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Abstract. Recent work [4] has shown that the Degasperis-Procesi equation

is well-posed in the class of (discontinuous) entropy solutions. In the present
paper we construct numerical schemes and prove that they converge to entropy

solutions. Additionally, we provide several numerical examples accentuating
that discontinuous (shock) solutions form independently of the smoothness

of the initial data. Our focus on discontinuous solutions contrasts notably

with the existing literature on the Degasperis-Procesi equation, which seems
to emphasize similarities with the Camassa-Holm equation (bi-Hamiltonian

structure, integrabillity, peakon solutions, H1 as the relevant functional space).

1. Introduction

In this paper we present and analyze several numerical schemes for capturing
discontinuous solutions of the Degasperis-Procesi equation [8]

(1.1) ∂tu− ∂3
txxu + 4u∂xu = 3∂xu∂2

xxu + u∂3
xxxu, (x, t) ∈ R× (0, T ).

We are interested in the Cauchy problem for this equation where an initial function
u0 is prescribed at time t = 0: u|t=0 = u0. The Degasperis-Procesi equation is a
special case of the more general equation

(1.2) ∂tu− ∂3
txxu + 4∂xf(u) = ∂3

xxxf(u),

where (1.1) is recovered by choosing f(u) = 1
2u2. We shall concentrate on this

equation, which we coin the generalized Degasperis-Procesi equation, and show
that our numerical schemes converge if

(1.3) |f(u)| ≤ κu2 for all u, for some constant κ > 0.

About the motivation for considering (1.2) instead of (1.1), besides the increased
generality, we remark at this stage only that (1.2) will play a central role in the
analysis of numerical schemes for (1.1) as well.

Degasperis and Procesi [8] studied the following six parameter family of third
order dispersive equations

∂tu + c0∂xu + γ∂3
xxxu− α2∂3

txxu = ∂x

(
c1u

2 + c2(∂xu)2 + c3u∂2
xxu

)
.

Using the method of asymptotic integrability, they found that three equations of
this family to be asymptotically integrable up to third order: the KdV equation
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(α = c2 = c3 = 0), the Camassa-Holm equation (c1 = (2c3)/(2α2), c2 = c3) and
the equation

∂tu + ∂xu + 6u∂xu + ∂3
xxxu− α2

(
∂3

txxu +
9
2
∂xu∂2

xxu +
3
2
u∂3

xxxu

)
= 0.

By rescaling, shifting the dependent variable, and applying a Galilean boost, this
transforms to (1.1), see [7, 6] for details.

Formally, equation (1.2) is equivalent to the hyperbolic-elliptic system

(1.4) ∂tu + ∂xf(u) + ∂xP = 0, P − ∂2
xxP = 3f(u),

which also provides the starting point for defining weak solutions of (1.2). The
Helmholtz operator (1− ∂2

xx)−1 can be written as a convolution(
1− ∂2

xx

)−1
(g)(x) =

1
2

∫
R

e−|x−y|g(y) dy,

and consequently

P (x, t) =
3
2

∫
R

e−|x−y|f(u(y, t)) dy.

The Degasperis-Procesi equation (1.1) has a form similar to the Camassa-Holm
shallow water wave equation (see, e.g., [2, 5, 10, 19] and the references therein
for more information about this equation), and many authors have emphasized
that (1.1) share several properties with the Camassa-Holm equation such as bi-
Hamiltonian structure, integrabillity, exact solutions that are a superposition of
multipeakons, and H1 as the relevant functional space for well-posedness. Let us
also mention that a simplified model for radiating gases is given by a hyperbolic-
elliptic system that bears some similarities with (1.4), see, e.g., [12, 13, 18].

Degasperis, Holm, and Hone [7] proved the exact integrability of (1.1) and found
exact “non-smooth” multipeakon solutions. Lundmark and Szmigielski [15, 16] used
an inverse scattering approach to determine an explicit formula for the general n-
peakon solution of the Degasperis-Procesi equation (1.1). Mustafa [17] showed that
smooth solutions to (1.1) have the infinite speed of propagation property.

Yin studied the globall well-posedness of the Degasperis-Procesi equation (1.1)
in a series of papers [20, 21, 22, 23]. The (weak) solutions encompassed by Yin’s
well-posedness theory are all H1 regular (typical examples are the peakons), a fact
that is reminiscent of the Camassa-Holm equation (see, e.g., [5]).

We refer to [10] for an overview of the Camassa-Holm, Degasperis-Procesi, and
other related equations. There the authors present many numerical examples and
include some comments on the relevance of these equations as shallow water models.

In a different direction, two of the authors of the present paper promoted recently
[4] the view that the Degasperis-Procesi equation could admit discontinuous (shock
wave) solutions and that a well-posedness theory should rely on functional spaces
containing discontinuous functions. Indeed, [4] proved the existence, uniqueness,
and L1 stability of so-called entropy solutions which belong to the space BV of
functions of bounded variation.

Lundmark [14] recently found some explicit shock solutions of the Degasperis-
Procesi equation (1.1) that are entropy solutions (in the sense of [4]). A simple
example of such a discontinuous solution to (1.1) is provided by

u(x, t) =

{
1 + 1

1+te
x−t, x < t,

1− 1
1+te

−(x−t), x > t,
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which corresponds to the initial data u0(x) =

{
1 + ex, x < 0,

1− e−x, x > 0.

Since entropy solutions are of importance to us, let us recall their definition.

Definition 1.1 (Entropy solution). A function u(x, t) is an entropy solution of the
generalized Degasperis-Procesi equation (1.2) with initial data u|t=0 = u0 ∈ L∞(R)
provided the following two conditions hold:

i) u ∈ L∞(R× (0, T )), and
iii) for any convex C2 entropy η : R → R with corresponding entropy flux

q : R → R defined by q′(u) = η′(u) f ′(u) there holds

∂tη(u) + ∂xq(u) + η′(u)∂xPu ≤ 0 in D′(R× [0, T )),

that is, ∀φ ∈ C∞
c (R× [0, T )), φ ≥ 0,

(1.5)
∫ T

0

∫
R

(η(u)∂tφ + q(u)∂xφ− η′(u)∂xPuφ) dx dt+
∫

R
η(u0(x))φ(x, 0) dx ≥ 0,

where

Pu(x, t) =
3
2

∫
R

e−|x−y|f(u(y, t)) dy.

From (1.3) and part i) of Definition 1.1, it is clear that ∂xPu ∈ L∞(R × R+)
and thus the entropy formulation (1.6) makes sense. Another remark is that it is
sufficient to verify (1.5) for the Kružkov entropies/entropy fluxes

η(u) = |u− c| , q(u) = sign (u− c) (f(u)− f(c)) , c ∈ R.

Using the Kružkov entropies it can be seen that the following weak formulation
(1.6) is a consequence of the entropy formulation (1.5): ∀φ ∈ C∞

c (R× [0, T )),

(1.6)
∫ T

0

∫
R

(u∂tφ + f(u)∂xφ− ∂xPuφ) dx dt +
∫

R
u0(x)φ(x, 0) dx = 0.

