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Abstract. Global weak solutions of a strictly hyperbolic system of balance laws in one-space
dimension were constructed (cf. Christoforou [C]) via the vanishing viscosity method under the
assumption that the source term g is dissipative. In this article, we establish sharp estimates on
the uniformly Lipschitz semigroup P generated by the vanishing viscosity limit in the general case
which includes also non-conservative systems. Furthermore, we prove uniqueness of solutions by
means of local integral estimates and show that every viscosity solution can be constructed as a
limit of vanishing viscosity approximations.

1. Introduction

The objective of this work is to study the global solution to the Cauchy problem for hyperbolic

systems

(1.1) ut +A(u)ux + g(u) = 0,

(1.2) u(0, x) = u0(x),

which is obtained via the method of vanishing viscosity in [C]. Here x ∈ R, u(t, x) ∈ Rn, A is n×n
matrix and g : Rn → Rn. We assume that the system is strictly hyperbolic, i.e. A(u) has n real

distinct eigenvalues

(1.3) λ1(u) < λ2(u) < . . . < λn(u),

and thereby n linearly independent right eigenvectors ri(u), i = 1, . . . , n.

Over the years, four different techniques have been developed for constructing weak solutions,

namely the random choice method of Glimm, the front tracking method, the vanishing viscosity

method and the functional analytic method of compensated compactness. Expositions of the current

state of the theory together with relevant bibliography may be found in the books [B, D, S, Sm].

For systems of balance laws, the existence of local in time BV solutions was first established by

Dafermos and Hsiao [DH], by the random choice method of Glimm [G]. Because of the presence of

the production term g(u), small oscillations in the solution may amplify in time, hence in general

one does not have long term stability in BV. Global existence was established in [DH] under a

suitable dissipativeness assumption on g. (See also [L, AGG]). Recently, global weak solutions to
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(1.1) were constructed via the vanishing viscosity method [C], namely, as the ε ↓ 0+ limit of a

family
{
uε

}
of functions that satisfy the parabolic system

(1.4) uε
t +A(uε)uε

x + g(uε) = εuε
xx.

This was achieved (cf. Christoforou [C]) by extending the fundamental analysis of Bianchini and

Bressan [BiB] to systems of balance laws.

As presented in [C], one should not expect global existence unless the source g(u) is dissipative.

Let u∗ be an equilibrium solution to (1.1) and consider n× n matrix

(1.5) B(u) = [r1(u), ..., rn(u)]−1Dg(u)[r1(u), ..., rn(u)].

Under the hypothesis that B(u∗) is strictly column diagonally dominant, i.e.

(1.6) Bii(u∗)−
∑
j 6=i

|Bji(u∗)| > µ > 0 i = 1, ..., n.

we obtain global BV solutions for the system (1.1). For the sake of completeness we state the

principal result of [C]:

Theorem 1.1. Consider the Cauchy problem

(1.7) uε
t +A(uε)uε

x + g(uε) = εuε
xx

(1.8) uε(0, x) = u0(x).

Assume that the matrices A(u) have real distinct eigenvalues λ1(u) < λ2(u) < . . . < λn(u) and

thereby n linearly independent eigenvectors r1(u), r2(u), . . . , rn(u). Under the assumption that the

matrix B(u∗) defined by (1.5) is strictly diagonally dominant, there exists a constant δ0 > 0 such

that if u0 − u∗ ∈ L1 and

(1.9) TV {u0} < δ0,

then for each ε > 0 the Cauchy problem (1.7)-(1.8) has a unique solution uε, defined for all t ≥ 0.

Moreover,

(1.10) TV {uε(t, ·)} ≤ C e−µ tTV {u0},

(1.11) ‖uε(t)− uε(s)‖L1 ≤ L′
(
|t− s|+

√
ε|
√
t−

√
s|

)
e−µs, for t > s,

where µ is a positive constant that depends on B(u∗). Furthermore, if vε is another solution of

(1.7) with initial data v0, then

(1.12) ‖uε(t)− vε(t)‖L1 ≤ Le−µt‖u0 − v0‖L1 .

Finally, as ε→ 0, uε converges in L1
loc to a function u, which is the admissible weak solution u of

(1.1)-(1.2), when the system is in conservation form, A = Df .
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In the conservative case, A = Df , every vanishing viscosity limit is an admissible weak solution

to ut +(f(u))x +g(u) = 0 and the stability estimate (1.12) implies the uniqueness within the family

of solutions obtained via the vanishing viscosity method (cf. Theorem 1.1).

