
∫

R

(
fξ

fn,ξ
◦ fn

−1 − 1
)2

dξ = c ‖fξ − fn,ξ‖2L2(R) . (3.12)

Hence, since fn,ξ → fξ in L2(R), limn→∞ ‖gn,ξ − 1‖L2(R) = 0. We have∥∥H̄ξ ◦ gngn,ξ − H̄ξ

∥∥
L2(R)

≤
∥∥H̄ξ ◦ gn

∥∥
L∞(R)

‖gn,ξ − 1‖L2(R) +
∥∥H̄ξ ◦ gn − H̄ξ

∥∥
L2(R)

. (3.13)

We have
∥∥H̄ξ ◦ gn

∥∥
L∞(R)

≤ 1 since, as we already noted, H̄ is Lipschitz with Lipschitz constant
smaller than one. Hence, the first term in the sum in (3.13) converges to zero. As far as the
second term is concerned, one can always approximate H̄ξ in L2(R) by a continuous function h
with compact support. After observing that 1/c2 ≤ gn,ξ ≤ c2 almost everywhere, we can prove,
as we have done several times now, that ‖Hξ ◦ gn − h ◦ gn‖2L2(R) ≤ c2 ‖Hξ − h‖2L2(R) and h ◦ gn

can be chosen arbitrarily close to Hξ ◦ gn in L2(R) independently of n, that is, for all ε > 0, there
exists h such that

‖Hξ ◦ gn − h ◦ gn‖L2(R) ≤
ε

3
and ‖Hξ − h‖L2(R) ≤

ε

3
(3.14)

for all n. Since fn → f in L∞(R), gn → Id in L∞(R) and there exists a compact K independent
of n such that supp(h ◦ gn) ⊂ K. Then, by the Lebesgue dominated convergence theorem, we
obtain that h ◦ gn → h in L2(R). Hence, for n large enough, we have ‖h ◦ gn − h‖L2(R) ≤

ε
3 which,

together with (3.14), implies
∥∥H̄ξ ◦ gn − H̄ξ

∥∥
L2(R)

≤ ε, and H̄ξ ◦ gn → H̄ξ in L2(R). From (3.10),
(3.11), (3.12) and (3.13), we obtain that H̄n,ξ → H̄ξ in L2(R). It follows that ζ̄n,ξ → ζ̄ξ in L2(R)
and, similarly, one proves that Ūn,ξ → Ūξ in L2(R). It remains to prove that Un → U in L2(R).
We write

Ūn − Ū = (Un − U) ◦ fn
−1 + U ◦ fn

−1 − U ◦ f−1. (3.15)
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We have, after a change of variable,∥∥(Un − U) ◦ fn
−1
∥∥2

L2(R)
=
∫

R
(Un − U)2fn,ξ dξ ≤ c ‖Un − U‖2L2(R) . (3.16)

We also have, after the same change of variable, that∥∥U ◦ fn
−1 − U ◦ f−1

∥∥2

L2(R)
≤ c

∫
R
(U − U ◦ f−1 ◦ fn)2 dξ. (3.17)

By approximating U by continuous functions with compact support as we did before, we prove
that

∫
R(U −U ◦ f−1 ◦ fn)2 tends to zero. Hence, by (3.15), (3.16) and (3.17), we get that Ūn → U

in L2(R), which concludes the proof of the lemma. �

3.1. Continuous semigroup of solutions in F/G. We denote by S : F × R+ → F the con-
tinuous semigroup which to any initial data X̄ ∈ F associates the solution X(t) of the system
of differential equation (2.10) at time t. As we indicated earlier, the Camassa–Holm equation is
invariant with respect to relabeling, more precisely, using our terminology, we have the following
result.

Theorem 3.7. For any t > 0, the mapping St : F → F is G-equivariant, that is,

St(X◦f ) = St(X)◦f (3.18)

for any X ∈ F and f ∈ G. Hence, the mapping S̃t from F/G to F/G given by

S̃t([X]) = [StX]

is well-defined. It generates a continuous semigroup.

Proof. For any X0 = (y0, U0,H0) ∈ F and f ∈ G, we denote X̄0 = (ȳ0, Ū0, H̄0) = X0 ◦ f ,
X(t) = St(X0) and X̄(t) = St(X̄0). We claim that X(t) ◦ f satisfies (2.10) and therefore, since
X(t) ◦ f and X̄(t) satisfy the same system of differential equation with the same initial data, they
are equal. We denote X̂(t) = (ŷ(t), Û(t), Ĥ(t)) = X(t) ◦ f . We have

Ût =
1
4

∫
R

sgn(ξ − η) exp
(
− sgn(ξ − η)(ŷ(ξ)− y(η))

) [
U(η)2yξ(η) + Hξ(η)

]
dη. (3.19)

We have ŷξ(ξ) = yξ(f(ξ))fξ(ξ) and Ĥξ(ξ) = Hξ(f(ξ))fξ(ξ) for almost every ξ ∈ R. Hence, after
the change of variable η = f(η′), we get from (3.19) that

Ût =
1
4

∫
R

sgn(ξ − η) exp
(
− sgn(ξ − η)(ŷ(ξ)− ŷ(η))

) [
Û(η)2ŷξ(η) + Ĥξ(η)

]
dη.