Regarding the L1 stability (and thus uniqueness) of entropy solutions to the
generalized Degasperis-Procesi equation, the following result is proved in [4]:

Theorem 1.1 (L1 stability). Suppose f ∈ C1(R). Let u, v ∈ C([0, T ];L1(R))
be two entropy solutions of the generalized Degasperis-Procesi equation (1.2) with
initial data u0, v0 ∈ L1(R) ∩ L∞(R), respectively. Then for any t ∈ (0, T )

(1.7) ‖u(t, ·)− v(t, ·)‖L1(R) ≤ eCt ‖u0 − v0‖L1(R) ,

where

(1.8) C =
3
2
‖f ′‖L∞([−M,M ]) , M = max

[
‖u‖L∞((0,T )×R) , ‖v‖L∞((0,T )×R)

]
.

Consequently, there exists at most one entropy solution to (1.2) with initial data
u|t=0 = u0 ∈ L1(R) ∩ L∞(R).

The existence of entropy solutions to (1.2) is proved in [4] under the assumption
that u0 ∈ L1(R) ∩BV (R). These entropy solutions u satisfy

u ∈ L∞(0, T ;L2(R)), u ∈ L∞(0, T ;L1(R) ∩BV (R)),

where the latter L1 ∩ BV bound, which depends on T , is a consequence of the
former L2 bound. The L∞ bound required by Definition 1.1 is a consequence of
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the BV bound. The L2 bound, which is independent of T , is at the heart of the
matter in [4], and formally comes from the conservation law

(1.9) ∂t

(
(∂2

xxv)2 + 5(∂xv)2 + 4v2
)

+ ∂x

(
2
3
u3 + 4vw + ∂xv∂xw − 4u2v

)
= 0,

where v := (4 − ∂2
xx)−1(u), w := (1 − ∂2

xx)−1(u2). A consequence of this equation
is that v(t, ·) ∈ H2(R) and thereby u(t, ·) ∈ L2(R), for any t ≥ 0.

Let us now turn to the topic of the present paper, namely numerical schemes
for capturing discontinuous entropy solutions of the generalized Degasperis-Procesi
equation (1.2), which is to be interpreted in the sense of (1.4). First of all, the form
of the equation (1.4) resembles a model of two phase flow in porous media. In a
simplified form this model reads

(1.10)
∂tu + div (vF (u)) = 0

div (Λ(u)∇P ) = 0

}
(x, t) ∈ U × (0, T ],

where U is a bounded domain in R2 or R3, and Λ is a given function of u, and
v = Λ(u)∇P . Here u ∈ [0, 1] denotes the saturation of one of the phases, and
the flux function F is an increasing function F : [0, 1] 7→ [0, 1] with F (0) = 0 and
F (1) = 1. The variable P represents the pressure. Since (1.10) is assumed to hold
in a bounded domain, it is necessary to prescribe boundary values, at least for the
total velocity v, as well as initial values for u. We remark that the well-posedness of
the boundary/initial value problem for (1.10) is open, although results exist when
capillary pressure forces (a degenerate diffusion operator is added to the equations),
see [3]. Numerically, (1.10) is often “solved” using an “operator splitting” strategy
in which the elliptic equation for P (the pressure equation) is solved to give a
pressure which is used for the hyperbolic equation (the saturation equation), see
for example [1] and the references therein. The rationale behind this is that the
time scales in the pressure and saturation equations are sufficiently different, so
that (presumably) the total velocity will change much slower than the saturation.

This type of operator splitting inspired the construction of the numerical schemes
presented in this paper. Informally, this splitting approximation is constructed as
follows. Let Sg

t denote the solution operator for the balance law

(1.11) ∂tv + ∂xf(v) + g(x) = 0, v(x, 0) = v0(x),

i.e., we formally write the entropy solution v(x, t) as

v(x, t) = Sg
t (u0)(x).

Then we can define a sequence of functions {un}n≥0 by u0 := u0 and

(1.12) un := S
gn−1
∆t (un−1), gn−1 := ∂xPn−1, Pn−1 − Pn−1

xx = 3f
(
un−1

)
.

The resulting approximation u∆t = u∆t(x, t) is defined as

u∆t(·, t) = un for n∆t ≤ t < (n + 1)∆t.

Here ∆t is a small parameter (the “time step”). The hope is that u∆t → u as
∆t → 0 in some reasonable topology, and that u is the entropy solution to (1.4).
In this paper we establish this convergence. Additionally, we establish convergence
of fully discrete numerical schemes constructed using the splitting approach and
monotone difference schemes to discretize (1.11) and the equation in (1.12) for Pn.
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To make the topology for the conservation law and the elliptic equation for P
“compatible”, we assume that f is globally Lipschitz continuous in the convergence
analysis of the numerical schemes. It is difficult at the discrete level to establish
(1.9), which would have provided us with a uniform L2 estimate on the numerical
approximations. This in turn would have implied uniform BV, L1, L∞ estimates,
and compactness of the numerical approximations would then have followed. On the
other hand, if the nonlinearity f is globally Lipschitz continuous, then BV,L1, L∞

estimates can be derived directly without going via an L2 estimate. Thanks to the
uniqueness of entropy solutions (Theorem 1.1), we can without loss of generality
assume that f is globally Lipschitz continuous. If not, we can replace the function
f by a globally Lipschitz continuous function, call it fL, such that fL coincides with
f on [−L,L] for L > 0 and |fL(u)| ≤ κu2 for all u with κ given in (1.3). Let uL be
the entropy solution of (1.2) with f replaced by fL and initial data uL|t=0 = u0. It
follows from the results in [4] that the L1, L2, L∞, BV bounds on uL coincides with
those attached to u. Choosing L > M we conclude by the uniqueness of entropy
solutions that the functions u and uL must coincide. In other words, thanks to
the well-posedness analysis in [4] and without any loss of generality, we can restrict
ourselves to the case where f in (1.2) is globally Lipschitz continuous.

The rest of this paper is organized as follows: In Section 2 we establish some
preliminary estimates for the balance equation where P is given by the initial data
only. Furthermore, as a “warm-up”, we establish the convergence of a monotone
difference scheme for this balance law. In Section 3 we define the operator splitting
method. First we establish convergence of a semi-discrete splitting approximation,
and then we proceed to show the convergence of fully discrete schemes. Finally,
in Section 4 we present some numerical results. These examples show that shock
solutions form independently of the smoothness of the initial data, and hence that
the entropy solution framework is reasonable for this type of equations.

2. Preliminary estimates for balance laws

As a starting point we consider the Cauchy problem for the conservation law
with a source (which in this case is determined by the initial condition)

(2.1)


∂tu + ∂xf(u) + ∂xP = 0, x ∈ R, 0 < t < T,

−∂2
xxP + P = 3f(u0), x ∈ R,

u(x, 0) = u0(x), x ∈ R,

where we shall assume that the initial condition satisfies

(2.2) u0 ∈ L1(R) ∩BV (R).

As explained in the introduction, it is sufficient to consider nonlinearities f that
are globally Lipschitz continuous. More precisely, we assume

(2.3) f ∈ C1(R), f(0) = 0, |f(ξ)− f(ξ′)| ≤ L|ξ − ξ′|,
for all ξ, ξ′ ∈ R and some positive constant L > 0.