The objective of this work is to establish the uniqueness of solutions to (1.1) by means of local

integral estimates. More precisely, our goal is twofold, namely treating the general case (1.1) in

which the system is not necessarily conservative as well as establishing uniqueness within a broader

class of solutions. The main result of this paper is the following:

Theorem 1.2. Suppose that the hypotheses of Theorem 1.1 hold. Let P : D × [0,∞) 7→ D be the

semigroup of vanishing viscosity solutions constructed as limit of the vanishing viscosity approx-

imations via (1.7) (as defined in Section 2.1). Then every trajectory u(t) = Ptu(0), u(t, ·) ∈ D
satisfies the following conditions:

i. At every point (τ, ξ), for every β′ > 0 one has

(1.13) lim
h→0+

1
h

∫ ξ+β′h

ξ−β′h
|u(τ + h, x)− U ]

(u;τ,ξ)(h, x− ξ)| dx = 0,

where U ]
(u;τ,ξ) is defined in (3.1)-(3.3).

ii. There exist constants C, β > 0 such that for every τ ≥ 0 and ξ ∈ (a, b), one has

lim sup
h→0+

1
h

∫ b−βh

a+βh
|u(τ + h, x)− U [

(u;τ,ξ)(h, x)| dx ≤ C
[
(TV {u(τ) : (a, b)})2

+ (b− a) · TV {u(τ) : (a, b)}
]
,(1.14)

where U [
(u;τ,ξ) is defined in (3.4).

Conversely, let u : [0, T ] 7→ D be Lipschitz continuous map with values in L1(R,Rn) and assume

that the conditions (i) and (ii) hold at almost every time τ . Then u(t) coincides with a trajectory

of the semigroup P.

The above result implies the convergence of Pεu0 as ε ↓ 0+ (as a whole sequence and not in the

context of a subsequence {εm}) to a unique limit Pu0. Furthermore, it characterizes the trajectories

of the semigroup by means of local integral estimates (1.13) and (1.14). More precisely, if we call

a viscosity solution a Lipschitz function that satisfies (1.13) and (1.14) (def. is given in Section 3),

then the limit Ptu0 is a viscosity solution and every viscosity solution can be constructed as a limit

of vanishing viscosity approximations. Roughly speaking, in view of the above result, a solution

u to the hyperbolic system with dissipative source (1.1) can be approximated by the self-similar

solution of a Riemann problem to ut + A(u)ux = 0 in a neighborhood of (τ, ξ). Also, it relates

u to the solution of the corresponding linear hyperbolic system ut + Âux + ĝ = 0 with constant

coefficients in terms of the total variation over the interval (a, b) and the length b−a of the interval.

It should be noted that this result is established for the case g ≡ 0 (cf. [BiB]). See also [AGG] for

a related work on front tracking approximation.
3



In [AG2], a Lipschitz semigroup P̃ is constructed for the conservative system (1.1), (A = Df),

that satisfies the estimate

(1.15) ‖P̃hv − Shu− hg(u)‖L1 = O(1)h2, h→ 0

where Sh converges to the corresponding semigroup of (1.1) for g ≡ 0. By employing (1.15), and

a general uniqueness argument (cf. [B2]) for quasi-differential equations in metric spaces, one can

derive that P̃ is unique and satisfies the integral estimates (1.13)-(1.14) in Theorem 1.2. Hence,

our operator P coincides with P̃ as constructed in [AG2]. It is possible to prove Theorem 1.2 by

following the same strategy as in [AG2], i.e. establishing an estimate of the form (1.15) for the

semigroup P constructed via the vanishing viscosity approximations. However, in this project our

goal is to employ the techniques presented [BiB] and generalize them in this setting.

We note that following [AG1] it is possible to recover the same results under a more general

assumption on the dissipation of the source term g independent of the choice of the right eigenvectors

ri, i = 1, . . . , n.

