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Abstract. The aim of this paper is to analyze contractivity prop-
erties of Wasserstein-type metrics for one-dimensional scalar con-
servation laws with nonnegative, L∞ and compactly supported ini-
tial data and its implications on the long time asymptotics. The
flux is assumed to be convex and without any growth condition
at the zero state. We propose a time–parameterized family of
functions as intermediate asymptotics and prove the solutions, af-
ter a time–depending scaling, converge toward this family in the
d∞–Wasserstein metric. This asymptotic behavior relies on the
aforementioned contraction property for conservation laws in the
space of probability densities metrized with the d∞–Wasserstein
distance. Finally, we also give asymptotic profiles for initial data
whose distributional derivative is a probability measure.

1. Introduction

In this paper we show a contractivity of the flow of one–dimensional
scalar conservation laws with respect to a distance related to optimal
transportation theory and as a byproduct, we obtain new results con-
cerning the asymptotic behavior of their solutions. Given

ut + f(u)x = 0, (1.1)

with initial condition u(x, 0) = ū(x), we assume the flux function f(u)
to be convex and ū ∈ L∞(R), supp(ū) compact, ū ≥ 0 and, without
loss of generality,

∫
R ū(x)dx = 1. We restrict ourselves to nonnega-

tive initial data mainly because our aim is to treat the solutions of
(1.1) as curves in the space of probability densities metrized with the
Wasserstein distance.

Our investigations are inspired by the arguments performed in [2],
where the asymptotic behavior of the general nonlinear diffusion equa-
tion ut = 4φ(u) is studied. In particular, as a starting point, we shall
prove a contraction in a Wasserstein distance. For scalar conservation
laws, we prove such property for the d∞–Wasserstein metric in The-
orem 2.5. The proof relies on the explicit Lax-Hopf formula for the
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Hamilton–Jacobi equation

vt + f(vx) = 0

satisfied by the primitive v(x, t) of our solution of (1.1) and on standard
approximation procedures.

Next, the asymptotic behavior of the Cauchy problem for (1.1) is
studied. At it is well known, the asymptotic structure of a scalar
conservation law, with flux f satisfying f ′′(u) ≥ 0, f ′′(u) > 0 for u > 0,
is given by the so-called N–wave, that is

NP,Q(x, t) =

{
g(x/t), −aP (t) < x < bQ(t),

0, otherwise.
(1.2)

In (1.2), g(x) is the inverse of f ′(x) with g(0) = 0, P and Q stand for
the invariants of the Cauchy problem for (1.1), namely

P = − inf
x∈R

∫ x

−∞
ū(y)dy, Q = sup

x∈R

∫ +∞

x

ū(y)dy, Q− P =

∫
R

ū(y)dy,

and aP (t), bQ(t) ≥ 0 verify

P = −
∫ 0

−aP (t)

g(y/t)dy, Q =

∫ bQ(t)

0

g(y/t)dy.

The asymptotic convergence of solutions of (1.1) toward (1.2) has
been proved in various cases, all of them requiring a control of the
growth of the flux function f(u) near the zero state u = 0. The first
result in this direction is contained in [10], where the author proved the
asymptotic structure of a uniformly convex conservation law is given
by the N–wave of the Burgers’ equation

ut +
1

2
(u2)x = 0.

The same kind of techniques are employed in [7] to prove optimal rate
of convergence toward the N–wave, again in the uniform convex case.
The case of the power law

f(u) =
1

γ
|u|γ, γ > 1,

is investigated in [11]. In that paper, the authors proved the conver-
gence in Lp (with also an algebraic rate for p > 1) for solutions with
arbitrary L1 initial data toward the corresponding N–wave. Finally,
the most recent results are contained in [8, 9]. In [9] an optimal rate of
convergence toward the N–wave is established for solutions of (1.1) with
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L1, compactly supported initial data without sign restrictions and for
convex fluxes satisfying the following generalization of the power law

lim
u→0

uf ′(u)

f(u)
= γ, γ > 1.

The work [8] is devoted to obtain decay rates in L1, L∞ and some
weighted norms in the particular case of power laws f(u) = 1

γ
|u|γ,

γ > 1, by scaling and entropy dissipation like methods.
In the present paper we propose an intermediate asymptotics for

nonnegative, L∞ and compactly supported solutions of (1.1), without
imposing any growth condition to the convex flux f(u). More precisely
(see Theorem 3.5) we prove the solution, after a time–scaling, asymp-
totically converges in d∞ toward a uniquely fixed family of functions,
the asymptotic profile, parameterized by the time variable t. We re-
mark that such a one parameter family of functions reduces to the usual
(properly rescaled) N–wave in the power law case, namely whenever the
conservation law meets properties of self–similar invariance. Moreover,
for fluxes of the form f(u) = 1

γ
uγ + h(u), γ > 1, with h(u)u−γ → 0 as

u → 0, we show that the asymptotic profile tends as t → +∞ to the
N–wave corresponding to leading term 1

γ
uγ of the flux f . The existence

of this asymptotic profile is based on strict contractivity properties for
suitable scaled solutions of the scalar conservation law with respect to
the d∞.

In this context, let us mention that contractivity properties in Wasser-
stein distances for the derivatives of the solutions to (1.1) were obtained
in [1] for non–decreasing initial data whose distributional derivative is a
probability measure. We will also make use of these results for obtain-
ing asymptotic properties of scaled solutions. In fact, we will show that
the simplest rarefaction and shock waves give the asymptotic profiles
for convex and concave fluxes, respectively, for these initial data.

The rest of this paper is organized as follows. In Section 2 we prove
the basic contraction property in the d∞–Wasserstein metric for (1.1),
while Section 3 is devoted to the proof of the asymptotic behavior
of its solutions. We devote Section 4 to the asymptotic behavior of
initial data whose distributional derivatives are probability measures.
Finally, Section 5 is devoted to the proof of several approximation
results involving the Wasserstein metric d∞, needed to perform the
proof of the main results of this paper.
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2. Contraction in the d∞–Wasserstein metric

In this section we shall obtain some contraction properties for weak,
entropy solutions of (1.1), with respect to the d∞–Wasserstein metric.
We shall work within the set of initial data

B =

{
u ∈ L∞(R), u ≥ 0, supp(u) compact,

∫
R

u(x)dx = 1

}
. (2.1)

We remark here that the assumption of unit mass does not affect the
generality of the problem, due to the conservation of the total mass∫

R
u(x, t)dx =

∫
R

u(x, 0)dx. (2.2)

Relation (2.2) enables us to interpret the solutions to (1.1) as curves in
the space of probability densities B metrized by the Wasserstein metric
d∞ defined as the following limit

d∞(u1, u2) = lim
p→+∞

dp(u1, u2).

The Wasserstein (or Monge–Kantorovich) distance of order p [12] is
defined by

dp(u1, u2)
p = inf

T :u2=T]u1

∫ +∞

−∞
|x− T (x)|pu1(x)dx,

where the constraint u2 = T]u1 (which is usually referred to as the
density u2 being the push forward by T of the density u1) is expressed
by the condition∫

R
ϕ(x)u2(x)dx =

∫
R

ϕ(T (x))u1(x)dx,

for any ϕ ∈ C0
0(R). We recall here that such a distance is well-defined

in our framework when the initial data belong to B. Indeed, the com-
parison principle guarantees the solutions remain bounded in L∞ and
nonnegative for any t > 0 and their supports remain bounded (but
growing in time), due to finite speed of propagation.

Remark 2.1. In one space dimension, the Wasserstein metrics dp, p ∈
[1, +∞], have a simple interpretation in terms of the pseudo-inverses
of the primitive of the involved densities [4, 12]. Let us denote

vi(x) =

∫ x

−∞
ui(y)dy, i = 1, 2

and define their pseudo–inverses v−1
i : [0, 1] → R as follows

v−1
i (ξ) = inf{x : vi(x) > ξ}.
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Then, for any p ∈ [1, +∞],

dp(u1, u2) = ‖v−1
1 − v−1

2 ‖Lp([0,1]).

We start by proving the desired result in the case of an uniformly
convex flux f , and when the initial data belongs to the subset of B

Bc = {u ∈ B, supp(u) connected}

by using the characterization given in Remark 2.1. The general result
will be obtained via approximation procedure. Moreover, we assume,
without loss of generality, f(0) = f ′(0) = 0.

Remark 2.2. For further use, we remark that Bc is dense in B with re-
spect to the dp only if p is finite. Indeed, a probability density u having
a support with two connected components cannot be approximated in
d∞ by a sequence in Bc, because this would imply uniform convergence
of the corresponding (continuous) pseudo–inverses to a discontinuous
function. Therefore, (Bc, d∞) is not dense in (B, d∞).

As it is well known, given a solution u to (1.1) with initial datum
ū ∈ B, the primitive

v(x, t) =

∫ x

−∞
u(y)dy

solves the Cauchy problem for the Hamilton–Jacobi equationvt + f(vx) = 0

v(x, 0) = v̄(x) =

∫ x

−∞
ū(y)dy.