2.1. Estimates on the exact solutions. First we collect some estimates satisfied
by the “source” P in (2.1).

Lemma 2.1 (Estimates on P ). Assume that (2.2) and (2.3) are satisfied. Then

‖P‖L∞(R) , ‖∂xP‖L∞(R) ≤
3
2
L ‖u0‖L1(R) ,(2.4)
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‖P‖L1(R) , ‖∂xP‖L1(R) ≤ 3L ‖u0‖L1(R) ,(2.5) ∥∥∂2
xxP

∥∥
L1(R)

≤ 6L ‖u0‖L1(R) ,(2.6) ∥∥∂2
xxP

∥∥
L∞(R)

≤ 3
2
L ‖u0‖L1(R) + 3L |u0|BV (R) .(2.7)

Proof. The proof follows from the observation that e−|x|/2 is the Green’s function
of the differential operator 1− ∂2

xx, and thus we have that

P (x) =
3
2

∫
R

e−|x−y|f(u0(y)) dy, x ∈ R,

∂xP (x) =
3
2

∫
R

e−|x−y|sign (y − x) f(u0(y)) dy, x ∈ R.

Since e−|x| ≤ 1,
∫

R e−|x−y|dy = 2, for all x ∈ R, by (2.3),

|P (x)|, |∂xP (x)| ≤ 3
2

∫
R
|f(u0(y))| dy ≤ 3

2
L

∫
R
|u0(y)| dy, x ∈ R,∫

R
|P (x)|dx,

∫
R
|∂xP (x)|dx ≤ 3

∫
R
|f(u0(y))| dy ≤ 3L

∫
R
|u0(y)| dy,

which give (2.4), (2.5), respectively. Using ∂2
xxP = P − 3f(u0) gives the final

estimates. �

Lemma 2.1 gives us the necessary control to prove some estimates for the entropy
solution u of the conservation law (2.1) with source ∂xP . We collect these in the
following lemma, whose proof is standard and therefore omitted (see [9]).

Lemma 2.2 (Estimates on u). Assume that (2.2) and (2.3) hold. Then for each
t ∈ (0, T )

(2.8) ‖u(·, t)‖L1(R) ≤ (1 + 3Lt) ‖u0‖L1(R) ,

(2.9) ‖u(·, t)‖L∞(R) ≤ |u(·, t)|BV (R) ≤ |u0|BV (R) + 6Lt ‖u0‖L1(R) .

Additionally, there is a constant CT , independent of the discretization parameters,
such that

‖u(·, t)− u(·, s)‖L1(R) ≤ CT |t− s| , ∀t, s ∈ [0, T ].

2.2. Finite difference schemes. We shall analyze the following finite difference
discretization of (2.1):

Un+1
j − Un

j

∆τ
+ D−F (Un; j) + DPj = 0, j ∈ Z, n ∈ {0, . . . , N − 1} ,

U0
j =

1
∆x

∫ (j− 1
2 )∆x

(j+ 1
2 )∆x

u0(x) dx, j ∈ Z,

−D+D−Pj + Pj = 3f
(
U0

j

)
, j ∈ Z,

(2.10)

where ∆τ,∆x > 0 denote the temporal and spatial discretization parameters,
respectively, while N is the smallest integer such that N∆t ≥ T . Moreover,
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D+, D−, D denote the forward, backward, and central spatial difference operators,
respectively:

(2.11)
D+ξj :=

ξj+1 − ξj

∆x
, D−ξj :=

ξj − ξj−1

∆x
,

Dξj :=
D+ξj + D−ξj

2
=

ξj+1 − ξj−1

2∆x
.

The ratio ∆τ/∆x = λ is assumed to be constant. We use the following notation
for the numerical flux function F :

F (U ; j) = F (Uj−p, Uj−p+1, . . . , Uj+q) ,

for some integers p, q ≥ 0. The numerical flux is assumed to be consistent, i.e.,

F (u, . . . , u) = f(u),

and such that for the conservation law without source the scheme would be TVD.
This means that

(2.12)
∞∑

j=−∞
|ξj − ξj−1 − λ(F (ξ; j) + F (ξ; j − 1))| ≤ |{ξj}j |bv ,

for sufficiently small λ, and where {ξj}j∈Z is any real sequence. Throughout this
paper we use the notations∣∣∣{ξj}j

∣∣∣
bv

=
∑

j

|ξj − ξj−1| ,
∥∥∥{ξj}j

∥∥∥
`1

= ∆x
∑

j

|ξj | ,
∥∥∥{ξj}j

∥∥∥
`∞

= sup
j
|ξj | .

Recall that for (2.12) to hold, we must assume that the CFL-condition

∆t ≤ λ∆x

holds, for a specific constant λ determined by f and u0 [9]. In this paper, we assume
that the TVD property (2.12) is valid.

There are numerous examples of numerical fluxes, see for example [9]. For the
numerical examples in this paper we use the Engquist-Osher flux

(2.13) F (u, v) =
1
2

(
f(u) + f(v)−

∫ v

u

|f ′(w)| dw

)
.

Lemma 2.3 (Estimates on Pj). Assume that (2.2) and (2.3) hold. Then there
exists a positive constant C1, independent of f, u0,∆τ,∆x, such that

‖{Pj}j‖`∞ , ‖{D−Pj}j‖`∞ , ‖{D+Pj}j‖`∞ , ‖{DPj}j‖`∞ ≤ C1L ‖u0‖L1(R) ,(2.14)

‖{Pj}j‖`1 , ‖{D−Pj}j‖`1 , ‖{D+Pj}j‖`1 , ‖{DPj}j‖`1 ≤ C1L ‖u0‖L1(R) ,(2.15)

‖{D+D−Pj}j‖`1 ≤ C1L ‖u0‖L1(R) .(2.16)

Proof. The discrete equation for Pj can be solved explicitly:

(2.17) Pj = 3h
∞∑

i=−∞
e−κ|j−i|f(U0

i ), j ∈ Z,

where

(2.18) h :=
(
1 + 2

1− e−κ

(∆x)2
)−1

, κ := ln
(
1 +

(∆x)2

2
+

∆x

2

√
4 + (∆x)2

)
.
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These formulas can be derived by applying the discrete Fourier transform to the
equation determining Pj . Observe that

(2.19) h = O(∆x),
eκ − 1
∆x

, 1− e−κ ≤ 1 +O(∆x),
∣∣e−κ − 1

∣∣ ≤ ∆x.

Then we can proceed as in the continuous case:

D−Pj =
Pj − Pj−1

∆x
= 3h

∞∑
i=−∞

e−κ|i−j| − e−κ|i−j+1|

∆x
f(U0

i )

(2.20)

= 3h
∞∑

i=j

e−κ(i−j) − e−κ(i−j+1)

∆x
f(U0

i ) + 3h

j−1∑
i=−∞

eκ(i−j) − eκ(i−j+1)

∆x
f(U0

i )

= 3h
∞∑

i=j

e−κ(i−j) 1− e−κ

∆x
f(U0

i ) + 3h

j−1∑
i=−∞

eκ(i−j) 1− eκ

∆x
f(U0

i ).

Using (2.3) and (2.19), for each j ∈ Z and some constants c1, c2, c3 > 0,

|Pj | ≤ 3h

∞∑
i=−∞

e−κ|j−i||f(U0
i )| ≤ 3h

∞∑
i=−∞

|f(U0
i )| ≤ 3hL

∞∑
i=−∞

|U0
i |

≤ c1L∆x
∞∑

i=−∞
|U0

i | ≤ c1L ‖u0‖L1(R) ,

|D−Pj | ≤ 3h
∞∑

i=j

e−κ(i−j) |1− e−κ|
∆x

|f(U0
i )|+ 3h

j−1∑
i=−∞

eκ(i−j) |1− eκ|
∆x

|f(U0
i )|

≤ 3hc2

∞∑
i=−∞

e−κ|i−j||f(U0
i )| ≤ 3hc2L

∞∑
i=−∞

|U0
i |

≤ 3c3L∆x
∞∑

i=−∞
|U0

i | ≤ 3c3L ‖u0‖L1(R) .