We treat similarly the other terms in (2.10), and it follows that (ŷ, Û , Ĥ) is a solution of (2.10).
Since (ŷ, Û , Ĥ) and (ȳ, Ū , H̄) satisfy the same system of ordinary differential equations with the
same initial data, they are equal, i.e., X̄(t) = X(t)◦f and (3.18) is proved. We have the following
diagram:

F0
Π // F/G

Fα

Γ

OO

F0

St

OO

Π // F/G

S̃t

OO
(3.20)

on a bounded domain of F0 whose diameter together with t determines the constant α, see Lemma
3.3. By the definition of the metric on F/G, the mapping Π is an isometry from F0 to F/G. Hence,
from the diagram (3.20), we see that S̃t : F/G → F/G is continuous if and only if Γ◦St : F0 → F0

is continuous. Let us prove that Γ ◦ St : F0 → F0 is sequentially continuous. We consider a
sequence Xn ∈ F0 that converges to X ∈ F0 in F0, that is, limn→∞ ‖Xn −X‖E = 0. From
Theorem 2.8, we get that limn→∞ ‖St(Xn)− St(X)‖E = 0. Since Xn → X in E, there exists a
constant C ≥ 0 such that ‖Xn‖ ≤ C for all n. Lemma 3.3 gives us that St(Xn) ∈ Fα for some α
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which depends on C and t. Hence, St(Xn) → St(X) in Fα. Then, by Lemma 3.5, we obtain that
Γ ◦ St(Xn) → Γ ◦ St(X) in F0. �

3.2. Mappings between the two coordinate systems. Our next task is to derive the corre-
spondence between Eulerian coordinates (functions in D) and Lagrangian coordinates (functions
in F/G). Earlier we considered initial data in D with a special structure: The energy density µ
was given by (u2+u2

x) dx and therefore µ did not have any singular part. The set D however allows
the energy density to have a singular part and a positive amount of energy can concentrate on a
set of Lebesgue measure zero. We constructed corresponding initial data in F0 by the means of
(2.22). This construction can be generalized in the following way. Let us denote by L : D → F/G
the mapping transforming Eulerian coordinates into Lagrangian coordinates whose definition is
contained in the following theorem.

Theorem 3.8. For any (u, µ) in D, let

y(ξ) = sup {y | µ((−∞, y)) + y < ξ} , (3.21a)

H(ξ) = ξ − y(ξ), (3.21b)

U(ξ) = u◦y(ξ) . (3.21c)

Then (y, U, H) ∈ F0. We define L(u, µ) ∈ F/G to be the equivalence class of (y, U, H).

Proof. Clearly the definition of y yields an increasing function and limξ→±∞ y(ξ) = ±∞. For any
z > y(ξ), we have ξ ≤ z + µ((−∞, z)). Hence, ξ− z ≤ µ(R) and, since we can choose z arbitrarily
close to y(ξ), we get ξ − y(ξ) ≤ µ(R). It is not hard to check that y(ξ) ≤ ξ. Hence,

|y(ξ)− ξ| ≤ µ(R) (3.22)

and ‖y − Id‖L∞(R) ≤ µ(R) and y − Id ∈ L∞(R). Let us prove that y is Lipschitz with Lipschitz
constant at most one. We consider ξ, ξ′ in R such that ξ < ξ′ and y(ξ) < y(ξ′) (the case y(ξ) = y(ξ′)
is straightforward). It follows from the definition that there exists an increasing sequence, x′i, and
a decreasing one, xi such that limi→∞ xi = y(ξ), limi→∞ x′i = y(ξ′) with µ((−∞, x′i)) + x′i < ξ′

and µ((−∞, xi)) + xi ≥ ξ. Subtracting the these two inequalities one to the other, we obtain

µ((−∞, x′i))− µ((−∞, xi)) + x′i − xi < ξ′ − ξ. (3.23)

For i large enough, since by assumption y(ξ) < y(ξ′), we have xi < x′i and therefore µ((−∞, x′i))−
µ((−∞, xi)) = µ([xi, x

′
i)) ≥ 0. Hence, x′i − xi < ξ′ − ξ. Letting i tend to infinity, we get

y(ξ′) − y(ξ) ≤ ξ′ − ξ. Hence, y is Lipschitz with Lipschitz constant bounded by one and, by
Rademacher’s theorem, differentiable almost everywhere. Following [19], we decompose µ into its
absolute continuous, singular continuous and singular part, denoted µac, µsc and µs, respectively.
Here, since (u, µ) ∈ D, we have µac = (u2 + u2

x) dx. The support of µs consists of a countable set
of points. Let F (x) = µ((−∞, x)), then F is lower semi-continuous and its points of continuity
exactly coincide with the support of µs (see [19]). Let A denote the complement of y−1(supp(µs)).
We claim that for any ξ ∈ A, we have

µ((−∞, y(ξ))) + y(ξ) = ξ. (3.24)

From the definition of y(ξ) follows the existence of an increasing sequence xi which converges to
y(ξ) and such that F (xi) + xi < ξ. Since F is lower semi-continuous, limi→∞ F (xi) = F (y(ξ))
and therefore

F (y(ξ)) + y(ξ) ≤ ξ. (3.25)
Let us assume that F (y(ξ)) + y(ξ) < ξ. Since y(ξ) is a point of continuity of F , we can then find
an x such that x > y(ξ) and F (x) + x < ξ. This contradicts the definition of y(ξ) and proves our
claim (3.24). In order to check that (2.23c) is satisfied, we have to compute yξ and Uξ. We define
the set B1 as

B1 =
{

x ∈ R | lim
ρ↓0

1
2ρ

µ((x− ρ, x + ρ)) = (u2 + u2
x)(x)

}
.

Since (u2 + u2
x) dx is the absolutely continuous part of µ, we have, from Besicovitch’s derivation

theorem (see [1]), that meas(Bc
1) = 0. Given ξ ∈ y−1(B1), we denote x = y(ξ). We claim that for



18 HOLDEN AND RAYNAUD

all i ∈ N, there exists 0 < ρ < 1
i such that x−ρ and x+ρ both belong to supp(µs)c. Assume namely

the opposite. Then for any z ∈ (x− 1
i , x+ 1

i )\supp(µs), we have that z′ = 2x−z belongs to supp(µs).
Thus we can construct an injection between the uncountable set (x− 1

i , x + 1
i ) \ supp(µs) and the

countable set supp(µs). This is impossible, and our claim is proved. Hence, since y is surjective,
we can find two sequences ξi and ξ′i in A such that 1

2 (y(ξi) + y(ξ′i)) = y(ξ) and y(ξ′i)− y(ξi) < 1
i .