(2.3)

Since the total mass of u(t) is finite, we have v(t) ∈ L∞ at any t > 0.
Moreover, since u stays bounded in L∞ for any t > 0, the function v(t)
is Lipschitz continuous at any t > 0. Therefore, the Lax–Hopf formula
gives the following explicit expression for the function v

v(x, t) = min
y∈R

{
tf∗
(

x− y

t

)
+ v̄(y)

}
, (2.4)

where f ∗ stands for the Legendre transform of the flux f . We remark
that f ∗ is also uniformly convex and satisfies f ∗(0) = (f ∗)′(0) = 0.
In the next lemma, we shall state an explicit formula for the pseudo–
inverse v−1 under the assumption ū ∈ Bc.

Lemma 2.3. Let f be a uniformly convex function and let ū ∈ Bc. Let
v̄ the primitive of ū defined in (2.3). Then, the function v(t) defined



6 J. A. CARRILLO, M. DI FRANCESCO, AND C. LATTANZIO

in (2.4) is strictly increasing from 0 to 1 on a connected interval of R.
Moreover, for any ξ ∈ (0, 1), v−1(ξ, t) verifies

v−1(ξ, t) = max
0≤w≤ξ

{
tF

(
ξ − w

t

)
+ v̄−1(w)

}
, (2.5)

where F is the inverse of f ∗ restricted to [0, +∞).

Proof. As a straightforward consequence of generalized characteristic
method [6], we can assert that the support of u(t) remains connected
for any t > 0, and this implies that v(t) is a strictly increasing function
from 0 to 1 on an (time–depending) interval. Given ξ ∈ (0, 1), the
inverse function v−1(ξ, t) is implicitly defined by the relation

ξ = min
y∈R

{
tf∗
(

v−1(ξ, t)− y

t

)
+ v̄(y)

}
.

Let us start by proving that

v−1(ξ, t)= sup
{y∈R: v̄(y)≤ξ}

{
x : tf∗

(
x− y

t

)
+ v̄(y) = ξ

}
=: x0(ξ, t). (2.6)

Indeed, let us fix (ξ, t) and assume there exists y with v̄(y) ≤ ξ such
that

v−1(ξ, t) < x,

where x is chosen such that

tf∗
(

x− y

t

)
+ v̄(y) = ξ. (2.7)

Then, we apply v(·, t) to obtain

ξ < v(x, t),

which gives a contradiction because of (2.7) and (2.4). Thus v−1(ξ, t) ≥
x0(ξ, t). Assume now that v−1(ξ, t) > x0(ξ, t). Then v−1(ξ, t) > x for
any y such that

tf∗
(

x− y

t

)
+ v̄(y) = ξ.

We apply once again the function v(·, t) to that relation to conclude

ξ > v(x, t) = min
y∈R

{
tf∗
(

x− y

t

)
+ v̄(y)

}
= ξ,

which is impossible and therefore (2.6) is proved. Now, let us denote
with x = x(y, ξ, t) the biggest value x such that

f ∗
(

x− y

t

)
=

ξ − v̄(y)

t
,
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for any fixed ξ, y, t. Due to the convexity of f ∗, such a value is given
by

x = tF

(
ξ − v̄(y)

t

)
+ y,

where F : [0, +∞) → [0, +∞) denotes the inverse of the ‘positive
branch’ of f ∗. Therefore

v−1(ξ, t) = sup
{y∈R: v̄(y)≤ξ}

{
tF

(
ξ − v̄(y)

t

)
+ y

}
= sup

0≤w≤ξ

{
tF

(
ξ − w

t

)
+ v̄−1(w)

}
, (2.8)

where the last step is justified by the strict monotonicity of v̄ on the
support of ū. Finally, since for any fixed ξ ∈ (0, 1) the function

tF

(
ξ − w

t

)
+ v̄−1(w)

is continuous with respect to w ∈ [0, ξ], then the supremum in (2.8) is
indeed a maximum and the proof is complete. �

At this point, we are ready to prove the first result of contraction in
Wasserstein metric.

Proposition 2.4. Let us assume that the flux in equation (1.1) verifies
f ′′(u) > 0 for any u. Let us consider two solutions u1 and u2 of such
equation with initial data ū1, ū2 ∈ Bc. Then, for any t > 0,

d∞(u1(t), u2(t)) ≤ d∞(ū1, ū2). (2.9)

Proof. Due to maximum principle, the solutions u1 and u2 verify

‖ui‖∞ ≤ M = max{‖ū1‖∞, ‖ū2‖∞}, i = 1, 2

and therefore f ′′(u) ≥ c(M) > 0 for any u under consideration. Hence,
denoting with vi the primitive of our solutions ui, i = 1, 2, we are in
the hypotheses of Lemma 2.3, namely

v−1
i (ξ, t) = max

0≤w≤ξ

{
tF

(
ξ − w

t

)
+ v̄−1

i (w)

}
, i = 1, 2.

Let w̄1 be the point where the maximum is attained in the formula for
v1, that is

v−1
1 (ξ, t) = tF

(
ξ − w̄1

t

)
+ v̄−1

1 (w̄1).
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Then

v−1
1 (ξ, t)−v−1

2 (ξ, t) ≤ tF

(
ξ − w̄1

t

)
+ v̄−1

1 (w̄1)− tF

(
ξ − w̄1

t

)
+ v̄−1

2 (w̄1)

= v̄−1
1 (w̄1)− v̄−1

2 (w̄1)

≤ sup
0≤w≤ξ

|v̄−1
1 (w)− v̄−1

1 (w)|.

Finally, interchanging the role of v1 and v2 we get

|v−1
1 (ξ, t)− v−1

2 (ξ, t)| ≤ sup
0≤w≤ξ

|v̄−1
1 (w̄)− v̄−1

1 (w̄)|,

which reduces to (2.9) taking the supremum over all ξ ∈ [0, 1], in view
of the considerations in Remark 2.1. �

In the main theorem of this section we shall prove relation (2.9) for
solutions to scalar conservation laws (1.1) with general (non uniformly)
convex flux. The initial data will be chosen to belong in one of the two
subsets of B

Bfc =

u ∈ L∞(R), u ≥ 0,
supp(u) compact and
with a finite number of
connected components

,

∫
R

u(x)dx = 1

 ,

BBV := B ∩BV (R).

Theorem 2.5. Let us consider solutions u and v to (1.1) with initial
data ū, v̄ belonging either in Bfc or in BBV and assume the flux f in
(1.1) is convex. Then, for any t > 0,

d∞(u(t), v(t)) ≤ d∞(ū, v̄). (2.10)

Proof. The result of this theorem is a consequence of the previous one,
via an approximation procedure. Consider sequences ūn, v̄n ∈ Bc such
that

ūn → ū in L1(R)

v̄n → v̄ in L1(R)

and such that ‖ūn‖L∞ , ‖v̄n‖L∞ ≤ M uniformly in n, with the notation
M = max{‖ū‖L∞ , ‖v̄‖L∞}. As proven in Section 5 (Theorem 5.4 and
Theorem 5.5), given δ > 0 arbitrarily small, it is always possible to
choose the sequences ūn, v̄n ∈ Bc in such a way that

d∞(ūn, v̄n) ≤ d∞(ū, v̄) + δ. (2.11)

In addition, let us consider a sequence f ε of smooth functions such
that f ε → f in the (uniform) topology of C1([−M, M ]) and such that
(f ε)′′(u) > ε for any u ∈ [−M, M ]. Note that we can choose the
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sequence f ε in such a way that (f ε(u))′ ≤ C for any u ∈ [−M, M ], C
independent on ε. Therefore the speed of propagation of

ut + f ε(u)x = 0 (2.12)

is bounded uniformly with respect to ε. Let us denote with uε
n, vε

n

respectively the solutions of (2.12) with ūn, v̄n as initial datum. Then
we can apply Proposition 2.4 and conclude

d∞(uε
n(t), vε

n(t)) ≤ d∞(ūn, v̄n), (2.13)

which together with the choice (2.11) implies

dp(u
ε
n(t), vε

n(t)) ≤ d∞(ū, v̄) + δ, (2.14)

for any p ∈ [2,∞). As it is well known (see for instance [6]), scalar
conservation laws enjoy L1 contraction property for any t > 0, which
in particular gives

‖uε
n(t)− uε(t)‖L1(R) ≤ ‖ūn − ū‖L1(R)

‖vε
n(t)− vε(t)‖L1(R) ≤ ‖v̄n − v̄‖L1(R),

where we have denoted with uε, vε the solutions of (2.12) with ū, v̄ as
initial data. Hence, for any t ≥ 0, uε

n(t) → uε(t) and vε
n(t) → vε(t), as

n → +∞, strongly in L1(R) and, passing if necessary to subsequences,
almost everywhere and bounded. Hence, since all functions involved
here have compact support uniformly in n, we can pass to the limit as
n → +∞ in the left hand side of (2.14) due to the continuity of all the
p–th moments of ūn and v̄n (see [12]) and obtain

dp(u
ε(t), vε(t)) ≤ d∞(ū, v̄) + δ, p ∈ [2,∞)

and, since the left hand side does not depend on δ, we also have

dp(u
ε(t), vε(t)) ≤ d∞(ū, v̄), p ∈ [2,∞). (2.15)

Moreover, we can use once again the contraction in L1 of (2.12) to prove
that the sequences uε(t) and vε(t) are equibounded and equicontinuous
in L1(R) and therefore we obtain, up to subsequences, the convergence,
as ε ↓ 0, uε(t) → u(t), vε(t) → v(t) strongly in L1(R) and bounded
almost everywhere. Finally, we can use the lower semi–continuity of
the dp’s with respect to L1 convergence (see [12]) in order to pass to
the limit in (2.15) as ε ↓ 0. Thus, we obtain

dp(u(t), v(t)) ≤ d∞(ū, v̄)

which implies (2.10) by taking the limit as p → +∞ in the left hand
side. �
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As it is well known [3], the estimate proved in the previous theorem
gives also a control of the speed of propagation of the supports of the
two solutions u(t) and v(t). We establish this property in the next
corollary.

