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Abstract. The compressible Navier-Stokes equations for an ideal polytropic gas are considered
in several space dimensions. The question of possible vacuum formation, an open theoretical problem,
is investigated numerically using highly accurate computational methods (pseudospectral in space
and high order in time). The flow is assumed to be symmetric about the origin with a purely radial
velocity field. The numerical results indicate that there are weak solutions to the Navier-Stokes
system in two and three space dimensions which display formation of vacuum when the initial data
are discontinuous and sufficiently large. Various tests regarding mass conservation, energy balance,
and comparison with the Euler equations suggest that the computed solutions correspond to solutions
of the Navier-Stokes system. In addition, in the one-dimensional case, the numerical solutions are
also in agreement with recent theoretical results.
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1. Introduction. A long-standing open problem in the mathematical theory for
fluid dynamics is the question of vacuum formation in compressible flow. Roughly
stated the issue is: do there exist solutions of the Navier-Stokes system (3.1-3.3) for
viscous compressible flow that exhibit vacuum (vanishing density) in finite time, when
the initial density is strictly bounded away from zero?

This problem is relevant from a modeling perspective as well as for theoretical
results. The underlying assumption in the derivation of the Navier-Stokes equations
from physical principles is that the fluid is non-dilute and can be described as a con-
tinuum. A negative answer to the question above would thus provide self-consistency
of the continuum assumption for the Navier-Stokes model. On the other hand, it is
known that an a priori estimate of the form

for a constant C = C(T ): C−1 ≤ ρ(x, t) ≤ C for all (x, t) ∈ Rn × [0, T ] , (1.1)

(ρ denotes density) implies further estimates, and would greatly facilitate existence
proofs. For a discussion of this point see Chapter 3 of [10].

Estimates of the above type are available for one-dimensional (1D) flow [26], even
in the case of large and rough data [15]. As reviewed in Section 2, large efforts have
been invested in searching for similar bounds in the multi-dimensional (multi-D) case.
However, no such results seem to be currently known.

To gain some insight, it is natural to first make a careful numerical study of the
simplest possible scenario where one could expect cavitation in several space dimen-
sions. This is the subject of the present work. In Section 3, we consider 2D and 3D
flows with symmetry for the full Navier-Stokes equations, as well as for the barotropic
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case (where pressure is assumed to be a function of density alone). The equations
are written in a proper non-dimensionalized form and the problem is completed with
appropriate initial and boundary conditions. More is known in the formal limit of
infinitely large Reynolds numbers, i.e., in the case of inviscid fluids. The correspond-
ing Euler equations and their solutions are used as a benchmark for the numerics.
Various considerations regarding the inviscid case are discussed in the Appendix.

The above difficulties are mirrored on the numerical side in the form of various
challenges regarding stability. The case of 1D flows illustrates this issue. Riemann
data with large jumps may lead to vacuum formation for the Euler equations while,
at least for Hoff’s solutions [15], no vacuum is expected for solutions to the corre-
sponding Navier-Stokes equations. Minimizing the amount of numerical diffusion is
thus paramount. To do so, a highly accurate pseudospectral spatial discretization is
used, see Section 4. The stiffness [1] of the discretized in time system increases as
the density ρ goes to zero; for ρ = 0, the system is infinitely stiff and has degener-
ated from being purely differential to being differential algebraic. Several numerical
schemes, none of them explicit, are known to handle this kind of difficulty [1, 12] (at
least for some problems presenting this type of structure). A Backward Difference
Formula (BDF) type method is considered here. This approach has been successfully
tested with respect to mass conservation and energy balance. Finally, a test over the
magnitude of the density has to be done to determine whether “vacuum” has been
reached: an arduous task in finite precision computations! The numerical experi-
ments are set up so that vacuum, if any, appears first at a known point (the origin).
The calculations do not attempt to track the solution past vacuum formation. The
detection of the vacuum itself, see criterion (5.1), is facilitated by the fact that for all
the attempted experiments, there was a difference of at least 7 orders of magnitude
on the size of the smallest observed density between the cases deemed to have vacuum
formation versus those which did not.

Our detailed numerical study is described in Section 5. It indicates that vacuum
formation indeed occurs for multi-D symmetric flows for sufficiently large and dis-
continuous initial data, i.e., in the regime of high Mach number and high Reynolds
number. Section 6 contains a brief summary and a conclusion of our findings.

2. Challenges and relation to other works.

2.1. Theoretical issues. There is a voluminous literature on compressible flow.
A short review of work relevant to vacuum formation and a priori estimates follows.

2.1.1. 1D flows. For one-dimensional flow, i.e. multi-D flow with planar sym-
metry, much stronger results are known than what is currently available for higher
dimensions. A seminal work of Kazhikhov & Shelukhin [26] considers the full 1D
Navier-Stokes system for an ideal polytropic gas. Building on earlier work by Kanel
[21] and Kazhikhov [25], the global existence and uniqueness of a smooth (W 1,2) so-
lution is proved in [26] for arbitrarily large and smooth data. In particular, a priori
bounds of the type (1.1) are established. Similar results for more general gases can
be found in [3], [4], [24].