The outline of this article is as follows: In Section 2, we show that the bulk of a perturbation zε

to the vanishing viscosity approximations uε propagates at a finite speed. Hence as ε→ 0, we get

that the values of the vanishing viscosity solution u(t) on [a, b] can be determined by the values of

the initial data on [a− βt, b+ βt]; in particular

(1.16)
∫ b

a
|(u(t, x)− v(t, x)| dx = Le−µt

∫ b+βt

a−βt
|u0 − v0| dx,

for every two solutions u and v to (1.1) with initial data u0 and v0. It should be noted that

the exponential decay is induced by the dissipative source term. Note the improvement on the

continuous dependence estimate compared with (1.12). Moreover, we consider a uniformly Lipschitz

semigroup P generated by the vanishing viscosity limit: P = limPεm and establish the finite

propagation speed of solutions and tame oscillation property. Be employing these estimates, we

prove Theorem 1.2 in Section 3 and naturally extend the definition of a viscosity solution in this

framework. Finally, in Section 4, we derive an estimate on the dependence of the limit semigroup

P on the matrix A and the vector g.

In the author’s opinion, this project completes the work on the vanishing viscosity solutions to

hyperbolic systems with dissipative source of the form (1.1) satisfying the dissipativeness assump-

tion (1.6).

2. Propagation speed

Here, we study the properties of the semigroup generated by the vanishing viscosity method.

First, we establish the propagation speed on the linearized perturbation zε to uε . Having this

estimate, we can show a finite propagation speed on the vanishing viscosity limit and further

establish the tame oscillation. The proof of the next lemma follows closely the one in [BiB]. Here,
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we present the treatment of the source g(u). For that purpose, additional estimates are established

to those already devised in [BiB].

By rescaling the coordinates, we can write (1.7) as

(2.1) ut +A(u)ux + εg(u) = uxx.

Lemma 2.1. Let u, v be solutions to (2.1) with

u(0, x) = v(0, x), x /∈ [a, b],

then,

(2.2) |u(t, x)− v(t, x)| ≤ ‖u(0)− v(0)‖L∞min{αeβt−(x−b), αeβt+(x−a)}, ∀x ∈ R, t > 0,

for some constants α, β > 0. On the other hand, if

u(0, x) = v(0, x), x ∈ [a, b],

then,

(2.3) |u(t, x)− v(t, x)| ≤ ‖u(0)− v(0)‖L∞{αeβt−(x−a) + αeβt+(x−b)}, ∀x ∈ R, t > 0,

for some constants α, β > 0.

Proof. Consider the infinitesimal perturbation z to (2.1) that satisfies the linearized equation

(2.4) zt + (A(u)z)x + εDg(u)z = zxx + (DA(u) · ux)z − (DA(u) · z)ux

with initial data satisfying

|z(0, x)| ≤ 1, x ≤ 0

z(0, x) = 0, x > 0.

Let B(t) be a continuous increasing function that satisfies

B(t) ≥ 1 + 2‖A‖∞
∫ t

0

(
1√
t− s

+
√
π

)
B(s) ds, B(0) = 1.

This function is introduced in [BiB] and one can check that B(t) ≤ 2eCt for some large enough

constant C. Consider the function E(t, x)

E(t, x) .= B(t)et−xexp{4‖DA‖∞
∫ t

0
‖ux(σ)‖∞ dσ + 2ε‖Dg‖∞ t}.

Note the presence of the source term g in the definition of E(t, x). We claim

(2.5) |z(t, x)| ≤ E(t, x), ∀x ∈ R, t ≥ 0.
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Indeed, if G(t, x) is the heat kernel, then we can write

z(t, x) = G(t) ∗ z(0)−
∫ t

0
Gx(t− s) ∗ [A(u) z](s) ds

+
∫ t

0
G(t− s) ∗ [(ux •A(u))z(s)− (z •A(u))ux(s)] ds

−ε
∫ t

0
G(t− s) ∗Dg(u)z(s) ds,(2.6)

where ∗ denotes convolution and α • β is the derivative of β in the direction of α, i.e. ∇αβ. This

notation is consistent with the one used in [C]. Assume that τ > 0 is the first time at which (2.5)

holds as an equality, then we estimate |z(t, x)| via (2.6). It yields

(2.7)
∫
G(t, x− y)|z(0, y)| dy <

∫
e

(x−y)2

4t

2
√
πt

e−y dy = et−x,

‖A‖∞
∫ t

0

∫
|Gx(t− s, x− y)|E(s, y) dy ds =

=‖A‖∞
∫ t

0

∫
|x− y|

4(t− s)
√
π(t− s)

e
− (x−y)2

4(t−s) B(s)es−y·

· exp
{

4‖DA‖∞
∫ s

0
‖ux(σ)‖ dσ + 2ε‖Dg‖s

}
dy ds

≤‖A‖∞exp
{

4‖DA‖∞
∫ t

0
‖ux(σ)‖ dσ + 2ε‖Dg‖t

}
et−x·

·
∫ t

0

B(s)
4(t− s)