Corollary 2.6. Let us consider solutions u and v to (1.1) with initial
data ū, v̄ belonging either in Bfc or in BBV and assume the flux f in
(1.1) is convex. Then

|inf [supp(u(t))]− inf [supp(v(t))]| ≤ d∞(ū, v̄),

|sup [supp(u(t))]− sup [supp(v(t))]| ≤ d∞(ū, v̄).

Remark 2.7. By refining the argument of Theorem 5.4, it is actually
possible to enlarge the class of initial data Bfc to the case of an initial
datum in B having an countably infinite number of connected com-
ponents in its support, which accumulate only in a finite number of
points.

We conclude this section with a proof of the optimality of the result
of Theorem 2.5, by testing (2.10) for two N–waves, solution of the
Burgers’ equation.

Remark 2.8. Let us consider the Burgers’ equation

ut +
1

2
(u2)x = 0 (2.16)

and its solutions N1(x, t) and N2(x, t) = N1(x− x0, t) emanating from
initial data ū1(x) and ū2(x) = ū1(x− x0) defined by

ū1(x) =

{
1 if 0 ≤ x ≤ 1

0 elsewhere,
ū2(x) =

{
1 if x0 ≤ x ≤ x0 + 1

0 elsewhere.

Then, for any t > 2 (namely, when all the interactions in the solutions
have already occurred), the solutions take the form

N1(x, t) =

{x

t
if 0 ≤ x ≤

√
2t

0 elsewhere

and

N2(x, t) =


x− x0

t
if x0 ≤ x ≤ x0 +

√
2t

0 elsewhere
.

Now, let us denote with v̄−1
1 : [0, 1] → [0, 1] and with v̄−1

2 : [0, 1] →
[x0, x0 + 1] the inverses of the primitive of the initial data ū1 and ū2.
Then, a direct calculation gives

v̄−1
1 (ξ) = ξ, v̄−1

2 (ξ) = x0 + ξ, for any ξ ∈ [0, 1].
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Therefore,
d∞(ū1, ū2) = ‖v̄−1

1 − v̄−1
2 ‖L∞([0,1]) = x0.

Moreover, denoting with V −1
1 (·, t) : [0, 1] → [0,

√
2t] and with V −1

2 (·, t) :
[0, 1] → [x0, x0 +

√
2t] the inverses of the primitive of the solutions

N1(·, t) and N2(·, t), t > 2, we have

V −1
1 (ξ, t) =

√
2ξt, V −1

2 (ξ) = x0 +
√

2ξt, for any ξ ∈ [0, 1], t > 2.

Thus,

d∞(N1(t), N2(t)) = ‖V −1
1 (t)− V −1

2 (t)‖L∞([0,1]) = x0, for any t > 2.

Finally, let us fix a t∗ ∈ (0, 2]. Then from (2.10), we get

d∞(N1(t
∗), N2(t

∗)) ≤ d∞(ū1, ū2) = x0.

In addition, since (2.16) is autonomous, for any t > 2, i = 1, 2, we can
consider Ni(x, t∗ + t) the solution at time t emanating from the initial
datum Ni(x, t∗). Hence, using once again (2.10), one has

x0 = d∞(N1(t
∗ + t), N2(t

∗ + t)) ≤ d∞(N1(t
∗), N2(t

∗)).

Hence, the d∞–Wasserstein distance between the two solutions consid-
ered here, two shifted N–waves, is constant in time. In fact, it is equal
to the distance between the infimum of the two supports and therefore
the result of Theorem 2.5 is optimal.

3. Intermediate asymptotics

In this section we propose a nonlinear time–dependent scaling of the
solutions to (1.1) in order to study their asymptotic behavior. Let
P(R) be the space of probability measures on R. For µ ∈ P(R), we
denote the second moment of µ (eventually infinite) by

θ[µ] =
1

2

∫
R

x2dµ.

We define the manifold

M = {µ ∈ P(R), θ[µ] = 1, supp(µ) compact} . (3.1)

It can be easily checked that the metric space (M, d∞) is complete (see
[12]). We shall deal with initial data for (1.1) belonging in the following
subsets of M:

Mb = M∩B
Mc = M∩Bc

Mfc = M∩Bfc

MBV = M∩BBV (3.2)
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Throughout this section we shall denote by θ[u] (by abuse of notation)
the second moment of a probability measure which is absolutely con-
tinuous with respect to Lebesgue measure having u as Radon–Nicodym
derivative.

Let u0 ∈ Mb and let u(x, t) be the unique entropy solution of the
equation (1.1) with u0 as initial datum. We observe that, since u(t)
has compact support, the second moment of the solution θ[u(t)] is
finite at any time t ≥ 0. Hence, we can define a renormalized flow map
S(t) : Mb →Mb in the spirit of [2] as follows. For ū ∈Mb we set

(S(t)ū) (x) := θ[u(t)]1/2u(θ[u(t)]1/2x, t) (3.3)

where u(·, ·) is the solution to (1.1) with initial datum ū. A straight-
forward computation yields S(t)ū ∈ Mb. Following the ideas in [2],
we want to establish a strict contraction result for the map S(t) with
respect to a suitable metric. Due to the contraction result proven in
the previous section, our choice is the Wasserstein distance d∞.

We first establish one of the main ingredients of our machinery,
namely, we show that the second moment of any solution to (1.1) di-
verges as t → +∞, provided the flux f satisfies the additional assump-
tion

∃ α ∈ (0, 1), r 7→ f(r)1−α is convex on (0, +∞). (3.4)

Under the requirement (3.4), it has been proven in [11] that the L∞x –
norm of any solution u(t) to (1.1) with initial data in Mb decays to
zero as t → +∞. More precisely, using the results in [5], they are able
to show [11, Proposition 2.1] that

‖u(t)‖L∞(R) ≤ f−1

(
C(α)

t
‖u(0)‖L1(R)

)
(3.5)

for all t > 0. The decay in L∞ provided by (3.5) is crucial in the
proof of the next lemma, which is contained in [2, Lemma 2.1] where
an analogous result is shown for nonlinear diffusion equations.

Lemma 3.1. Let u(t) be the entropy solution to (1.1) with initial datum
ū ∈ Mb. Then, θ[u(t)] → +∞ as t → +∞ uniformly in the set of
initial data Mb.

Now we state a general result for Wasserstein distances, which will
be useful in the sequel.

Lemma 3.2. Let u, v be two compactly supported probability densities
such that u 6= v on a set of positive Lebesgue measure. Suppose also
θ[u] = θ[v] = θ > 0. For a ≥ 0 let

va(x) := (1 + a)1/2v((1 + a)1/2x).
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Then, for any p ∈ [2, +∞], there exists a universal constant C = C(p)
not depending on u, v and θ such that

dp(u, v) ≤ Cdp(u, va) (3.6)

for all a ≥ 0.

Proof. Step 1. Let u, v be fixed and suppose θ = 1. We proceed by
contradiction. Let us first suppose p < ∞. Inequality (3.6) being
false for any C > 0 is equivalent to say that there exists a sequence of
positive real numbers {an}n∈N such that

dp(u, v) > ndp(u, van),

and this trivially implies

lim
n→+∞

dp(u, van) = 0. (3.7)

By well known properties of the p–Wasserstein distance (see [12]), (3.7)
implies θ[van ] → θ[u] = 1. A direct computation yields θ[van ] = 1 + an,
which implies an → 0. But this fact, together with the definition of
van , implies

van ⇀ v in the sense of measures, as n → +∞.

Finally, elementary properties of the dp (see [12]) imply

dp(u, v) ≤ lim inf
n→∞

dp(u, van) = 0,

which implies u ≡ v almost everywhere, and this is in contradiction
with the hypotheses on u and v. The assertion for p = +∞ can be
obtained in a similar way by sending p → +∞ in the above statements.