Highly relevant to the present work is an extension to large and rough (possibly
discontinuous) data established by Hoff [15]. This result pertains to isentropic or
isothermal flow with data (ρ0, u0) satisfying

ρ0 ∈ L∞(R) , ess infR ρ0 > 0 ,



NUMERICAL INVESTIGATION OF CAVITATION IN COMPRESSIBLE FLOWS 3

and

ρ0 − ρ̄ , u0 − ū ∈ L2(R) ,

where ρ̄ , ū are monotone functions that agree outside a bounded interval with the
limiting values of ρ and u at ±∞. Hoff [15] proves that there exists a global weak
solution which satisfies (1.1). This result shows that there is at least one solution of
the Navier-Stokes equations that does not exhibit cavitation, even for Riemann type
data with arbitrarily large jumps. (For an extension of this result to certain flows for
the full Navier-Stokes system see [20]). This is in contrast to the 1D inviscid Euler
equations, for which it is well-known that vacuum formation can occur [34]. The
present numerical study does not contradict Hoff’s result. Indeed, while our results
clearly indicate the possibility of vacuum formation in higher dimensions, we have not
numerically observed cavitation in solutions of the 1D Navier-Stokes system.

A significant result concerning cavitation in 1D flow is given by Hoff & Smoller
[19]. They demonstrate that any, everywhere defined, weak solution of the Navier-
Stokes (barotropic or full) system which satisfies some natural, weak integrability
assumptions cannot contain a vacuum in a non-empty open set, unless the initial
data do so. (For a recent refinement of this result see [8].)

2.1.2. Multi-D flows. Much less is known about compressible flow in higher
dimensions. Global existence of weak solutions is a formidable problem and the theory
is far from complete. Roughly speaking currently known results are of two types: (A)
for large and rough data that possibly contain vacuum states, and (B) for small, rough
data with ess inf ρ0 > 0. (We do not review results on local existence; see the recent
monograph [31] for an extensive bibliography.)

In the former case, P.L. Lions [27] has established existence of global weak so-
lutions in the case of compressible, barotropic flow. For recent extensions, including
results for the full Navier-Stokes system, see [9], [10] and references therein. It is not
known if a bound of the type (1.1) holds for these solutions when the data satisfy
ess inf ρ0 > 0.

More is known for “small” data, i.e. data close to a constant state in a suit-
able norm. In particular, small and sufficiently smooth data generate global smooth
solutions without cavitation for the full Navier-Stokes system [30], [22], [23]. For a
representative result in the case of barotropic flow see Chapter 9 in [31]. In a series of
papers Danchin, [5], [6], [7], has established global existence, and also uniqueness, of
compressible flows in several space dimensions for solutions in so-called critical spaces.
For flows with even less regularity, possibly with discontinuities across hypersurfaces,
Hoff [14] has shown that if the data are sufficiently close to a constant state, in a
suitable norm, and with initial density and temperature bounded away from zero,
then there exists a global weak solution with the same properties at all later times.
No corresponding result seems to be known for large data in several space dimensions.

There are somewhat stronger results available for the type of symmetric (quasi
1D) flows we consider in this paper. For isothermal flow with spherical symmetry,
Hoff [13] establishes existence of a global weak solution for large, symmetric data.
The solution is obtained as the limit of solutions in shells {0 < a ≤ r ≤ b} as
a ↓ 0. By rewriting the equations in Lagrangian coordinates and exploiting the energy
estimate, certain a priori bounds are obtained that are independent of the inner radius
a. However, while guaranteeing existence of a weak solution, the available a priori
bounds do not seem strong enough to determine whether the constructed solution
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contains a vacuum at the center of motion. (For an extension of this result to the full
Navier-Stokes system see [17].)

We note that the higher the dimension of the ambient space, the easier it should
be to generate a vacuum. Roughly speaking, in higher dimensions there are more
directions for the fluid to move in and it should be relatively easier to attain low
densities. This can be verified for the corresponding inviscid system. Indeed, consider
the isentropic Euler equations with spherically symmetric Riemann-type data. Let
the initial velocity field have constant magnitude ū and be directed radially away
from the origin. In this case, there is a threshold value û(n) of ū, depending on
the dimension n of the ambient space, above which a vacuum is formed immediately
[40]. One can verify that û(1) > û(2) > û(3). For the 1D Navier-Stokes system,
we know from Hoff’s result [13] that there exists a weak solution without vacuum,
i.e. “û(1) = ∞” for these solutions. However, in higher dimensions it may well be
that there are solutions with strictly positive density everywhere at time zero, but
which develop a vacuum at later times1. There are also technical reasons that seem
to prevent a priori bounds on the density in higher dimensions. More precisely, in
the 1D analysis of [26], [13] the bounds on the density are derived from the a priori
bounds one gets “for free” from the equations themselves. These are integral bounds
that are strictly stronger in 1D than in higher dimensions due to the geometrical
factor of rn−1 in the space integrals (i.e. dx = const.rn−1 dr).