We have, by (3.24), since y(ξi) and y(ξ′i) belong to A,

µ([y(ξi), y(ξ′i))) + y(ξ′i)− y(ξi) = ξ′i − ξi. (3.26)

Since y(ξi) /∈ supp(µs), µ({y(ξi)}) = 0 and µ([y(ξi), y(ξ′i))) = µ((y(ξi), y(ξ′i))). Dividing (3.26) by
ξ′i − ξi and letting i tend to ∞, we obtain

yξ(ξ)(u2 + u2
x)(y(ξ)) + yξ(ξ) = 1 (3.27)

where y is differentiable in y−1(B1), that is, almost everywhere in y−1(B1). We now derive a short
lemma which will be useful several times in this proof.

Lemma 3.9. Given a Lipschitz function f : R → R, for any set B of measure zero, we have fξ = 0
almost everywhere in f−1(B).

Proof of Lemma 3.9. The Lemma follows directly from the area formula:∫
f−1(B)

fξ(ξ) dξ =
∫

R
H0
(
f−1(B) ∩ f−1({x})

)
dx (3.28)

where H0 is the multiplicity function, see [1] for the formula and the precise definition of H0. The
function H0

(
f−1(B) ∩ f−1({x})

)
is Lebesgue measurable (see [1]) and it vanishes on Bc. Hence,∫

f−1(B)
fξ dξ = 0 and therefore, since fξ ≥ 0, fξ = 0 almost everywhere in f−1(B). �

We apply Lemma 3.9 to Bc
1 and get, since meas(Bc

1) = 0, that yξ = 0 almost everywhere on
y−1(Bc

1). On y−1(B1), we proved that yξ satisfies (3.27). It follows that 0 ≤ yξ ≤ 1 almost
everywhere, which implies, since Hξ = 1− yξ, that Hξ ≥ 0. In the same way as we proved that y

was Lipschitz with Lipschitz constant at most one, we can prove that the function ξ 7→
∫ y(ξ)

−∞ u2
x dx

is also Lipschitz with Lipschitz constant at most one. Indeed, from (3.23), for i large enough, we
have ∫ x′i

xi

u2
x dx ≤ µac([xi, x

′
i)) ≤ µ([xi, x

′
i)) < ξ′ − ξ.

Since limi→∞ x′i = y(ξ′) and limi→∞ xi = y(ξ), letting i tend to infinity, we obtain
∫ y(ξ′)

y(ξ)
u2

x dx <

ξ′ − ξ and the function ξ 7→
∫ y(ξ)

−∞ u2
x dx is Lipchitz with Lipschitz coefficient at most one. For all

(ξ, ξ′) ∈ R2, we have, after using the Cauchy–Schwarz inequality,

|U(ξ′)− U(ξ)| =
∫ y(ξ′)

y(ξ)

ux dx

≤
√

y(ξ′)− y(ξ)

√∫ y(ξ′)

y(ξ)

u2
x dx (3.29)

≤ |ξ′ − ξ|

because y and
∫ y(ξ)

−∞ u2
x dx are Lipschitz with Lipschitz constant at most one. Hence, U is also

Lipschitz and therefore differentiable almost everywhere. We denote by B2 the set of Lebesgue
points of ux in B1, i.e.,

B2 = {x ∈ B1 | lim
ρ→0

1
ρ

∫ x+ρ

x−ρ

ux(t) dt = ux(x)}.
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We have meas(Bc
2) = 0. We choose a sequence ξi and ξ′i such that 1

2 (y(ξi) + y(ξ′i)) = x and
y(ξ′i)− y(ξi) ≤ 1

i . Thus

U(ξ′i)− U(ξi)
ξ′i − ξi

=

∫ y(ξ′i)

y(ξi)
ux(t) dt

y(ξ′i)− y(ξi)
y(ξ′i)− y(ξi)

ξ′i − ξi
.

Hence, letting i tend to infinity, we get that for every ξ in y−1(B2) where U and y are differentiable,
that is, almost everywhere on y−1(B2),

Uξ(ξ) = yξ(ξ)ux(y(ξ)). (3.30)

From (3.29) and using the fact that
∫ y(ξ)

−∞ u2
x dx is Lipschitz with Lipschitz constant at most one,

we get ∣∣∣∣U(ξ′)− U(ξ)
ξ′ − ξ

∣∣∣∣ ≤
√

y(ξ′)− y(ξ)
ξ′ − ξ

.

Hence, for almost every ξ in y−1(Bc
2), we have

|Uξ(ξ)| ≤
√

yξ(ξ). (3.31)

Since meas(Bc
2) = 0, we have by Lemma 3.9, that yξ = 0 almost everywhere on y−1(Bc

2). Hence,
Uξ = 0 almost everywhere on y−1(Bc

2). Thus, we have computed Uξ almost everywhere. It remains
to verify (2.23c). We have, after using (3.27) and (3.30), that yξHξ = yξ(1− yξ) = y2

ξ (u2 + u2
x) ◦ y

and, finally, yξHξ = y2
ξU2 +U2

ξ almost everywhere on y−1(B2). On y−1(Bc
2), we have yξ = Uξ = 0

almost everywhere. Therefore (2.23c) is satisfied almost everywhere. Up to now we have proved
that X = (y, U, H) satisfies (2.23a), (2.23c), the three inequalities in (2.23b) and, by definition,
y + H = Id. It remains to prove that X ∈ E and limξ→−∞ H(ξ) = 0. From (3.24), we have
H(ξ) = µ((−∞, y(ξ))) for any ξ ∈ A. We can find a sequence ξi ∈ A such that limi→∞ ξi = −∞
and we have limi→∞ H(ξi) = 0. Since H is monotone, it implies that limξ→−∞ H(ξ) = 0. From
(3.22) and (3.21b), we obtain ‖H‖L∞(R) ≤ µ(R). We have, since Hξ ≥ 0,

‖Hξ‖2L2(R) ≤ ‖Hξ‖L∞(R) ‖Hξ‖L1(R) ≤ ‖H‖2L∞(R) ≤ µ(R)

and H ∈ V . Since ζ = −H, we have ζ ∈ V . From (2.23c) we obtain

‖Uξ‖2L2(R) ≤ ‖yξHξ‖L1(R) ≤ (1 + ‖ζξ‖L∞(R)) ‖H‖L∞(R) .