Step 2. Let u be fixed. We prove that C in (3.6) is independent of
v in a similar fashion as in step 1. For some a > 0, take a sequence vn

such that

dp(u, vn) > ndp(u, vn
a ).

This implies dp(u, vn
a ) → 0 and θ[vn

a ] → 1 which is in contradiction
with θ[vn

a ] = 1 + a for any n.
Step 3. The constant C is independent on u, as it can be seen by

repeating the same argument of step 2 with a sequence un such that
dp(un, v) > ndp(un, va) for some v and some a > 0.

Step 4. The general case θ > 0 follows by rescaling u and v in order
to obtain two densities with unit second moment and by applying the
result for θ = 1. In particular, it is clear that the constant C does not
depend on the fixed temperature θ. �
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We remark that the constant C in (3.6) equals 1 in Euclidean case
p = 2 (see [2]).

Another important ingredient in our asymptotic analysis is a uniform
control of the support of the generalized N–wave after the scaling (3.3).

Proposition 3.3. Suppose f : R+ → R+ is C1 and such that (3.4) is
satisfied. Let

N(x, t) =

{
(f ′)−1

(
x
t

)
0 ≤ x ≤ b(t)

0 otherwise

be the N–wave solution of the scalar conservation law ut + f(u)x = 0
having mass M > 0. Then, given

θ[N(t)] =
1

2

∫
|x|2N(x, t)dx,

the support of the function

N̂(x, t) := θ[N(t)]1/2N(xθ[N(t)]1/2, t)

stays globally bounded in time.

Proof. Step 1. We start by providing an explicit formula for b(t). The
conservation of the mass implies

M =

∫ b(t)

0

= (f ′)−1
(x

t

)
dx = t

∫ (f ′)−1(b(t)/t)

0

uf ′′(u)du

= t

[
(f ′)−1(b(t)/t)

b(t)

t
− f

(
(f ′)−1(b(t)/t)

)]
.

The convexity of f and its regularity assumptions imply the following
explicit expression of the Legendre transform f ∗

f ∗(u) = (f ′)−1(u)u− f((f ′)−1(u)),

for u ≥ 0 sufficiently small. Therefore, since b(t)/t → 0 as t → +∞,
for t larger than a certain t∗ we have

M

t
= f ∗

(
b(t)

t

)
.

Hence, we can consider the nonnegative branches of f and f ∗ in order
to have their inverses well–defined. This implies

b(t) = t(f ∗)−1

(
M

t

)
. (3.8)
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Step 2. We provide an explicit expression for ‖N(t)‖L∞ . Since N
is nondecreasing with respect to x on its support, we have

‖N(t)‖L∞ = N

(
b(t)

t
, t

)
= (f ′)−1

(
b(t)

t

)
.

Thanks to (3.8), we have

‖N(t)‖L∞ = (f ′)−1

(
(f ∗)−1

(
M

t

))
. (3.9)

Step 3. By means of the identity (3.9), we can estimate the temper-
ature of N(t) from below as in [2, Lemma 2.1]. We obtain the following
inequality

θ[N(t)] ≥ M3

43

1

‖N(t)‖2
L∞

. (3.10)

Step 4. The support of N̂(t) at any time t > 0 coincides with the
interval [0, l(t)], where

l(t) :=
b(t)

θ[N(t)]1/2
.

Therefore, from (3.8), (3.9) and (3.10) we obtain the estimate

l(t) ≤ Ct(f ∗)−1

(
M

t

)
· (f ′)−1

(
(f ∗)−1

(
M

t

))
.

Due to the following property of the Legendre transform

(f ′)−1 ≡ (f ∗)′,

we recover

l(t) ≤ CM
t

M

(f ∗)−1
(

M
t

)
((f ∗)−1)′

(
M
t

) . (3.11)

Step 5. Thanks to (3.4) we have

f(u) ≤ Cu
1

1−α ,

for some α ∈ (0, 1). Since the Legendre transform of u 7→ Cu
1

1−α

equals C1u
1/α for some positive C1, by using the estimate for f in the

definition of Legendre transform we obtain

f ∗(u) ≥ C1u
1/α

for some C1 > 0, and this implies

(f ∗)−1(u) ≤ C2u
α (3.12)

for some C2 > 0. To simplify the notation, let us denote g := (f ∗)−1

and ε = M/t. We want to control the term on the right hand side of
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(3.11) uniformly for large times. Such term, with the new notations,
reads

C
g(ε)

εg′(ε)
(ε → 0).

Let us denote
h(ε) := g(ε1/α).

We have

h′(ε) =
1

α
ε

1
α
−1g′(ε1/α).

Since g′ is nonincreasing on a right neighborhood of 0 (g is concave),
the limit

lim
ε→0+

h′(ε)

exists. But estimate (3.12) implies

h(ε)

ε
≤ C,

which forces the previous limit to be finite. Therefore,

lim
ε→0+

[
h(ε)

εh′(ε)

]
= 1,

which implies
h(ε)

ε
≤ Ch′(ε)

for small ε. In terms of g, we have

g(ε1/α)

ε1/α
≤ Cg′(ε1/α),

which completes the proof. �

The previous result guarantees the support of an N–wave solution of
a conservation law, scaled with respect to its second moment, lies in
a compact interval [−R,R], with R depending solely on its mass M .
By comparison with the N–wave solution, we generalize this property
for any solution of (1.1) with initial datum u ∈Mc, that is, for S(t)u,
with S(t) given by (3.3) for t sufficiently large.

Proposition 3.4. Suppose f : R+ → R+ is C1 and such that (3.4) is
satisfied. Let u be a solution of the scalar conservation law (1.1) with
initial datum u ∈Mc. Then, given

θ[u(t)] =
1

2

∫
|x|2u(x, t)dx,

there exists a time t∗ > 0 such that the support of the function

S(t)u = θ[u(t)]1/2u(xθ[u(t)]1/2, t) =: û(x, t)
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lies in [−K, K], with K depending solely on its mass M > 0, for any
t > t∗.

Proof. Let N(x, t) be the (shifted) N–wave of (1.1) with mass M > 0
and initial datum N ∈Mc. Let us define for any t > 0

θ̃(t) := min{θ[u(t)], θ[N(t)]}

and consider the mass–preserving scaling

ũ(x, t) := α(t)1/2u
(
α(t)1/2x, t

)
α(t) :=

θ[u(t)]

θ̃(t)
,

Ñ(x, t) := β(t)1/2u
(
β(t)1/2x, t

)
β(t) :=

θ[N(t)]

θ̃(t)
.

In this way, we leave unchanged one of the two solution and decrease
the second moment of the other to match the second moment of the
first one. Moreover

S(t)u = û(x, t) = θ̃(t)1/2ũ
(
θ̃(t)1/2x, t

)
S(t)N = N̂(x, t) = θ̃(t)1/2Ñ

(
θ̃(t)1/2x, t

)
.

An elementary scaling property of the p–Wasserstein distance for p ≥ 2
(see [12]) together with the above identities gives

d∞(S(t)u, S(t)N) ≤ θ̃(t)−1/2d∞(ũ(t), Ñ(t)).

Moreover, with the aid of Lemma 3.2 we obtain

d∞(ũ(t), Ñ(t)) ≤ Cd∞(u(t), N(t))

and the contraction property of Theorem 2.5 gives

d∞(u(t), N(t)) ≤ d∞(u, N).

Hence, we end up with the inequality

d∞(S(t)u, S(t)N) ≤ Cθ̃(t)−1/2d∞(u, N) ≤ 1,

for any t ≥ t∗, with t∗ > 0 sufficiently large, in view of Lemma 3.1.
Finally, the result follows from Proposition 3.3 and the well-known
control of the distance between the supports of S(t)u = û and S(t)N =

N̂ in terms of the distance d∞ (see Corollary 2.6). �

We are now ready to state the main theorem of this section. We first
introduce the notation

M0 := {µ ∈ P(R), θ[µ] = 1, supp(µ) compact and connected} .
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We remark that the space (M0, d∞) is complete (in terms of pseudo
inverses of the distribution functions, such space is the space of continu-
ous functions on the interval [0, 1] endowed with the uniform topology).

Theorem 3.5. Let f : [0, +∞) → [0, +∞) be a C1 convex function
such that f(0) = f ′(0) = 0 and such that (3.4) is satisfied. Then,
there exist a fixed t∗ > 0 and a one parameter family of functions
{U∞

t }t≥t∗ ⊂ Mc such that, for any u0 belonging either in Mfc or in
MBV we have

d∞(S(t)u0, U
∞
t ) → 0, as t → +∞, (3.13)

where the map S(t) is defined in (3.3). Moreover, for any fixed t > t∗,
U∞

t is characterized as the unique fixed point of the map

S(t) : M→M.

The profiles U∞
t have connected compact support uniformly bounded in

time.