2.2. Additional remarks.
Cavitation and uniqueness. The issue of cavitation is closely related to the ques-

tion of uniqueness and to the concept of solution one works with. To illustrate this
consider the 1D Navier-Stokes equations with Riemann type data

ρ0(x) ≡ ρ̄ > 0 , u0(x) =
{
−ū for x < 0 ,
ū for x > 0 , (2.1)

where ū > 0. One weak solution to this problem is provided by Hoff’s result [15], and
this solution does not exhibit cavitation. However, a different solution can also be
constructed, with the same data, by piecing together solutions of two disjoint flows
into surrounding vacuum. More precisely, consider the two sets of initial data

ρ−0 (x) =
{
ρ̄ for x < 0 ,
0 for x > 0 , u−0 (x) =

{
−ū for x < 0 ,
∅ for x > 0 , (2.2)

and

ρ+
0 (x) =

{
0 for x < 0 ,
ρ̄ for x > 0 , u+

0 (x) =
{
∅ for x < 0 ,
ū for x > 0 . (2.3)

(Here ∅ indicates that the velocity is left undefined where there is no matter.) One
can now construct solutions (ρ−, u−) and (ρ+, u+) corresponding to these data, that
in addition satisfy a physical no-traction boundary condition along a vacuum-fluid
interface, see [3], [4], [24], [25]. By concatenating the two solutions a solution to
the original problem (2.1) is obtained, and in this solution an open vacuum region is
present from time t = 0+ (and staying at least for a short time). In the region between
the two solutions, one may simply consider the flow to be undefined. Without going

1Furthermore, the possibility remains that there are other weak solutions exhibiting vacuum even
in 1D (see below for further comments on uniqueness).
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into the discussion of which solution is more relevant, we note that Hoff’s solution
[15] is defined everywhere on R×R+, while the second solution is defined only on the
support of its density. The issue of non-uniqueness for 1D compressible Navier-Stokes
in connection with vacuums is treated in detail by Hoff & Serre [18].

For flow in several space dimensions, the picture is less clear since we do not even
know if there is a solution without cavitation in this case. The present work indicates
that there is at least one solution where a vacuum forms. Uniqueness of general weak
solutions, i.e. without any further regularity assumptions beyond what is necessary
to make sense of a weak formulation, is not known. On the other hand, sufficiently
smooth and small solutions are unique, see [30], as are flows belonging to critical
spaces, Danchin [5], [6], [7]. To the best of our knowledge, the only uniqueness result
for flows with possible discontinuities in the density field is given in a recent work
by Hoff [16]. There, uniqueness is established under certain assumptions, among
them that a bound of the type (1.1) holds for at least one of the solutions under
consideration.

Continuum assumption and physical boundary conditions. In view of the 1D ex-
amples above, one should be cautious in making claims about the “physicality” of
constructed or computed solutions to the standard Navier-Stokes model (3.1-3.3) in
the low-density regime. Of course, from a modeling point of view, this is not sur-
prising. The Navier-Stokes system is derived under the assumption that the fluid can
be described as a continuum with everywhere strictly positive mass density. Issues
related to non-uniqueness in presence of vacuum is therefore not surprising. For a
discussion of this point, see [10]. It is also known [35] that the lifespan of smooth,
everywhere defined solutions to the Navier-Stokes system (with vanishing heat con-
ductivity) is finite whenever the initial density is compactly supported.

Once a vacuum has developed, one should impose the physical boundary condition
of vanishing traction at the vacuum-fluid interface. In other words, the vacuum should
not exert a force on the fluid. Note that in the present work, we track the onset of
vacuum formation, not its subsequent evolution.

Well-posedness. In view of both physical arguments as well as the apparent lack
of good a priori estimates for the standard Navier-Stokes model, it is natural to
ask if more accurate models would lead to stronger results. In particular, models
where the transport coefficients λ, µ, κ depend on the thermo-dynamical state could
be considered2. Several issues pertaining to the well-posedness in the presence of
vacuum have been analyzed in [28], [29], [36], [37], [38], [39]. These results show that
the non-uniqueness observed in [18] can be attributed to the unphysical assumption of
constant viscosity coefficient. The corresponding problem for the full system appears
to require new methods. Concerning results in this direction for the full 1D system
see [3], [4], [24], and the recent monograph by Feireisl [10] for the multi-D case.

Precise formulation. After the above remarks, our original question can be formu-
lated more precisely as follows. Given the standard, multi-dimensional Navier-Stokes
model with constant transport coefficients, let the pressure be that of an ideal poly-
tropic gas or, in the case of barotropic flow, of the form Aργ with γ ≥ 1. Consider the
initial-boundary value problem in a ball centered at the origin, with initial density
strictly bounded away from zero and with a possibly discontinuous initial velocity
field. Then: Does there exist an everywhere defined weak solution of the equations
with the property that its density reaches zero in finite time?

