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Abstract

We first prove the local existence of smooth solutions to the Cauchy problem for
the equations of multidimensional radiation hydrodynamics which are a hyperbolic-
Boltzmann coupled system. Then, we show that a smooth solution will blow up in
finite time if the initial data are large. Moreover, the property of finite propagation
speed is obtained simultaneously.

1 Introduction

This paper is concerned with the local well-posedness and finite-time blow-up of smooth
solutions to the Cauchy problem for the general equations arising from radiation hydrody-
namics.

The importance of thermal radiation in physical problems increases as the temperature is
raised. At moderate temperatures, the role of the radiation is primarily one of transporting
energy by radiative process, while at higher temperature, the energy and momentum den-
sities of the radiation field may become comparable to or even dominate the corresponding
fluid quantities. In this case, the radiation field significantly affects the dynamics of the fluid.
Hydrodynamics with explicit account of the radiation energy and momentum contributions
constitutes the charter of “radiation hydrodynamics”. The theory of radiation hydrody-
namics finds a wide range of application, including such diverse astrophysical phenomena
as waves and oscillations in stellar atmospheres and envelopes, nonlinear stellar pulsation,
supernova explosions, stellar winds, and many others. It has also direct application in other
areas, for instance to the physics of laser fusion and reentry of vehicles. As will be seen be-
low, the general equations of radiation hydrodynamics are a system of the Euler equations
(hyperbolic) coupled with a transport equation (Boltzmann equation). Therefore, the study
of mathematical theory of radiation hydrodynamics is of great importance both from the
mathematical theory and application point of view.

Since in radiation hydrodynamic problems the matter is generally in the gaseous state,
one could envision describing the matter by a kinetic (transport) equation similar to the
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equation of radiative transfer, generally referred to as the Boltzmann equation. In radiation
hydrodynamic work such a detailed kinetic description of the matter is not used. Rather, one
uses hydrodynamics, with a proper accounting of the effects of the radiation field, to describe
the motion of the fluid. Actually, the equations of hydrodynamics follow from simple kinetic
theory considerations and hence constitute an approximation to the Boltzmann (kinetic)
equation.

In the term radiation hydrodynamics, it is necessary to include effects of the radiation
field in the hydrodynamic equations for this class of problems. The equations of hydrody-
namics result from particle, momentum, and energy balances for a differential volume of
space. If a significant radiation field is present, one has to include the radiation momen-
tum and energy in these balances. This gives rise to radiation terms in the equations of
hydrodynamics. We first introduce the basic concepts needed to describe the radiation field
and its interaction with matter. Consider the contributions of the radiation field to the
energy and momentum density and flux. At any time, 2N variables are required to specify
the position of a photon in phase space, namely N position variables and N momentum
variables. We denote the N position variables by the vector x. In radiative transfer work
it is conventional to use, rather than the N momentum variables, N equivalent variables,
namely the frequency v and the direction of travel of the photon 2. In terms of these vari-
ables, we introduce the distribution function f(z,t,v,Q), such that fdxdvdQ) is the number
of photons (at time ¢) at space point  in a differential volume element dz, with frequency v
in a frequency interval dv, and travelling in a direction €2 in a solid angle element df). The
specific intensity of radiation I(z,t,v, ) is then defined as

I(z,t,v,Q) = chvf(x,t,v,Q)

with the Plank constant h and the light speed c.

Under the consideration of the three basic interactions between photons and matter,
namely absorption, scattering and emission, we find the equation of transfer in the conven-
tional form (cf. [5, 4])

101(v,9)

c Ot

+/ dl// [11(73(1/ v, - DIV, Q) —os(v — V', Q- Q) (v, Q)] dQ'. (1.1)
0 gN-1 LV

+Q-VI,Q)=5SW)—o0,(v)I(v,)

Here I(v,Q) = I(z,t,1v,Q), S¥~1 is the unit ball in RY, S(v) = S(x,t,v) is the rate of en-
ergy emission due to spontaneous processes. o,(v) = o4(,t, v, 0,60) denotes the absorption
coefficient that may also depend on the mass density g and the temperature 6 of the matter.
The dependence of o, upon p and 6 can have the form, for example, (cf. [10, 2])

Oq = O(Qae—ﬁ)’ O[,ﬁ > 0.