Proof. We split the proof into three steps. Let us define the complete
metric space (MK , d∞), where MK ⊂M is defined by

MK = {µ ∈ P(R), θ[µ] = 1, supp(µ) ⊂ [−K, K]} , (3.14)

where K > 0 is the constant provided in Proposition 3.4. In the first
step we establish a contraction result for the map S(t) (for large enough
t) in the subset

Mc,K := Mc ∩MK ⊂MK .

In the second step, for t sufficiently large, we extend the map S(t)
to the closure (M0 ∩MK , d∞) in order to apply Banach’s fixed point
Theorem and obtain a family of fixed points in that space. Finally, we
repeat the fixed point argument in the whole complete metric space
(M, d∞) to get the final result.

Step 1. Thanks to the result in Proposition 3.4, the renormalized
flow map S(t) defined by (3.3) is a well–defined operator on the space
Mc,K for t larger than a waiting time t∗. Consider then two elements
u1, u2 ∈Mc,K . Let u1 and u2 be the entropy solutions having u1 and u2

as initial data respectively. Proceeding as in the proof of Proposition
3.4, we define for any t > 0

θ̃(t) := min{θ[u1(t)], θ[u2(t)]}

and we introduce the mass–preserving scaling

ũi(x, t) := αi(t)
1/2ui

(
αi(t)

1/2x, t
)

αi(t) :=
θ[ui(t)]

θ̃(t)
, i = 1, 2.
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After the above scaling procedure, one of the two between u1 and u2

(namely, the one with less second moment) remains unchanged, while
the other one is rescaled in such a way that ũ1 and ũ2 have the same
second moment. Moreover, for further use we observe

S(t)ui(x) = θ̃(t)1/2ũi

(
θ̃(t)1/2x, t

)
, i = 1, 2. (3.15)

Since θ[ui(t)] ≥ θ̃(t) for i = 1, 2, we can apply the result in Lemma 3.2
which implies

d∞(ũ1(t), ũ2(t)) ≤ Cd∞(u1(t), u2(t)). (3.16)

Using once again the scaling property of the Wasserstein distances and
the identity (3.15) yield

d∞ (S(t)u1, S(t)u2) ≤ θ̃(t)−1/2d∞ (ũ1(t), ũ2(t)) ,

which, together with (3.16) implies

d∞ (S(t)u1, S(t)u2) ≤ Cθ̃(t)−1/2d∞(u1(t), u2(t)).

Finally, thanks to Lemma 3.1 and to the contraction result of Theorem
2.5 we have, for a sufficiently large t∗1,

d∞ (S(t)u1, S(t)u2) ≤ β(t)d∞ (u1, u2) (3.17)

for a suitable function [t∗1, +∞) 3 t → β(t) ∈ (0, +∞) such that β(t) <
1 for all t ≥ t∗1 and such that β(t) → 0 as t → +∞.

Step 2. We now extend the map S(t) to the space of measuresM0∩
MK for t sufficiently large. Consider µ ∈ M0 ∩MK . Thanks to the
result in Theorem 5.6, we can construct a sequence {un}n ⊂Mc,K such
that d∞(un, µ) → 0 as n → +∞. Due to (3.17), the sequence S(t)un

is Cauchy in M0 ∩MK . Hence, by completeness of (M0 ∩MK , d∞),
S(t)un has a limit ν in M0 ∩MK , and such a limit does not depend
on the chosen approximating sequence, due once again to (3.17). We
then define S(t)µ = ν. It easily seen that inequality (3.17) holds true
when u1 and u2 belong to M0∩MK . Moreover, in view of Proposition
3.4, S(t)µ ∈ MK for any t > t∗2. We can then apply Banach’s fixed
point Theorem for t > t∗ = max{t∗1, t∗2}, which yields the existence of
the desired family of fixed points {U∞

t } ∈ M0 ∩MK .
Step 3. Let us now consider the whole space of measures M. Pro-

ceeding as in Step 2, we can prove the map S(t) to be a contraction
in the dense subspace Mfc, for any t > t∗. By means of the approx-
imation Theorem 5.7, we can extend S(t) to be a contraction on the
whole (complete) space of measures M as in Step 2. Hence we can
apply Banach’s fixed point Theorem in (M, d∞) and obtain a family of
fixed points in this larger space, which indeed coincides with {U∞

t }, due
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to uniqueness. Finally, the limit (3.13) follows by choosing in (3.17)
u1 = u0 and u2 = U∞

t , namely the fixed point of S(t), because, as
shown before, U∞

t has a support in [−K, K] for t sufficiently large and
therefore d∞(u0, U

∞
t ) is uniformly bounded in t.

At this stage, we only have to prove the additional properties over the
fixed points U∞

t . From the results in [11], there exists a unique entropy
solution to (1.1) even in the case of initial datum in M. Hence, the
fixed points U∞

t must be in L∞. �

Remark 3.6. We stress that, in the case f(u) = 1
γ
|u|γ, the family of fixed

points U∞
t is independent on time and equals the N–wave N1,0(x, to)

defined in (1.2) with P = 0 and Q = 1 evaluated at the time to when it
has unit second moment. This fact is a consequence of the self–similar
structure of the N–wave in the case of a power law flux f . A slightly
more general result is contained in Corollary 3.9 below.

Remark 3.7. Just by using the L∞-decay shown in (3.5) and Lemma
3.1, one can obtain a uniform estimate from below of the divergence in
time of the temperature θ[u(t)] of any solution and thus one obtains an
explicit decay rate in time for (3.13) in terms of the inverse of f (see
the proof of Lemma 2.1 in [2]).

Remark 3.8. By slightly changing the rescaling in (3.3), we can carry
out the previous procedure by working on the manifold

Mθ =
{
µ ∈ P(R), θ[µ] = θ, supp(µ) compact

}
for any θ > 0. We then obtain a two parameter depending family of
fixed points U∞

t,θ
which reduces to U∞

t in case of unit second moment

θ. Moreover, U∞
t,θ

is independent on time when f(u) = 1
γ
|u|γ and it

coincides with the N–wave N1,0(x, t) defined in (1.2) evaluated at the

time t when it has second moment θ.

Finally, we can show that our asymptotic profile converges at t →
+∞ to a universal profile for perturbations of power law fluxes.

Corollary 3.9. Let f : [0, +∞) → [0, +∞) be a C1 convex function
such that f(0) = f ′(0) = 0 and such that (3.4) is satisfied. Moreover,
let us assume that f(u) = 1

γ
uγ + h(u), γ > 1, with h(u)u−γ → 0

as u → 0. Then, the one parameter family of functions {U∞
t }t≥t∗

constructed in Theorem 3.5 verifies

d∞(U∞
t , Nγ(·, to)) → 0, as t → +∞,

where Nγ(x, to) is the N–wave of the leading behavior 1
γ
uγ at the time

to in which it has unit second moment. As a consequence, for any u0
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belonging either in Mfc or in MBV we have

d∞(S(t)u0, Nγ(·, to)) → 0, as t → +∞, (3.18)

where the map S(t) is defined in (3.3).

Proof. Let us denote by Nf (x, t + t∗) the N–wave solution correspond-
ing to the nonlinearity f and t∗ the time at which it has unit second
moment. Therefore, taking u0 = Nf (x, t∗) in (3.13), we have

d∞(S(t)Nf (·, t∗), U∞
t ) → 0, as t → +∞.

Let us denote θf (t) the temperature of Nf (x, t + t∗).
Using that Nγ(x, to) is a fixed point of the corresponding evolution

through the conservation law with f(u) = 1
γ
uγ, i.e., the self-similarity

of Nγ(x, t), we deduce that

Nγ(x, to) = θγ(t)
1/2Nγ(θγ(t)

1/2x, t + to)

where θγ(t) denotes the temperature of Nγ(x, t + to). Now, we can
estimate

d∞(S(t)Nf (·, t∗), Nγ(·, to)) ≤
C

θ(t)
d∞(Nf (·, t + t∗), Nγ(·, t + to))

by Lemma 3.2, where θ(t) = min(θf (t), θγ(t)).
Under the assumption f(u) = 1

γ
uγ + h(u), with h(u)u−γ → 0 as

u → 0, it is tedious but not difficult to show that

lim
t→∞

1

θ(t)
d∞(Nf (·, t + t∗), Nγ(·, t + to)) = 0

that concludes the proof. �

4. Nondecreasing solutions

In this section we turn our attention to solutions to the scalar con-
servation law (1.1) with initial data in the class

I = {u ∈ L∞(R), u non decreasing, u(−∞) = 0, u(+∞) = 1} .