2In the 1D isentropic case a relevant assumption is that the viscosity µ depends on the density.
In accordance with kinetic theory it is natural to consider the case with µ ∼ ρk, for a constant k > 0.
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3. The full compressible Navier-Stokes equations. Consider the compress-
ible Navier-Stokes equations for a Newtonian fluid in Rn, n = 1, n = 2 or n = 3 with
no external forces or heat sources. The invariant form of the equations in spatial
(Eulerian) formulation is

ρt + div(ρ~u) = 0 (3.1)

(ρ~u)t + div(ρ~u⊗ ~u) = grad(−p+ λ div ~u) + div(2µD) (3.2)

Et + div
(
(E + p)~u) = div

(
λ(div ~u)~u+ 2µD · ~u− ~q

)
(3.3)

where ρ is the density, ~u = (u1, . . . , un)T is the fluid velocity, p is the pressure, E is
the total energy, D is the deformation rate tensor, ~q is the heat flux vector, and λ
and µ are the viscosity coefficients. Equations (3.1-3.3) are often referred to as the
continuity equation, the conservation of momentum equation, and the conservation
of energy equation, respectively. We also have

E = ρ(e+ |~u|2/2), D = (∂iuj + ∂jui)/2, ~q = −κ∇θ,

where e stands for the internal energy, κ is the coefficient of heat conductivity, and
θ is the temperature. In what follows, we restrict ourselves to the study of ideal and
polytropic (perfect) gases such that

p = Rρθ, e = cvθ, (3.4)

where R is the gas constant and cv is the specific heat at constant volume. The local
sound speed c is then given by

c =
√
γp

ρ
,

where γ = 1+R/cv is the adiabatic exponent. All the transport coefficients cv, λ, µ, κ
are assumed to be constant. For the derivation of the equations see e.g. [31, 32].

3.1. Equations for symmetric flow. We next consider the case of flow with
symmetry, i.e. the velocity is directed (radially when n = 2, 3) away from the origin
and all quantities are functions only of the distance to the origin, and time. Let x
denote a point in space and set r = |x|. Setting

ρ(r, t) = ρ(x, t), ~u(x, t) = u(r, t)
x

r
, etc. . .

leads to the following system of equations,

ρt + (ρu)ξ = 0 (3.5)
ρ(ut + uur) + pr = νuξr (3.6)

cvρ(θt + uθr) + puξ = κθrξ + ν(uξ)2 −
2mµ
rm

(rm−1u2)r , (3.7)

where we have used the notation

m = n− 1, ∂ξ = ∂r +
m

r
, ν = µ+ 2λ .
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(Note that ∂ξr 6= ∂rξ for n = 2 and n = 3.)
We consider spherically symmetric flows (3.5)-(3.7) in the interior of the inter-

val/disk/ball Bb of fixed outer radius b

ρ(r, 0) = ρ0(r), u(r, 0) = u0(r), θ(r, 0) = θ0(r), for r ≤ b. (3.8)

In the one-dimensional case we require that (3.8) holds for all |r| ≤ b. Throughout,
we only consider the case where the gas is set in motion in the outward direction, i.e.
we assume that u0 is a non-negative function in 2D and 3D and is odd with positive
values for r > 0 in 1D. Suitable boundary conditions are discussed in 3.4.

3.2. Non-dimensional form of symmetric equations. Using the initial data,
characteristic length, velocity, density, and temperature can be defined

r̄ := b ,

ū := max
0≤r≤b

|u0(r)| ,

ρ̄ := max
0≤r≤b

ρ0(r) ,

θ̄ := max
0≤r≤b

θ0(r) .

¿From these we define characteristic time and pressure by

t̄ :=
r̄

ū
,

p̄ := p(ρ̄, θ̄) .

The dimensionless independent variables are then

R :=
r

r̄
, T :=

t

t̄
,

and the dimensionless dependent variables are

D :=
ρ

ρ̄
, U :=

u

ū
, Θ :=

θ

θ̄
, P :=

p

p̄
.

Regarding D, U , Θ, P as functions of R and T , we obtain the non-dimensionalized
system

ρt + (ρu)ξ = 0 (3.9)

ρ(ut + uur) +
1

γM2
(ρθ)r =

1
Re
uξr (3.10)

ρ(θt + uθr) + (γ − 1)ρθuξ =
1

PrRe
θrξ

+γ(γ − 1)
M2

Re

(
(uξ)2 −

2mµ
ν

(rm−1u2)r

rm

)
, (3.11)

where we have reverted to the original symbols and where

M :=
|ū|
c̄

= Mach number c̄ = sound speed =
√
γp̄

ρ̄
,

Re :=
r̄ρ̄ū

ν
= Reynolds number ,

Pr :=
νcv
κ

= Prandtl number .