Similar to absorption, a photon can undergo scattering interactions with matter, and
the scattering interaction serves to change the photon’s characteristics v’ and Q' to a new
set of characteristics v and Q. To quantitatively describe the scattering event, one requires
a probabilistic statement concerning this change. This leads to the definition of the “differ-
ential scattering coefficient” o5(v' — v, - Q) = 0,(vV — 1, - Q, 0,0) that may depend on
o and @ (in general, o, is independent of 6, cf. Remark 2.3), such that the probability of a
photon being scattered from v/ to v contained in dv, and from €' to Q contained in df2, in
travelling a distance ds is given by os(v/ — v, Q- Q)dvdQds. Therefore,

outscattering = / dz// os(v— v, Q- Q) (v,Q)dY,
0 SN-1



inscattering = / du'/ os(V = v, Q- IV, Q)dY.
0 SN—-1

In the special case, for example, of scattering of photons from a Maxwellian gas of free
electrons at some temperature 6, the scattering kernel o, has the property (cf. [1, 5])

O'S(V’ — U, QO . Q)W(V’)/hvl — O’S(V N V’,Q . Q/)W(V)/hv, W(V) — V3€—hu/k'0,

and o, behaves like o5 = O(p).

In the above, for the sake of simplicity, we have assumed that S and o, are independent
of 2 and o4 depends only upon 2 - 2. This means no inherent preferred direction in the
matter. However, the fact that in radiation hydrodynamic problems the material is in
general in motion changes the situation. This motion does introduce a preferred direction
in the matter, namely the direction of motion of the fluid, and consequently, introduces an
Q2 (angular) dependence into S and o,, and separate Q and ' dependences into o,. These
Q (angular) dependences are not inherent properties of the material, but arise only from the
relative motion between the fluid and the observer. It should be pointed out that the rate
of energy emission S may also depend on ¢ and 6 (see Remark 2.3). Moreover, our local
well-posedness Theorem 2.1 in Section 2 does still hold for the angular-dependent o, o,
and the angular- and (g, §)-dependent S (cf. Remark 2.2).

For simplicity of presentation, in what follows, we will suppress the x, ¢, o and 6 depen-
dences unless it is stated, and describe the assumption on theses dependences in Theorem
2.1.

In terms of the specific intensity, we define three quantities, namely, the energy density,
the radiative flux and the radiative pressure tensor, by

1 oo
E,. = f/ dl// I(v,Q)dQ,
Cc Jo SN-1

FT:/ dy/ QI (v, Q)dS, (1.2)
0 SN-1

P,.= 1/ dz// Q® QI (v, Q)d.
cJo SN-1

Including effects due to the presence of a radiation field, the equations of (nonrelativistic)
hydrodynamics, in Eulerian coordinates, are written as

do

5tV (ew) =0, (1.3)
1

§t<QU+ CQFT> +VP,, +V: (ou®@u+P,)=0, (1.4)

0 (1 1
& <2Qu2 +E,, + Er) +V. |:<2Qu2 +E,, + Pm> u+ Fr:| =W, (15)

where u = (uq, -+, uy) is the fluid velocity, W denotes the external energy, E,, and P,,, are
the fluid energy density and the material pressure, respectively. In this paper we consider
only polytropic ideal gases, namely,

E,, :=c, 009, P, = Rod (=c,(v—1)0b), (1.6)

with ¢ and 0 denoting the mass density and the temperature of the fluid, respectively, ¢, > 0
being the heat conductivity, R = ¢, (7 — 1), and v > 1 being the specific heat ratio.



The equations (1.1)-(1.5) are a hyperbolic-Boltzmann coupled system of first order in
which (1.3)-(1.5) describe the conservation laws of mass, momentum and energy. Aside from
the radiation terms, these are just the classical (nonrelativistic) equations of hydrodynamics
for a compressible, ideal fluid. We refer to [5, 4] for more details on radiation hydrodynamics.

The aim of this paper is first to prove the local existence of smooth solutions to the
Cauchy problem for (1.1)-(1.5), and then to show that a smooth solution in general will blow
up in finite time if the initial data are large. Moreover, the property of finite propagation
speed is also obtained. Roughly speaking, the local existence is obtained by using an iteration
and the Banach contraction mapping principle, a standard procedure (see, e.g., [3, 6]), while
the blow-up and the finite propagation speed results are proved by adapting and modifying
Sideris’ arguments [8, 9] for the Euler equations. However, we should point out here that
the main difficulties in the proof lie in dealing with the nonlinear and non-local terms in the
system, and we shall employ delicate energy estimates to control the terms.

Throughout this paper we denote the usual Sobolev spaces by H*(RY) with norm || - ||s.
LP(I, B) resp. |- ||Lr(1,3) denotes the space of all strongly measurable, pth-power integrable
(essentially bounded if p = co) functions from I to B resp. its norm, I C R an interval, B
a Banach space. For simplicity we also use the following abbreviations:

or = max || .

=M lez@yys - Ds =1 lae@vy, - Joax,

The same letter C' (sometimes used as C(X,---) to emphasize the dependence of C' on
X, ---) will denote various positive constants.