The remaining estimates are proved in the same way. �

Now we have enough estimates on the discrete source term DPj to establish
estimates on Un

j implying compactness.

Lemma 2.4 (Estimate on Un
j ). Assume that (2.2), (2.3), and (2.12) hold. Then

(2.21)
∥∥{Un

j }j

∥∥
`1
≤ (1 + C1Ln∆τ) ‖u0‖L1(R) ,

(2.22)
∥∥{Un

j }j

∥∥
`∞

≤
∣∣{Un

j }j

∣∣
bv
≤

∣∣{U0
j }j

∣∣
bv

+ C1Ln∆τ ‖u0‖L1(R) ,

for each n ∈ {0, . . . , N}, where C1 is given in Lemma 2.3. Additionally, there exists
a constant CT,L, independent of the discretization parameters, such that

(2.23)
∥∥{Un

j }j − {Um
j }j

∥∥
`1
≤ CT,L∆t |n−m| , n,m ∈ {0, . . . , N} .

Proof. This lemma is proved in the same ways as the corresponding result for a
conservation law with a source [9]. �
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Define the piecewise constant function u∆τ by

(2.24) u∆τ (x, t) :=
∑

n≥0,j∈Z
In
j (x, t)Un

j ,

where In
j (x) = Ij(x)In(t), and In is the characteristic function of the interval

[n∆τ, (n + 1)∆τ) and Ij of the interval [(j − 1/2)∆x, (j + 1/2)∆x). Similarly we
define the piecewise linear function P∆x by

(2.25) P∆τ (x) =
∫ x ∑

j∈Z
DPjIj(y) dy.

Theorem 2.1 (Convergence). Assume that (2.2), (2.3), and (2.12) hold. Then as
∆τ → 0

(2.26) u∆τ → u in Lp(R× [0, T ]) ∀p < ∞ and a.e. in R× [0, T ],

where u is the unique entropy solution to (2.1) in the sense of Kružkov (see [9,
Section 2.1]). We also have that

(2.27) DP∆τ → ∂xP a.e. in R× R+ as ∆τ → 0,

where P − ∂2
xxP = 3f(u0)

Proof. Due to (2.21) and (2.22),

‖u∆τ (·, t)‖L1(R) ≤ (1 + C1Lt)‖u0‖L1(R),

‖u∆τ (·, t)‖L∞(R) ≤ |u∆τ (·, t)|BV (R) ≤ |{U0
j }j |bv + LtC1 ‖u0‖L1(R) ,

for any t ∈ (0, T ). Additionally, due to (2.23), there is a constant CT,L, independent
of the discretization parameters, such that

‖u∆τ (·, t)− u∆τ (·, t)‖L1(R) ≤ CT,L |t− s| , t, s ∈ [0, T ].

Using a standard argument (see, e.g., [9]), there exists a limit function u and a
sequence {∆τl}l, with ∆τl → 0 as l →∞, such that

u∆τl
→ u in Lp(R× [0, T ]) ∀p < ∞ and a.e. in R× [0, T ],(2.28)

‖u(·, t)‖L1(R) , ‖u(·, t)‖L∞(R) , |u(·, t)|BV (R) ≤ CT,L, for each t ∈ (0, T ),(2.29)

where CT,L is a finite constant. In addition, u ∈ C([0, T ];L1(R)).
Next we prove (2.27) which will ensure that we have the right source term in the

limit in the entropy formulation of the conservation law. Observe that (see (2.17))

P∆τl
= G∆τl

? (3f(u∆τl
)), P = G ? (3f(u)),

where

G∆τl
(x) =

h

∆xl
e
−κ

˛̨̨h
x

∆xl

i˛̨̨
, G(x) =

e−|x|

2
, x ∈ R,

where ? denotes convolution in the x variable and [z] denotes the the integer part
of z. By (2.28), (2.29), and the dominated convergence theorem, we have only to
prove that

(2.30) G∆τl
(x) → G(x), for each x ∈ R as l →∞,

Due to (2.18) and (2.19) we have

(2.31) lim
l→∞

h

∆xl
= lim

l→∞

1

∆xl + 2
1− e−κ

∆xl

=
1
2
.
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Fixing x ∈ R, due to (2.18),

lim
l→∞

e
−κ

h˛̨̨
x

∆xl

˛̨̨i
= lim

l→∞
(eκ)−

˛̨̨h
x

∆xl

i˛̨̨
(2.32)

= lim
l→∞

(
1 +

(∆xl)2

2
+

∆xl

2

√
4 + (∆xl)2

)−˛̨̨h
x

∆xl

i˛̨̨

= lim
l→∞

(1 + ∆xl)
−

˛̨̨h
x

∆xl

i˛̨̨

= lim
l→∞

(1 + ∆xl)
−

˛̨̨
x

∆xl

˛̨̨
= e−|x|.

Since (2.31) and (2.32) give (2.30), (2.27) is proved.
Finally, we prove that u is an entropy solution to (2.1). To this end, we use a

standard argument. Let k ∈ N. Define the discrete entropy flux

Qk(ξ; j) := Qk(ξj−p, ..., ξj+q)

= F (ξ ∨ k; j)− F (ξ ∧ k; j)

= F (ξj−p ∨ k, ..., ξj+q ∨ k)− F (ξj−p ∧ k, ..., ξj+q ∧ k), {ξj}j ⊂ R,

(2.33)

where
a ∨ b := max{a, b}, a ∧ b := min{a, b}, a, b ∈ R.

We begin by verifying that
1

∆τ

(
|Un+1

j − k| − |Un
j − k|

)
+ D−Qk(Un; j) + DPjsign

(
Un+1

j − k
)
≤ 0.(2.34)

To show this we distinguish two cases. If Un+1
j ≥ k, from (2.10) and the mono-

tonicity of the scheme (see [9, Theorem 3.6]) we get

|Un+1
j − k| = Un+1

j − k

= Un
j − k − λ

(
F (Un; j)− F (Un; j − 1)

)
−DPj

≤
∣∣Un

j − k
∣∣− λ

(
Qk(Un; j)−Qk(Un; j − 1)

)
−DPj

=
∣∣Un

j − k
∣∣− λ

(
Qk(Un; j)−Qk(Un; j − 1)

)
−DPjsign

(
Un+1

j − k
)
.