These equations are valid also for n = 1 (m = 0) provided r is interpreted as the
position along the x-axis; in this case ∂ξ = ∂r = ∂x.
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3.3. Barotropic equations. If the pressure p is considered as a function of the
density ρ only, the energy equation (3.7) decouples from the mass and momentum
conservation equations (3.5, 3.6). Here, we consider exclusively the isentropic and
isothermal cases where

p(ρ) = aργ γ ≥ 1 , (3.12)

and where a > 0 is a constant. A nondimensional version of the barotropic equations
can be derived in very much the same way as (3.9-3.11) were derived, except for the
characteristic pressure which is now taken as

p̄ = p(ρ̄) = aρ̄γ .

This leads to the non-dimensionalized system for barotropic flow

ρt + (ρu)ξ = 0, (3.13)

ρ(ut + uur) +
1

γM2
(ργ)r =

1
Re
uξr , (3.14)

where the Mach number at the reference state is now given by

M :=
|ū|
c̄

=
|ū|

aγρ̄γ−1
.

3.4. Boundary conditions and balance relations. The following initial and
boundary conditions are considered throughout

ρ(r, 0) = ρ0(r) = 1 for r ≥ 0, u(r, 0) = u0(r) =
{

1 if r > 0,
0 if r = 0, (3.15)

u(1, t) = 1, t > 0, (3.16)

where r = 1 corresponds now to the outer boundary of the computational domain.
Furthermore, by symmetry, one has

u(0, t) = 0, t > 0, (3.17)

It may have been more natural to consider a homogeneous condition of the type
u(1, t) = 0 instead of (3.16) since that is the case where existence of weak solutions has
been established. There are two reasons not to do this. First, such a condition would
lead to steep gradients and unwanted boundary layer effects on the outer boundary
of the domain. It would thus complicate the numerical resolution of the problem by
making it more susceptible to spurious oscillations. Second, under the above type
of initial conditions (3.15), vacuum formation, if any, is expected to be initiated at
the origin (see Section 5). For short time intervals one would therefore expect that
the outer boundary condition does not play a significant role in the behavior of the
solution near the origin.

Global balance relations for mass and energy can be inferred from the above
system. If M(t) denotes the total mass in the domain {0 < r < 1} then by (3.13)
and (3.16), we have

M(t) = M(0)− cm

∫ t

0

ρ(1, τ) dτ with cm =

 1 if m = 0,
2π if m = 1,
4π if m = 2.

(3.18)
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An energy balance is obtained by multiplying equation (3.13) by u2

2 and equation
(3.14) by u, adding, and integrating with respect to space and time. Taking into
account the side conditions (3.15-3.17) leads to the following energy balance∫ 1

0

(
1
2ρu

2 +G(ρ)
)
rmdr +

1
Re

∫ t

0

∫ 1

0

(
u2

r +
m

r2
u2

)
rm dr dτ =

1
2n

−
∫ t

0

[
1
2ρ(1, τ) +G(ρ(1, τ)) +

1
γM2

(
ρ(1, τ)γ − 1

)
− 1

Re
ur(1, τ)

]
dτ , (3.19)

where

G(ρ) =
ρ

γM2

∫ ρ

1

sγ − 1
s2

ds

is the potential energy.

4. Discretization and numerical analysis. The equations are discretized in
space using Chebyshev collocation methods [2]. Such methods deliver high accuracy
with a low number of nodes for smooth solutions (which are expected here). Unlike the
two and three dimensional cases, the one-dimensional case does not have a coordinate
singularity at r = 0. The discretization reflects this. In the one-dimensional case,
Chebyshev collocation is done at the usual Chebyshev-Gauss-Lobatto nodes in the
spatial domain (0, 1)

rj =
1
2

(
1 + cos

(
πj

N − 1

))
, j = 0, . . . , N − 1,

while in the two and three dimensional cases, the Chebyshev-Gauss-Radau nodes are
used instead

rj =
1
2

(
1 + cos

(
2πj

2N − 1

))
, j = 0, . . . , N − 1.

In each case, N stands for the number of nodes. If v is any of the above unknowns to
be determined for r ∈ (0, 1) and t > 0, we seek an approximation of it of the form

vN (r, t) =
N−1∑
i=0

Vi(t)ψi(r),

where {ψi}N−1
i=0 are the Lagrange interpolation polynomials at the Chebyshev-Gauss-

Lobatto/Radau nodes on [0, 1], i.e., ψi(xj) = δij .
Interpolation at one of the above sets of nodes of a function v = v(r, t) simply

takes the form

INv(r, t) =
N−1∑
j=0

v(rj , t)ψj(r).

By definition, the Chebyshev collocation derivative of v with respect to r at those
nodes is then

∂

∂r
(INv)(rl, t) =

N−1∑
j=0

v(rj , t)ψ′j(rl) =
N−1∑
j=0

Dljv(rj , t),
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with Dlj = ψ′j(rl). The collocation derivative at the nodes can then be obtained
through matrix multiplication.

For the sake of simplicity, we only describe the discretization process for the
barotropic equations. The discretization of the full system relies on identical principles
and can easily be derived by the reader. Approximations for the density ρ and the
velocity u are taken as

ρN (r, t) =
N−1∑
i=0

Vi(t)ψi(r), and uN (r, t) =
N−1∑
i=0

Ui(t)ψi(r).