2 Reformulation and the local existence

In this section we give a local existence theorem. For this purpose we first rewrite the
system (1.1)-(1.5) to a symmetric hyperbolic system of first order. Then, we use the Banach
contraction mapping principle and tricky energy estimates to prove the local existence and
uniqueness of smooth solutions to the Cauchy problem for (1.1)-(1.5).

Let us consider the equation of transfer, i.e.,

LAY Lo gr,0)
c Ot
=S(v)— I(v,Q) + / /SN o WV = v, Q- DIV, Q)dY (2.1)

where o(v) is the total interaction coefficient, i.e., o(v) = 04(v) + 04(v), here

V)= / / os(v— v, Q- QNYdY dV,
0o Jen-1

Without loss of generality, we assume W = 0 in (1.5). Denote the vector and matrix

V= (0,u1, - un, ), A (V) = {Gmn} (v 12)x (N 12)

where @i = uj, Gij1) = 0 At = BO/e, dgryivee) = R Gvyairn) = R/e, for
j=1,---,N, and the rest elements of @;; are set to 0. Define the vector G(V,I) by

G(Vva I) = (QOagla e 7gN+1)t



with go = 0, and fOI‘] =1,

/ du/SN 1 — o)1 (v, Q)] dO2
/ dy/SN 1dQ/ v’ /SN 1 W — v, Q- Q)I(u’,Q’)dQ’},

. 0))dQ
avn={ [T [ o)1 (v, 2))d
+/ dz// dQ/ dz// u-QZIJs(z/HV,Q'-Q)I(V’,Q’)CZQ’}
0 SN-1 0 SN-1 14
du/ 1(v,9))dQ
[ ()1(,)

/ dl// dQ/ dl// —JS V=, Q- Q)1 (V/7Q,)dﬁ/}.
SN—1 SN-1 v/

Thus, using (1.1) and (1.2) to delete the derivative terms involved with radiation in the
system (1.3)-(1.5), we can rewrite (1.3)-(1.5) as

ZA 8% GV, I). (2.2)

We shall study the Cauchy problem for (2.1) and (2.2) together with the initial data
I(2,0,v,Q) = Iy(z,1,9Q), V(z,0)=Vy(x), z e RV, (2.3)

Then, the main result of this section reads:

Theorem 2.1 Let s > % + 1. Assume that
(A1) S € L>(0,T; L*(0, 00; H*(RY)));

(42) max lo(-,t,v,9,0,0) = &lls < C(lle = ells, 160 = 6lls), >0

(,Q)€[0,00)x SN -1

S oo 2 A
(A3) / dy/ (/ du'/ %Has(-,t,u' 1,0 Q,0,0)— 63H§dﬂl> dQ
0 SN-—-1 0 SN-1

<C(le-alls 10-0ll), t=0 (A=3 or XA=1)
for (p—p,0 —0) € H*(RN) with My < p,0 < My, and

(Vo.Io) € G = { (V. 1) | (0~ 5.6 - 0) € H*(RY),

I(z,v,Q) € L*((0,00) x SN HS(RN)), M3 < / / gdQdy < M4},
0 JSN-1

where g, 0 and M; (i = 1,---,4) are positive constants, ¢ = o(x,t,v,, 0, ) and G, =
os(z,t,v — v, -Q,0,0). Then, there exists a T > 0, such that the problem (2.1)-(2.3)
has a unique smooth solution (V,I) on [0,T) satisfying

Ve CYRYN x[0,T]), Te€CYRYN x[0,T],(0,00) x S¥=1), and

(V,I) € Gy for some G1 CC G.



Remark 2.1 We can obtain a similar existence-uniqueness theorem without essential changes

in the arguments, if we, instead of (1.1), consider the following equation of transfer which

has included the effects of induced processes and is in the local thermodynamic equilibrium:
10I(v,Q
*(a%) + Q-VIW,Q)=o,)[B)—1(v,Q)]
c

/ / —US V=, - I Q)1+ ATy, Q) /2h3)dQY dv
s

No1 UV

/ / os(v— 1, Q- QI (v, Q)1 + IV, Q) 2k |dY dV/
SN 1
where B is the Plank function, i.e.,
2h13
B(v) = 22 (/R 1)1 and ol (1) = 0u(v)(1 — e~h/kO),

Remark 2.2 Theorem 2.1 still remains valid if o4, 05 and S are angular-dependent and
satisfy suitable conditions, i.e.,

S=S51,9Q), ca=0,(r,Q), 0s =0V —1,Q — Q).

Remark 2.3 The conditions (A2) and (A3) are satisfied when the absorption coefficient
and the scattering kernel (Compton scattering) are given by, for example (see [5]),

7a(v) = Cro0~/? exp {— % (%01/0)2]

os(v — v, §)
a1+ (g o
BT {1+ (1+&)[1+~(1 —f)}}é( 14+~(1 —5))’

where y=Cyv, E=Q-Q, C; (i=1,---,4) are positive constants, vy is the fized frequency.