Such a class of functions is invariant under the semigroup induced by
(1.1). It is clear that, if u ∈ I, then its distributional derivative u′ is a
probability measure. Hence, the p–Wasserstein distances between the
space derivatives of any two solutions u(t) and v(t) with initial data
belonging in I can be computed. This issue has been addressed for the
first time in [1], where the authors proved the contraction property

dp(ux(t), vx(t)) ≤ dp(ux(0), vx(0)), t ≥ 0, (4.1)

for any entropy solutions u, v to (1.1) with initial data in I and f
locally Lipschitz function and for all p ≥ 1. By means of the contraction
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inequality (4.1), we shall prove that the fixed point approach developed
in the previous section can be easily generalized to the space derivatives
of the solutions to (1.1) with initial data in I. More precisely, let
v̄ ∈ M, where the class of probability measures M is defined in (3.1).
Let us define

ū(x) =

∫ x

−∞
v̄(y)dy,

where it is clear that ū ∈ I. For fixed t ≥ 0 we define

(T (t)v̄) (x) := θ[ux(t)]
1/2ux(θ[ux(t)]

1/2x, t), (4.2)

where u(x, t) is the unique weak entropy solution to (1.1) with ū as
initial datum. It is worthy to point out that the scaling defined in
(4.2) has to be understood as the definition of a measure by duality
on how they act on continuous functions and thus the scaling is done
accordingly on the test functions.

It is clear that for any t ≥ 0 the map T (t) : M→M is well defined.
We shall analyze the evolution of T (t)v̄ for a general v̄ ∈ M in the
next Theorem 4.1.

To this point, no particular assumption regarding the convexity of
the flux has been done. Let us assume f ∈ C2 and f(0) = 0 without
loss of generality. Under convexity, f ′′ > 0, or concavity, f ′′ < 0,
assumptions on the flux, we have some particular explicit solutions.

In the convex case, a special self–similar rarefaction wave solution to
(1.1) with initial datum in I is given by

U∞(x, t) =


0 if x ≤ 0

g
(

x
t

)
if 0 ≤ x ≤ f ′(1)t

1 if x ≥ f ′(1)t,

(4.3)

where g is the inverse function of f ′

g(α) := (f ′)
−1

(α), α ≥ 0.

In the concave case, a special shock solution to (1.1) with initial
datum in I is given by

U∞(x, t) =

{
0 if x ≤ f(1)t

1 if x ≥ f(1)t
. (4.4)

For any t ≥ 0, the profiles U∞(·, t), in each case, have a distributional
derivative in the space of probability measures.

Now, let t∗ be the time such that the second moment θ[U∞
x (·, t∗)]

equals 1. Then, it can be easily checked that the profile U∞
x (·, t∗) is a

fixed point of the map T (t) defined in (4.2) in each case. We remark
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that in this case the fixed point is constant on t. We are ready to state
the following

Theorem 4.1. Let p ≥ 2. Let f : R → R be a C2 function such that
either f ′′ > 0 or f ′′ < 0 and f(0) = 0. Then, there exists a unique
V ∞ : R → [0, +∞) such that, for any v̄ ∈M

dp(T (t)v̄, V ∞) → 0 (4.5)

as t → +∞. Moreover,

V ∞(x) = U∞
x (x, t∗)

where U∞ is defined by (4.3) for convex fluxes and by (4.4) for con-
cave ones. The time t∗ is chosen such that U∞

x (·, t∗) has unit second
moment. Finally, V ∞ is characterized as the unique fixed point of all
the maps T (t), t > 0.

Proof. The proof of the present theorem can be carried out by means
of the same steps as in Theorem 3.5 or in [2]. Therefore, we shall not
perform all of its details. We only point out that the main ingredients
are the contraction inequality (4.1), the result in Lemma 3.2, that for
the Euclidean Wasserstein distance was obtained in [2], and the fact
that the temperature of ux(t) tends to +∞ as t → +∞ for any solution
u of (1.1) uniformly in the set of initial data ū such that ūx ∈M.

To show this last statement, we will make use of our particular ex-
plicit solutions: the rarefaction wave or the shock wave. Let us remark
that by inequality (4.1), we deduce

d2(ux(t), δ0) ≥ d2(U
∞
x (t + t∗), δ0)− d2(U

∞
x (t + t∗), ux(t))

≥ d2(U
∞
x (t + t∗), δ0)− d2(U

∞
x (t∗), ūx)

≥ d2(U
∞
x (t + t∗), δ0)− 2,

due to the fact that both ūx, U
∞
x (t∗) ∈M. A direct computation shows

that
θ[U∞

x (·, t)] → +∞, as t → +∞
in both cases. Taking into account that

d2(ux(t), δ0) =

∫
R

x2ux(x, t) dx and d2(U
∞
x (t), δ0) =

∫
R

x2U∞
x (x, t) dx,

then the uniform divergence of the second moment in the set of initial
data of this theorem is proved. �

Remark 4.2. The only point in which the explicit solutions depending
on the convexity of the flux were used in the previous theorem was to
obtain a uniform bound on the divergence of the second moment of
the derivatives, uniform in the set of initial data. We do not see how
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to prove such a property for neither convex nor concave general fluxes.
Being this true, previous theorem will apply giving the existence of an
asymptotic profile for general fluxes.

Remark 4.3. Again estimating precisely the divergence of the temper-
ature of U∞

x (t), we obtain an explicit uniform estimate from below of
the divergence in time of the temperature θ[ux(t)] of any solution and
thus one obtains an explicit decay rate in time for (4.5).

5. Approximation results

In this section we collect some approximation results we needed in
the proofs of some previous theorems.

Given f : R → R and x0 ∈ R, throughout this section we shall use
the notations

f(x0−) := lim
x→x−0

f(x), f(x0+) := lim
x→x+

0

f(x).

Theorem 5.1. Let f : [0, 1] → R be strictly increasing, right–continuous
and bounded. Then, there exists a sequence {fn : [0, 1] → R, n ∈ N}
of strictly increasing functions such that

• Each fn has a finite number of discontinuities,
• fn → f in L∞([0, 1]).

Proof. Since f is strictly increasing, then f has at most a countable
number of jump discontinuities. We denote by {ξn}+∞

n=1 the sequence of
all the points of discontinuity of f , and by

sn = f(ξn+)− f(ξn−)

the jump of f at ξn, n ∈ N. Since f is bounded, the following condition
must be satisfied

∞∑
n=1

sn < +∞. (5.1)

Let n be fixed. We define the approximating fn as follows. For any
positive integer k we set

rk(ξ) =

{
0 if 0 ≤ ξ < ξk

sk if ξk ≤ ξ ≤ 1.

Hence, for any ξ ∈ [0, 1] we set

fn(ξ) := f(ξ)−
∑
k>n

rk(ξ)
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(note that the previous definition makes sense also for n = 0). By
definition of fn it is clear that

fn → f

uniformly on [0, 1], because ‖fn − f‖∞ is controlled by the n–th re-
mainder of the converging series (5.1). We prove that fn is continuous
in any ξ ∈ [0, 1] except for ξ1, . . . , ξn (in particular, f0 is continuous on
the whole [0, 1]). For any ξ ∈ [0, 1], by definition of rk we have

fn(ξ+)− fn(ξ−) = f(ξ+)−
∑
ξk≤ξ

sk − f(ξ−) +
∑
ξk<ξ

sk

= f(ξ+)− f(ξ−)−
∑
ξk=ξ

sk

and the previous expression clearly vanishes if either ξ is a point of
continuity of f or ξ = ξk for some k > n (we observe that in the
previous expression the term denoted by summation consists of one
addend at most). �

Lemma 5.2. Under the same notations and assumptions of Theorem
5.1, suppose in addition

f ′ ≥ C > 0

almost everywhere on [0, 1]. Then, there exists a constant K > 0 such
that

f0(ξ)− f0(η)

ξ − η
≥ K (5.2)

for any η, ξ ∈ [0, 1].

Proof. We start by observing that f0 is a continuous function. It is
also clear that f0 is nondecreasing, and therefore differentiable almost
everywhere. Moreover, the a. e. derivative f0 is summable on [0, 1],
and the following estimate is true for all ξ, η ∈ [0, 1]

f0(ξ)− f0(η) ≥
∫ ξ

η

f ′0(ζ)dζ.

By definition of f0 it is clear that f ′ = f ′0 almost everywhere. Hence,
in view of the hypotheses above we can write

f0(ξ)− f0(η) ≥ C(ξ − η)

which concludes the proof. �

Theorem 5.3. Let u ∈ BBV . Then, there exists a sequence un ∈ Bfc

such that

• d∞(un, u) → 0 as n → +∞,
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• un → u a. e. and in L1.

Proof. Since u ∈ BV , then u has a right continuous representative. Let
F be the distribution function of u and let F−1 be its pseudo inverse.
Since F−1 is strictly increasing, bounded and right–continuous, we can
construct the corresponding approximating sequence fn as in Theorem
5.1. For any integer n, let Fn : R → [0, 1] be the pseudo inverse of fn,
namely

Fn(x) = inf{ξ : fn(ξ) > x}.
By definition of the approximating sequence fn we can easily deduce
for all x ∈ R

F−1(Fn(x)) = F−1
n (Fn(x)) +

∑
k>n

rk(Fn(x)), n > 0.