If Un+1
j < k, from (2.10) and the monotonicity of the scheme (see [9, Theorem 3.6])

we get∣∣Un+1
j − k

∣∣ ≤ ∣∣Un
j − k

∣∣− λ
(
Qk(Un; j)−Qk(Un; j − 1)

)
−DPjsign

(
Un+1

j − k
)
,

which proves (2.34).
Fix φ ∈ C∞

c (R× [0,∞)), φ ≥ 0, and multiply (2.34) by φ(j∆x, n∆τ) to get
∞∑

n=0

∞∑
j=−∞

φ(j∆x, n∆τ)
|Un+1

j − k| − |Un
j − k|

∆τ
(2.35)

+
∞∑

n=0

∞∑
j=−∞

φ(j∆x, n∆τ)D−Qk(Un; j)

+
∞∑

n=0

∞∑
j=−∞

φ(j∆x, n∆τ)DPjsign
(
Un+1

j − k
)
≤ 0.
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Summing by parts yields
∞∑

n=0

∞∑
j=−∞

φ(j∆x, n∆τ)
|Un+1

j − k| − |Un
j − k|

∆τ

= −
∞∑

n=1

∞∑
j=−∞

φ(j∆x, n∆τ)− φ(j∆x, (n− 1)∆τ)
∆τ

|Un
j − k|

−
∞∑

j=−∞
φ(j∆x, 0)

|U0
j − k|
∆τ

,

∞∑
n=0

∞∑
j=−∞

φ(j∆x, n∆τ)D−Qk(Un; j) = −
∞∑

n=0

∞∑
j=−∞

Qk(Un; j)D+φ(j∆x, n∆τ),

hence (2.35) becomes

−∆x∆τ
∞∑

n=1

∞∑
j=−∞

φ(j∆x, n∆τ)− φ(j∆x, (n− 1)∆τ)
∆τ

|Un
j − k|(2.36)

−∆x∆τ
∞∑

n=0

∞∑
j=−∞

Qk(Un; j)D+φ(j∆x, n∆τ)

+ ∆x∆τ
∞∑

n=0

∞∑
j=−∞

φ(j∆x, n∆τ)DPjsign
(
Un+1

j − k
)

−∆x
∞∑

j=−∞
φ(j∆x, 0)|U0

j − k| ≤ 0.

We claim that

(2.37) ∆x
∞∑

j=−∞

∣∣Qk(Un; j)− qk(Un
j )

∣∣ → 0, as ∆τ → 0 for each n ∈ N,

where

(2.38) qk(ξ) := sign (ξ − k) (f(ξ)− f(k)), ξ ∈ R,

is the flux associated to the entropy ξ 7→ |ξ − k|. By the definition of the discrete
entropy flux Qk, we get

qk(Un
j ) = Qk(Un

j , ..., Un
j ),

and hence, from (2.22), there is a constant CL,T , independent of the discretization
parameters, such that

∆x
∞∑

j=−∞

∣∣Qk(Un; j)− qk(Un
j )

∣∣ ≤ CT,L∆x.

Let us recall the following well-known fact (see for example [11]). Let Ω ⊂ Rd

be a bounded open set, g ∈ L1(Ω), and suppose that gν(x) → g(x) a.e. in Ω as
ν →∞. Then there exists an at most countable set Θ such that for any k ∈ R \Θ

sign (gν(x)− k) → sign (g(x)− k) a.e. in Ω.
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Using this fact, (2.29), (2.37), (2.27) and the dominated convergence theorem,
and sending l →∞ in (2.36), we get

−
∫ ∞

0

∫
R

(|u− k| ∂tφ + qk(u)∂xφ− sign (u− k) ∂xPφ) dx dt(2.39)

−
∫

R
|u0(x)− k|φ(0, x) dx ≤ 0.

for any k ∈ R \ Θ, where Θ is an at most countable set Θ. To conclude from this
that (2.39) holds for all k ∈ R we repeat the argument in [11].

Consequently, u is the Kružkov entropy solution to (2.1). Finally, convergence of
the whole sequence {u∆τ}∆τ>0 follows from the uniqueness of the entropy solution
to (2.1) [9, Section 2.4]. �

3. Numerical schemes based on operator splitting

In this section we construct numerical schemes for the generalized Degaperis-
Procesi equation (1.2). As explained in the introduction, there is no loss of gener-
ality in assuming that nonlinearity f is globally Lipschitz continuous.

The idea is to fix P for a small interval ∆t, and let u solve the conservation
law with source (2.1) for t ∈ [0,∆t). Then we update P and proceed to the next
interval. We start by doing this for the ”semi-discrete” scheme, where we use exact
solutions of the conservation law and of the elliptic equation.

3.1. The semi-discrete approximation. We consider the problem

(3.1)


∂tu + ∂xf(u) + ∂xP = 0, x ∈ R, 0 < t < T,

P − ∂2
xxP = 3f(u), x ∈ R, 0 < t < T,

u(x, 0) = u0(x), x ∈ R,

where we assume that (2.2) and (2.3) hold.
We fix a positive number ∆t and set N to be the smallest integer such that

N∆t ≥ T . Then we define two sequences {un}N
n=1 and {vn}N

n=1 by

(3.2)


∂tv

n + ∂xf(vn) + ∂xPn−1 = 0, x ∈ R, 0 < t < ∆t,

Pn−1 − ∂2
xxPn−1 = 3f(un−1), x ∈ R,

vn(x, 0) = un−1(x), x ∈ R,

and

(3.3) un(·) := vn(·,∆t).

We initialize by setting u0 = u0. In the following we show that this sequence
converges to an entropy solution of (3.1) as ∆t → 0, see Definition 1.1. To do this
we establish ”the usual estimates”.

Lemma 3.1. Assume that (2.2) and (2.3) hold. Then

‖un‖L1(R) ≤ e3LT ‖u0‖L1(R),(3.4)

‖un‖L∞(R) ≤ |un|BV (R) ≤ |u0|BV (R) + 6LTe3LT ‖u0‖L1(R) .(3.5)

for each n ∈ {0, ..., N}. Additionally, there exists a constant CT,L, independent of
the discretization parameters, such that

(3.6) ‖un − um‖L1(R) ≤ CT,L∆t |n−m| , n,m ∈ {0, ..., N} .
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Proof. Due to (2.8),

‖vn(·, t)‖L1(R) ≤ (1 + 3Lt)
∥∥un−1

∥∥
L1(R)

, 0 ≤ t ≤ ∆t,

hence, from (3.3),
‖un‖L1(R) ≤ (1 + 3L∆t)

∥∥un−1
∥∥

L1(R)
,

which implies (3.4).
We continue by proving (3.5). By (2.9),

|vn(·, t)|BV (R) ≤
∣∣un−1

∣∣
BV (R)

+ 6Lt
∥∥un−1

∥∥
L1(R)

, 0 ≤ t ≤ ∆t,

hence, from (3.3),

|un|BV (R) ≤
∣∣un−1

∣∣
BV (R)

+ 6L∆t
∥∥un−1

∥∥
L1(R)

.

Therefore,

|un|BV (R) ≤ |u0|BV (R) + 6L∆t
n−1∑
k=0

∥∥uk
∥∥

L1(R)

≤ |u0|BV (R) + 6LTe3LT ‖u0‖L1(R) ,

which is (3.5).
Finally, (3.6) is a consequence of (3.5) and the fact that the “source” ∂xPn−1 in

(3.2) is bounded in L∞, see (2.4). �

For the convergence analysis, we introduce an approximation defined for all t by

(3.7) u∆t(·, t) := un, n∆t ≤ t < (n + 1)∆t, n ∈ {0, ..., N − 1} .

Theorem 3.1. Assume that (2.2) and (2.3) hold. Then as ∆t → 0

(3.8) u∆t → u in Lp(R× [0, T ]) ∀p < ∞ and a.e. in R× [0, T ],

where u is the unique entropy solution to (3.1) in the sense of Definition 1.1.