√
π(t− s)

[∫
|x− y|exp

{
−(y + 2(t− s)− x)2

4(t− s)

}
dy

]
ds

=exp
{

4‖DA‖∞
∫ t

0
‖ux(σ)‖ dσ + 2ε‖Dg‖t

}
et−x·

·
∫ t

0

‖A‖∞B(s)√
π(t− s)

(
∫
|ζ −

√
t− s|e−ζ2

dζ) ds

≤exp
{

4‖DA‖∞
∫ t

0
‖ux(σ)‖ dσ + 2ε‖Dg‖t+ t− x

} ∫ t

0
‖A‖∞B(s)(

1√
t− s

+
√
π)ds

≤exp
{

4‖DA‖∞
∫ t

0
‖ux(σ)‖ dσ + 2ε‖Dg‖t+ t− x

} (
B(t)

2
− 1

2

)
=

1
2
E(t, x)− 1

2
exp

{
4‖DA‖∞

∫ t

0
‖ux(σ)‖ dσ + 2ε‖Dg‖t+ t− x

}
≤ 1

2
E(t, x)− 1

2
et−x(2.8)
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and∫ t

0
(2‖DA‖∞‖ux(s)‖∞ + ε‖Dg‖∞)(

∫
G(t− s, x− y)E(s, y) dy) ds ≤

=
∫ t

0
(2‖DA‖∞‖ux(s)‖∞ + ε‖Dg‖∞)B(s)et−xexp{4‖DA‖∞

∫ s

0
‖ux(σ)‖∞ dσ + ε‖Dg‖∞s}ds

≤ B(t)et−x

∫ t

0
(2‖DA‖∞‖ux(s)‖∞ + ε‖Dg‖∞) ·

· exp{4‖DA‖∞
∫ s

0
‖ux(σ)‖∞ dσ + ε‖Dg‖∞s}ds

= B(t)et−x 1
2

(
exp

{
4‖DA‖∞

∫ t

0
‖ux(σ)‖ dσ + 2ε‖Dg‖t

}
− 1

)

≤ 1
2
E(t, x)− 1

2
et−x,

(2.9)

since B(s) is an increasing function and B(0) = 1. Hence, for all t ∈ [0, τ ], we get

|z(t, x)| < et−x + E(t, x)− et−x = E(t, x),

which contradicts the choice of τ . Thus (2.5) holds for all t ≥ 0. Applying the estimate

(2.10) ‖ux(s)‖∞ ≤ max
{

2κδ0√
s
,
2κδ0√
t̂

}
e−εµs

derived in Section 8 of [C], we deduce

(2.11) |z(t, x)| ≤ E(t, x) ≤ 2eCtexp{4‖DA‖∞2κδ0(
√
t+

t√
t̂
) + ε‖Dg‖∞t}et−x ≤ αeβt−x.

From this point and on, the proof follows easily if one adjusts the arguments in the proof of

Lemma 12.1, [BiB] to this setting.

By rescaling the coordinates backwards, for every u0(x) = v0(x) in x ∈ [a, b], (2.3) implies

(2.12) |uε(t, x)−vε(t, x)| ≤ ‖u(0)−v(0)‖L∞min
(
α exp

{
βt− (x− a)

ε

}
, α exp

{
βt+ (x− b)

ε

})
,

for all x ∈ R and t > 0, where uε and vε are solutions to (1.7).