PROOF. The proof is based on a classical iteration scheme and (tricky) energy estimates as
well as the Banach contraction mapping principle, a standard procedure (cf. [3]). First, we
symmetrize (2.2) by multiplying it with the symmetrizing matrix Ay(V') defined by

0! 0 0
0 24 0
Ao(V) = RO VXN
CL0
0 0 RO?

Therefore, we shall prove Theorem 2.1 for the quasilinear symmetric system:

ZA ax] = F(V,1), (24)

where A;(V) := Ag(V)A;(V) is symmetric, and
F(V, 1) := A(V)G(V, 1) = (fo, fr, -+ fuga)'



with fo =0, and for j =1,---, N,

fi= cRG / du/SN 1 o(v)I(v,0))dQ
/ dl//SN 1dQ/ dv' /SN 1 (v — v, Q- Q)I(I/,Q/)dQ/},

fuo = / a [ Mu-ﬂ(S(u) — o)y, 2))d0

—|—/ dl// dQ/ dz// ’LL'QK/JS(I// — v, Q’~Q)I(V’,Q’)dﬂ'}
0 SN-—1 0 SN-—1 1%
[ [ 5w - oweiman

/ dz// dQ/ dzx/ Lot — v, Q)1 (u’,Q’)dQ’}.
SN-—1 SN-1 V

In the sequel, we construct a smooth solution of (2.1), (2.4) and (2.3). Choose j(z) €
Ce°(RN), suppj C {a : |z] <1}, j > 0 and [on j(z)de = 1. Set jo = e Nj(£). Define
Jou € C(RN) N H*(RN) by

Jeula) = [ et = yputu)ay

Set ex =27 %¢g (k=10,1,2,---) and
Vi) = T Volx),  I5(e,n,Q) = T To(e, 1, Q),

where ¢ > 0 will be chosen later.
We will construct a solution to (2.1), (2.4) and (2.3) through the following iteration
scheme: First, we set

VOx,t) =Vi(x), Ix,t,v,Q)=I(z,v,Q), (2.5)

and for k = 0,1,2,---, we define V¥*1(x,t) and I*T!(z,t,v,Q) inductively as the solution
of the following linearized equation:

1M + Q- VIF (v, Q)—i—a () I" (1, Q)

/ du/ (W = v, - QI Q)dY,
SN-1 v
ovk+
Ao(VH) = +ZA;-<V’“) axj = F(V" 1Y),

j=1

I*(z,0,0,Q) = IF (2,0,Q), VF(z,0) = VFT(2),

where o and o¥ are ¢ and o, with (g, ) replaced by (¢*,6%), respectively.
It follows immediately that

VL € ([0, Ti] x RY), T*1 € L2((0,00) x SN=1, C°°([0, Tx] x RY))



with Ty being the largest time of existence for (2.6) where the estimates

max / dz// [ 1F — I0)2d < Ry and |||[VF = VO||sr. < Ry
0<t<Ty Jo SN-1

are valid. The following crucial lemma guarantees that there is a T' > 0 such that T, > T
for k=1,2,---.

Lemma 2.2 There are constants Ry > 0, L > 0 and T > 0 such that I**(x,t,v,Q),
VEHL(2,t) (k=0,1,---) defined by the solution of (2.6) satisfy

oo
0r<nta<xT/ dz// | T*+1 — 12)2d2 < Ry, (2.7)
St=4Jo SN-1
avk+1
IV = Ve llls,r < R, |l 5 Ms-17 < L. (2.8)

Proposition 2.3 i) (Moser-type calculus inequality) For f,g € H° N L>® and |a| < s

1D (f9)l < Cs(lf = l1D°gll + llgll = [[D* £1])-

i) (Sobolev’s embedding inequality) For s > N/2,

||fHL°° < CS||fHS~
The following corollary is the direct consequence of Proposition 2.3.

Corollary 2.4 If s > N/2, then for f,g € H® and |a| < s,

1D (f9)ll < Csllflsllglls-

PROOF OF LEMMA 2.2.  Step I Estimate of [;° dv [¢n_ [[TFTF — I9||2dS2.
Denoting Wk+! = [¥+1 — 10 we find by a straightforward calculation that W*+! satisfies

1 oWkl (v, Q)
c ot

=S() +H+/ dl/'/ Klaf(z/ — v, Q- OIF,Q)dsY, (2.9)
0 S

N-1 UV

+ Q- VW (1, Q) + o* () WF (1, Q)

W (z,0,v,Q) = I§(2,0,1,Q) — I(z,0,1,9Q),

where
H=-Q-VI) o).