Proof. By (3.4) and (3.5),

‖u∆t(·, t)‖L1(R) ≤ e3LT ‖u0‖L1(R) ,

‖u∆t(·, t)‖L∞(R) ≤ ‖u∆t(·, t)‖BV (R) ≤ |u0|BV (R) + 6LTe3LT ‖u0‖L1(R) ,(3.9)

for any 0 ≤ t ≤ T . Additionally, due to (3.6), there exists a constant CT,L,
independent of the discretization parameters, such that

(3.10) ‖u∆t(·, t)− u∆t(·, s)‖L1(R) ≤ CT,L |t− s| , t, s ∈ [0, T ].

Using a standard argument (see, e.g., [9]), there exists a limit function u and a
sequence {∆tl}l, with ∆tl → 0 as l →∞, such that

u∆tl
→ u in Lp(R× [0, T ]) ∀p < ∞ and a.e. in R× [0, T ],(3.11)

‖u(·, t)‖L1(R) , ‖u(·, t)‖L∞(R) , |u(·, t)|BV (R) ≤ CT,L, for each t ∈ (0, T ),(3.12)

where CT,L is a finite constant. In addition, u ∈ C([0, T ];L1(R)).
To continue, we introduce an auxiliary function v∆t(x, t) defined by

(3.13) v∆t(·, t) := vn (·, t− n∆t) , (n− 1)∆t < t ≤ n∆t, n ∈ {1, ..., N} ,

where vn solves (3.2). Using (3.4), (3.5), and (3.10), there exists a constant CT,L,
independent of the discretization parameters, such that for all t, s ∈ [0, T ]

‖v∆t(·, t)‖L1(R) ≤ CT,L,
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‖v∆t(·, t)‖L∞(R) ≤ |v∆t(·, t)|BV (R) ≤ CL,T ,(3.14)

‖v∆t(·, t)− v∆t(·, t)‖L1(R) ≤ CT,L |t− s| .(3.15)

We claim that

(3.16) ‖u∆t(·, t)− v∆t(·, t)‖L1(R) → 0, as ∆t → 0, for each 0 ≤ t ≤ T .

To this end, let t ∈ [(n − 1)∆t, n∆t). Then, since vn(·, 0) = un−1 and thanks to
(3.10) and (3.15),

‖u∆t(·, t)− v∆t(·, t)‖L1(R) =
∥∥un−1 − vn (·, t− n∆t)

∥∥
L1(R)

= ‖vn (·, 0)− vn (·, t− n∆t)‖L1(R)

≤ CT,L (t− n∆t) ≤ CT,L∆t,

which proves (3.16). Thus v∆t it is the unique entropy solution to

(3.17)


∂tv∆t + ∂xf(v∆t) + ∂xP∆t = 0, x ∈ R, 0 < t < T,

P∆t − ∂2
xxP∆t = 3f(u∆t), x ∈ R, 0 < t < T,

v∆t(x, 0) = u0(x), x ∈ R.

Hence, for any convex entropy/entropy flux pair (η, q) and for any nonnegative
test function φ ∈ C∞

c (R × [0, T )) we have, referring to (3.11) for the converging
subsequence {∆tl},∫ T

0

∫
R

(η(v∆tl
)∂tφ + q(v∆tl

)∂xφ− η′(v∆tl
)∂xP∆tl

φ) dx dt(3.18)

+
∫

R
η(u0(x))φ(0, x) dx ≥ 0.

By (3.11) and (3.16),

(3.19) v∆tl
→ u a.e. in R× [0, T ] as l →∞.

Due to (3.11), (3.12), and the fact that

P∆tl
(x, t) =

3
2

∫
R

e−|x−y|f(u∆tl
(y, t)) dy,

we conclude

(3.20) ∂xP∆tl
→ ∂xP a.e. in R× [0, T ] as l →∞,

where P − ∂2
xxP = 3f(u).

Using (3.9), (3.14), (3.19), (3.20) and the dominated convergence theorem, send-
ing l →∞ in (3.18) yields that the limit u satisfies∫ T

0

∫
R

(η(u)∂tφ + q(u)∂xφ− η′(u)∂xPuφ) dx dt +
∫

R
η(u0(x))φ(0, x) dx ≥ 0.

Then u is the entropy solution to (3.1) in the sense of Definition 1.1. Finally,
convergence of the whole sequence {u∆t}∆t>0 follows from the uniqueness of the
entropy solution to (3.1) (see Theorem 1.1). �
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3.2. Fully discrete schemes. In this subsection we introduce and analyze fully
discrete schemes for (3.2). To this end, we introduce a time step ∆t > 0 and a local
time step ∆τ < ∆t and let N(∆t) = N ∈ N, M(∆t, ∆τ) = M ∈ N be the smallest
integers satisfying

(3.21) M∆τ = ∆t, N∆t = T.

Define

(3.22) U0
j :=

1
∆x

∫ (j+ 1
2 )∆x

(j− 1
2 )∆x

u0(x)dx, j ∈ Z,

and for n ∈ {1, ..., N}

V n,m+1
j − V n,m

j

∆τ
+ D−F (V n,m; j) + DPn−1

j = 0,

−D+D−Pn−1
j + Pn−1

j = 3f
(
Un−1

j

)
,

V n,0
j = Un−1

j ,

(3.23)

where j ∈ Z, m ∈ {0, ...,M − 1}, and

(3.24) Un
j := V n,M

j , j ∈ Z,

where we use the notations introduced in Section 2.2. As before, we assume that F
is a consistent numerical flux such that the scheme for the conservation law (without
P ) would be monotone. Recall that this implies that a CFL-condition must hold.

Lemma 3.2. Assume that (2.2), (2.3), and (2.12) hold. Then∥∥∥{
Un

j

}
j

∥∥∥
`1
≤ eC1LT ‖u0‖L1(R) ,(3.25) ∥∥∥{

Un
j

}
j

∥∥∥
`∞

≤
∣∣∣{Un

j

}
j

∣∣∣
bv
≤

∣∣∣{U0
j

}
j

∣∣∣
bv

+ C1LTeC1LT ‖u0‖L1(R) .(3.26)

for each n ∈ {0, ..., N}. Additionally, there exists a constant CT,L, independent of
the discretization parameters, such that

(3.27) ‖{Un
· }· − {Um

· }·‖`1 ≤ CT,L∆t |n−m| , n,m ∈ {0, . . . , N} .

Proof. We begin by proving (3.25). By (2.21) we have

(3.28)
∥∥∥{

V n,m
j

}
j

∥∥∥
`1
≤ (1 + C1Lm∆τ)

∥∥∥{
Un−1

j

}
j

∥∥∥
`1

, 0 ≤ m ≤ M − 1.

Hence, from (3.21), (3.24),∥∥∥{
Un

j

}
j

∥∥∥
`1
≤ (1 + C1LM∆τ)

∥∥∥{
Un−1

j

}
j

∥∥∥
`1

= (1 + C1L∆t)
∥∥∥{

Un−1
j

}
j

∥∥∥
`1

.