The following subsections complete the survey on the solution u constructed via the vanishing

viscosity method and establish the essential estimates and properties needed to prove Theorem 1.2

in the next section. In Section 2.1, we define the semigroup P generated by the vanishing viscosity

solutions. In Section 2.2, we prove the finite propagation speed and obtain a sharper estimate

than the stability (1.12) w.r.t. initial data. Last, in Section 2.3, we establish the tame oscillation

property of the trajectories of P which plays a crucial role in the proof of Theorem 1.2. (See [BG].)
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2.1. Semigroup. Let the domain D ⊂ L1
loc be the set of all functions u0 with u0 − u∗ ∈ L1 and

small total variarion. Then for every t ≥ 0 we define Pε
t u0

.= uε(t). By (1.10) and proceeding as in

[BiB], we define

(2.13) Ptu0
.= lim

m→+∞
Pεm

t u0,

for some subsequence {εm ↓ 0}. Below, we show that P defines a semigroup and in the next section

we prove that it does not depend on the choice of the subsequence {εm}.
First, one can easily derive the continuity properties:

(2.14) ‖Ptu0 − Psv0‖L1 ≤ L′ e−µs|t− s| ,

for t > s and

(2.15) ‖Ptu0 − Ptv0‖L1 ≤ Le−µt‖u0 − v0‖L1 ,

by employing the estimates (1.12) and (1.11). Now, P0u0 = u0 is an immediate consequence of the

definition of P. To prove Ps+tu0 = PsPtu0, given r > 0, we consider the initial data

(2.16) ũm(x) =

{
Ptu0(x) if |x| > r + 2βs,

Pεm
t u0(x) if |x| ≤ r + 2βs.

Assuming that s > 0, by (2.12) and (2.15), it follows

lim sup
m→+∞

∫ r

−r
|(Pεm

s Pεm
t u0)(x)− (Pεm

s Ptu0)(x)| dx

≤ lim
m→+∞

2r sup
|x|<r

|(Pεm
s Pεm

t u0)(x)− (Pεm
s ũm)(x)|+ lim

m→+∞
‖Pεm

s ũm − Pεm
s Ptu0‖L1

≤ lim
m→+∞

2r‖Pεm
t u0 − ũm‖L∞2αe−

βs
εm + lim

m→+∞
L‖ũm − Ptu0‖L1 = 0.(2.17)

If we observe that

(2.18) Ps+tu0 = lim
m→+∞

Pεm
s Pεm

t u0, PsPtu0 = lim
m→+∞

Pεm
s Ptu0,

then (2.17) implies the identity Ps+tu0 = PsPtu0. Thus P is a semigroup.

2.2. Finite Propagation Speed. Consider an interval [a, b] and two initial data u0, v0 such that

u0(x) = v0(x), x ∈ [a, b].

Hence, by (2.12) it follows

(2.19) |(Ptu0)(x)− (Ptv0)(x)| ≤ lim sup
m→+∞

|(Pεm
t u0)(x)− (Pεm

t v0)(x)| = 0, x ∈ (a+ βt, b− βt).

Thus,

(2.20) (Ptu0)(x) ≡ (Ptv0)(x), x ∈ (a+ βt, b− βt).
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Moreover for every initial data u0, v0, take

(2.21) w0 =

{
u0(x) if x ∈ [a− βt, b+ βt],

v0(x) if x /∈ [a− βt, b+ βt].

In view of the finite propagation speed (2.20) and (2.15), we get∫ b

a
|(Ptu0)(x)− (Ptv0)(x)| dx =

∫ b

a
|(Ptw0)(x)− (Ptv0)(x)| dx

≤ ‖Ptw0 − Ptv0‖L1 ≤ L‖w0 − v0‖L1e−µt

= Le−µt

∫ b+βt

a−βt
|u0 − v0| dx,(2.22)

which is a sharper estimate than (2.15).

The following lemma states two estimates that are satisfied by every semigroup which is contin-

uous with respect to time and initial data. We employ these estimates in the next section to prove

uniqueness.

Lemma 2.2. For every Lipschitz continuous map ω(t), t ∈ [0, T ] taking values in the domain of

P, it follows

(2.23) ‖ω(T )− PTω(0)‖L1 ≤ L

∫ T

0
lim inf
r→0+

‖ω(t+ r)− Prω(t)‖L1

r
dt

and in particular, given any interval [a, b], then

(2.24) ‖ω(T )− PTω(0)‖L1(a+βT,b−βT ) ≤ L

∫ T

0
lim inf
r→0+

‖ω(t+ r)− Prω(t)‖L1(a+β(t+r),b−β(t+r))

r
dt,

where L is the Lipschitz constant of the semigroup P.

Proof. The proof of (2.23) can be found in [B]. To prove (2.24), let

(2.25) ψ(t) = ‖PT−tω(t)− PTω(0)‖L1(a+βT,b−βT ),

(2.26) φ(t) = lim inf
r→0+

1
r
‖ω(t+ r)− Prω(t)‖L1(a+β(t+r),b−β(t+r))

and

(2.27) χ(t) = ψ(t)− L

∫ t

0
φ(s) ds.