Hence, Uξ ∈ L2(R). Let B3 = {ξ ∈ R | yξ < 1
2}. Since ζξ = yξ − 1 and yξ ≥ 0, B3 = {ξ ∈

R | |ζξ| > 1
2} and, after using the Chebychev inequality, as ζξ ∈ L2(R), we obtain meas(B3) < ∞.

Hence, ∫
R

U2(ξ) dξ =
∫

B3

U2(ξ) dξ +
∫

Bc
3

U2(ξ) dξ

≤ meas(B3) ‖u‖2L∞(R) + 2
∫

Bc
3

(u ◦ y)2yξ dξ

≤ meas(B3) ‖U‖2L∞(R) + 2 ‖u‖2L2(R) ,

after a change of variables. Hence, U ∈ L2(R) and, finally, we have (y − Id, U, H) ∈ E. �

Remark 3.10. If µ is absolutely continuous, then µ = (u2 + u2
x)dx and, from (3.24), we get∫ y(ξ)

−∞
(u2 + u2

x) dx + y(ξ) = ξ

for all ξ ∈ R.

At the very beginning, H(t, ξ) was introduced as the energy contained in a strip between −∞
and y(t, ξ), see (2.4). This interpretation still holds. We obtain µ, the energy density in Eulerian
coordinates, by pushing forward by y the energy density in Lagrangian coordinates, Hξ dξ. We



20 HOLDEN AND RAYNAUD

recall that the push-forward of a measure ν by a measurable function f is the measure f#ν defined
as

f#ν(B) = ν(f−1(B))
for all Borel set B. We are led to the mapping M which transforms Lagrangian coordinates into
Eulerian coordinates and whose definition is contained in the following theorem.

Theorem 3.11. Given any element [X] in F/G. Then, (u, µ) defined as follows

u(x) = U(ξ) for any ξ such that x = y(ξ), (3.32a)

µ = y#(Hξ dξ) (3.32b)

belongs to D and is independent of the representative X = (y, U, H) ∈ F we choose for [X]. We
denote by M : F/G → D the mapping which to any [X] in F/G associates (u, µ) as given by
(3.32).

Proof. First we have to prove that the definition of u makes sense. Since y is surjective, there
exists ξ, which may not be unique, such that x = y(ξ). It remains to prove that, given ξ1 and ξ2

such that x = y(ξ1) = y(ξ2), we have

U(ξ1) = U(ξ2). (3.33)

Since y(ξ) is an increasing function in ξ, we must have y(ξ) = x for all ξ ∈ [ξ1, ξ2] and therefore
yξ(ξ) = 0 in [ξ1, ξ2]. From (2.23c), we get that Uξ(ξ) = 0 for all ξ ∈ [ξ1, ξ2] and (3.33) follows.

Since y is proper and Hξ dξ is a Radon measure, we have, see [1, Remark 1.71], that µ is also
a Radon measure. For any X̄ = (ȳ, Ū , H̄) ∈ F which is equivalent to X, we denote (ū, µ̄) the pair
given by (3.32) when we replace X by X̄. There exists f ∈ G such that X = X̄ ◦ f . For any
x, there exists ξ′ such that x = ȳ(ξ′) and ū(x) = Ū(ξ′). Let ξ = f−1(ξ′). As x = ȳ(ξ′) = y(ξ),
by (3.32a), we get u(x) = U(ξ) and, since U(ξ) = Ū(ξ′), we finally obtain ū(x) = u(x). For any
function φ ∈ Cb(R), we have ∫

R
φ dµ̄ =

∫
R

φ ◦ ȳ(ξ′)H̄ξ(ξ′) dξ′,

see [1]. Hence, after making the change of variables ξ′ = f(ξ), we obtain∫
R

φdµ̄ =
∫

R
φ ◦ ȳ ◦ f(ξ) H̄ξ ◦ f(ξ) fξ(ξ) dξ

and, since Hξ = H̄ξ ◦ ffξ almost everywhere,∫
R

φdµ̄ =
∫

R
φ ◦ y(ξ)Hξ(ξ) dξ =

∫
R

φdµ.

Since φ was arbitrary in Cb(R), we get µ̄ = µ. This proves that X and X̄ give raise to the same
pair (u, µ), which therefore does not depend on the representative of [X] we choose.

Let us prove that u ∈ H1(R). We start by proving that ux ∈ L2(R). For any smooth function
φ, we have, using the change of variable x = y(ξ),∫

R
u(x)φx(x) dx =

∫
R

U(ξ)φx(y(ξ))yξ(ξ) dξ = −
∫

R
Uξ(ξ)(φ ◦ y)(ξ) dξ, (3.34)

after integrating by parts. Let B1 = {ξ ∈ R | yξ(ξ) > 0}. Because of (2.23c), and since yξ ≥
0 almost everywhere, we have Uξ = 0 almost everywhere on Bc

1. Hence, we can restrict the
integration domain in (3.34) to B1. We divide and multiply by √yξ the integrand in (3.34) and
obtain, after using the Cauchy–Schwarz inequality,∣∣∣∣∫

R
uφx dx

∣∣∣∣ = ∣∣∣∣∫
B1

Uξ√
yξ

(φ ◦ y)
√

yξ dξ

∣∣∣∣ ≤
√∫

B1

U2
ξ

yξ
dξ

√∫
B1

(φ ◦ y)2yξ dξ.

By (2.23c), we have U2
ξ

yξ
≤ Hξ. Hence, after another change of variables, we get∣∣∣∣∫

R
uφx dx

∣∣∣∣ ≤√H(∞) ‖φ‖L2(R) ,
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which implies that ux ∈ L2(R). Similarly, taking again a smooth function φ, we have∣∣∣∣∫
R

uφ dx

∣∣∣∣ = ∣∣∣∣∫
R

U(φ ◦ y)yξ dξ

∣∣∣∣ ≤ ‖φ‖L2(R)

√∫
R

U2yξ dξ ≤
√

H(∞) ‖φ‖L2(R)

because U2yξ ≤ Hξ from (2.23c). Hence, u ∈ L2(R).
Let us prove that the absolute continuous part of µ is equal to (u2 + u2

x) dx. We introduce the
sets Z and B defined as follows

Z =
{

ξ ∈ R | y is differentiable at ξ and yξ(ξ) = 0

or y or U are not differentiable at ξ
}

and
B = {x ∈ y(Z)c | u is differentiable at x} .