Thus (3.25) holds. We continue by proving (3.26). Due to (2.22) we have

(3.29)
∣∣∣{V n,m

j

}
j

∣∣∣
bv
≤

∣∣∣{Un−1
j

}
j

∣∣∣
bv

+ C1Lm∆τ
∥∥∥{

Un−1
j

}
j

∥∥∥
`1

,

so, from (3.21) and (3.24), we obtain∣∣∣{Un
j

}
j

∣∣∣
bv
≤

∣∣∣{Un−1
j

}
j

∣∣∣
bv

+ C1LM∆τ
∥∥∥{

Un−1
j

}
j

∥∥∥
`1

=
∣∣∣{Un−1

j

}
j

∣∣∣
bv

+ C1L∆t
∥∥∥{

Un−1
j

}
j

∥∥∥
`1

.

Now (3.26) follows as in the proof of Lemma 3.1.
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The proof of (3.27) is a consequence of the following calculation:

∆x
m∑

i=0

∞∑
j=−∞

∣∣∣V n,i
j − V n,i+1

j

∣∣∣
≤ ∆xλ

m∑
i=0

∞∑
j=−∞

∣∣∣F (
V n,i

j−p, ..., V
n,i
j+q

)
− F

(
V n,i

j−p−1, ..., V
n,i
j+q−1

)∣∣∣
+ ∆x∆τm

∞∑
j=−∞

∣∣DPn
j

∣∣
≤ c1∆τ sup

i

∣∣∣∣{V n,i
j

}
j

∣∣∣∣
bv

+ ∆τm
∥∥∥{

DPn−1
j

}
j

∥∥∥
`1

≤ c1∆τ
(∣∣∣{U0

j

}
j

∣∣∣
BV

+ C1LTeC1LT ‖u0‖L1(R)

)
+ m∆τC1LeC1LT ‖u0‖L1(R) ,

for any n ∈ {1, . . . , N}, m ∈ {0, . . . ,m− 1}. �

Set ∆ = (∆t,∆τ), and define

u∆(x, t) =
∑
j,n

Ij(x)In(t)Un
j ,

where In now denotes the characteristic function of the interval [n∆t, (n+1)∆t) and
Ij(x) is still the characteristic function of the interval [(j − 1/2)∆x, (j + 1/2)∆x).

Theorem 3.2. Assume (2.2), (2.3), and (2.12) hold. Then as ∆t, ∆τ → 0, with
∆τ
∆t → 0,

(3.30) u∆ → u in Lp(R× [0, T ]) ∀p < ∞ and a.e. in R× [0, T ],

where u is the unique entropy solution to (3.1) in the sense of Definition 1.1.

Proof. Due to (3.25), (3.26),

‖u∆(·, t)‖L1(R) ≤ eC1LT ‖u0‖L1(R) ,

‖u∆(·, t)‖L∞(R) ≤ |u∆(·, t)|BV (R) ≤
∣∣∣{U0

j

}
j

∣∣∣
bv

+ C1LTeC1LT ‖u0‖L1(R) ,

for any 0 ≤ t < T . Additionally, due to (2.23), there exists a constant CT,L,
independent of the discretization parameters, such that

‖u∆τ (·, t)− u∆τ (·, t)‖L1(R) ≤ CT,L |t− s| , t, s ∈ [0, T ].

Using a standard argument, there exists a limit function u and two sequences
{∆tl}l, {∆τl}l, ∆l := (∆tl,∆τl) → 0 such that

u∆l
→ u in Lp(R× [0, T ]) ∀p < ∞ and a.e. in R× [0, T ],(3.31)

‖u(·, t)‖L1(R) , ‖u(·, t)‖L∞(R) , |u(·, t)|BV (R) ≤ CT,L, for each t ∈ (0, T ),(3.32)

where CT,L is a finite constant. In addition, u ∈ C([0, T ];L1(R)).
Define

v∆(x, t) =
∑

n,m≥0,j∈Z
In
j (x, t)Jm(t− n∆t)V n,m

j

with Jm denoting the characteristic interval of [m∆τ, (m + 1)∆τ). Here we recall
that V n,m

j solves (3.23). Using (3.25), (3.26), (3.27), (3.28), (3.29) we see that

‖v∆(·, t)‖L1(R) ≤ eC1LT ‖u0‖L1(R) ,(3.33)
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|v∆(·, t)|BV (R) ≤
∣∣∣{U0

j

}
j

∣∣∣
bv

+ C1LTeC1LT ‖u0‖L1(R) ,(3.34)

for any 0 ≤ t < T . We claim that

(3.35) ‖u∆(·, t)− v∆(·, t)‖L1(R) → 0, as ∆ → 0, for each 0 ≤ t ≤ T .

Let 0 ≤ t ≤ T and n ∈ {0, ..., N − 1}, m ∈ {0, ...,M − 1}, such that

n∆t + m∆τ ≤ t < n∆t + (m + 1)∆τ.

For the sake of simplicity we consider only the case m 6= 0, n∆t + m∆τ < t <
n∆t + (m + 1)∆τ . Now we find that (see the proof of (3.2))

‖u∆(·, t)− v∆(·, t)‖L1(R) = ∆x
∞∑

j=−∞

∣∣∣V n+1,0
j − V n+1,m+1

j

∣∣∣
≤ ∆x

m∑
i=0

∞∑
j=−∞

∣∣∣V n+1,i
j − V n+1,i+1

j

∣∣∣ ≤ CT,Lτ

where CT,L > 0 independent of the discretization parameters, and (3.35) thus holds.
We continue by showing that u is an entropy solution to (3.1). Let k be any real

number and define Qk, qk as in the proof of Theorem 2.1, see (2.33) and (2.38).
Arguing as for (2.34) we get

|V n,m+1
j − k| − |V n,m

j − k|
∆τ

+ D−Qk(V n,m; j) + DPn−1
j sign

(
V n,m+1

j − k
)
≤ 0.

For a fixed test function φ ∈ C∞
c (R× [0, T )), φ ≥ 0, we compute

M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)
|V n,m+1

j − k| − |V n,m
j − k|

∆τ
(3.36)

+
M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)D−Qk(V n,m; j)

+
M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)DPn−1
j sign

(
V n,m+1

j − k
)
≤ 0,

where tn,m := n∆t + m∆τ . Summing by parts and using (3.21) produce
M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)
|V n,m+1

j − k| − |V n,m
j − k|

∆τ

−
M−1∑
m=1

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)− φ(j∆x, tn,m−1)
∆τ

|V n,m
j − k|

+
N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,M−1)
|V n,M

j − k|
∆τ

−
N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,0)
|V n,0

j − k|
∆τ

= −
M−1∑
m=1

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)− φ(j∆x, tn,m−1)
∆τ

|V n,m
j − k|
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+
N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,M−1)
|V n+1,0

j − k|
∆τ

−
N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,0)
|V n,0

j − k|
∆τ

= −
M−1∑
m=1

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)− φ(j∆x, tn,m−1)
∆τ

|V n,m
j − k|

+
N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn+1,−1)
|V n+1,0

j − k|
∆τ

−
N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,0)
|V n,0

j − k|
∆τ

= −
M−1∑
m=1

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)− φ(j∆x, tn,m−1)
∆τ

|V n,m
j − k|

+
N−1∑
n=1

∞∑
j=−∞

φ(j∆x, n∆t−∆τ)− φ(j∆x, n∆t)
∆τ

|V n,0
j − k|

+
∞∑

j=−∞

φ(j∆x, N∆t−∆τ)
∆τ

|V N,0
j − k|

−
∞∑

j=−∞
φ(j∆x, 0)

|U0
j − k|
∆τ

,

M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)D−Qk(V n,m; j)

= −
M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

Qk(V n,m; j)D+φ(j∆x, tn,m),

hence, due to the identity N∆t−∆τ = T −∆τ (see (3.21)), (3.36) becomes

−∆x∆τ
M−1∑
m=1

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)− φ(j∆x, tn,m−1)
∆τ

|V n,m
j − k|(3.37)

+ ∆x∆τ
N−1∑
n=1

∞∑
j=−∞

φ(j∆x, n∆t−∆τ)− φ(j∆x, n∆t)
∆τ

|V n,0
j − k|

+ ∆x
∞∑

j=−∞
φ(j∆x, T −∆τ)|V N,0

j − k|

−∆x
∞∑

j=−∞
φ(j∆x, 0)|U0

j − k|
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−∆x∆τ
M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

Qk(V n,m; j)D+φ(j∆x, tn,m)

+ ∆x∆τ
M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

φ(j∆x, tn,m)DPn
j sign

(
V n,m+1

j − k
)
≤ 0.