For simplicity of presentation, we drop out the superscript k£ and consider

18W(y, Q)
c ot

:S(y)+H+/ dy’/ K/as(y’—>V,Q’.Q)I(z/,Q’)dQ’, (2.10)
0 SN—-1 14

+Q-VW(w,Q)+ o)W (v, Q)

W(z,0,v,Q) = Wy(z,v,Q).



Differentiating (2.10) a-times with respect to x, multiplying the resulting equation by D*W |
and then integrating over R x (0,00) x SV~1, we deduce that

/ / / |DOW |2dadQ < c/ dz// | DWW ||%dQ2
Cdt SN-1 JRN
+o/ du/ |D*(S(v) + H)| dQ+/ du/ 1D (o (v)W) || 2dS2 (2.11)
SN-1
/ das/ du/ dQ/ dv' / —DO‘ (os(v/ = v, Q- Q) I, Q) DWW .
RN SN-1 SN-1 v’

From Corollary 2.4 and Holder’s inequality we get

/ dl// D (o ()W)[|?dQ2
SN 1
<c/ dy/ ID*((o(v) — 3)W)]| dQ+O/ dz// |D(5W)|2dQ
SN—1

Cu(  max, o) =olZ+ | max ol /d/ W24,

0,00)x SN—1

/ dx/ du/ dQ/ dv' / —Da (os(V = v, Q- QI ,Q))D*WdQY
RN SN-1 SN-1 v
C dm/ dy/ dQ/ av' / (os(v/ =1, Q- Q) —as)I(V, Q) DWdQY
RN SN-1 SN-1 v
+C dm/ du/ dQ/ du/ Y Do (e I(v' Q) DOW S
RN SN-—1 SN-—1 v/
CS/ dz// ||DO‘W\|2dQ+C’S / du/ ||I(U,Q)||§d9)
A LY AT e (A R R B E
SN 1
Thus, from (2.11), it follows that
/ du/ / DO 2
Cdt SN-1 JrN
<c/ dz// ||D(’W\|2dQ+C/ du/ (ID*S()|? + | D H|?)d2
2,
s, max, low)-olp+  max Jol2) [Tav [ i

+C, / du/ 11(v, Q) H2d9>
/ dy/ dQ/ dz// f/z(HUS(V/HI/,Q/-Q)*OTsHiJrHOTS||§)dQ/.
0 SN-1 0 gN-1 UV

Applying Gronwall’s inequality to the above inequality and using the assumptions of Theo-
rem 2.1, we obtain (2.7).

Step II. Estimate of |DF(VE, I®)||, |a| < s.

| /\

IN

IN



For simplicity of presentation, we drop out the superscript k in F(V*, I*). By Proposition
2.3 we see that

1D < G5 e + 1D

H/ dz// Q50| +||/ du/ W1, (2.12)

+H/ du/ dQ/ du’/ 0,20y — @ )10/, 2)a | }.
0 SN-—1 0 SN-—1 v s

If one uses Minkowski’s, Sobolev’s and and Hélder’s inequalities, one obtains from Corollary
2.4 that for |a| < s,

HD”/ dl// v)1dQdv||
<o [Ta / (o) — alls + ol ) 17112

1/2
/dy/ \|I||§dQ
2
/du/ o (v 70|\2dQ /du/ [k dQ }
SN-1 SN-—
which implies

oS o0 1/2
||/ dy/ Qja(y)IdQ||S§Cs/ dz// ||1||§d9 (2.13)
2
/du/ o (v fa||2dQ /du/ HgH?dQ }

Similarly, we have

||/ du/ )iy, < /Ooo /Sm ||ks~(y)||§dey)1/2 (2.14)

H/ dy/ dQ/ dl// W — v, QI QY ||
SgN-1 gN-1
2
< o[ af ||I<u,9>||§d9)
0 SN—I
e} 0o 1/2
/ dV/SN (/ du’/ ,2|||2dQ> d9 (2.15)

/2

/ dy/ / dv’ / ||crg V=, Q- Q) — 5| 2dY dQ}.
0 sv=1 \Jo sn-1 V2

Thus, combining (2.12) with (2.13)-(2.15), we conclude that for 1 < j < N,

125 = €. (Ighe= + 102N {( [ [, 1swiEana)”

+(/OOO dv /SM \|I||§d§2)

and

10



> > / V2 / / =12 / 1z

. dv dv —/2”05(1/ — v, Q- Q) — 5,]|5dQ dQ
SN 1 SN
/2
/ dz// lo(v) — 52 dQ / dv/ Io242)
SN 1
1/2

[ w Y L||5 12dey / dQ}} (2.16)