The semi-discretized in space problem (3.13, 3.14) has the form

ZV (V ′ +DU. ∗ V + U. ∗DV +mU. ∗ V./R) = BV , (4.1)

ZU

(
V. ∗ (U ′ + U. ∗DU) +

1
γM2

D(V.̂γ) −
1
Re

[
D2U +m(DU)./R−mU./(R.̂2)

])
= BU , (4.2)

with the obvious notation for U , V and D; the vector R is the node vector, Rj = rj ,
j = 0, . . . , N − 1. The matrices ZV and ZU zero the first and/or the last entry(ies)
of a vector, further BV and BU are two vectors related to the boundary conditions
(to be specified below). In the above equations, a “dotted operation” (for instance
.∗) refers to that operation being performed elementwise (for instance, U. ∗ V is the
vector of i-th component UiVi, i = 0, . . . , N − 1).

The computations are carried out with the boundary condition (3.16). Such a
boundary condition corresponds to one algebraic equation; the corresponding nodal
unknown may be eliminated. Equations (4.1, 4.2) result then in a system of the type[

I 0
0 diag(V)

] [
V ′
U ′

]
= F(U ,V), (4.3)

where U and V are the remaining unknowns after the boundary conditions have been
taken into account and where F is a known nonlinear function easily derived from
(4.1) and (4.2) and the boundary conditions. In (4.3), diag(V) stands for the diagonal
matrix having V as its diagonal.

In case the density vanishes (or becomes very small) at some node ri at time t,
i.e., Vi(t) = 0, then the differential equation for Ui(t) degenerates into an algebraic
equation; in other words, the system (4.3) becomes differential algebraic. How much
of a numerical problem this is depends on the index of the system. The minimum
number of times one has to differentiate all or part of (4.3) to recover an ODE system
is the index of the Differential Algebraic Equation (DAE) [1]. Here the index is easily
found to be equal to one. Indeed, differentiating the algebraic equation for Ui leads to
an ODE provided the operator D2 +mdiag(1./R)D −mdiag 1./(R.̂2) with proper
side conditions applied to U ′ is nonsingular. The side conditions are that the velocity
is fixed on the outer boundary and thus U ′1(t) = 0 and that nonsingular solutions are
sought. The above operator can be checked to be nonsingular by direct inspection of
the matrices involved. Alternatively, at the continuous level, one can check that the
only nonsingular solution to ∂rru̇+m/r∂ru̇−mu̇/r2 = 0 with u̇(1) = 0 is the trivial
solution u̇ ≡ 0 (where u̇ = ut).
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In the presence of vacuum, the system (4.3) is a semi-explicit of index 1 DAE, as
such it is amenable to relatively simple time discretization such as BDF [1]. Here, the
MATLAB routine ODE15s which implements a variant of BDF was used [33].

Several aspects of the numerical approach can be tested for validity and efficiency.
For instance, the global balance relations (3.18, 3.19) derived for the mass and en-
ergy can be tested on the numerical solutions. The residuals corresponding to the
evaluation of each relation, i.e., when u and ρ are replaced by uN and ρN , have been
checked to be of order 10−6 and 10−8 in the maximum norm (in time) for the mass
and energy balance, respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10!3

10!6

10!5

10!4

10!3

10!2

10!1

100

M=1.75 (no vac)
M=2 (3D vac)

Fig. 5.1. Time behavior of the density at the node closest to the origin, i.e., ρN (rN−1, ·) for
the three-diemensional barotropic equations with Re = 45000, γ = 1.4 and M = 1.75 and M = 2.

5. Numerical results. The problem (3.13, 3.14) has been solved using the
method described in the previous section with various values of the physical parame-
ters (Mach number M, Reynolds number Re, and adiabatic coefficient γ). The initial
and boundary conditions are given by (3.15) and (3.16) respectively. The mesh size
is fixed at N = 128 for all the results given below.

For all our examples, the numerical density ρN is an increasing function of r and
thus the numerical solution is probed at the node closest to the origin for vacuum de-
tection. Vacuum formation, if it occurs, is expected to take place during a fast initial
transient phase. A comparison with the inviscid case is instructive. If cavitation takes
place for the Euler equations, it does so instantaneously (at the origin), i.e., for t > 0.
For the one-dimensional case, this fact is obvious from the explicit self-similar solu-
tions given in the Appendix; for the multidimensional case, see [40], Section 7.10.1.
Regarding the Navier-Stokes equations, our efforts are concentrated on the multidi-
mensional cases for which there is no node at the origin. It is observed numerically
that near the origin the density either abruptly dives down to “zero” or slowly de-
creases. This behavior is illustrated by Figure 5.1. The non-monotonous character
of the evolution in the figure is due to the nature of the spatial discretization, more
precisely the interaction of the outgoing waves with the successive nodes.