Since, χ(0) = ψ(0) = 0, it suffices to prove that χ̇(s) ≤ 0 for all s ∈ [0, T ]. The proof follows by

retracing the arguments of the proof of (2.23).
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2.3. Tame Oscillation. We denote by TV {u(t); (a, b)} the total variation of u(t, ·) over the in-

terval x ∈ (a, b). Consider the triangle ∆τ
a,b on the t− x plane:

(2.28) ∆τ
a,b

.= {(t, x) : t > τ, a+ βt < x < b− βt}.

Lemma 2.3. For every a < b and τ ≥ 0, then there exists a positive constant C ′ such that

(2.29) Osc.{u;∆τ
a,b} ≤ C ′ · TV {u(τ); (a, b)},

for every trajectory u(t) = Ptu0, where Osc.{u;∆τ
a,b} denotes the oscillation of u over ∆τ

a,b;

(2.30) Osc.{u;∆τ
a,b}

.= sup{|u(t, x)− u(t′, x′)|; (t, x), (t′, x′) ∈ ∆τ
a,b}.

Proof. Without loss of generality assume that τ = 0 and consider the initial data

(2.31) v̄(x) .=


u(τ, a−) if x ≤ a

u(τ, x) if a < x < b

u(τ, b+) if x ≥ b

.

Let v(t) = Ptv̄. Then the finite speed of propagation (2.20) implies

(2.32) Osc.{u;∆τ
a,b} = Osc.{v;∆τ

a,b} ≤ 2 sup
t
TV {v(t)} ≤ 2C TV {v̄},

and the proof follows easily in the same way as in [BiB] for the case g = 0, since TV {u(τ); (a, b)} =

TV {v̄}.

As we will see in the next section, this result is essential to establish the uniqueness as stated in

Theorem 1.2.

3. Uniqueness of the semigroup

In this section, we first define the functions U ]
(u;τ,ξ), U

[
(u;τ,ξ) stated in Theorem 1.2 and then

present the proof.

Given a function u = u(t, x) and a point (τ, ξ), let U ]
(u;τ,ξ) be the solution to the Riemann problem

(3.1) wt +A(w)wx = 0,

(3.2) w(0, x) =

{
u− x < 0

u+ x ≥ 0
,

where

(3.3) u− = lim
x→ξ−

u(τ, x), u+ = lim
x→ξ+

u(τ, x).

Let S denote the semigroup that is generated by the vanishing viscosity limits to the hyperbolic

system (3.1). In [BiB], it is shown that S is a well-defined semigroup and it satisfies the correspond-

ing error estimate if P is replaced by S in (2.24). This fact is employed in the proof of Theorem
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1.2. We refer the reader to [BiB] (in Section 14) for a construction of self-similar solutions to the

non-conservative Riemann problem (3.1)-(3.2).

Moreover, we define U [
(u;τ,ξ) to be the solution to the linear hyperbolic problem with constant

coefficients:

(3.4) wt + Âwx + ĝ = 0, w(0, x) = u(τ, x),

where Â = A(u(τ, ξ) and ĝ = g(u(τ, ξ)).

Proof of Theorem 1.2. Necessity: Let u(t) = Ptu(0) be a trajectory of the semigroup of

vanishing viscosity solutions. To prove (i), given β′ > 0 and (τ, ξ), take a function ũ(x) such that

ũ(x) − u∗ ∈ L1 and ũ(x) = w(0, x), x ∈ (−β′ − β, β′ + β), where w(0, x) is given in (3.2)-(3.3).