0 SN-—-1 0 SN-—-1 V/2 slls ’ ’

In the same manner, we can get

1D sl < G (gl + 1Dl +Z[ = + 1D )

/du/ 1))’ /du/SNIHU )= 5|2 dQ)

[Caf ([ / ,QHUSHVQ/ >_05Hgdg)”d9
/du/ 1S()|12 dQ /du/ |)2a0) s

/ dV/SNI(/ du/ ,2||*H dQ)l/deH. (2.17)

Therefore,

N+1

IDF|| < Cn Y D]l < CNS{H*IILOO + ||DS( )+ ||92 [z~ + IIDS(QQ)H
j=1

+Z\|2\|Lm+nDs ([ [ 1sezae)”

+ / dz// ||I||§dQ

0 SN*]

o o / V2 / / — 112 ! 1/2
. dv dv —,2||05(1/ - 1,0 Q) — 7,)|2dQ2 Q)

SN 1 SN_
2
/ dz// lo(v) — 5|2 dQ / du/ 152 dQ
1/2

+/0 dV/SNil (/0 dz//sm :,2||a;|§d9’) dQH. (2.18)

Step III. Derivation of the estimates (2.8).
It is easy to see that U**! satisfies

k+1 k+1
AO(V'“)aU +ZAj(Vk)aU = F(V* IF) + HF,
j=1

ot — 8xj (2.19)
Uk+1(x7 0) = VOkJrl(‘r) - %0($)>

where N
oUY
H = — A (VE 0.



Then, with the aid of Steps I and II, we can follow the same procedure as in [3] to obtain
the estimates (2.8). Thus, the proof of Lemma 2.2 is complete. O

The following lemma implies that the operator associated with (V*, I*) is contracted.

Lemma 2.5 There evist T. € (0,T], a < 1, {8;}32, and {3132, with 3, |5] < oo, and
Z_j |v;] < oo, such that for k=1,2,---,

IV = V¥, + ma / / |15 — 1 [2ddy]
0,7 N-1

1/2
< o{IVE =V o+ [ [T [ - 1 Rd] ) 4
S

(2.20)
PROOF. By (2.6) we obtain
ok —yky X O(VEHL — vk
Ag(VF)—eoee— A,V = F(V* I*) - F(V* L T 1 G
0( ) at + j; ]( ) 8$j ( ’ ) ( ) ) + ’
where N
vk vk
G = —(Ag(VF) — Ag(VF =) (A;(VF) - A (v
(AofV") = Aa(V ) T = (V) = A0
From Lemma 2.2, Proposition 2.3 and Taylor’s expansion theorem, we deduce that
G o < CIIVE =V o7 (2.21)

We find from the mean value theorem and Hoélder’s inequality that for j =1,2,---, N+1
q y j ) Y ) )
15051 = SO < e(vE -V ([ [ e a2,
0 SN-1
Thus, one concludes
(o)
129 - POy < of vk - Vi an [t - i Raey e,
0 SN-—-1
from which, we get (see [3])
IV = VEllo,r,
o
<ar(JIVE = V* o+ max( [ dv [ - IR ) + g,
[Ole] 0 SN-1
(2.22)

where o < 1/2, > |0k] < 0.
To bound I**! — I* we use the first equation of (2.6) to see that

1 8(Ik+1 Ik)

- + Q- V(I =T 4 o ) (1M = 1) = = (F (v) — " () I*

/ dy/ W — 0, Q- QMW Q) — I, Q))deY
SN-1 I/

/ dv' / WV =, Q Q) - -0, QNI Q))dY
SN-1 v
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Hence, we deduce from Holder’s inequality that

(/ dI// ||Ik+1 _Ik”QdQ)l/Q
0 SN-1

([ av [0 = B2+ OT {11 = o o + 10F = 0 o

oo
+max(/ du/ | 1% — Ik_1||2dQ)1/2}
0,77 " Jo SN-1

aa{ IV = VA o, + max([ v [ )
[0,T3] 0 SN-1

IA

IN

(2.23)

where as < 1/2 and ), |yk| < oo. Finally, taking T\ = min{T}, 7>}, we obtain Lemma 2.5
by using (2.22) and (2.23). This completes the proof. O

We continue to prove Theorem 2.1. Lemmas 2.2, 2.5 and Sobolev’s imbedding theorem
guarantee the strong convergence of (V*, I¥) in C([0,T], H¥ (RV)) x C([0,T], L%((0,00) x
SN-1 H'(RN))) for any s’ with 1 + N/2 < s < s. So, the existence of a solution in the
function class given in Theorem 2.1 has been shown. Finally, the uniqueness of the solutions
is obtained by an application of the standard energy method (see [7]). O