Based on the above remarks, a specific calculation is said to lead to vacuum
formation if for some time t, 0 < t < .002

ρN (rN−1, t) < tol = 10−10, (5.1)
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where rN−1 = 1
2 (1 + cos( 2N−1

2N−2π)) is the Chebyshev-Gauss-Radau node closest to the
origin.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

vacuum

NS density
NS velocity
Euler density
Euler velocity

10!6 10!5 10!4 10!3 10!2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
NS density
NS velocity
Euler density
Euler velocity

Fig. 5.2. One-dimensional Navier-Stokes and Euler solutions for γ = 1.4, M = 10. Left:
solutions at time t = 0.5 with Re = 10, 000 (for the Navier-Stokes flow); right: solutions at time t =
.002 with Re = 1, 000, 000 (for the Navier-Stokes flow). For these values, both the one-dimensional
Euler solution and the multidimensional Navier-Stokes exhibit cavitation (see Figure 5.4 below),
while the 1D Navier-Stokes solution does not.

5.1. The one-dimensional case. The one-dimensional calculations were found
to be more sensitive to numerical instabilities than their higher dimensional counter-
parts. To counterbalance this, the one-dimensional computational domain was in some
cases truncated to concentrate on the neighborhood around the origin. In essence,
this refines the mesh near r = 0 and gets rid of the part of the domain where the
solutions are roughly constant. All the multidimensional calculations are obtained
on the full spatial domain 0 < r < 1. In Figure 5.2, two one-dimensional cases are
illustrated for the values γ = 1.4 and M = 10. The left picture shows the behavior
of the solution at t = .5 for a “mild” Reynolds number of Re = 10, 000. The local
behavior near the origin is illustrated in Figure 5.2, right, for Re = 1, 000, 000 and
at time t = .002. For illustration purposes, the corresponding Euler solutions are
also displayed. The Euler solutions are exact, see Appendix. The parameters are
such that cavitation occurs for the Euler flow (M > 2

γ−1 ). No vacuum formation was
observed for the one-dimensional Navier-Stokes solution; in fact, the minimum value
of the density is of order .001, seven order of magnitude larger than the threshold
used above in (5.1). The absence of vacuum in the solutions to the 1D Navier-Stokes
system is consistent with the solutions found by Hoff [15] who considers discontinuous
data of the same type as in the present paper.

5.2. The multidimensional barotropic case. The two- and three-dimensional
barotropic flows (3.13, 3.14) with initial and boundary conditions (3.15, 3.16) are
solved, for fixed values of the adiabatic coefficient γ on grids in “Reynolds and Mach
number space”, i.e., for a collection of values of those two parameters.

Figure 5.3 corresponds to the value γ = 1 for the two- and three-dimensional
cases. The minimum of the density at the node closest to the origin, see criterion
(5.1), is displayed in Figure 5.3, left (for the 3D case). Figure 5.3, right, gives a more
detailed description of the values of M and Re leading to cavitation: values “above”
the two curves lead to vacuum. It clearly illustrates that for large enough values of
both M and Re, there appears to be vacuum formation. The displayed results are not
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Fig. 5.3. Vacuum formation for two- and three-dimensional barotropic flows (3.13, 3.14) with
initial and boundary conditions (3.15, 3.16) and γ = 1. Left: minimum value of the density for the
3D problem; right: vacuum formation for 2D and 3D. Vacuum occurs for values of the parameters
corresponding to points above the curves.

strongly sensitive to the choice of the discretization and tolerance parameters. It is
also observed that vacuum is more easily formed in 3D than in 2D, in agreement with
the remarks in Section 2.1.2.

Similar results were observed for larger values of γ: the vacuum domain increases
slightly as γ increases. This is illustrated in Figure 5.4 for the values γ = 1.4, left,
and γ = 2.5, right. Note that this behavior with respect to γ is markedly different
from the axisymmetric Euler solution for which the case γ = 1 (no cavitation) is quite
different from the case γ > 1, see [40] and Appendix.
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Fig. 5.4. Vacuum formation for two- and three-dimensional barotropic flows (3.13, 3.14) with
initial and boundary conditions (3.15, 3.16); left: γ = 1.4, right: γ = 2.5; vacuum occurs for values
of the parameters corresponding to points above the curves.

The code is ill suited for very large values of the Reynolds number (much larger
than 106), for which oscillations are found to destroy the accuracy of the method.

5.3. The full system results. The results for the full system (3.1-3.3) with
boundary condition (3.16) and boundary and initial conditions on the temperature
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given by

θ(1, t) = 1, t > 0, (5.2)
θ(r, 0) = 1, r > 0, (5.3)

are displayed in Figure 5.5. As can be seen in the figure, there again appears to be
cavitation for large enough data.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

1

2

3

4

5

6

Re

M

2D
3D

Fig. 5.5. Vacuum formation for two- and three-dimensional Navier-Stokes flows (3.1-3.3) with
initial and boundary conditions (3.15, 5.3, 3.16, 5.2), γ = 1.4, and Pr = 1; vacuum occurs for
values of the parameters corresponding to points above the curves.