By applying F to both member of the above identity we obtain

Fn(x) = F

(
F−1

n (Fn(x)) +
∑
k>n

rk(Fn(x))

)
. (5.3)

In order to simplify the expression (5.3), we distinguish between the fol-
lowing two cases. If x ∈ R is such that Fn(x) is a point of continuity of
fn, then fn(Fn(y)) = x for y belonging in a small enough neighborhood
of x, and then F−1

n (Fn(x)) = x. In case Fn(x) is a point of discontinuity
of fn (we recall that fn has a finite number of discontinuities), then

x ∈ [fn(Fn(x)−), fn(Fn(x)+)] = [fn(Fn(x)−), fn(Fn(x))].

This clearly implies

x +
∑
k>n

rk(Fn(x))

∈ [fn(Fn(x)−) +
∑
k>n

rk(Fn(x)), fn(Fn(x)) +
∑
k>n

rk(Fn(x))].

By (left) continuity of the jump function
∑

k>n rk(·) at the point Fn(x)
(because Fn(x) does not belong to the set of points of discontinuity of
the jump function) and by using the definition of fn we have

x +
∑
k>n

rk(Fn(x)) ∈ [F−1(Fn(x)−), F−1(Fn(x)+)].

Since Fn(x) is also a discontinuity point for F−1, then F is constant on
the interval in the above expression. Thus,

F

(
x +

∑
k>n

rk(Fn(x))

)
= F

(
F−1

n (Fn(x)) +
∑
k>n

rk(Fn(x))

)
,
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and (5.3) can be simplified to

Fn(x) = F

(
x +

∑
k>n

rk(Fn(x))

)
= F (αn(x)), (5.4)

where we have set

αn(x) := x +
∑
k>n

rk(Fn(x)). (5.5)

Due to the fact that
∑

k>n sk → 0 as n → +∞, we see that αn(x) → x+

as n → +∞. We now observe that, in view of the result in Lemma 5.2,
the approximating function F0 is globally Lipschitz. This is due to the
fact that f0 is continuous and strictly increasing (and therefore F0 is
the real inverse of f0) and due to the identity

f ′(ξ) =
1

u(f(ξ))
for a. e. ξ ∈ [0, 1],

which guarantees f ′ ≥ C > 0 almost everywhere (as requested by the
previous lemma). Now it is easy to check that, for all n ≥ 1 and for all
x, y ∈ R,

Fn(x)− Fn(y) ≤ F0(x)− F0(y), (5.6)

which implies that all Fn are absolutely continuous functions (because
F0 is globally Lipschitz). Now we can define

un(x) :=
d

dx
Fn(x),

where we clearly have Fn(x) =
∫ x

−∞ un(y)dy and un ∈ L1. Moreover,
by differentiating with respect to x in (5.4) we easily see that un(x) =
u(αn(x)) almost everywhere on the set of all points where the function
x → αn(x) is differentiable. Since such set is the complement of a zero
measure set (the jump function in (5.5) has a zero almost everywhere
derivative), by right continuity of u and due to αn(x) ≥ x, we have

un(x) = u(αn(x)) → u(α∞(x)) = u(x) a. e.

By Lebesgue’s dominated convergence Theorem we also have

un → u in L1

and since fn is the pseudo inverse of the distribution function of un,
thanks to the results in Theorem 5.1 we have

d∞(un, u) → 0

and the proof is complete. �
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Theorem 5.4. Let ū, v̄ ∈ Bfc. Then there exist two sequences

{ūn}n, {v̄n}n ⊂ Bc

such that

lim
n→+∞

dp(ūn, v̄n) = dp(ū, v̄), for any p < +∞ (5.7)

d∞(ūn, v̄n) ≤ d∞(ū, v̄) (5.8)

ūn → ū, v̄n → v̄ a.e. in L1(R). (5.9)

Proof. Let F, G be the distribution functions of ū, v̄ respectively, and
let F−1, G−1 be their pseudo–inverses. The definition of the space Bfc

implies that F−1 and G−1 may not be continuous. By the hypothe-
ses of finite number of connected components stated above, F−1 and
G−1 have at most a finite number of (jump) discontinuities. We shall
construct the approximating sequences ūn, v̄n by means of the corre-
sponding pseudo–inverses F−1

n , G−1
n in such a way that F−1

n → F−1

and G−1
n → G−1 almost everywhere and such that both sequences are

uniformly bounded. This fact trivially implies (5.7). Since we want
to obtain the inequality (5.8), our approximating sequences has to be
carefully constructed according to several cases. In the sequel of the
proof we provide the rigorous definition of F−1 and G−1 and we check
that property (5.8) is verified in all cases.

Let us start with the simplest case: let ξ0 ∈ [0, 1] be such that F−1

(G−1 resp.) is continuous at ξ0 and such that the distances between ξ0

and all the points of discontinuity of F−1 (G−1 resp.) are larger than
1/n. Then we fix F−1

n (ξ) := F−1(ξ) (G−1
n (ξ) := G−1(ξ) resp.).

Suppose now that F−1 has an isolated discontinuity at ξ0 and G−1

is continuous at ξ0. Then, in case both F−1(ξ0−) and F−1(ξ0+) are
larger than G−1(ξ0) we define F−1

n by modifying the graph of F−1 only
on the interval (ξ0 − 1/n, ξ0 + 1/n) and by setting1

F−1
n (ξ) =


F−1(ξ0−) + n[F−1(ξ0 + 1/n)− F−1(ξ0−)](ξ − ξ0)

if ξ ∈ [ξ0, ξ0 + 1/n]

F−1(ξ) if ξ ∈ [ξ0 − 1/n, ξ0].

In case both F−1(ξ0−) and F−1(ξ0+) are smaller than G−1(ξ0), again
we define F−1

n by modifying the graph of F−1 only on the interval

1In this definition and in the following ones, we shall modify the graph of F−1

and G−1 by linear interpolations on a neighborhood of radius 2/n centered at
a discontinuity point ξ0. It could happen the linear part of the graph run the
neighborhood of another discontinuity point. This can be avoided by choosing n
large enough.
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(ξ0 − 1/n, ξ0 + 1/n) and by setting

F−1
n (ξ) =


F−1(ξ) if ξ ∈ [ξ0, ξ0 + 1/n]

F−1(ξ0+)− n[F−1(ξ0+)− F−1(ξ0 − 1/n)](ξ0 − ξ)

if ξ ∈ [ξ0 − 1/n, ξ0].

Finally, in case F−1(ξ0−) < G−1(ξ0) < F−1(ξ0+) we set

F−1
n (ξ) = G−1(ξ0) + n[F−1(ξ0 + 1/n)− F−1(ξ0 − 1/n)](ξ − ξ0 + 1/n),

for all ξ ∈ [ξ0 − 1/n, ξ0 + 1/n]. It easy to verify that in all three cases
we have

|F−1
n (ξ)−G−1

n (ξ)| ≤ |F−1(ξ)−G−1(ξ)|
for all ξ ∈ [ξ0 − 1/n, ξ0 + 1/n]. Clearly, if G−1 is discontinuous at ξ0

and F−1 is not, we can define the two sequences by interchanging the
roles of F−1 and G−1.

Suppose now ξ0 is an isolated jump discontinuity for both F−1 and
G−1. Suppose first

F−1(ξ0−) < G−1(ξ0−) < F−1(ξ0+) < G−1(ξ0+).

In this case we set

F−1
n (ξ) =

G−1(ξ0−) + F−1(ξ0+)

2
+ n[F−1(ξ0 + 1/n)− F−1(ξ0 − 1/n)](ξ − ξ0 + 1/n),

G−1
n (ξ) =

G−1(ξ0−) + F−1(ξ0+)

2
+ n[G−1(ξ0 + 1/n)−G−1(ξ0 − 1/n)](ξ − ξ0 + 1/n),

for all ξ ∈ [ξ0 − 1/n, ξ0 + 1/n]. Suppose now

F−1(ξ0−) < F−1(ξ0+) < G−1(ξ0−) < G−1(ξ0+).

In this case we set

G−1
n (ξ) =


G−1(ξ0−) + n[G−1(ξ0 + 1/n)−G−1(ξ0−)](ξ − ξ0)

if ξ ∈ [ξ0, ξ0 + 1/n]

F−1(ξ) if ξ ∈ [ξ0 − 1/n, ξ0]

and

F−1
n (ξ) =


F−1(ξ) if ξ ∈ [ξ0, ξ0 + 1/n]

F−1(ξ0+)− n[F−1(ξ0+)− F−1(ξ0 − 1/n)](ξ0 − ξ)

if ξ ∈ [ξ0 − 1/n, ξ0].
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Again, interchanging the roles of F−1 and G−1 allows to cover all pos-
sible cases and we have once again

|F−1
n (ξ)−G−1

n (ξ)| ≤ |F−1(ξ)−G−1(ξ)|
for all ξ ∈ [ξ0 − 1/n, ξ0 + 1/n].