Let Ũ(u;τ,ξ) be the solution to (1.1) with initial data ũ(x), i.e. Ũ(u;τ,ξ)(t) = Ptũ. Now, fix h > 0 and

small. Hence,

1
h

∫ ξ+β′h

ξ−β′h
|u(τ + h, x)−U ]

(u;τ,ξ)(h, x− ξ)| dx ≤ 1
h

∫ ξ+β′h

ξ−β′h
|u(τ + h, x)− Ũ(u;τ,ξ)(h, x− ξ)| dx

+
1
h

∫ ξ+β′h

ξ−β′h
|Ũ(u;τ,ξ)(h, x− ξ))− U ]

(u;τ,ξ)(h, x− ξ)| dx.(3.5)

The first term can be estimated as follows: By the continuous dependence property (2.22) of P
and (3.3):

1
h

∫ ξ+β′h

ξ−β′h
|u(τ + h, x)− Ũ(u;τ,ξ)(h, x− ξ)| dx

≤L
h

{∫ ξ+(β′+β)h

ξ−(β′+β)h
|u(τ, x)− Ũ(u;τ,ξ)(0, x− ξ)| dx

}

≤L
h

{∫ ξ

ξ−(β′+β)h
|u(τ, x)− u(τ, ξ−)| dx+

∫ ξ+(β′+β)h

ξ
|u(τ, x)− u(τ, ξ+)| dx

}

≤L(β′ + β)

{
sup

ξ−(β′+β)h<x<ξ
|u(τ, x)− u(τ, ξ−)|+ sup

ξ<x<ξ+(β′+β)h
|u(τ, x)− u(τ, ξ+)|

}
.(3.6)

Moreover, by the error estimate (2.24) applied on S, we get

1
h

∫ β′h

−β′h
|Ũ(u;τ,ξ)(h, x)− U ]

(u;τ,ξ)(h, x)| dx =
1
h

∫ β′h

−β′h
|Phw(0)− Shw(0)| dx ≤

≤ L

h

∫ h

0
lim inf
r→0+

∫ −β(s+r)+(β′+β)h

β(s+r)−(β′+β)h

1
r
|Ũ(u;τ,ξ)(s+ r, x)− SrŨ(u;τ,ξ)(s)| dx ds

≤ L

h

∫ h

0

∫ −βs+(β′+β)h

βs−(β′+β)h
|g(Ũ(u;τ,ξ)(s, x))|dx ds ≤ L′(β′ + β)h.(3.7)

If we let h→ 0+, (3.6), (3.7) together with (3.5) establish (1.13).
11



To prove (ii), let

(3.8) v̄(x) =


u(τ, a+) if x ≤ a

u(τ, x) if a < x < b

u(τ, b−) if x ≥ b

,

and

vε
t +A(vε)vε

x + g(vε) = εvε
xx, wε

t + Âwε
x + ĝ = εwε

xx,

vε(0, x) = wε(0, x) = v̄.

Then, by the error estimate (2.24) and the tame oscillation property (2.29), we estimate

1
h

∫ b−βh

a+βh
|u(τ + h, x)− U [

(u;τ,ξ)(h, x)| dx ≤
1
h

lim
ε→0

∫ b−βh

a+βh
|vε(h, x)− wε(h, x)| dx

=
1
h

lim
ε→0

‖Pε
hv̄ − wε(h)‖L1(a+βh,b−βh)

≤1
h

lim
ε→0

L

∫ h

0
lim inf

r→0

1
r
‖wε(t+ r)− Pε

rw
ε(t)‖L1(a+β(r+t),b−β(r+t)) dt

≤L
h

lim
ε→0

∫ h

0

∫ b−βt

a+βt
|A(wε(0, ξ))wε

x(t, x) + g(wε(0, ξ))

−A(wε(t, x))wε
x(t, x)− g(wε(t, x))| dx dt

≤L
h

(
h sup

t,x
[A(wε(0, ξ))−A(wε(t, x))]‖wε

x(t)‖L1 + hC ′ TV {v̄}(b− a)
)

≤L
(
C(TV v̄)2 + C ′(b− a) · TV v̄

)
.

This completes the proof of (1.14).

Sufficiency: Suppose that u satisfies conditions (i) and (ii), then first observe that u is Lipschitz

continuous in time and hence, employ the error estimate (2.24). Given τ ∈ [0, T ], the function

Pt−τu0 is a trajectory of vanishing viscosity solutions and therefore it satisfies (1.13)-(1.14) accord-

ing to the necessity part of the theorem, which is already proven. Now, one can proceed by the

same arguments in the proof of Lemma 15.2 in [BiB] introducing a partition of [a+ τβ, b− τβ] so

that the total variation of u is arbitrarily small over each subinterval and then employ U [
(u;τ,xj)

and

U ]
(u;τ,yj)

.

As in [BiB, B1], the definition of viscosity solution can be naturally extended to the hyperbolic

system with source:

(3.9) ut +A(u)ux + g(u) = 0,

(3.10) u(0, x) = u0(x).