Since u belongs to H1(R), it is differentiable almost everywhere. We have, since y is Lipschitz
and by the definition of Z, that meas(y(Z)) =

∫
Z

yξ(ξ) dξ = 0. Hence, meas(Bc) = 0. For any
ξ ∈ y−1(B), we denote x = y(ξ). By necessity, we have ξ ∈ Zc. Let ξi be a sequence converging
to ξ such that ξi 6= ξ for all i. We write xi = y(ξi). Since yξ(ξ) > 0, for i large enough, xi 6= x.
The following quantity is well-defined

U(ξi)− U(ξ)
ξi − ξ

=
u(xi)− u(x)

xi − x

xi − x

ξi − ξ
.

Since u is differentiable at x and ξ belongs to Zc, we obtain, after letting i tend to infinity, that

Uξ(ξ) = ux(y(ξ))yξ(ξ). (3.35)

For all subsets B′ of B, we have

µ(B′) =
∫

y−1(B′)

Hξ dξ =
∫

y−1(B′)

(
U2 +

U2
ξ

y2
ξ

)
yξ dξ.

We can divide by yξ in the integrand above because yξ does not vanish on y−1(B). After a change
of variables and using (3.35), we obtain

µ(B′) =
∫

B′
(u2 + u2

x) dx. (3.36)

Since (3.36) holds for any set B′ ⊂ B and meas(Bc) = 0, we have µac = (u2 + u2
x) dx. �

The next theorem shows that the transformation from Eulerian to Lagrangian coordinates is a
bijection.

Theorem 3.12. The mapping M and L are invertible. We have

L ◦M = IdF/G and M ◦ L = IdD .

Proof. Given [X] in F/G, we choose X = (y, U, H) = Γ̃([X]) as a representative of [X] and
consider (u, µ) given by (3.32) for this particular X. Note that, from the definition of Γ̃, we have
X ∈ F0. Let X̄ = (ȳ, Ū , H̄) be the representative of L(u, µ) in F0 given by the formulas (3.21).
We claim that (ȳ, Ū , H̄) = (y, U, H) and therefore L ◦M = IdF/G. Let

g(x) = sup{ξ ∈ R | y(ξ) < x}. (3.37)

It is not hard to prove, using the fact that y is increasing and continuous, that

y(g(x)) = x (3.38)

and y−1((−∞, x)) = (−∞, g(x)). For any x ∈ R, we have, by (3.32b), that

µ((−∞, x)) =
∫

y−1((−∞,x))

Hξ dξ =
∫ g(x)

−∞
Hξ dξ = H(g(x))
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because H(−∞) = 0. Since X ∈ F0, y + H = Id and we get

µ((−∞, x)) + x = g(x). (3.39)

From the definition of ȳ, we then obtain that

ȳ(ξ) = sup{x ∈ R | g(x) < ξ}. (3.40)

For any given ξ ∈ R, let us consider an increasing sequence xi tending to ȳ(ξ) such that g(xi) < ξ;
such sequence exists by (3.40). Since y is increasing and using (3.38), it follows that xi ≤ y(ξ).
Letting i tend to ∞, we obtain ȳ(ξ) ≤ y(ξ). Assume that ȳ(ξ) < y(ξ). Then, there exists x
such that ȳ(ξ) < x < y(ξ) and equation (3.40) then implies that g(x) ≥ ξ. On the other hand,
x = y(g(x)) < y(ξ) implies g(x) < ξ because y is increasing, which gives us a contradiction. Hence,
we have ȳ = y. It follows directly from the definitions, since y + H = Id, that H̄ = H and Ū = U
and we have proved that L ◦M = IdF/G.

Given (u, µ) in D, we denote by (y, U, H) the representative of L(u, µ) in F0 given by (3.21).
Then, let (ū, µ̄) = M ◦ L(u, µ). We claim that (ū, µ̄) = (u, µ). Let g be the function defined as
before by (3.37). The same computation that leads to (3.39) now gives

µ̄((−∞, x)) + x = g(x). (3.41)

Given ξ ∈ R, we consider an increasing sequence xi which converges to y(ξ) and such that
µ((−∞, xi)) + xi < ξ. The existence of such sequence is guaranteed by (3.21a). Passing to the
limit and since F (x) = µ((−∞, x)) is lower semi-continuous, we obtain µ((−∞, y(ξ))) + y(ξ) ≤ ξ.
We take ξ = g(x) and get

µ((−∞, x)) + x ≤ g(x). (3.42)

From the definition of g, there exists an increasing sequence ξi which converges to g(x) such that
y(ξi) < x. The definition (3.21a) of y tells us that µ((−∞, x)) + x ≥ ξi. Letting i tend to infinity,
we obtain µ((−∞, x)) + x ≥ g(x) which, together with (3.42), yields

µ((−∞, x)) + x = g(x). (3.43)

Comparing (3.43) and (3.41) we get that µ = µ̄. It is clear from the definitions that ū = u. Hence,
(ū, µ̄) = (u, µ) and M ◦ L = IdD. �

4. Continuous semigroup of solutions on D

Now comes the justification of all the analysis done in the previous section. The fact that we
have been able to establish a bijection between the two coordinate systems, F/G and D, enables
us now to transport the topology defined in F/G into D. On D we define the distance dD which
makes the bijection L between D and F/G into an isometry:

dD((u, µ), (ū, µ̄)) = dF/G(L(u, µ), L(ū, µ̄)).

Since F/G equipped with dF/G is a complete metric space, we have the following theorem.

Theorem 4.1. D equipped with the metric dD is a complete metric space.

For each t ∈ R, we define the mapping Tt from D to D as

Tt = MS̃tL.