In order to complete the proof, we have to prove (5.9). This can be
done by observing that the previous definitions of the approximating
sequences F−1

n , G−1
n imply small rearrangements of the mass in the

graphs of ū and v̄. Consider for instance the case of a discontinuity
ξ0 for F−1 modified on the right neighborhood (ξ0, ξ0 + 1/n) as in the
first case of the present proof. In this case ū is modified only on the
interval (F−1(ξ0−), F−1(ξ0 + 1/n)) as follows

ūn(x) =
[
n
(
F−1(ξ0 + 1/n)− F−1(ξ0−)

)]−1
,

for all x ∈ (F−1(ξ0−), F−1(ξ0 + 1/n)). Hence ūn → 0 on the interval
(F−1(ξ0−), F−1(ξ0+)) and ūn → ū otherwise. We skip the details of
all the cases, which can be proven in a similar way. �

As a trivial consequence of the previous theorems we have the fol-
lowing

Theorem 5.5. Let ū, v̄ ∈ BBV and let δ > 0. Then there exist two
sequences ūn, v̄n ∈ Bc such that

d∞(ūn, v̄n) ≤ d∞(ū, v̄) + δ

ūn → ū, v̄n → v̄ a.e. and in L1(R).

Proof. Take two sequences un, vn ∈ Bfc such that

un → ū, vn → v̄ a.e. and in L1

and such that

d∞(un, ū) → 0, d∞(vn, v̄) → 0, as n → +∞
as guaranteed by Theorem 5.3. Thanks to Theorem 5.4, for any n there
exist two sequences unk

, vnk
∈ Bc such that

d∞(unk
, vnk

) ≤ d∞(un, vn)

unk
→ un, vnk

→ vn a.e. and in L1(R) as k → +∞.

Hence, by choosing

ūn := unn , v̄n := vnn ,

we have

d∞(ūn, v̄n) ≤ d∞(un, vn) ≤ δ + d∞(ū, v̄)

for n sufficiently large. �



CONTRACTION IN WASSERSTEIN METRICS AND ASYMPTOTICS 31

In the previous theorems the approximating sequences were required
to be converging almost everywhere, in L1 and in the d∞ topology. In
the following theorems we prove some density results of certain subsets
of the space of measures (M0, d∞) without any requirement on the L1–
convergence. Such results are needed in the proof of Theorem 3.5 and
the notations concerning the spaces involved are those defined in (3.2).
We remark that the measure space MK defined in (3.14) is a closed
subset of the space M for any K > 0. Hence, some density properties
needed in the aforementioned theorem can be obtained via intersection
with MK .

Theorem 5.6. (Mc, d∞) is dense in (M0, d∞).

Proof. For µ ∈M0, let

F (x) := µ((−∞, x])

be the distribution function of µ. Let f : [0, 1] → R be the pseudo
inverse of F . For ε > 0 we define

f ε(ξ) := f(ξ) + εξ

fε(ξ) :=
f ε(ξ)

‖f ε‖L2([0,1])

.

Since µ has unit second moment, then f has unit L2 norm, therefore
fε → f uniformly on [0, 1] and in L2([0, 1]). Let Fε be the pseudo
inverse of fε. Due to (f ε(ξ))

′ ≥ ε for any ξ ∈ [0, 1] and in view of
‖f ε‖L2 → 1 as ε → 0, we have

fε(ξ)− fε(η) ≥ 2ε(ξ − η)

for small enough ε. Moreover, since f is strictly invertible on [0, 1], the
above inequality implies the uniform bound

Fε(x)− Fε(y)

x− y
≤ 1

2ε

for any x, y ∈ R. Therefore Fε is absolutely continuous, and its first
derivative almost everywhere uε := (Fε)

′ belongs in L1(R). The above
estimate of the difference quotients implies uε ∈ L∞. Since Fε is the
primitive of uε, the uniform convergence of fε to f is equivalent to
d∞(u, uε) → 0 as ε → 0. �

Theorem 5.7. (Mfc, d∞) is dense in (M, d∞).

Proof. We want to prove that, for any µ ∈M, there exists a sequence
of {µk}k ⊂Mfc such that

d∞(µ, µk) → 0, as k → +∞.
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The proof can be performed in the same way as in the proof of Theorem
5.1. In the present case, one has to define the distribution function

F (x) := µ((−∞, x])

and its pseudo inverse f : [0, 1] → R. Let {ξk}k be the sequence of
the discontinuity points of f . As in the proof of Theorem 5.1, we can
define for any positive integer k

rk(ξ) =

{
0 if 0 ≤ ξ < ξk

f(ξk+)− f(ξk−) if ξk ≤ ξ ≤ 1

and, for any ξ ∈ [0, 1] and n ≥ 0, the sequence of functions

fn(ξ) := f(ξ)−
∑
k>n

rk(ξ) +
1

n
ξ.

In order to have the approximating sequence in M, we must normalize
it as follows

fn(ξ) :=
fn(ξ)

‖fn‖L2([0,1])

.

It is easily seen that fn has a finite number of discontinuities and
fn → f uniformly on [0, 1] (we recall that ‖f‖L2 = 1 because the
corresponding measure µ has unit second moment). Once again, as
in the proof of the Theorem 5.6, we have to make sure that fn has a
corresponding density u ∈ L∞ such that u ∈ Mfc. More precisely, let

F n be the pseudo inverse of fn for any n ≥ 0. We recall (see Theorem
5.1) that the function f 0 defined before is continuous and satisfies

(f 0)
′ = (fn)′ ≥ 1

n

almost everywhere for all n > 0. Hence, we have

f 0(ξ)− f 0(η) ≥ 1

n
(ξ − η),

which implies a uniform bound (with respect to ξ) for the difference
quotients of the pseudo inverse F 0 as in Theorem 5.6. By means of the
same argument leading to (5.6) in the proof of the Theorem 5.3, we
can deduce that the difference quotients of F n are uniformly bounded
over the real line, which implies that all F n are absolutely continuous.
Therefore, so are the pseudo inverses Fn of the approximating functions
fn, and this implies that Fn is the distribution function of a probability
density un. Moreover, since (Fn)′ is essentially bounded, then un ∈ L∞,
and un has a finite number of connected components in its support
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because fn has a finite number of discontinuities. Finally, fn → f
uniformly implies d∞(un, µ) → 0 as n → +∞. �

For the sake of completeness, we also prove the following approxima-
tion theorem, which is a direct consequence of the previous theorem.

Theorem 5.8. (MBV , d∞) is dense in (M, d∞).

Proof. Thanks to the result in the previous Theorem 5.7, it is sufficient
to prove the assertion when the measure µ is supported on a finite
number of connected subsets of R. Let once again F be the distribution
function of µ and let f be its pseudo inverse. Let ξ1, . . . , ξn be the
(finite) discontinuity points of f . As before we can define the jump
functions rk for k = 1, . . . , n. As proven in Theorem 5.1, the function

f 0(ξ) := f(ξ)−
n∑

k=1

rk(ξ)

is continuous and (f 0)
′ = f ′ almost everywhere. We want to regular-

ize the function f 0 in such a way that the corresponding approximat-
ing densities belong in M0. For a small ε > 0, let ρε be a standard
Friedrichs’ mollifier. We set

f
ε

0(ξ) := ρε ∗ f 0(ξ) + εξ.

It is easily seen that

• f
ε

0 ∈ C∞([0, 1])
• (f

ε

0)
′ ≥ ε.

Let F
ε

0 be the pseudo inverse of f
ε

0. We have

(F
ε

0)
′′(x) = − (f

ε

0)
′′(F

ε

0(x))

((f
ε

0)
′(F

ε

0(x)))2
.

Therefore, F
ε

0 ∈ C2(Kε) for all ε > 0, where Kε is the support of (F
ε

0)
′

which is a compact subset of R. In view of that, the probability density

uε
0 := (F

ε

0)
′

is compactly supported and BV. We define now

f
ε
(ξ) := f

ε

0(ξ) +
n∑

k=0

rk(ξ).

Let F
ε

be the pseudo inverse of f
ε

and let

uε(ξ) := (F
ε
)′.

It is easily seen that uε is still a BV function. Indeed,

TV (uε) ≤ TV (uε
0) + 2n‖uε

0‖L∞(R).
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In order to prove the previous estimate we only need to observe that
the support of uε has n connected components K1, . . . , Kn and

uε(x) = uε
0(x− αj), for all x ∈ Kj, j = 1, . . . , n

for certain constants α1, . . . , αn. Hence, the increase in the total vari-
ation of uε is just a byproduct of the finite number of jumps occurring
at the extremal points of the sets Kj, j = 1, . . . , n. We now consider

f ε(ξ) :=
f

ε
(ξ)

‖f ε‖L2([0,1])

.

From the previous definitions it is clear that

‖f ε − f‖L∞([0,1]) → 0

as ε → 0. Finally, let F ε be the pseudo inverse of f ε. Then, the
probability density uε := (F ε)′ is compactly supported and BV. Hence
uε ∈M0 and d∞(uε, µ) → 0 as ε → 0 which completes the proof. �
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José A. Carrillo — ICREA (Institució Catalana de Recerca i Es-
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