For (much) larger values of the Prandtl number, Pr, oscillations in the tempera-
ture prevent accurate calculations.

6. Conclusion. The numerical results indicate that vacuum formation is pos-
sible in solutions of the multi-dimensional compressible Navier-Stokes equations, for
discontinuous and sufficiently large data whose density is uniformly bounded away
from zero. Those observations do not contradict known results for the 1D Navier-
Stokes system, nor the currently known results (for both small and large data) that
have been established for multi-D flow.

No attempts were made at following the solutions past vacuum formation. The
present study also leaves unanswered the issue of whether vacuum formation is in-
stantaneous, as is the case for the corresponding solutions to the Euler equations.

Acknowledgment. The last author is indebted to David Hoff for several discus-
sions about the vacuum problem in compressible flow.
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Appendix A. The isentropic Euler equations.
The isentropic Euler equations are easily obtained from (3.13, 3.14) by formally

taking the limit Re →∞, i.e.

ρt + (ρu)ξ = 0, (A.1)

ρ(ut + uur) +
1

γM2
(ργ)r = 0. (A.2)

A.1. The one-dimensional case. Let us consider (A.1,A.2) together with the
Riemann data

ρ(r, 0) = 1 ∀r, u(r, 0) =
{
−1 if r < 0,

1 if r > 0. (A.3)

As is well known, the above Riemann problem can easily be solved. Interestingly, the
isothermal case, γ = 1, and the general isentropic case, γ > 1, are quite different.

A.1.1. The isothermal case γ = 1. For the “symmetric data” (A.3), the
solution is found to consist of two rarefaction waves

[
ρ
u

]
(r, t) =



[
1
−1

]
if r

t < −1− 1
M ,

[
e−(M r

t +M+1)

r
t + 1

M

]
if −1− 1

M < r
t < − 1

M ,

[
e−M

0

]
if − 1

M < r
t <

1
M ,[

eM
r
t−M−1

r
t −

1
M

]
if 1

M < r
t < 1 + 1

M ,[
1
1

]
if 1 + 1

M < r
t .

Note that regardless of the values of the Mach number, M, the above solution does
not lead to cavitation. Indeed, the smallest value of the density is found to be e−M.
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A.1.2. The case γ > 1. Again, the solution is found to consist of two rarefaction
waves for the data (A.3). However, in the present case, cavitation can occur. More
precisely, if M > 2

γ−1 , the solution [ ρ
u ] (r, t) is given by



[
1
−1

]
if r

t < −1− 1
M ,


(

2
γ+1 −M γ−1

γ+1 (1 + r
t )

)2/(γ−1)

1
M(γ+1)

(
2 + (1− γ)M + 2M r

t

)
 if −1− 1

M < r
t < −1 + 2

γ−1
1
M ,

[
0
∅

]
if −1 + 2

γ−1
1
M < r

t < 1− 2
γ−1

1
M , (

2
γ+1 + M γ−1

γ+1 (−1 + r
t )

)2/(γ−1)

1
M(γ+1)

(
−2 + (−1 + γ)M + 2M r

t

)
 if 1− 2

γ−1
1
M < r

t < 1 + 1
M ,

[
1
1

]
if 1 + 1

M < r
t .

Note that for this latter solution, no velocity u is specified in the vacuum. If, on the
other hand, the fluid is not sheared as hard, i.e., if 0 < M < 2

γ−1 , then no cavitation
takes place and the solution [ ρ

u ] (r, t) is found to be

[
1
−1

]
if r

t < −1− 1
M ,


(

2
γ+1 −M γ−1

γ+1 (1 + r
t )

)2/(γ−1)

1
M(γ+1)

(
2 + (1− γ)M + 2M r

t

)
 if −1− 1

M < r
t < − 1

M + γ−1
2 ,

[(
1− M

2 (γ − 1)
) 2

γ−1

0

]
if − 1

M + γ−1
2 < r

t <
1
M − γ−1

2 ,

 (
2

γ+1 + M γ−1
γ+1 (−1 + r

t )
)2/(γ−1)

1
M(γ+1)

(
−2 + (−1 + γ)M + 2M r

t

)
 if 1

M − γ−1
2 < r/t < 1 + 1

M ,

[
1
1

]
if 1 + 1

M < r
t .

A.2. The multidimensional axisymmetric case. Similarity solutions to the
Euler equations can be also be considered for the two and three dimensional axisym-
metric problems that are studied in the paper. Even though no closed form solutions
can be found, the analysis reveals that solutions without swirls may exhibit cavitation
if γ > 1 but not if γ = 1 [40], §7.4.
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A.3. Other generalizations. The one-dimensional Riemann problem can also
be solved for the nonisentropic Euler equations (full system). Assuming the initial
temperature to be equal to 1 everywhere, cavitation is found to occur under exactly
the same condition as above (M > 2

γ−1 ) [34], Theorem 18.6. The construction of
self-similar solutions for the nonisentropic Euler equations in the multidimensional
axisymmetric case is, to the best of the authors’ knowledge, an open problem.