We have the following commutative diagram:

D F/G
Moo

D

Tt

OO

L // F/G

S̃t

OO
(4.1)

Our main theorem reads as follows.
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Theorem 4.2. T : D × R+ → D (where D is defined by Definition 3.1) defines a continuous
semigroup of solutions of the Camassa–Holm equation, that is, given (ū, µ̄) ∈ D, if we denote
t 7→ (u(t), µ(t)) = Tt(ū, µ̄) the corresponding trajectory, then u is a weak solution of the Camassa–
Holm equation (1.4a). Moreover µ is a weak solution of the following transport equation for the
energy density

µt + (uµ)x = (u3 − 2Pu)x. (4.2)
Furthermore, we have that

µ(t)(R) = µ(0)(R) for all t (4.3)
and

µ(t)(R) = µac(t)(R) = ‖u(t)‖2H1 = µ(0)(R) for almost all t. (4.4)

Remark 4.3. We denote the unique solution described in the theorem as a conservative weak
solution of the Camassa–Holm equation.

Proof. We want to prove that, for all φ ∈ C∞(R+ × R) with compact support,∫
R+×R

[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt =
∫

R+×R
−Px(t, x)φ(t, x) dxdt (4.5)

where P is given by (1.4b) or equivalently (2.6). Let (y(t), U(t),H(t)) be a representative of
L(u(t), µ(t)) which is solution of (2.10). Since y is Lipschitz in ξ and invertible for t ∈ Kc (see
(2.30) for the definition of K, in particular, we have meas(K) = 0), we can use the change of
variables x = y(t, ξ) and, using (3.30), we get∫

R+×R
[−u(t, x)φt(t, x) + u(t, x)ux(t, x)φ(t, x)] dxdt

=
∫

R+×R
[−U(t, ξ)yξ(t, ξ)φt(t, y(t, ξ)) + U(t, ξ)Uξ(t, ξ)φ(t, y(t, ξ))] dξdt. (4.6)

Using the fact that yt = U and yξt = Uξ, one easily check that

(Uyξφ ◦ y)t − (U2φ)ξ = Uyξφt ◦ y − UUξφ ◦ y + Utyξφ ◦ y. (4.7)

After integrating (4.7) over R+ × R, the left-hand side of (4.7) vanishes and we obtain∫
R+×R

[−Uyξ φt◦y + UUξ φ◦y ] dξdt

=
1
4

∫
R+×R2

[
sgn(ξ − η)e−{sgn(ξ−η)(y(ξ)−y(η)} ×

(
U2yξ + Hξ

)
(η)yξ(ξ)φ◦y(ξ)

]
dηdξdt (4.8)

by (2.10). Again, to simplify the notation, we deliberately omitted the t variable. On the other
hand, by using the change of variables x = y(t, ξ) and z = y(t, η) when t ∈ Kc, we have

−
∫

R+×R
Px(t, x)φ(t, x) dxdt =

1
2

∫
R+×R2

[
sgn(y(ξ)− y(η))e−|y(ξ)−y(η)|

×
(
u2(t, y(η)) +

1
2
u2

x(t, y(η))
)
φ(t, y(ξ))yξ(η)yξ(ξ)

]
dηdξdt.

Since, from Lemma 2.7, yξ is strictly positive for t ∈ Kc and almost every ξ, we can replace
ux(t, y(t, η)) by Uξ(t, η)/yξ(t, η), see (3.30), in the equation above and, using the fact that y is an
increasing function and the identity (2.23c), we obtain

−
∫

R+×R
Px(t, x)φ(t, x) dxdt =

1
4

∫
R+×R2

[
sgn(ξ − η) exp

(
− sgn(ξ − η)(y(ξ)− y(η)

)
×
(
U2yξ + Hξ

)
(η)yξ(ξ)φ(t, y(ξ))

]
dηdξdt. (4.9)

Thus, comparing (4.8) and (4.9), we get∫
R+×R

[−Uyξ φt(t, y) + UUξ φ] dξdt = −
∫

R+×R
Px(t, x)φ(t, x) dxdt
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and (4.5) follows from (4.6). Similarly, one proves that µ(t) is solution of (4.2). From (3.32a), we
obtain

µ(t)(R) =
∫

R
Hξ dξ = H(t,∞)

which is constant in time, see Lemma 2.7 (iii). Hence, (4.3) is proved. We know from Lemma
2.7 (ii) that, for t ∈ Kc, yξ(t, ξ) > 0 for almost every ξ ∈ R. Given t ∈ Kc (the time variable is
suppressed in the notation when there is no ambiguity), we have, for any Borel set B,

µ(t)(B) =
∫

y−1(B)

Hξ dξ =
∫

y−1(B)

(
U2 +

U2
ξ

y2
ξ

)
yξ dξ (4.10)

from (2.23c) and because yξ(t, ξ) > 0 almost everywhere for t ∈ Kc. Since y is one-to-one when
t ∈ Kc and ux ◦ yyξ = Uξ almost everywhere, we obtain from (4.10) that

µ(t)(B) =
∫

B

(u2 + u2
x)(t, x) dx.

Hence, as meas(K) = 0, (4.4) is proved. �

5. The topology on D

The metric dD gives to D the structure of a complete metric space while it makes continuous
the semigroup Tt of conservative solutions for the Camassa–Holm equation as defined in Theorem
4.2. In that respect, it is a suitable metric for the Camassa–Holm equation. However, as the
definition of dD is not straightforward, this metric is not so easy to manipulate and in this section
we compare it with more standard topologies. More precisely, we establish that convergence in
H1(R) implies convergence in (D, dD), which itself implies convergence in L∞(R).

Proposition 5.1. The mapping
u 7→ (u, (u2 + u2

x)dx)
is continuous from H1(R) into D. In other words, given a sequence un ∈ H1(R) converging to u
in H1(R), then (un, (u2

n + u2
nx)dx) converges to (u, (u2 + u2

x)dx) in D.

Proof. We write gn = u2
n +u2

n,x and g = u2 +u2
x. Let Xn = (yn, Un,Hn) and X = (y, U, H) be the

representatives in F0 given by (3.21) of L(un, (u2
n + u2

nx)dx) and L(u, (u2 + u2
x)dx), respectively.