Since supp (φ) is a compact subset of R× [0, T ), we have (j∆x, T −∆τ) 6∈ supp (φ)
for ∆τ small enough, and since V N,0 is bounded we find that

(3.38) ∆x
∞∑

j=−∞
φ(j∆x, T −∆τ)|V N,0

j − k| → 0, as ∆t, ∆τ → 0.

Furthermore

∆x∆τ
N−1∑
n=1

∞∑
j=−∞

φ(j∆x, n∆t−∆τ)− φ(j∆x, n∆t)
∆τ

∣∣∣V n,0
j − k

∣∣∣(3.39)

≤ ∆τ

∆t
T

∥∥∥∥{∣∣∣|V n,0
j − k

∣∣∣}
j,n

∥∥∥∥
`∞

sup
0≤t≤T

‖∂tφ(·, t)‖L1(R) → 0.

Next, thanks to the bv estimate (3.29) and the consistency of the numerical flux,

(3.40) ∆τ∆x

M−1∑
m=0

N−1∑
n=0

∞∑
j=−∞

∣∣Qk(V n,m; j)− qk(V n,m
j )

∣∣ → 0, as ∆t, ∆τ → 0.

As before, we have that

(3.41) DP∆tl,∆τl
→ ∂xP a.e. in R× [0, T ] as l →∞,

where P − ∂2
xxP = 3f(u), and

P∆tl,∆τl
(x, t) =

∫ x ∑
j

DPn
j In

j (y, t) dy.

Using (3.31)-(3.35), (3.38)-(3.41) and the dominated convergence theorem when
sending l → ∞ in (3.37), we find that the limit u satisfies the entropy inequality
(1.5) for all k ∈ R \ Θ, where Θ is an at most countable set Θ (see the proof of
Theorem 2.1). To conclude from this that (2.39) holds for all k ∈ R, i.e., that u is
an entropy solution to (3.1) in the sense of Definition 1.1, we repeat the argument
in [11]. Again, convergence of the whole sequence {u∆t}∆t>0 follows from the
uniqueness of entropy solutions. �

4. Numerical examples

In this section we test our scheme on two examples. In order to compare our
results with an “exact” solution we use the shock-peakons described by Lundmark
in [14]. These are exact entropy solutions to the Degasperis-Procesi equation (1.1)
and are given by the formulas

(4.1) u(x, t) =
N∑

k=1

{mk(t)− sk(t)sign (x− xk(t))} e−|x−xk(t)|,
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where the coefficients xk, mk, and sk satisfy the following system of ordinary dif-
ferential equations:

d

dt
xk(t) = u (xk, t) ,(4.2)

d

dt
mk(t) = 2

[
sk(t)u (xk, t)

(4.3)

−mk(t)
N∑

j=1

(sj(t)− sign (xk(t)− xj(t))mj(t)) e−|xk(t)−xj(t)|
]
,

d

dt
sk(t) = −sk(t))

N∑
j=1

(sj(t)− sign (xk(t)− xj(t))mj(t)) e−|xk(t)−xj(t)|.(4.4)

Unless N = 1 it is not possible to find explicit solutions to this system of equations,
and we used Matlab’s routine ode23s (after some trials) to integrate the system
numerically. The result of this was then used as an exact solution with which we
compared the approximations calculated with our numerical scheme.

If N = 1 we have three different types of traveling waves, the peakon

u(x, t) = e|x−t|,

the antipeakon
u(x, t) = −e|x−t|,

and the shockpeakon

u(x, t) = − sign (x) e−|x|

1 + t
.

We have tested the scheme using the Engquist-Osher numerical flux function (2.13).
For our test we used N = 3 and the initial values

x1(0) = −5, x2(0) = 0, x3(0) = 5,
m1(0) = 1, m2(0) = 0, m3(0) = −1,
s1(0) = 0, s2(0) = 1, s3(0) = 0,

which gives the initial function

(4.5) u0(x) = e−|x+5| + sign (x) e−|x| − e−|x−5|.

The exact solution will be a peakon, shockpeakon, antipeakon collision at t = 5
and x = 0. For t > 5 the solution continues as a decaying shockpeakon.

We used 2M uniformly spaced grid points in the interval x ∈ [−10, 10]. The
relationship between ∆τ and ∆t were such that (M/4)∆τ = ∆t, and ∆τ was
determined according to the CFL-condition

∆τ = 0.5∆xmax
j

{∣∣Un
j

∣∣} .

In Figure 1 we show the approximate solution obtained using 28 gridpoints in
[−10, 10] for t ∈ [0, 8]. Since we have an (almost) exact solution to compare with,
we tabulated the relative `1 error, defined by

(4.6) err = max
n

∑
j

∣∣Un
j − un

j

∣∣∑
j

∣∣un
j

∣∣ ,

where un
j denotes the exact solution at (xj , t

n). In Table 1 we report these errors.
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Figure 1. The approximation to with initial data (4.5) and 256
gridpoints in [−10, 10].

M 4 5 6 7 8 9 10 11
err 3.35 1.10 0.51 0.39 0.28 0.17 0.11 0.07

Table 1. Relative `1 errors. Here ∆x = 20 × 2−M and “err” is
defined in (4.6). The initial data are given by (4.5).

This computations confirm the convergence established in the previous section,
and give a numerical convergence rate of about 1/3. We remark that the observed
numerical convergence is improved if ∆τ = ∆t, but we have not been able to prove
that the resulting scheme converges.

For the solutions of the Degasperis-Procesi equation given by (4.1) shocks cannot
form from continuous initial data. If sk = 0 for all k, then the third equation gives
s′k(t) = 0, and thus sk remains zero unless mi blows up. We observed such singular
behavior numerically for peakon-antipeakon collisions, but it was not possible to
integrate the system past the collision time. Despite this we observed that shock
formation was generic if u′0(x) < 0 and u0(x) < 0 for some x. To illustrate this
we show a computed example where shocks form as they would in the conservation
law. In this case the initial function is given by

(4.7) u0(x) = e0.5x2
sin(πx),

for x ∈ [−2, 2], where we assume that u0 is extended periodically outside this
interval. In Figure 2 we show the computed solution using 28 gridpoints in the
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interval [−2, 2] for t ∈ [0, 1.3]. We see that the N -waves familiar from Burgers’
equation do indeed form, even though the initial data is continuous.
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Figure 2. An approximate solution with initial data (4.7).
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