3 Formation of singularities

For the sake of simplicity, in this section we only consider the three-dimensional case N = 3.
By adapting and modifying the arguments in [8] for the Euler equations, we shall prove in
this section that, in general, a smooth solution to (2.1)-(2.3) will break down in finite time
when the initial data are large enough. For this purpose, we consider (2.1)-(2.3) with o, =0
and S(v) and o,(v) are replaced by

A1(v,Q)
2h3

2B(v)
2h13

ol (v)B(v) (1 + ) and a;(y)(l + ), respectively, (3.1)
where B is a function of v only, the absorption coefficent o’ (v) = o’ (z,t,v,9, 0,6). (3.1) is
refereed to as resulting from the so-called “reduced processes” describing the manifestation
in the equation of transfer of the quantum statistics obeyed by photons (see, e.g., [5] and
Remark 2.2).

With (3.1), we can write (2.1)-(2.3) as
101

_— . — / 3 —
T +Q-VI=0,(v)(B(v)—1I), (3.2)
)T ov
Ao(V) 5+ ;AJ»(V)@ =F(V, 1), (3.3)
together with initial data
I(z,0,1,Q) = I°(z,1,9), V(z,0)=V’(z) = ("(x),u"(x),6°(x)), (3.4)
where
Ro16? 0 0
Ag(V)=1 0 0015 0
0 0 CvQ
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and the symmetric matrix AJ(V) = Ao(V)Bj (V), B](V) = (bmn)5><5 with b“ = Uy, bl(j+1) =
0, bijyny1 = RO/0, bjr1ys = R, bsjy1) = RO/c, for j = 1,2,3, and the rest elements are
equal to 0, F(V,I) = Ag(V)G(V,I) = (fo, f1, -+, fn+1)t with fo =0,

o= =2 [Cw [ aeB-na. -2
Cc Jo S2

i/Ooodu/SZu-QU;(V)(B—I)dQ—/OOOdy/S2 o (v)(B — I)dQ.

In what follows, let (V, I') denote a smooth solution of (3.2)-(3.4) guaranteed by Theorem
2.1 on [0, 7] for some T > 0. In the sequel, we shall prove that (V,I) will breaks down at
some ty > T provided that the initial data are sufficiently large. For this purpose, we assume
throughout this section that

I°(z,v,Q) = B(v), V%)=V =(p,0,0) forall || > Ry,

Ja

3.5
oL(v) >0, ) >0, 0%(x) >0, (3:5)
where Ry, o and 6 are positive constants. Then, one has
Lemma 3.1 Assume I°(z,v,Q) > B(v), then I(z,t,v,Q) > B(v).
PROOF. Since B is independent of z and ¢, the equation (3.2) can be rewritten as
10(I - B _ _
7(7) +Q-V(I - B)+o,(v)(I-B)=0.
c Ot
Thus, the lower bound I(x,t,v,§) > B follows from an application of the method of char-
acteristics to the above linear equation. O

Next, we prove the property of finite propagation speed for the system (3.2)-(3.4) which
is needed in the proof of the blow-up result later. Denote
D(t) :={z € R®: |z| > Ry + Bt}, where 8 = (R%*dc;* + RO)'/?;
E:={(z,t):x € D(t),0<t<T}
Thus, we have the following theorem of finite propagation speed.
Proposition 3.2 (Finite propagation speed) Let 8 > 1 and (3.5) be satisfied. If (V,I) is a
Cl-solution of (3.2)-(5.4), then (V,I) = (V,B) in E.
PROOF. First, as a consequence of the proposition in [8], we easily find that I = B in
Dt)={x €R3:|z| > Ry + [t} for 0 <t <T.
Next, we use and modify the local energy estimate arguments used in [8] for the Eu-
ler equations to prove the finite propagation speed. To this end, define Q(\, &) = M5 —
Z?:l &B;(V) for (M, €) € R x S2. Then, the characteristic equation det Q(\,¢) = 0 has

5 real roots, where A\(§) = [{|8 and u(§) = —[¢|3 denote the largest and smallest root,
respectively. Set A; = A;(V),j=0,---,3, and

N
-0 - 0
P=A~ Aj—.
o5+ 2 g,
Jj=1
Because of D(t) C D(t) for 0 <t < T, I = B in E. Hence,

+> A (V)m——==0, z€D(t), 0<t<T. (3.6)



With the help of (3.6), we can complete the rest of the proof in the same manner as that in
[8] for the Euler equations, and therefore, we omit it here. g

Now, define
mit) = [ (0~ )iz,
RS
1, _ o0 _
et) = [ (Goluf*+Em— Ep+E.~ [ dv | Bao)ds,
R3 2 0 S2