Following Remark 3.10, we have∫ y(ξ)

−∞
g(x) dx + y(ξ) = ξ ,

∫ yn(ξ)

−∞
gn(x) dx + yn(ξ) = ξ (5.1)

and, after taking the difference between the two equations, we obtain∫ y(ξ)

−∞
(g − gn)(x) dx +

∫ y(ξ)

yn(ξ)

gn(x) dx + y(ξ)− yn(ξ) = 0. (5.2)

Since gn is positive,
∣∣∣y − yn +

∫ y

yn
gn(x) dξ)

∣∣∣ = |y − yn|+
∣∣∣∫ y

yn
gn(x) dξ)

∣∣∣ and (5.2) implies

|y(ξ)− yn(ξ)| ≤
∫ y(ξ)

−∞
|g − gn| dx ≤ ‖g − gn‖L1(R) .

Since un → u in H1(R), gn → g in L1(R) and it follows that ζn → ζ and Hn → H in L∞(R).
We recall that ζ(ξ) = y(ξ) − ξ and H = −ζ (as X, Xn ∈ F0). The measures (u2 + u2

x)dx and
(u2

n+u2
n,x)dx have, by definition, no singular part and in that case (3.27) holds almost everywhere,

that is,

yξ =
1

g ◦ y + 1
and yn,ξ =

1
gn ◦ y + 1

(5.3)

almost everywhere. Hence,

ζn,ξ − ζξ = (g ◦ y − gn ◦ yn)yn,ξyξ

= (g ◦ y − g ◦ yn)yn,ξyξ + (g ◦ yn − gn ◦ yn)yn,ξyξ. (5.4)
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Since 0 ≤ yξ ≤ 1, we have∫
R
|g ◦ yn − gn ◦ yn| yn,ξyξ dξ ≤

∫
R
|g ◦ yn − gn ◦ yn| yn,ξ dξ = ‖g − gn‖L1(R) . (5.5)

For any ε > 0, there exists a continuous function h with compact support such that ‖g − h‖L1(R) ≤
ε/3. We can decompose the first term in the right-hand side of (5.4) into

(g ◦ y − g ◦ yn)yn,ξyξ = (g ◦ y − h ◦ y)yn,ξyξ

+ (h ◦ y − h ◦ yn)yn,ξyξ + (h ◦ yn − g ◦ yn)yn,ξyξ. (5.6)

Then, we have∫
R
|g ◦ y − h ◦ y| yn,ξyξ dξ ≤

∫
|g ◦ y − h ◦ y| yξ dξ = ‖g − h‖L1(R) ≤ ε/3

and, similarly, we obtain
∫

R |g ◦ yn − h ◦ yn| yn,ξyξ dξ ≤ ε/3. Since yn → y in L∞(R) and h
is continuous with compact support, by applying Lebesgue dominated convergence theorem, we
obtain h ◦ yn → h ◦ y in L1(R) and we can choose n big enough so that∫

R
|h ◦ y − h ◦ yn| yn,ξyξ dξ ≤ ‖h ◦ y − h ◦ yn‖L1(R) ≤ ε/3.

Hence, from (5.6), we get that
∫

R |g ◦ y − g ◦ yn| yn,ξyξ dξ ≤ ε so that

lim
n→∞

∫
R
|g ◦ y − g ◦ yn| yn,ξyξ dξ = 0,

and, from (5.4) and (5.5), it follows that ζn,ξ → ζξ in L1(R). Since Xn ∈ F0, ζn,ξ is bounded
in L∞(R) and we finally get that ζn,ξ → ζξ in L2(R) and, by (3.21b), Hn,ξ → Hξ in L2(R). It
remains to prove that Un → U in H1(R). Let Cn = {x ∈ R | gn(x) > 1}. Chebychev’s inequality
yields meas(Cn) ≤ ‖gn‖L1(R). Let Bn = {ξ ∈ R | yn,ξ(ξ) < 1

2}. Since yn,ξ(gn ◦ yn + 1) = 1 almost
everywhere, gn ◦ yn > 1 on Bn and therefore yn(Bn) ⊂ Cn. From (5.1), we get that

meas(yn(B)) +
∫

yn(B)

gn(ξ) dξ = meas(B) (5.7)

for any set B equal to a countable union of disjoint open intervals. Any Borel set B can be
“approximated” by such countable union of disjoint open intervals and therefore, using the fact
that yn is Lipschitz and one-to-one, we infer that (5.7) holds for any Borel set B. After taking
B = Bn, (5.7) yields

meas(Bn) ≤ meas(yn(Bn)) + ‖gn‖L1(R)

≤ meas(Cn) + ‖gn‖L1(R)

and therefore meas(Bn) ≤ 2 ‖gn‖L1(R). For any function f1, f2 ∈ H1(R), we have

‖f1 ◦ yn − f2 ◦ yn‖2L2(R) =
∫

Bn

(f1 ◦ yn − f2 ◦ yn)2 dξ +
∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2 dξ (5.8)

and, as yn,ξ ≥ 0 on Bc
n,∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2 dξ ≤ 2
∫

Bc
n

(f1 ◦ yn − f2 ◦ yn)2yn,ξ dξ ≤ 2 ‖f1 − f2‖2L2(R) .

Hence,
‖f1 ◦ yn − f2 ◦ yn‖2L2(R) ≤ meas(Bn) ‖f1 − f2‖2L∞(R) + 2 ‖f1 − f2‖2L2(R)

and, since meas(Bn) ≤ 2 ‖gn‖L1(R),

‖f1 ◦ yn − f2 ◦ yn‖2L2(R) ≤ 2 ‖gn‖ ‖f1 − f2‖2L∞(R) + 2 ‖f1 − f2‖2L2(R)

≤ C ‖f1 − f2‖2H1(R) (5.9)

for some constant C which is independent of n. We have

‖Un − U‖L2(R) ≤ ‖un ◦ yn − u ◦ yn‖L2(R) + ‖u ◦ yn − u ◦ y‖L2(R) . (5.10)
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After using (5.9) for f1 = un and f2 = u and since, by assumption, un → u in H1(R), we obtain
that limn→∞ ‖un ◦ yn − u ◦ yn‖L2(R) = 0. We can find continuous functions with compact support
h which are arbitrarily close to u in H1(R). Then, from (5.9), h◦yn and h◦y are arbitrarily closed
in L2(R) to u ◦ yn and u ◦ y, respectively, and independently of n. By the Lebesgue dominated
convergence theorem, as yn → y in L∞(R), we get that h ◦ yn → h ◦ y in L2(R). Hence,