Definition 3.1. A function u(t, x) is a viscosity solution to (1.1) if t 7→ u(t, ·) is continuous with

values in L1
loc and (1.13)-(1.14) hold.

12



Remark 3.2. In view of Theorem 1.2, the family of vanishing viscosity approximations Pεu0

converge to a unique limit as ε → 0+, and hence the definition of Pu0 is independent of the

extracted subsequence {εm}.
Indeed, suppose that there are s > 0 and u0 ∈ D such that

(3.11) lim
m→+∞

Pεm
s u0 6= lim

m→+∞
Pε′m

s u0

for two different subsequences εm, ε′m → 0, and let Ptu0 and P ′tu0 be the corresponding limits as

m→ +∞ that exist L1
loc for all t ≥ 0. We know, by Section 2.1, that Ptu0 and P ′tu0 are semigroups

generated by vanishing viscosity limits to (1.1). Then, by Theorem 1.2, u(t) .= Ptu0 is a viscosity

solution to (3.9). Since it is a viscosity solution, the sufficiency part of Theorem 1.2 implies that

u(t) = P ′tu0 for all t ≥ 0. This contradicts the assumption (3.11) for t = s and proves the statement

of this remark.

4. Dependence on parameters

In this section, we derive an estimate on the dependence of solutions on parameters of the matrix

A and the vector g. Let u∗ be a constant equilibrium solution to both systems considered below.

Corollary 4.1. Consider the two hyperbolic systems

(4.1) ut +A(u)ux + g(u) = 0,

(4.2) ut + Â(u)ux + ĝ(u) = 0,

having initial data u0 with small total variation and u0 − u∗ ∈ L1. Suppose that the hypotheses of

Theorem 1.1 hold. Call P, P̂ the corresponding semigroups of vanishing viscosity solutions, then

‖P̂tū− Ptū‖L1 ≤ M

(
1− e−µt

µ

) {
sup

u
|Â(u)−A(u)|TV {u0}

+sup
u
|Dĝ(u)−Dg(u)|‖u0 − u∗‖L1

}
,(4.3)

for some positive constant M .

Proof. Let Pε and P̂ε be the corresponding semigroups solutions to the parabolic problems

ut +A(u)ux + g(u) = εuxx, ut + Â(u)ux + ĝ(u) = εuxx,

respectively. Then by (2.23), we get

(4.4) ‖P̂ε
t u0 − Pε

t u0‖L1 ≤ L

∫ t

0
lim inf
r→0+

1
r
‖wε(s+ r)− Pε

rw
ε(s)‖L1 ds,

where wε(t) .= P̂ε
t u0. Hence,
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‖P̂ε
t u0 − Pε

t u0‖L1 ≤ L

∫ t

0

[ ∫
|Â(wε(s, x))−A(wε(s, x))| |wε

x(s, x)| dx

+
∫
|ĝ(wε(s, x))− g(wε(s, x))| dx

]
ds

≤ L

(
sup

u
|Â(u)−A(u)|

) ∫ t

0
TV {wε(s)} ds

+L
(

sup
u
|Dĝ(u)−Dg(u)|

) ∫ t

0
‖wε(s)− u∗‖L1 ds.(4.5)

Let µ > 0 be the constant that satisfies the dissipativeness hypotheses (1.6) of both g and ĝ. Using

the bounds

TV {wε(s)} ≤ Ce−µsTV {u0}, ‖wε(s)− u∗‖L1 ≤ Le−µs‖u0 − u∗‖L1 ,

established in [C], we conclude

‖P̂ε
t u0 − Pε

t u0‖L1 ≤ M

(
1− e−µt

µ

)
sup

u
|Â(u)−A(u)| · TV {u0}

+M
(

1− e−µt

µ

)
sup

u
|Dĝ(u)−Dg(u)| · ‖u0 − u∗‖L1 .(4.6)

By letting ε→ 0, the above estimate completes the proof.

Remark 4.2. Observe the presence of the exponential decay term in (4.3) that is induced by the

dissipativeness assumptions on the source g and ĝ. Notice that as g and ĝ tend to 0, then

lim
µ→0+

1− e−µt

µ
= t

and the above error estimate reduces to the one obtained in [BiB] for the case of hyperbolic systems

(3.1) with g ≡ 0.
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