1 0 _
F(t) ::/ T - gudr + — dx/ dz// x - Q(I — B)dQ.
RS c* Jrs 0 52

Thus, by (3.2) and (3.3), we obtain by straightforward calculations that
m(t) = m(0), e(t) = e(0).
Then, the main theorem of this section reads:

Theorem 3.3 (Blow-up) Let (3.5) hold and (0,u,0,1) be a C-solution of (3.2)-(3.4) for
0 <t <T with T being the mazimal existence interval. If

1<7g§, I°z,v,Q) > B, m(0) >0, /(EO ' )dz >0, (3.7)

16 2
F(0) > —WﬁR‘l{imaxg max/ du/ ,
3 g2
(3.8)
then T is finite.
To show one way in which (3.7-3.8) can be satisfied, we take the initial conditions as
o =p, °=6 and I°=B.

Then m(0) = [ps(EY, — Ep,)dz = 0 and (3.8) holds if

0 32w 4
/Rs:r~u (z)dx > 73(5_ )6R

Comparing both sides, we find that the inial flow velocity must be supersonic in some region
(also cf. [9]).
PROOF. From (1.2) and (1.4), we have

101

0
8t(gu)+VPm+V (ou @ u) = —7/ du/sz EE+Q Vi),

therefore, by direct computation and integration by parts, and using Lemma 3.1 and recalling
the relation R = ¢, (y — 1), we see that

F'(t) = /}R3 z-[~V(Py — Py) — V- (ou®u)ldz

—1/ d;v/ dl// z-QQ- V(I — B)dQ

€ JRrs 0 52

= /g|u\2dx+3/(Pm—Pm)dx+1/ dx/ du/ Q-Q(I — B)dQ
R3 R3 € JRs 0 52
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_ 1 o0 _
/ olu| dﬂz?—&—ﬁ (En — Ep)dx + f/ dac/ du/ Q-Q — B)d2
R3 Cv JRr3 C Jgrs3 0 S2
_ (1_ﬁ)/ ol \dm+3R{ (0)—/ d:c(ET—/ av [ a0y
RS 0 52

/dm/ dv | Q-Q( — B)dQ
]R3 52

= | |dx+—/ |dx+% (ES — E,,)dx
Cy JRrs
(E, — E,)dz —l— - dx dl/ Q-Q( — B)dQ2
CV R3 C JRrs3 S2
5— 3y 2 1 o _
> olul*de + - [ dx dv | Q-Q(I — B)dQ. (3.9)
2 R3 C Jrs3 0 52

Set B(t) = D(t)¢ = {z € R : |x| > Ry + Bt} for 0 <t < T. From (3.9) and Hélder’s
inequality we get

F2(t)§2(/ x - pudz)? / dz/ du/:z:QI B)d0)?
B(t) 52
< o pPodn)([ o)

B(1) B(t)

+34(/ dac/ dv |x\2(I—B)dQ)(/ dx/ dv [ Q-Q(I — B)dQ)

C JB(@) 0 52 B(t) 0 S2
< { 1 / |x|2gdx—|—z/ dz/oo dl// |x\2(I—B)dQ}F'(t). (3.10)
- W =37 /B ) 0 52

On the one hand,

/ lz|?odz < (Ro—i—ﬁt)z/ odx
B(t)

B(t)

(Ro + 6t)2 /B( : Qo(x)dx
t

WV YRy + )N T2 max 0% (). (3.11)

IN

Integrating (3.2) and using Lemma 3.1, we infer that

/ dx/ dy/ (I—B)ng/ dx/ dy/ (1° -
B(t) 0 52 B(t) 0 S2
whence,

/ dx/ dv |x|2(I—B)dQ§(R0+ﬁt)2/ dx/ du/ (I — B)dQ
B(t) 0 32 B(t) 0 52

g(Ro+5t)2/B(t)dx/0wdy/Sz(10

< WV Ry 4 pt)N 2 max/ du/ (I° — B)dq. (3.12)
0 S2

Combining (3.10), (3.11) with (3.12) we obtain
F2(t) < 20N YRy + pt)N*? (3.13)
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2 0 l e 0_ D /!
(5_37 max ¢ (x) + E m;?x/o dV/SZ(I B)dQ)F (t).

From (3.13) and the conditions of the theorem, it follows that lim; .., F'(t) — oo where
to > 0 is a constant and can be made smaller than T' by choosing F'(0) sufficiently large.
This completes the proof. O

Remark 3.1 From the proof it is easy to see that Proposition 3.2 and Theorem 8.8 still
hold when the function B, in addition, depends on Q. But, due to the technical reasons,
the dependence of B on t and x is not allowed, this unfortunately excludes the physically
interesting case B = 2hv3c=2(eM/ R0 —1)=1 (the Plank function), and the further study is
needed for this case.
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