‖u ◦ yn − u ◦ y‖L2(R) ≤ ‖u ◦ yn − h ◦ yn‖L2(R)

+ ‖h ◦ yn − h ◦ y‖L2(R) + ‖h ◦ y − u ◦ y‖L2(R)

implies that limn→∞ ‖u ◦ yn − u ◦ y‖L2(R) = 0 and, finally, from (5.10), we conclude that Un → U

in L2(R). It remains to prove that Un,ξ → Uξ in L2(R). Since Hn,ξ = 1 − yn,ξ, (2.23c) can be
rewritten as

U2
n,ξ = Hn,ξ −H2

n,ξ − U2
n + H2

n,ξU
2
n (5.11)

and there holds the corresponding identity holds for Uξ. We have ‖Un‖L∞(R) = ‖un‖L∞(R) and
therefore ‖Un‖L∞(R) is uniformly bounded in n. Hence, since Un → U in L2(R), Hn → H in V

and ‖Un‖L∞(R), ‖Hn,ξ‖L∞(R) are uniformly bounded in n, we get from (5.11) that

lim
n→∞

‖Un,ξ‖L2(R) = ‖Uξ‖L2(R) , (5.12)

Once we have proved that Un,ξ converges weakly to Uξ, then (5.11) will imply that Un,ξ → Uξ

strongly in L2(R), see, for example, [27, section V.1]. For any continuous function φ with compact
support, we have

∫
R

Un,ξφdξ =
∫

R
un,x ◦ ynyn,ξφ dξ =

∫
R

un,x φ ◦ yn
−1 dξ. (5.13)

By assumption, we have un,x → ux in L2(R). Since yn → y in L∞(R), the support of φ ◦ yn
−1

is contained in some compact that can be chosen to be independent of n. Thus, after using
Lebesgue’s dominated convergence theorem, we obtain that φ ◦ yn

−1 → φ ◦ y−1 in L2(R) and
therefore

lim
n→∞

∫
R

Un,ξφdξ =
∫

R
ux φ ◦ y−1 dξ =

∫
R

Uξφdξ. (5.14)

From (5.12), we have that Un,ξ is bounded and therefore, by a density argument, (5.14) holds for
any function φ in L2(R) and Un,ξ ⇀ Uξ weakly in L2(R). �

Proposition 5.2. Let (un, µn) be a sequence in D that converges to (u, µ) in D. Then

un → u in L∞(R) and µn
∗
⇀ µ.

Proof. We denote by Xn = (yn, Un,Hn) and X = (y, U, H) the representative of L(un, µn) and
L(u, µ) given by (3.21). For any x ∈ R, there exists ξn and ξ, which may not be unique, such that
x = yn(ξn) and x = y(ξ). We set xn = yn(ξ). We have

un(x)− u(x) = un(x)− un(xn) + Un(ξ)− U(ξ) (5.15)
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and

|un(x)− un(xn)| =

∣∣∣∣∣
∫ ξn

ξ

Un,ξ(η) dη

∣∣∣∣∣
≤
√

ξn − ξ

(∫ ξn

ξ

U2
n,ξ dη

)1/2

(Cauchy–Schwarz)

≤
√

ξn − ξ

(∫ ξn

ξ

yn,ξHn,ξ dη

)1/2

(from (2.23c))

≤
√

ξn − ξ
√
|yn(ξn)− yn(ξ)| (since Hn,ξ ≤ 1)

=
√

ξn − ξ
√

y(ξ)− yn(ξ)

≤
√

ξn − ξ ‖y − yn‖1/2
L∞(R) . (5.16)

From (3.22), we get

|ξn − ξ| ≤ 2µn(R) + |yn(ξn)− yn(ξ)| = 2 lim
ξ→∞

Hn(ξ) + |y(ξ)− yn(ξ)|

and, therefore, since Hn → H and yn → y in L∞(R), |ξn − ξ| is bounded by a constant C
independent of n. Then, (5.16) implies

|un(x)− un(xn)| ≤ C ‖y − yn‖1/2
L∞(R) . (5.17)

Since yn → y and Un → U in L∞(R), it follows from (5.15) and (5.17) that un → u in L∞(R).
By weak-star convergence, we mean that

lim
n→∞

∫
R

φdµn =
∫

R
φ dµ (5.18)

for all continuous functions with compact support. It follows from (3.32b) that∫
R

φ dµn =
∫

R
φ ◦ ynHn,ξ dξ and

∫
R

φdµ =
∫

R
φ ◦ yHξ dξ (5.19)

see [1, definition 1.70]. Since yn → y in L∞(R), the support of φ◦yn is contained in some compact
which can be chosen independently of n and, from Lebesgue’s dominated convergence theorem,
we have that φ ◦ yn → φ ◦ y in L2(R). Hence, since Hn,ξ → Hξ in L2(R),

lim
n→∞

∫
R

φ ◦ ynHn,ξ dξ =
∫

R
φ ◦ yHξ dξ,

and (5.18) follows from (5.19).
�

Acknowledgments. The authors gratefully acknowledge the hospitality of the Mittag-Leffler
Institute, Sweden, creating a great working environment for research, during the Fall of 2005.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems.
The Clarendon Press, Oxford University Press, New York, 2000.

[2] V. I. Arnold and B. A. Khesin. Topological Methods in Hydrodynamics. Springer-Verlag, New York, 1998.
[3] R. Beals, D. Sattinger, and J. Szmigielski. Peakon-antipeakon interaction. J. Nonlinear Math. Phys. 8:23–27,

2001.
[4] A. Bressan and A. Constantin. Global conservative solutions of the Camassa–Holm equation. Preprint. Sub-

mitted, 2005.
[5] A. Bressan and M. Fonte. An optimal transportation metric for solutions of the Camassa–Holm equation.

Methods Appl. Anal., to appear.
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